1
|
Heidarzadeh-Esfahani N, Eskandarzadeh S, Mahmoodi M, Makhtoomi M, Alavi SM, Shateri Z, Nasimi N, Nouri M, Dabbaghmanesh MH. Diet-induced inflammation and its association with sarcopenia in an Iranian population: a case-control study. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:182. [PMID: 40450377 DOI: 10.1186/s41043-025-00942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025]
Abstract
BACKGROUND Dietary intake, as one of the critical lifestyle risk factors, plays a crucial role in the risk of sarcopenia, potentially due to its anti-inflammatory properties. The objective of this study was to evaluate the association between the Dietary Inflammatory Index (DII) and the Dietary Inflammatory Score (DIS) with sarcopenia in an Iranian population. METHODS In the present study, 80 participants with sarcopenia were included in the case group, and 80 non-sarcopenia participants were included in the control group, matched by gender. Sarcopenia was diagnosed according to the Asian Working Group on Sarcopenia (AWGS) guidelines. Additionally, dietary data obtained from a food frequency questionnaire were used to calculate participants' DIS and DII scores. The association between the DII and DIS and the odds ratio of sarcopenia was assessed by logistic regression in both crude and adjusted models. RESULTS In the crude model, the odds of sarcopenia were significantly higher for each unit increase in DIS and DII scores (DIS: odds ratio (OR) = 1.221, 95% confidence interval (CI): 1.128-1.322; DII: OR = 1.271, 95% CI: 1.041-1.553). After adjusting for age, energy, and protein intake, higher odds of sarcopenia were observed for each unit increase in DIS score (OR = 1.129, 95% CI: 1.004-1.268). Similarly, higher odds of sarcopenia were seen for each unit increase in DII score after adjusting for potential confounders (OR = 1.269, 95% CI: 1.032-1.561). CONCLUSIONS In conclusion, this study found that greater adherence to the DII and DIS was associated with higher odds of sarcopenia in older adults. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Neda Heidarzadeh-Esfahani
- Department of Nutrition, Iranian Cancer Control Center (MACSA) - Isfahan Branch, Isfahan, Iran
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sevda Eskandarzadeh
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mahmoodi
- Department of Nutrition, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maede Makhtoomi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mohammad Alavi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zainab Shateri
- Department of Nutrition and Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Nasrin Nasimi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | | |
Collapse
|
2
|
Zhang G, Lu Y, Wang Z, Ma R, Jin H, Zhang J, Liu F, Ding Y. Causal relationship between gut microbiota and ageing: A multi-omics Mendelian randomization study. Arch Gerontol Geriatr 2025; 131:105765. [PMID: 39988416 DOI: 10.1016/j.archger.2025.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/12/2025] [Accepted: 01/18/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Observational studies and clinical trials have suggested a connection between gut microbiota and aging. However, the causal relationship between them remains undetermined. OBJECTIVES This study aimed to use bidirectional two-sample Mendelian randomization (TSMR) analysis to explore the causal relationship between gut microbiota and aging. METHODS Summary statistics from genome-wide association studies (GWAS) on gut microbiota and seven aging-related phenotypes were employed for TSMR analysis. Reverse Mendelian randomization (MR) analysis was performed to assess the potential for reverse causality. Additionally, the relationship between Akkermansia muciniphila and inflammation-related proteins and metabolites was further investigated. The effects of Akkermansia muciniphila on aging were also examined in Caenorhabditis elegans by measuring both lifespan and healthspan. RESULTS MR analysis of 207 microbial taxa and seven aging phenotypes revealed 44 causal relationships between the gut microbiota and aging. Akkermansia muciniphila was found to be causally linked to several aging-related traits, including mvAge, appendicular lean mass, and grip strength (P < 0.05). Reverse MR analysis identified 23 causal relationships, but no bidirectional causality was observed. Moreover, Akkermansia muciniphila is causally related to ST1A1, taurine bile acid, and mannose (P < 0.05). In Caenorhabditis elegans, treatment with Akkermansia muciniphila significantly extended lifespan (P < 0.05) and improved mobility in aging nematodes. CONCLUSION TSMR analysis uncovers multiple potential causal links between gut microbiota and aging, particularly Akkermansia muciniphila. Experimental results support its role in alleviating aging. This study provides a strong foundation for future research on gut microbiota's role in aging.
Collapse
Affiliation(s)
- Guolin Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yuqing Lu
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhen Wang
- Department of General Surgery, The First Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ruicong Ma
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hongjin Jin
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingsi Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Fengyi Liu
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yanchun Ding
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
3
|
Zange J, Endres J, Clemen CS, Rittweger J. Leg and hip muscles show muscle-specific effects of ageing and sport on muscle volume and fat fraction in male Masters athletes. J Physiol 2025. [PMID: 40162664 DOI: 10.1113/jp285665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Age-related deterioration in muscle volume, intramuscular fat content and muscle function can be modulated by physical activity. We explored whether Masters athletes, as examples of highly physically active people into old age, could prevent these age-related muscle deteriorations. Four groups of 43 men were examined: young athletes (20-35 years, n = 10), Masters athletes (60-75 years, n = 10) and two age-matched control groups (old: n = 11, young: n = 12). Volumes and fat fractions of 17 different hip and leg muscles were determined using magnetic resonance imaging. In the soleus muscle extra- and intramyocellular lipids were measured using 1H-MR-spectroscopy. Finally volumes of glutei, quadriceps and triceps surae muscles were cumulated and compared to peak jumping power. In both age groups the sum of glutei, quadriceps and triceps surae muscles showed larger volumes in athletes (young: 5758 ± 1139 ml, old: 5285 ± 895 ml) compared to the corresponding control groups (young: 4781 ± 833 ml, old: 4379 ± 612 ml) (p < 0.001). Fat fraction varied between 1.5% and 12.5% 1H-signal across muscles and groups and was greater in Masters athletes than in young athletes (p < 0.001), but lower than that in old controls (p < 0.001) and comparable with young controls. Age and exercise-related effects on muscle fat predominantly originated from the extramyocellular lipids. Finally muscle peak power per volume was effectively halved in the combined older groups compared to the younger groups. Our findings suggest that sarcosthenia, that is, intrinsic muscle weakness, is an effective cause of age-related power declines in addition to sarcopenia and fat accumulation. KEY POINTS: Muscle volume and muscle fat fraction from 17 hip and leg muscles of Masters athletes were compared with old controls, young athletes and young controls. Muscle volume and fat fraction were determined using magnetic resonance imaging (MRI) using a six-point-DIXON sequence. Muscle volume in Masters athletes was larger than that in old controls but partially smaller than that in young athletes. Muscle fat fraction of Masters athletes was lower than that in old controls but higher than that in young athletes. Muscles of old athletes and old controls produce only 50% of jumping peak power per muscle volume compared with younger subjects. The intrinsic reduction of power loss in old muscle could not be explained by the higher fat fraction in old muscle.
Collapse
Affiliation(s)
- Jochen Zange
- Department of Muscle and Bone Metabolism, German Aerospace Centre (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Joachim Endres
- Department of Muscle and Bone Metabolism, German Aerospace Centre (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Christoph S Clemen
- Department of Muscle and Bone Metabolism, German Aerospace Centre (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Department of Muscle and Bone Metabolism, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jörn Rittweger
- Department of Muscle and Bone Metabolism, German Aerospace Centre (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Department of Paediatrics and Adolescent Medicine, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Alorfi NM, Alshehri FS, Ashour AM. Therapeutics for Sarcopenia and Functional Disabilities in Older Adults: A Review of Phase 4 Clinical Trials. Drug Des Devel Ther 2025; 19:2307-2314. [PMID: 40165996 PMCID: PMC11956726 DOI: 10.2147/dddt.s507033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
Background Sarcopenia significantly contributes to physical disability and reduced quality of life in older adults, leading to disability. Therapeutics used to manage sarcopenia can improve not only muscle health but also the overall functional capacity of individuals at risk of developing disabilities. This review focuses on the therapeutic interventions evaluated in phase 4 clinical trials to address sarcopenia and its associated disabilities in older adults. Objective To review and summarize the therapeutic agents tested in phase 4 clinical trials for the management of sarcopenia and their potential impact on reducing functional disabilities in older adults. Methods A review of phase 4 clinical trials was conducted on 6th November 2024, focusing on interventions for sarcopenia in older adults. Data on therapeutic agents, trial outcomes, and their effects on muscle mass, strength, and disability prevention were collected from clinicaltrials.gov database. Results Several therapeutic agents, including whey protein powder, eldecalcitol, testosterone enanthate, and Denosumab, have been tested in Phase 4 trials for their ability to enhance muscle mass and function in older adults with sarcopenia. Allopurinol and Pioglitazone were also studied for their potential to improve muscle metabolism, while Medrol (Methylprednisolone) and Levothyroxine offered supportive effects in inflammatory and metabolic disorders that exacerbate muscle loss. Moreover, combination therapies, such as nutritional supplementation with HMB and vitamin D, showed promise in improving muscle function. These interventions demonstrated varying degrees of efficacy in improving muscle strength, reducing physical disability, and enhancing overall functional capacity in older adults. Conclusion Therapeutic strategies targeting sarcopenia in older adults have the potential to reduce functional disabilities and improve quality of life. Phase 4 clinical trials provide valuable insights into the long-term safety and effectiveness of these treatments. Continued research and refinement of these therapies are essential to fully address the disabling effects of sarcopenia and promote healthy aging.
Collapse
Affiliation(s)
- Nasser M Alorfi
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, 11614, Saudi Arabia
| | - Fahad S Alshehri
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed M Ashour
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- King Salman Center for Disability Research, Riyadh, 11614, Saudi Arabia
| |
Collapse
|
5
|
Zuo X, Zhao R, Wu M, Wang Y, Wang S, Tang K, Wang Y, Chen J, Yan X, Cao Y, Li T. Multi-omic profiling of sarcopenia identifies disrupted branched-chain amino acid catabolism as a causal mechanism and therapeutic target. NATURE AGING 2025; 5:419-436. [PMID: 39910243 DOI: 10.1038/s43587-024-00797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/16/2024] [Indexed: 02/07/2025]
Abstract
Sarcopenia is a geriatric disorder characterized by a gradual loss of muscle mass and function. Despite its prevalence, the underlying mechanisms remain unclear, and there are currently no approved treatments. In this study, we conducted a comprehensive analysis of the molecular and metabolic signatures of skeletal muscle in patients with impaired muscle strength and sarcopenia using multi-omics approaches. Across discovery and replication cohorts, we found that disrupted branched-chain amino acid (BCAA) catabolism is a prominent pathway in sarcopenia, which leads to BCAA accumulation and decreased muscle health. Machine learning analysis further supported the causal role of BCAA catabolic dysfunction in sarcopenia. Using mouse models, we validated that defective BCAA catabolism impairs muscle mass and strength through dysregulated mTOR signaling, and enhancing BCAA catabolism by BT2 protects against sarcopenia in aged mice and in mice lacking Ppm1k, a positive regulator of BCAA catabolism in skeletal muscle. This study highlights improving BCAA catabolism as a potential treatment of sarcopenia.
Collapse
Affiliation(s)
- Xinrong Zuo
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Rui Zhao
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Minming Wu
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yanyan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province & School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Shisheng Wang
- Liver Surgery and Liver Transplant Center and NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Kuo Tang
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yang Wang
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jie Chen
- Department of Rheumatology and Immunology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yang Cao
- Department of Cardiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
- Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China.
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Paquin J, Tremblay R, Islam H, Riesco E, Marcotte-Chénard A, Dionne IJ. Resistance training, skeletal muscle hypertrophy, and glucose homeostasis: how related are they? A Systematic review and Meta-analysis. Appl Physiol Nutr Metab 2024; 49:1622-1635. [PMID: 39484808 DOI: 10.1139/apnm-2024-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Resistance training (RT) promotes skeletal muscle (Skm) hypertrophy, increases muscular strength, and improves metabolic health. Whether changes in fat-free mass (FFM; a surrogate marker of muscle hypertrophy) moderate RT-induced improvements in glucose homeostasis has not been determined, despite extensive research on the benefits of RT for health and performance. The aim of this meta-analysis is to examine whether RT-induced Skm hypertrophy drives improvements in glucose metabolism and to explore confounders, such as biological sex and training parameters. Random-effects meta-analyses were performed using variance random effects. Meta-regressions were performed for confounding factors depending on the heterogeneity (I2). Analyses from 33 intervention studies revealed significant within-study increases in FFM with a moderate effect size (within-studies: (effect size; ES = 0.24 [0.10; 0.39]; p = 0.002; I2 = 56%) and a tendency for significance when compared with control groups (ES = 0.42 [-0.04-0.88]; p = 0.07). Within-study significant increases in glucose tolerance (2 h glucose: ES = -0.3 [-0.50; -0.11]; p < 0.01; I2 = 43%; glucose area under the curve (AUC): -0.40 [-0.66; -0.13] I2 = 76.1%; p < 0.01) and insulin sensitivity (ES = 0.38 [0.13; 0.62]; I2 = 53.0%; p < 0.01) were also apparent with RT. When compared to control groups, there was no significant difference in 2 h glucose, nor in glucose AUC from baseline in RT intervention groups. Meta-regression analyses failed to consistently reveal increases in FFM as a moderator of glucose homeostasis. Other mixed-effect models were also unsuccessful to unveil biological sex or training parameters as moderators of FFM increases and glucose homeostasis changes. Although Skm hypertrophy and improvements in glycemic control occur concurrently during RT, changes in these variables were not always related. Well-controlled trials including detailed description of training parameters are needed to inform RT guidelines for improving metabolic health. Registration and protocol number (Prospero): CRD42023397362.
Collapse
Affiliation(s)
- J Paquin
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
- University of Sherbrooke, Faculty of Physical Activity Sciences, Sherbrooke, QC, Canada
| | - R Tremblay
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
- University of Sherbrooke, Faculty of Physical Activity Sciences, Sherbrooke, QC, Canada
| | - H Islam
- University of British Columbia, School of Health and Exercise Science, Kelowna, BC, Canada
| | - E Riesco
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
- University of Sherbrooke, Faculty of Physical Activity Sciences, Sherbrooke, QC, Canada
| | - A Marcotte-Chénard
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
- University of Sherbrooke, Faculty of Physical Activity Sciences, Sherbrooke, QC, Canada
- University of British Columbia, School of Health and Exercise Science, Kelowna, BC, Canada
| | - I J Dionne
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
- University of Sherbrooke, Faculty of Physical Activity Sciences, Sherbrooke, QC, Canada
| |
Collapse
|
7
|
Millan-Domingo F, Garcia-Dominguez E, Gambini J, Olaso-Gonzalez G, Viña J, Gomez-Cabrera MC. Diet and exercise in frailty and sarcopenia. Molecular aspects. Mol Aspects Med 2024; 100:101322. [PMID: 39591800 DOI: 10.1016/j.mam.2024.101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024]
Abstract
Function declines throughout life although phenotypical manifestations in terms of frailty or disability are only seen in the later periods of our life. The causes underlying lifelong function decline are the aging process "per se", chronic diseases, and lifestyle factors. These three etiological causes result in the deterioration of several organs and systems which act synergistically to finally produce frailty and disability. Regardless of the causes, the skeletal muscle is the main organ affected by developing sarcopenia. In the first section of the manuscript, as an introduction, we review the quantitative and qualitative age-associated skeletal muscle changes leading to frailty and sarcopenia and their impact in the quality of life and independence in the elderly. The reversibility of frailty and sarcopenia are discussed in the second and third sections of the manuscript. The most effective intervention to delay and even reverse frailty is exercise training. We review the role of different training programs (resistance exercise, cardiorespiratory exercise, multicomponent exercise, and real-life interventions) not only as a preventive but also as a therapeutical strategy to promote healthy aging. We also devote a section in the text to the sexual dimorphic effects of exercise training interventions in aging. How to optimize the skeletal muscle anabolic response to exercise training with nutrition is also discussed in our manuscript. The concept of anabolic resistance and the evidence of the role of high-quality protein, essential amino acids, creatine, vitamin D, β-hydroxy-β-methylbutyrate, and Omega-3 fatty acids, is reviewed. In the last section of the manuscript, the main genetic interventions to promote robustness in preclinical models are discussed. We aim to highlight the molecular pathways that are involved in frailty and sarcopenia. The possibility to effectively target these signaling pathways in clinical practice to delay muscle aging is also discussed.
Collapse
Affiliation(s)
- Fernando Millan-Domingo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain; Programa Mejora S.L, 46002, Valencia, Spain; Sports Science and Innovation Research Group (GICED), Laboratory of Applied Sciences of Sport, Unidades Tecnológicas de Santander (UTS), Bucaramanga, 680006, Santander, Colombia
| | - Esther Garcia-Dominguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Juan Gambini
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.
| | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Maria Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| |
Collapse
|
8
|
Cacciatore S, Calvani R, Esposito I, Massaro C, Gava G, Picca A, Tosato M, Marzetti E, Landi F. Emerging Targets and Treatments for Sarcopenia: A Narrative Review. Nutrients 2024; 16:3271. [PMID: 39408239 PMCID: PMC11478655 DOI: 10.3390/nu16193271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Sarcopenia is characterized by the progressive loss of skeletal muscle mass, strength, and function, significantly impacting overall health and quality of life in older adults. This narrative review explores emerging targets and potential treatments for sarcopenia, aiming to provide a comprehensive overview of current and prospective interventions. METHODS The review synthesizes current literature on sarcopenia treatment, focusing on recent advancements in muscle regeneration, mitochondrial function, nutritional strategies, and the muscle-microbiome axis. Additionally, pharmacological and lifestyle interventions targeting anabolic resistance and neuromuscular junction integrity are discussed. RESULTS Resistance training and adequate protein intake remain the cornerstone of sarcopenia management. Emerging strategies include targeting muscle regeneration through myosatellite cell activation, signaling pathways, and chronic inflammation control. Gene editing, stem cell therapy, and microRNA modulation show promise in enhancing muscle repair. Addressing mitochondrial dysfunction through interventions aimed at improving biogenesis, ATP production, and reducing oxidative stress is also highlighted. Nutritional strategies such as leucine supplementation and anti-inflammatory nutrients, along with dietary modifications and probiotics targeting the muscle-microbiome interplay, are discussed as potential treatment options. Hydration and muscle-water balance are emphasized as critical in maintaining muscle health in older adults. CONCLUSIONS A combination of resistance training, nutrition, and emerging therapeutic interventions holds potential to significantly improve muscle function and overall health in the aging population. This review provides a detailed exploration of both established and novel approaches for the prevention and management of sarcopenia, highlighting the need for further research to optimize these strategies.
Collapse
Affiliation(s)
- Stefano Cacciatore
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Ilaria Esposito
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
| | - Claudia Massaro
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Giordana Gava
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
- Department of Medicine and Surgery, LUM University, Strada Statale 100 Km 18, 70100 Casamassima, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| |
Collapse
|
9
|
Olascoaga S, Tovar H, Espinal-Enríquez J. Gene co-expression networks reveal sex-biased differences in musculoskeletal ageing. FRONTIERS IN AGING 2024; 5:1469479. [PMID: 39359883 PMCID: PMC11445131 DOI: 10.3389/fragi.2024.1469479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024]
Abstract
Aging is a universal and progressive process involving the deterioration of physiological functions and the accumulation of cellular damage. Gene regulation programs influence how phenotypes respond to environmental and intrinsic changes during aging. Although several factors, including sex, are known to impact this process, the underlying mechanisms remain incompletely understood. Here, we investigate the functional organization patterns of skeletal muscle genes across different sexes and ages using gene co-expression networks (GCNs) to explore their influence on aging. We constructed GCNs for three different age groups for male and female samples, analyzed topological similarities and differences, inferred significant associated processes for each network, and constructed null models to provide statistically robust results. We found that each network is topologically and functionally distinct, with young women having the most associated processes, likely due to reproductive tasks. The functional organization and modularity of genes decline with age, starting from middle age, potentially leading to age-related deterioration. Women maintain better gene functional organization throughout life compared to men, especially in processes like macroautophagy and sarcomere organization. The study suggests that the loss of gene co-expression could be a universal aging marker. This research offers insights into how gene organization changes with age and sex, providing a complementary method to analyze aging.
Collapse
Affiliation(s)
- Samael Olascoaga
- Posgrado en Biología Experimental, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Hugo Tovar
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
| |
Collapse
|
10
|
Steffens D, Solomon M, Dubowitz J, Martis W, Ismail H, Koh C, Riedel B. Augmented prehabilitation - is there a role for glucocorticoids and/or anabolic steroids to improve surgical outcomes? ANZ J Surg 2024; 94:989-992. [PMID: 38525865 DOI: 10.1111/ans.18989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Affiliation(s)
- Daniel Steffens
- Surgical Outcomes Research Centre (SOuRCe), Royal Prince Alfred Hospital (RPAH), Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- RPA Academic Institute of Surgery, Department of Colorectal Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Michael Solomon
- Surgical Outcomes Research Centre (SOuRCe), Royal Prince Alfred Hospital (RPAH), Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- RPA Academic Institute of Surgery, Department of Colorectal Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Julia Dubowitz
- Department of Anaesthesia, Perioperative Medicine, and Pain Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, and The Department of Critical Care, The University of Melbourne, Melbourne, Victoria, Australia
| | - Walston Martis
- Department of Anaesthesia, Perioperative Medicine, and Pain Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, and The Department of Critical Care, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hilmy Ismail
- Department of Anaesthesia, Perioperative Medicine, and Pain Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, and The Department of Critical Care, The University of Melbourne, Melbourne, Victoria, Australia
| | - Cherry Koh
- Surgical Outcomes Research Centre (SOuRCe), Royal Prince Alfred Hospital (RPAH), Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- RPA Academic Institute of Surgery, Department of Colorectal Surgery, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Bernhard Riedel
- Department of Anaesthesia, Perioperative Medicine, and Pain Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, and The Department of Critical Care, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Noone J, Mucinski JM, DeLany JP, Sparks LM, Goodpaster BH. Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab 2024; 36:702-724. [PMID: 38262420 DOI: 10.1016/j.cmet.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Understanding the factors that contribute to exercise response variation is the first step in achieving the goal of developing personalized exercise prescriptions. This review discusses the key molecular and other mechanistic factors, both extrinsic and intrinsic, that influence exercise responses and health outcomes. Extrinsic characteristics include the timing and dose of exercise, circadian rhythms, sleep habits, dietary interactions, and medication use, whereas intrinsic factors such as sex, age, hormonal status, race/ethnicity, and genetics are also integral. The molecular transducers of exercise (i.e., genomic/epigenomic, proteomic/post-translational, transcriptomic, metabolic/metabolomic, and lipidomic elements) are considered with respect to variability in physiological and health outcomes. Finally, this review highlights the current challenges that impede our ability to develop effective personalized exercise prescriptions. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) aims to fill significant gaps in the understanding of exercise response variability, yet further investigations are needed to address additional health outcomes across all populations.
Collapse
Affiliation(s)
- John Noone
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | | | - James P DeLany
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA.
| |
Collapse
|
12
|
Takegaki J, Sase K, Kono Y, Fujita T, Konishi S, Fujita S. Intramuscular injection of mesenchymal stem cells augments basal muscle protein synthesis after bouts of resistance exercise in male mice. Physiol Rep 2024; 12:e15991. [PMID: 38605421 PMCID: PMC11009371 DOI: 10.14814/phy2.15991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Skeletal muscle mass is critical for activities of daily living. Resistance training maintains or increases muscle mass, and various strategies maximize the training adaptation. Mesenchymal stem cells (MSCs) are multipotent cells with differential potency in skeletal muscle cells and the capacity to secrete growth factors. However, little is known regarding the effect of intramuscular injection of MSCs on basal muscle protein synthesis and catabolic systems after resistance training. Here, we measured changes in basal muscle protein synthesis, the ubiquitin-proteasome system, and autophagy-lysosome system-related factors after bouts of resistance exercise by intramuscular injection of MSCs. Mice performed three bouts of resistance exercise (each consisting of 50 maximal isometric contractions elicited by electrical stimulation) on the right gastrocnemius muscle every 48 h, and immediately after the first bout, mice were intramuscularly injected with either MSCs (2.0 × 106 cells) labeled with green fluorescence protein (GFP) or vehicle only placebo. Seventy-two hours after the third exercise bout, GFP was detected only in the muscle injected with MSCs with concomitant elevation of muscle protein synthesis. The injection of MSCs also increased protein ubiquitination. These results suggest that the intramuscular injection of MSCs augmented muscle protein turnover at the basal state after consecutive resistance exercise.
Collapse
Affiliation(s)
- Junya Takegaki
- Research Organization of Science and TechnologyRitsumeikan UniversityKusatsuShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityKusatsuShigaJapan
- Graduate School of Agricultural ScienceKobe UniversityKobeHyogoJapan
| | - Kohei Sase
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Yusuke Kono
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityKusatsuShigaJapan
- Faculty of Pharmaceutical SciencesKobe Pharmaceutical UniversityKobeHyogoJapan
| | - Takuya Fujita
- College of Pharmaceutical SciencesRitsumeikan UniversityKusatsuShigaJapan
| | - Satoshi Konishi
- Faculty of Science and EngineeringRitsumeikan UniversityKusatsuShigaJapan
| | - Satoshi Fujita
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| |
Collapse
|
13
|
Quaresma MVLDS, Vicente BM, Balchiunas RE, Ribeiro SML. Sarcopenia risk, sarcopenia-related quality of life, and associated factors in people living with human immunodeficiency virus (HIV): A web-based survey. Nutrition 2024; 120:112352. [PMID: 38306734 DOI: 10.1016/j.nut.2024.112352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/17/2023] [Accepted: 01/02/2024] [Indexed: 02/04/2024]
Abstract
OBJECTIVES We aimed to screen for the risk of sarcopenia and sarcopenia-related quality of life and associated factors of people living with HIV (PLWH). RESEARCH METHODS AND PROCEDURES This nonprobabilistic web-based survey evaluated PLWH. The participants were invited directly from a university-based inpatient clinic and responded to a web questionnaire that included the SARC-F and SarQoL to screen people at risk of sarcopenia and their quality of life. People at risk of sarcopenia were defined by the proposed cutoff points for SARC-F (≥ 4 points), and SarQoL overall score was categorized according to the median. Moreover, we performed a logistic regression to investigate associations between HIV-, lifestyle-, and health-associated factors (i.e., physical activity, dietary pattern, sleep quality, gastrointestinal symptoms, HIV diagnosis, type, combinations, and duration of ART, smoking, drinking, BMI, and weight loss), and outcomes (SARC-F and SarQoL). RESULTS The sample comprised 202 PLWH, mainly middle-aged (50.6-60.5 y; n = 101). Only 5.9% (n = 12) are at risk of sarcopenia according to SARC-F, and only 17.3% (n = 35) exhibited lower sarcopenia-related quality of life according to SarQoL. In the multiple models, only the gastrointestinal symptoms increased the odds of sarcopenia risk (OR: 1.058; P = 0.01) and poor sarcopenia-associated quality of life (OR: 1.041; P = 0.013). CONCLUSIONS We verified that only 5.9% and 17.3% of PLWH are at risk of sarcopenia and presented lower sarcopenia-related quality of life, respectively. Only the gastrointestinal symptoms were associated with a risk of sarcopenia and lower sarcopenia-related quality of life, without significant differences between age groups.
Collapse
Affiliation(s)
- Marcus V L Dos Santos Quaresma
- Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil; Centro Universitário São Camilo, São Paulo, Brazil
| | | | - Roseli Espindola Balchiunas
- Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil; Centro Universitário São Camilo, São Paulo, Brazil
| | - Sandra M L Ribeiro
- Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil; Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Brazil.
| |
Collapse
|
14
|
Zhang Q, Li X, Huang T, Zhang S, Teng K, Rousitemu N, Lan T, Wen Y. Alterations in the diversity, composition and function of the gut microbiota in Uyghur individuals with sarcopenia. Exp Gerontol 2024; 187:112376. [PMID: 38331300 DOI: 10.1016/j.exger.2024.112376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Research on the gut microbiota has emerged as a new direction for understanding pathophysiologic changes in diseases associated with aging, such as sarcopenia. Several studies have shown that there are differences in the gut microbiota between individuals with sarcopenia and without sarcopenia. However, these differences are not consistent across regions and ethnic groups, and additional research is needed. METHODS In this study, we collected fresh fecal samples from 31 Uyghur individuals with sarcopenia and 31 healthy controls. We used 16S rRNA sequencing to obtain fecal base sequences and analyzed the diversity, composition and function of the gut microbiota. RESULTS There was no significant difference in alpha diversity between the sarcopenia group and the healthy control group (P > 0.05). There was a significant difference in beta diversity between the groups (P < 0.05). In the sarcopenia group, the abundances of Alloprevotella, un_f_Prevotellaceae, Anaerovibrio, Prevotellaceae_NK3B31_group, Mitsuokella, Prevotella and Allisonella were lower than those in the heathy control group, and the abundances of Flavobacteriales, Flavobacteriaceae, Catenibacterium, Romboutsia, Erysipelotrichaceae_UCG-003, GCA-900066575, Lachnospiraceae_FCS020_group, and un_f_Flavobacteriaceae were higher than those in the heathy control group. Linear discriminant analysis effect size (LEfSe) revealed that the microbial species in the control group that were significantly different from those in the sarcopenia group were concentrated in the genus Alloprevotella, while the species in the sarcopenia group were concentrated in the genus Catenibacterium. Functional prediction analysis revealed that D-alanine, glycine, serine, and threonine metabolism and transcription machinery, among others, were enriched in the sarcopenia group, which indicated that metabolic pathways related to amino acid metabolism and nutrient transport may be regulated to varying degrees in the pathophysiological context of sarcopenia. CONCLUSIONS There were significant differences in the composition and function of the gut microbiota between Xinjiang Uyghur sarcopenia individuals and healthy individuals. These findings might aid in the development of probiotics or microbial-based therapies for sarcopenia in Uyhur individuals.
Collapse
Affiliation(s)
- Qiuxi Zhang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Xin Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ting Huang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Shuang Zhang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Kunchen Teng
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Namuna Rousitemu
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ting Lan
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Youfeng Wen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
15
|
Handajani YS, Turana Y, Hengky A, Hamid G, Schroeder-Butterfill E, Kristian K. Probiotics supplementation or probiotic-fortified products on sarcopenic indices in older adults: systematic review and meta-analysis from recent randomized controlled trials. FRONTIERS IN AGING 2024; 5:1307762. [PMID: 38370462 PMCID: PMC10873954 DOI: 10.3389/fragi.2024.1307762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Introduction: A noteworthy correlation was seen between changes in the gut microbiome and sarcopenia in older adults. Along with increasing research on probiotic supplementation for various medical problems, we aimed to obtain evidence and summarize the effect of probiotic supplementation on sarcopenic indices among older adults. Methods: We utilized PubMed, EBSCO, and Proquest, in addition to manual search using synonyms and variation for 'probiotic,' 'sarcopenia,' and 'older adults.' Randomized controlled trials investigated the utilization of probiotics or probiotic-containing products in older adults with sarcopenic indices including muscle mass and strength. The random-effects model was applied to the meta-analysis process. Results: Seven studies were obtained with 733 pooled older adults. Probiotic supplementation resulted in a significant increase of muscle mass with adjusted SMD (Standardized Mean Difference) of 0.962 (95% CI: 0.288 to 1.635, p = 0.049) using till and trim analysis and muscle strength with SMD of 1.037 (95% CI: 0.077 to 1.996, p = 0.03). However, both outcomes were associated with significantly high heterogeneity (I2 = 89.5% and I2 = 89.9%, respectively). Conclusion: When opposed to a placebo, the probiotic treatment improved the amount of muscle and its endurance based on recent evidence, however, further studies should be done with larger samples and targeted populations.
Collapse
Affiliation(s)
- Yvonne Suzy Handajani
- School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Yuda Turana
- School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Antoninus Hengky
- Center of Health Research, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- Fatima General Hospital, Ketapang Regency, West Kalimantan, Ketapang, Indonesia
| | - Gabriella Hamid
- Center of Health Research, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- Leona Kefamenanu General Hospital, North Central Timor, Indonesia
| | | | - Kevin Kristian
- School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
16
|
Ji S, Jung HW, Baek JY, Jang IY, Lee E. Sarcopenia as the Mobility Phenotype of Aging: Clinical Implications. J Bone Metab 2024; 31:1-12. [PMID: 38485236 PMCID: PMC10940105 DOI: 10.11005/jbm.2024.31.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/19/2023] [Indexed: 03/17/2024] Open
Abstract
Sarcopenia, which is characterized by an age-related decline in muscle mass and function, poses significant challenges to geriatric care. Its definition has evolved from muscle-specific criteria to include muscle mass, muscle function, and physical performance, recognizing sarcopenia as a physical frailty. Sarcopenia is associated with adverse outcomes, including mortality, falls, fractures, cognitive decline, and admission to long-term care facilities. Neuromechanical factors, protein-energy balance, and muscle protein synthesis-breakdown mechanisms contribute to its pathophysiology. The identification of sarcopenia involves screening tests and a comprehensive assessment of muscle mass, strength, and physical function. Clinical approaches aligned with the principles of comprehensive geriatric assessment prioritize patient-centered care. This assessment aids in identifying issues related to activities of daily living, cognition, mood, nutrition, and social support, alongside other aspects. The general approach to factors underlying muscle loss and functional decline in patients with sarcopenia includes managing chronic diseases and evaluating administered medications, with interventions including exercise and nutrition, as well as evolving pharmacological options. Ongoing research targeting pathways, such as myostatin-activin and exercise mimetics, holds promise for pharmacological interventions. In summary, sarcopenia requires a multifaceted approach, acknowledging its complex etiology and tailoring interventions to individual patient needs.
Collapse
Affiliation(s)
- Sunghwan Ji
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee-Won Jung
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Yeon Baek
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Il-Young Jang
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunju Lee
- Division of Geriatrics, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Bahat G, Ozkok S. The Current Landscape of Pharmacotherapies for Sarcopenia. Drugs Aging 2024; 41:83-112. [PMID: 38315328 DOI: 10.1007/s40266-023-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
18
|
Kim HJ, Jung DW, Williams DR. Age Is Just a Number: Progress and Obstacles in the Discovery of New Candidate Drugs for Sarcopenia. Cells 2023; 12:2608. [PMID: 37998343 PMCID: PMC10670210 DOI: 10.3390/cells12222608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Sarcopenia is a disease characterized by the progressive loss of skeletal muscle mass and function that occurs with aging. The progression of sarcopenia is correlated with the onset of physical disability, the inability to live independently, and increased mortality. Due to global increases in lifespan and demographic aging in developed countries, sarcopenia has become a major socioeconomic burden. Clinical therapies for sarcopenia are based on physical therapy and nutritional support, although these may suffer from low adherence and variable outcomes. There are currently no clinically approved drugs for sarcopenia. Consequently, there is a large amount of pre-clinical research focusing on discovering new candidate drugs and novel targets. In this review, recent progress in this research will be discussed, along with the challenges that may preclude successful translational research in the clinic. The types of drugs examined include mitochondria-targeting compounds, anti-diabetes agents, small molecules that target non-coding RNAs, protein therapeutics, natural products, and repositioning candidates. In light of the large number of drugs and targets being reported, it can be envisioned that clinically approved pharmaceuticals to prevent the progression or even mitigate sarcopenia may be within reach.
Collapse
Affiliation(s)
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Darren Reece Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| |
Collapse
|
19
|
Axelrod CL, Dantas WS, Kirwan JP. Sarcopenic obesity: emerging mechanisms and therapeutic potential. Metabolism 2023; 146:155639. [PMID: 37380015 PMCID: PMC11448314 DOI: 10.1016/j.metabol.2023.155639] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Sarcopenic obesity, or the loss of muscle mass and function associated with excess adiposity, is a largely untreatable medical condition associated with diminished quality of life and increased risk of mortality. To date, it remains somewhat paradoxical and mechanistically undefined as to why a subset of adults with obesity develop muscular decline, an anabolic stimulus generally associated with retention of lean mass. Here, we review evidence surrounding the definition, etiology, and treatment of sarcopenic obesity with an emphasis on emerging regulatory nodes with therapeutic potential. We review the available clinical evidence largely focused on diet, lifestyle, and behavioral interventions to improve quality of life in patients with sarcopenic obesity. Based upon available evidence, relieving consequences of energy burden, such as oxidative stress, myosteatosis, and/or mitochondrial dysfunction, is a promising area for therapeutic development in the treatment and management of sarcopenic obesity.
Collapse
Affiliation(s)
- Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
20
|
Marullo AL, O'Halloran KD. Microbes, metabolites and muscle: Is the gut-muscle axis a plausible therapeutic target in Duchenne muscular dystrophy? Exp Physiol 2023; 108:1132-1143. [PMID: 37269541 PMCID: PMC10988500 DOI: 10.1113/ep091063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
NEW FINDINGS What is the topic of this review? The contribution of gut microbial signalling to skeletal muscle maintenance and development and identification of potential therapeutic targets in progressive muscle degenerative diseases such as Duchenne muscular dystrophy. What advances does it highlight? Gut microbe-derived metabolites are multifaceted signalling molecules key to muscle function, modifying pathways contributing to skeletal muscle wasting, making them a plausible target for adjunctive therapy in muscular dystrophy. ABSTRACT Skeletal muscle is the largest metabolic organ making up ∼50% of body mass. Because skeletal muscle has both metabolic and endocrine properties, it can manipulate the microbial populations within the gut. In return, microbes exert considerable influence on skeletal muscle via numerous signalling pathways. Gut bacteria produce metabolites (i.e., short chain fatty acids, secondary bile acids and neurotransmitter substrates) that act as fuel sources and modulators of inflammation, influencing host muscle development, growth and maintenance. The reciprocal interactions between microbes, metabolites and muscle establish a bidirectional gut-muscle axis. The muscular dystrophies constitute a broad range of disorders with varying disabilities. In the profoundly debilitating monogenic disorder Duchenne muscular dystrophy (DMD), skeletal muscle undergoes a reduction in muscle regenerative capacity leading to progressive muscle wasting, resulting in fibrotic remodelling and adipose infiltration. The loss of respiratory muscle in DMD culminates in respiratory insufficiency and eventually premature death. The pathways contributing to aberrant muscle remodelling are potentially modulated by gut microbial metabolites, thus making them plausible targets for pre- and probiotic supplementation. Prednisone, the gold standard therapy for DMD, drives gut dysbiosis, inducing a pro-inflammatory phenotype and leaky gut barrier contributing to several of the well-known side effects associated with chronic glucocorticoid treatment. Several studies have observed that gut microbial supplementation or transplantation exerts positive effects on muscle, including mitigating the side effects of prednisone. There is growing evidence in support of the potential for an adjunctive microbiota-directed regimen designed to optimise gut-muscle axis signalling, which could alleviate muscle wasting in DMD.
Collapse
Affiliation(s)
- Anthony L. Marullo
- Department of Physiology, School of Medicine, College of Medicine and HealthUniversity College CorkCorkIreland
| | - Ken D. O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and HealthUniversity College CorkCorkIreland
| |
Collapse
|
21
|
Gross DC, Cheever CR, Batsis JA. Understanding the development of sarcopenic obesity. Expert Rev Endocrinol Metab 2023; 18:469-488. [PMID: 37840295 PMCID: PMC10842411 DOI: 10.1080/17446651.2023.2267672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Sarcopenic obesity (SarcO) is defined as the confluence of reduced muscle mass and function and excess body fat. The scientific community is increasingly recognizing this syndrome, which affects a subgroup of persons across their lifespans and places them at synergistically higher risk of significant medical comorbidity and disability than either sarcopenia or obesity alone. Joint efforts in clinical and research settings are imperative to better understand this syndrome and drive the development of urgently needed future interventions. AREAS COVERED Herein, we describe the ongoing challenges in defining sarcopenic obesity and the current state of the science regarding its epidemiology and relationship with adverse events. The field has demonstrated an emergence of data over the past decade which we will summarize in this article. While the etiology of sarcopenic obesity is complex, we present data on the underlying pathophysiological mechanisms that are hypothesized to promote its development, including age-related changes in body composition, hormonal changes, chronic inflammation, and genetic predisposition. EXPERT OPINION We describe emerging areas of future research that will likely be needed to advance this nascent field, including changes in clinical infrastructure, an enhanced understanding of the lifecourse, and potential treatments.
Collapse
Affiliation(s)
- Danae C. Gross
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - C. Ray Cheever
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John A. Batsis
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Geriatric Medicine, UNC School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
22
|
Khan J, Chattopadhyay A, Shaw S. Assessment of nutritional status using anthropometric index among older adult and elderly population in India. Sci Rep 2023; 13:13015. [PMID: 37563173 PMCID: PMC10415320 DOI: 10.1038/s41598-023-39167-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
Malnutrition poses a significant risk to the older population globally, highlighting the critical role of nutrition in healthy aging. In this study, the aim is to estimate the prevalence of malnutrition among older adults aged 45-59 years and the elderly population aged 60 years and above based on their socioeconomic and demographic characteristics. Furthermore, the study examines the risk factors within a multivariate framework. A sample of 59,073 individuals aged 45 years and above from the Longitudinal Aging Study in India (LASI), Wave 1 survey constitutes the study population. This study adopts a cross-sectional design. Bivariate cross-tabulation analysis and multivariate logistic regression analysis are employed to understand the prevalence and determinants of nutritional status. About 25% of males and 37% of females below the age of 60 years are overweight (including obese), while among those aged 60 years and above, 28% of males and 25% of females are underweight. The elderly male population carries a comparatively higher burden of underweight (28%) prevalence than the females (25%) in the same age group. Overall, the urban population is less likely to be underweight [AOR: 0.41, C.I 0.38-0.43] and more likely to be overweight [AOR: 2.41, C.I 2.32-2.52]. Older adults from low economic and social strata are more likely to be underweight. In terms of bio-physical factors, individuals aged 60 years and above with infections to endemic diseases [AOR: 1.24; p-value < 0.01] and those with edentulism [AOR: 1.29; p-value < 0.01] are more likely to be underweight. As evident from the study, nutritional status among older adults is a complicated manifestation of multiple risk factors and requires potential nutritional intervention. Initiating a routine screening program at the grassroots level can effectively identify older adults and the elderly in India, facilitating the provision of nutritional care.
Collapse
Affiliation(s)
- Junaid Khan
- Department of Population and Development, International Institute for Population Sciences, Deonar, Mumbai, 400088, India
| | - Aparajita Chattopadhyay
- Department of Population and Development, International Institute for Population Sciences, Deonar, Mumbai, 400088, India
| | - Subhojit Shaw
- Department of Population and Development, International Institute for Population Sciences, Deonar, Mumbai, 400088, India.
| |
Collapse
|
23
|
Abstract
The obesity epidemic in aging populations poses significant public health concerns for greater morbidity and mortality risk. Age-related increased adiposity is multifactorial and often associated with reduced lean body mass. The criteria used to define obesity by body mass index in younger adults may not appropriately reflect age-related body composition changes. No consensus has been reached on the definition of sarcopenic obesity in older adults. Lifestyle interventions are generally recommended as initial therapy; however, these approaches have limitations in older adults. Similar benefits in older compared with younger adults are reported with pharmacotherapy, however, large randomized clinical trials in geriatric populations are lacking.
Collapse
Affiliation(s)
- Noemi Malandrino
- Division of Endocrinology, Diabetes & Metabolism, The Johns Hopkins University School of Medicine, The Johns Hopkins University, 1830 East Monument Street, Suite 333, Baltimore, MD 21287, USA
| | - Salman Z Bhat
- Division of Endocrinology, Diabetes & Metabolism, The Johns Hopkins University School of Medicine, The Johns Hopkins University, 1830 East Monument Street, Suite 333, Baltimore, MD 21287, USA
| | - Maha Alfaraidhy
- The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Rajvarun S Grewal
- California Health Sciences University - College of Osteopathic Medicine (CHSU-COM), 2500 Alluvial Avenue, Clovis, CA 93611, USA
| | - Rita Rastogi Kalyani
- Division of Endocrinology, Diabetes & Metabolism, The Johns Hopkins University School of Medicine, The Johns Hopkins University, 1830 East Monument Street, Suite 333, Baltimore, MD 21287, USA; Center on Aging and Health, The Johns Hopkins University, 2024 East Monument Street, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Hinkley JM, Yu G, Standley RA, Distefano G, Tolstikov V, Narain NR, Greenwood BP, Karmacharya S, Kiebish MA, Carnero EA, Yi F, Vega RB, Goodpaster BH, Gardell SJ, Coen PM. Exercise and ageing impact the kynurenine/tryptophan pathway and acylcarnitine metabolite pools in skeletal muscle of older adults. J Physiol 2023; 601:2165-2188. [PMID: 36814134 PMCID: PMC10278663 DOI: 10.1113/jp284142] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Exercise-induced perturbation of skeletal muscle metabolites is a probable mediator of long-term health benefits in older adults. Although specific metabolites have been identified to be impacted by age, physical activity and exercise, the depth of coverage of the muscle metabolome is still limited. Here, we investigated resting and exercise-induced metabolite distribution in muscle from well-phenotyped older adults who were active or sedentary, and a group of active young adults. Percutaneous biopsies of the vastus lateralis were obtained before, immediately after and 3 h following a bout of endurance cycling. Metabolite profile in muscle biopsies was determined by tandem mass spectrometry. Mitochondrial energetics in permeabilized fibre bundles was assessed by high resolution respirometry and fibre type proportion was assessed by immunohistology. We found that metabolites of the kynurenine/tryptophan pathway were impacted by age and activity. Specifically, kynurenine was elevated in muscle from older adults, whereas downstream metabolites of kynurenine (kynurenic acid and NAD+ ) were elevated in muscle from active adults and associated with cardiorespiratory fitness and muscle oxidative capacity. Acylcarnitines, a potential marker of impaired metabolic health, were elevated in muscle from physically active participants. Surprisingly, despite baseline group difference, acute exercise-induced alterations in whole-body substrate utilization, as well as muscle acylcarnitines and ketone bodies, were remarkably similar between groups. Our data identified novel muscle metabolite signatures that associate with the healthy ageing phenotype provoked by physical activity and reveal that the metabolic responsiveness of muscle to acute endurance exercise is retained [NB]:AUTHOR: Please ensure that the appropriate material has been provide for Table S2, as well as for Figures S1 to S7, as also cited in the text with age regardless of activity levels. KEY POINTS: Kynurenine/tryptophan pathway metabolites were impacted by age and physical activity in human muscle, with kynurenine elevated in older muscle, whereas downstream products kynurenic acid and NAD+ were elevated in exercise-trained muscle regardless of age. Acylcarnitines, a marker of impaired metabolic health when heightened in circulation, were elevated in exercise-trained muscle of young and older adults, suggesting that muscle act as a metabolic sink to reduce the circulating acylcarnitines observed with unhealthy ageing. Despite the phenotypic differences, the exercise-induced response of various muscle metabolite pools, including acylcarnitine and ketone bodies, was similar amongst the groups, suggesting that older adults can achieve the metabolic benefits of exercise seen in young counterparts.
Collapse
Affiliation(s)
- J. Matthew Hinkley
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - GongXin Yu
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Robert A. Standley
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Giovanna Distefano
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | | | | | | | | | | | - Elvis Alvarez Carnero
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Fanchao Yi
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Rick B. Vega
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Bret H. Goodpaster
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Stephen J. Gardell
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Paul M. Coen
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| |
Collapse
|
25
|
Xie H, Wang H, Wu Z, Li W, Liu Y, Wang N. The association of dietary inflammatory potential with skeletal muscle strength, mass, and sarcopenia: a meta-analysis. Front Nutr 2023; 10:1100918. [PMID: 37255936 PMCID: PMC10225560 DOI: 10.3389/fnut.2023.1100918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
Aims Evidence suggested that dietary inflammatory potential may be associated with age-related skeletal muscle decline, but the results remained controversial. To summarize the evidence for the relationships between dietary inflammatory potential and skeletal muscle strength, mass, and sarcopenia in adults we conducted this meta-analysis. Methods Embase, Pubmed, and Web of Science were searched from inception up to 12 March 2023 for studies that evaluated the associations of dietary inflammatory potential [estimated by the Dietary inflammatory index (DII)] with skeletal muscle strength, mass, and sarcopenia. A meta-analysis was then performed to calculate the pooled regression coefficient (β) and odds ratio (OR). The non-linear dose-response relation between DII and sarcopenia was assessed using random-effects dose-response meta-analysis. Results This meta-analysis included 24 studies involving 56,536 participants. It was found that high DII was associated with low skeletal muscle strength [OR 1.435, 95% confidence interval (CI) 1.247-1.651, P < 0.001, I2 = 4.97%]. There was a negative association of DII with skeletal muscle strength (β-0.031, 95% CI -0.056 to -0.006, P = 0.017, I2 = 72.69%). High DII was also associated with low skeletal muscle mass (OR 1.106, 95% CI 1.058-1.157, P < 0.001, I2 = 0%). DII had a negative relationship with skeletal muscle mass with high heterogeneity (β-0.099, 95% CI -0.145 to -0.053, P < 0.001, I2 = 88.67%); we downgraded the inconsistency in the subgroup analysis of overweight/obese participants (β-0.042, 95% CI -0.065 to -0.019, I2 = 12.54%). Finally, the pooled results suggested that high DII was significantly associated with sarcopenia with significant heterogeneity (OR 1.530, 95% CI 1.245-1.880, P < 0.001, I2 = 69.46%); age and BMI may contribute partially to the heterogeneity since heterogeneity was decreased in the subgroup of older age (OR 1.939, 95% CI 1.232-3.051, I2 = 0%) and the group of overweight/obesity (OR 1.853, 95% CI 1.398-2.456, I2 = 0%). There was a non-linear dose-response association between DII and sarcopenia (P = 0.012 for non-linearity). Conclusion This meta-analysis suggested that higher dietary inflammatory potential was significantly associated with lower skeletal muscle strength, mass, and risk of sarcopenia. Future studies with consistent assessment and standardized methodology are needed for further analysis.
Collapse
Affiliation(s)
- Haibin Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Haochen Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ziying Wu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yanzhe Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Wu J, Ding P, Wu H, Yang P, Guo H, Tian Y, Meng L, Zhao Q. Sarcopenia: Molecular regulatory network for loss of muscle mass and function. Front Nutr 2023; 10:1037200. [PMID: 36819699 PMCID: PMC9932270 DOI: 10.3389/fnut.2023.1037200] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle is the foundation of human function and plays a key role in producing exercise, bone protection, and energy metabolism. Sarcopenia is a systemic disease, which is characterized by degenerative changes in skeletal muscle mass, strength, and function. Therefore, sarcopenia often causes weakness, prolonged hospitalization, falls and other adverse consequences that reduce the quality of life, and even lead to death. In recent years, sarcopenia has become the focus of in-depth research. Researchers have suggested some molecular mechanisms for sarcopenia according to different muscle physiology. These mechanisms cover neuromuscular junction lesion, imbalance of protein synthesis and breakdown, satellite cells dysfunction, etc. We summarize the latest research progress on the molecular mechanism of sarcopenia in this review in order to provide new ideas for future researchers to find valuable therapeutic targets and develop relevant prevention strategies.
Collapse
Affiliation(s)
- Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Ping’an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Peigang Yang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Honghai Guo
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Yuan Tian
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China
| | - Lingjiao Meng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China,Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Lingjiao Meng,
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, China,*Correspondence: Qun Zhao,
| |
Collapse
|
27
|
Fajardo L, Sanchez P, Salles J, Rigaudière JP, Patrac V, Caspar-Bauguil S, Bergoglgio C, Moro C, Walrand S, Le Bacquer O. Inhibition of the endocannabinoid system reverses obese phenotype in aged mice and partly restores skeletal muscle function. Am J Physiol Endocrinol Metab 2023; 324:E176-E184. [PMID: 36629822 DOI: 10.1152/ajpendo.00258.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass, is associated with lipid accumulation and anabolic resistance; phenomena also observed in obesity and worsen when obesity and aging are combined. The endocannabinoid system (ECS) is overactivated in obesity, but its role in aging obesity-related muscle dysfunction is unknown. The aims of this study were to evaluate the effect of inhibition of the ECS by rimonabant (RIM) on the metabolic alterations induced by a high-fat high-sucrose diet and on skeletal muscle mass/function in aged mice. Eighteen-month-old male mice were subjected to a control (CTL) or a high-fat high-sucrose (HFHS) diet for 24 weeks. Mice were administered with saline or RIM (10 mg/kg/day) for the last 4 weeks of the diet. Skeletal muscle function was evaluated by open-field, rotarod, and grip strength tests. Metabolic alterations in liver, adipose tissue, and skeletal muscle were investigated by quantitative RT-PCR. Body mass was higher in HFHS mice compared to CTL mice (48.0 ± 1.5 vs. 33.5 ± 0.7 g, P < 0.01), as a result of fat accumulation (34.8 ± 1.0 vs. 16.7 ± 0.8%, P < 0.01). RIM reduced body fat mass in both CTL (-16%, P < 0.05) and HFHS conditions (-40%, P < 0.01), without affecting hindlimb skeletal muscle mass. In HFHS mice, grip strength evolution was improved (-0.29 ± 0.06 vs. -0.49 ± 0.06 g/g lean mass, P < 0.05), and rotarod activity was increased by ≈60% in response to RIM (45.9 ± 6.3 vs. 28.5 ± 4.6 cm, P < 0.05). Lipolysis and β-oxidation genes were upregulated in the liver as well as genes involved in adipose tissue browning. These results demonstrate that inhibition of the ECS induces metabolic changes in liver and adipose tissue associated with a reversion of the obese phenotype and that RIM is able to improve motor coordination and muscle strength in aged mice, without affecting skeletal muscle mass.NEW & NOTEWORTHY In 24-month-old mice submitted to high-fat high-sucrose-induced obesity, inhibition of the endocannabinoid system by rimonabant reversed the obese phenotype by promoting adipose tissue browning and β-oxidation in the liver but not in skeletal muscle. These metabolism modifications are associated with improved skeletal muscle function.
Collapse
Affiliation(s)
- Lucas Fajardo
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Phelipe Sanchez
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jérôme Salles
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jean Paul Rigaudière
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Véronique Patrac
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Sylvie Caspar-Bauguil
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases (I2MC), Inserm/Paul Sabatier University UMR1297, Toulouse, France
- Department of Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - Camille Bergoglgio
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases (I2MC), Inserm/Paul Sabatier University UMR1297, Toulouse, France
| | - Cédric Moro
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases (I2MC), Inserm/Paul Sabatier University UMR1297, Toulouse, France
| | - Stéphane Walrand
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
- Service de Nutrition Clinique, Hôpital Gabriel Montpied, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, Clermont-Ferrand, France
| | - Olivier Le Bacquer
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
28
|
Shen J, Qian S, Huang L, Tao Y, Chen H, Deng K, Yang F, Zong G, Zheng Y, Wang X, Tonetti M, Yuan C. Association of the number of natural teeth with dietary diversity and nutritional status in older adults: A cross-sectional study in China. J Clin Periodontol 2023; 50:242-251. [PMID: 36122930 DOI: 10.1111/jcpe.13728] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/13/2022] [Accepted: 09/14/2022] [Indexed: 01/18/2023]
Abstract
AIM To investigate the association of the number of natural teeth with overall dietary diversity and nutritional status in a nationally representative study among older adults in China. MATERIALS AND METHODS A cross-sectional analysis was conducted among community-dwelling adults aged 65 years or older from the Chinese Longitudinal Healthy Longevity Study. According to the self-reported number of natural teeth, participants were categorized into ≥20, 10-19, 1-9 natural teeth, and edentulous. Dietary diversity score (DDS) was constructed based on intake frequencies of 10 food groups assessed by a simplified food frequency questionnaire. The geriatric nutritional risk index was used to measure the malnutrition status (i.e., normal, mild malnutrition, and moderate-to-severe malnutrition) among a subgroup of participants. Linear and multinomial logistic regression models were used to examine the corresponding associations. RESULTS Among 54,796 study participants, the mean (SD) age was 87.86 (11.45) years, 82.7% had poor dentition (<20 natural teeth), and 27.3% wore dentures. After multivariable adjustment, participants with poor dentition had lower DDSs (βedentulous = -0.39, 95% confidence interval [CI], -0.48, -0.30; β1-9 teeth = -0.46, 95% CI, -0.55, -0.37; β10-19 teeth = -0.36, 95% CI, -0.46, -0.26) than those with 20 natural teeth or more. For individual food items, edentulous, 1-9 and 10-19 natural teeth were associated with lower odds of regular intake of fresh fruits, fresh vegetables, meat, fish and aquatic products, eggs, legumes, preserved vegetables, tea, and garlic, but higher odds of regular intake of sugar and sweets. Among participants with poor dentition, individuals without dentures had lower intake frequencies of most food groups than those wearing dentures. In addition, poor dentition was related to lower odds of normal nutritional status (odds ratio = 0.49, 95% CI, 0.27, 0.89). CONCLUSIONS Older adults with poor dentition had significantly lower dietary diversity and worse nutritional status. Future studies are warranted to identify effective interventions to improve the dietary quality and nutrition status among partially and fully edentulous individuals, including those with Stage IV periodontitis.
Collapse
Affiliation(s)
- Jie Shen
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Shujiao Qian
- Shanghai PerioImplant Innovation Center, Department of Oral Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center of Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Liyan Huang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Tao
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Chen
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Deng
- Shanghai PerioImplant Innovation Center, Department of Oral Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center of Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Fei Yang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Geng Zong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaofeng Wang
- Human Phenome Institute, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Maurizio Tonetti
- Shanghai PerioImplant Innovation Center, Department of Oral Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center of Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,European Research Group on Periodontology, WTC Tower Genoa, Genoa, Italy
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Diao H, Yan F, He Q, Li M, Zheng Q, Zhu Q, Fang F, Cui W. Association between Dietary Inflammatory Index and Sarcopenia: A Meta-Analysis. Nutrients 2023; 15:nu15010219. [PMID: 36615879 PMCID: PMC9824141 DOI: 10.3390/nu15010219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Background: The dietary inflammatory index (DII) is thought to be related to many healthy events. However, the association between the DII and sarcopenia remains unclear. Methods: The meta-analysis was conducted to evaluate the effects of the DII on the risk of sarcopenia utilizing available studies. Up to September 2022, Cochrane, PubMed, Web of Science, Medline, and EMBASE databases were searched to evaluate the relationships between the DII and sarcopenia. A random‒effects model was used to calculate the effect size and 95% confidence intervals (CIs). Result: Eleven studies with 19,954 participants were included in our meta-analysis. The results indicated that a high DII increased the risk of sarcopenia (OR = 1.16, 95%CI [1.06, 1.27], p < 0.05). The result of the dose−response analysis showed that the risk of sarcopenia increased by 1.22 times for each 1-point increase in the DII score (OR = 1.22, 95%CI [1.12, 1.33], p < 0.05). Conclusion: The meta-analysis demonstrated that the DII is associated with sarcopenia. Considering some limitations in this study, more studies are needed to verify this relationship.
Collapse
|
30
|
Kolodziej F, McDonagh B, Burns N, Goljanek-Whysall K. MicroRNAs as the Sentinels of Redox and Hypertrophic Signalling. Int J Mol Sci 2022; 23:ijms232314716. [PMID: 36499053 PMCID: PMC9737617 DOI: 10.3390/ijms232314716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress and inflammation are associated with skeletal muscle function decline with ageing or disease or inadequate exercise and/or poor diet. Paradoxically, reactive oxygen species and inflammatory cytokines are key for mounting the muscular and systemic adaptive responses to endurance and resistance exercise. Both ageing and lifestyle-related metabolic dysfunction are strongly linked to exercise redox and hypertrophic insensitivity. The adaptive inability and consequent exercise intolerance may discourage people from physical training resulting in a vicious cycle of under-exercising, energy surplus, chronic mitochondrial stress, accelerated functional decline and increased susceptibility to serious diseases. Skeletal muscles are malleable and dynamic organs, rewiring their metabolism depending on the metabolic or mechanical stress resulting in a specific phenotype. Endogenous RNA silencing molecules, microRNAs, are regulators of these metabolic/phenotypic shifts in skeletal muscles. Skeletal muscle microRNA profiles at baseline and in response to exercise have been observed to differ between adult and older people, as well as trained vs. sedentary individuals. Likewise, the circulating microRNA blueprint varies based on age and training status. Therefore, microRNAs emerge as key regulators of metabolic health/capacity and hormetic adaptability. In this narrative review, we summarise the literature exploring the links between microRNAs and skeletal muscle, as well as systemic adaptation to exercise. We expand a mathematical model of microRNA burst during adaptation to exercise through supporting data from the literature. We describe a potential link between the microRNA-dependent regulation of redox-signalling sensitivity and the ability to mount a hypertrophic response to exercise or nutritional cues. We propose a hypothetical model of endurance exercise-induced microRNA "memory cloud" responsible for establishing a landscape conducive to aerobic as well as anabolic adaptation. We suggest that regular aerobic exercise, complimented by a healthy diet, in addition to promoting mitochondrial health and hypertrophic/insulin sensitivity, may also suppress the glycolytic phenotype and mTOR signalling through miRNAs which in turn promote systemic metabolic health.
Collapse
Affiliation(s)
- Filip Kolodziej
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Brian McDonagh
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Nicole Burns
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
- Institute of Life Course and Medical Science, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
31
|
Zhang T, Cheng JK, Hu YM. Gut microbiota as a promising therapeutic target for age-related sarcopenia. Ageing Res Rev 2022; 81:101739. [PMID: 36182084 DOI: 10.1016/j.arr.2022.101739] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/30/2022] [Accepted: 09/25/2022] [Indexed: 01/31/2023]
Abstract
Sarcopenia is characterized by a progressive loss of skeletal muscle mass and function with aging. Recently, sarcopenia has been shown to be closely related with gut microbiota. Strategies such as probiotics and fecal microbiota transplantation have shown potential to ameliorate the muscle loss. This review will focus on the age-related sarcopenia, in particular on the relationship between gut microbiota and age-related sarcopenia, how gut microbiota is engaged in sarcopenia, and the potential role of gut microbiota in the treatment of age-related sarcopenia.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jin-Ke Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yao-Min Hu
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|
32
|
ROSSI D, D’AVILA AF, GALANT LH, MARRONI CA. EXERCISE IN THE PHYSICAL REHABILITATION OF CIRROTICS: A RANDOMIZED PILOT STUDY. ARQUIVOS DE GASTROENTEROLOGIA 2022; 59:408-413. [DOI: 10.1590/s0004-2803.202203000-73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022]
Abstract
ABSTRACT Background: Physical exercise delays the sarcopenic process and can reverse the loss of muscle strength, improve quality of life and prognosis in cirrhotic patients. Objective: The aim was to verify the effects of face-to-face versus home aerobic exercise on the variables fatigue, respiratory and peripheral muscle strength, functional capacity and quality of life in patients with compensated cirrhosis. Methods: Patients were selected by convenience, stratified and randomized into supervised face-to-face exercise (n=13) and home exercise without daily supervision (n=12). Patients were submitted to a program of aerobic physical exercises, with progressive duration of 30 to 50 minutes, twice a week for twelve weeks. Before starting the program and every four weeks, all patients in both groups were assessed for fatigue (fatigue severity scale), respiratory (Pimáx and Pemáx) and peripheral (concentric quadriceps peak torque) muscle strength, functional capacity (6-minute walking distance) and quality of life (Short Form-36 Health Survey questionnaire). Results: The face-to-face group showed reduced fatigue (P<0.001), increased inspiratory (P<0.001), expiratory (P<0.001) and peripheral (P<0.001) muscle strength of the 6MWD (P<0.001) and improved quality of life. The home group showed no significant improvement in these variables. Conclusion: A face-to-face program of moderate aerobic exercise in patients with compensated cirrhosis reduces fatigue, improves functional capacity and quality of life and increases respiratory and peripheral muscle strength. Home physical exercises do not cause the same adaptive effects in this population.
Collapse
Affiliation(s)
- Danusa ROSSI
- Universidade Federal de Ciências da Saúde de Porto Alegre, Brasil
| | | | | | - Claudio Augusto MARRONI
- Universidade Federal de Ciências da Saúde de Porto Alegre, Brasil; Santa Casa de Misericórdia em Porto Alegre, Brasil
| |
Collapse
|
33
|
Lefferts WK, Davis MM, Valentine RJ. Exercise as an Aging Mimetic: A New Perspective on the Mechanisms Behind Exercise as Preventive Medicine Against Age-Related Chronic Disease. Front Physiol 2022; 13:866792. [PMID: 36045751 PMCID: PMC9420936 DOI: 10.3389/fphys.2022.866792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Age-related chronic diseases are among the most common causes of mortality and account for a majority of global disease burden. Preventative lifestyle behaviors, such as regular exercise, play a critical role in attenuating chronic disease burden. However, the exact mechanism behind exercise as a form of preventative medicine remains poorly defined. Interestingly, many of the physiological responses to exercise are comparable to aging. This paper explores an overarching hypothesis that exercise protects against aging/age-related chronic disease because the physiological stress of exercise mimics aging. Acute exercise transiently disrupts cardiovascular, musculoskeletal, and brain function and triggers a substantial inflammatory response in a manner that mimics aging/age-related chronic disease. Data indicate that select acute exercise responses may be similar in magnitude to changes seen with +10-50 years of aging. The initial insult of the age-mimicking effects of exercise induces beneficial adaptations that serve to attenuate disruption to successive "aging" stimuli (i.e., exercise). Ultimately, these exercise-induced adaptations reduce the subsequent physiological stress incurred from aging and protect against age-related chronic disease. To further examine this hypothesis, future work should more intricately describe the physiological signature of different types/intensities of acute exercise in order to better predict the subsequent adaptation and chronic disease prevention with exercise training in healthy and at-risk populations.
Collapse
Affiliation(s)
- Wesley K. Lefferts
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | | | | |
Collapse
|
34
|
Dungan CM, Figueiredo VC, Wen Y, VonLehmden GL, Zdunek CJ, Thomas NT, Mobley CB, Murach KA, Brightwell CR, Long DE, Fry CS, Kern PA, McCarthy JJ, Peterson CA. Senolytic treatment rescues blunted muscle hypertrophy in old mice. GeroScience 2022; 44:1925-1940. [PMID: 35325353 PMCID: PMC9616988 DOI: 10.1007/s11357-022-00542-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/06/2022] [Indexed: 01/07/2023] Open
Abstract
With aging, skeletal muscle plasticity is attenuated in response to exercise. Here, we report that senescent cells, identified using senescence-associated β-galactosidase (SA β-Gal) activity and p21 immunohistochemistry, are very infrequent in resting muscle, but emerge approximately 2 weeks after a bout of resistance exercise in humans. We hypothesized that these cells contribute to blunted hypertrophic potential in old age. Using synergist ablation-induced mechanical overload (MOV) of the plantaris muscle to model resistance training in adult (5-6-month) and old (23-24-month) male C57BL/6 J mice, we found increased senescent cells in both age groups during hypertrophy. Consistent with the human data, there were negligible senescent cells in plantaris muscle from adult and old sham controls, but old mice had significantly more senescent cells 7 and 14 days following MOV relative to young. Old mice had blunted whole-muscle hypertrophy when compared to adult mice, along with smaller muscle fibers, specifically glycolytic type 2x + 2b fibers. To ablate senescent cells using a hit-and-run approach, old mice were treated with vehicle or a senolytic cocktail consisting of 5 mg/kg dasatinib and 50 mg/kg quercetin (D + Q) on days 7 and 10 during 14 days of MOV; control mice underwent sham surgery with or without senolytic treatment. Old mice given D + Q had larger muscles and muscle fibers after 14 days of MOV, fewer senescent cells when compared to vehicle-treated old mice, and changes in the expression of genes (i.e., Igf1, Ddit4, Mmp14) that are associated with hypertrophic growth. Our data collectively show that senescent cells emerge in human and mouse skeletal muscle following a hypertrophic stimulus and that D + Q improves muscle growth in old mice.
Collapse
Affiliation(s)
- Cory M Dungan
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA.
- College of Health Sciences, University of Kentucky, 900 S. Limestone, CTW 445, Lexington, KY, 40536, USA.
| | | | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | | | | | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - C Brooks Mobley
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Kevin A Murach
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Douglas E Long
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Philip A Kern
- Department of Internal Medicine, Division of Endocrinology, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
35
|
Clemente-Suárez VJ, Redondo-Flórez L, Rubio-Zarapuz A, Martínez-Guardado I, Navarro-Jiménez E, Tornero-Aguilera JF. Nutritional and Exercise Interventions in Cancer-Related Cachexia: An Extensive Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4604. [PMID: 35457471 PMCID: PMC9025820 DOI: 10.3390/ijerph19084604] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023]
Abstract
One of the common traits found in cancer patients is malnutrition and cachexia, which affects between 25% to 60% of the patients, depending on the type of cancer, diagnosis, and treatment. Given the lack of current effective pharmacological solutions for low muscle mass and sarcopenia, holistic interventions are essential to patient care, as well as exercise and nutrition. Thus, the present narrative review aimed to analyze the nutritional, pharmacological, ergonutritional, and physical exercise strategies in cancer-related cachexia. The integration of multidisciplinary interventions could help to improve the final intervention in patients, improving their prognosis, quality of life, and life expectancy. To reach these aims, an extensive narrative review was conducted. The databases used were MedLine (PubMed), Cochrane (Wiley), Embase, PsychINFO, and CinAhl. Cancer-related cachexia is a complex multifactorial phenomenon in which systemic inflammation plays a key role in the development and maintenance of the symptomatology. Pharmacological interventions seem to produce a positive effect on inflammatory state and cachexia. Nutritional interventions are focused on a high-energy diet with high-density foods and the supplementation with antioxidants, while physical activity is focused on strength-based training. The implementation of multidisciplinary non-pharmacological interventions in cancer-related cachexia could be an important tool to improve traditional treatments and improve patients' quality of life.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (L.R.-F.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (L.R.-F.); (A.R.-Z.); (J.F.T.-A.)
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (L.R.-F.); (A.R.-Z.); (J.F.T.-A.)
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain;
| | | | | |
Collapse
|
36
|
Priyadarsini N, Nanda P, Devi S, Mohapatra S. Sarcopenia: An Age-Related Multifactorial Disorder. Curr Aging Sci 2022; 15:209-217. [PMID: 35249518 DOI: 10.2174/1874609815666220304194539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Sarcopenia is an emerging clinical entity characterized by a gradual decline in skeletal muscle mass and strength that accompanies the normal aging process. It has been noted that sarcopenia is associated with various adverse health outcomes in the geriatric population like prolonged hospital admission, disability, poor quality of life, frailty, and mortality. Factors involved in the development of age-related sarcopenia include anorexia, alteration in the hormone levels, decreased neural innervation, low blood flow to the muscles, cytokine dysregulation, altered mitochondrial activity, genomic instability, intracellular proteolysis, and insulin resistance. Understanding the mechanism may help develop efficient preventive and therapeutic strategies which can improve the quality of life in elderly individuals. Thus, the objective of the present article is to review the literature regarding the mechanism involved in the development of sarcopenia in aged individuals.
Collapse
Affiliation(s)
- Nibedita Priyadarsini
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Pranati Nanda
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Sujata Devi
- Department of Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Subarna Mohapatra
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
37
|
Bland KA, Kouw IWK, van Loon LJC, Zopf EM, Fairman CM. Exercise-Based Interventions to Counteract Skeletal Muscle Mass Loss in People with Cancer: Can We Overcome the Odds? Sports Med 2022; 52:1009-1027. [PMID: 35118634 DOI: 10.1007/s40279-021-01638-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 12/15/2022]
Abstract
Addressing skeletal muscle mass loss is an important focus in oncology research to improve clinical outcomes, including cancer treatment tolerability and survival. Exercise is likely a necessary component of muscle-mass-preserving interventions for people with cancer. However, randomized controlled trials with exercise that include people with cancer with increased susceptibility to more rapid and severe muscle mass loss are limited. The aim of the current review is to highlight features of cancer-related skeletal muscle mass loss, discuss the impact in patients most at risk, and describe the possible role of exercise as a management strategy. We present current gaps within the exercise oncology literature and offer several recommendations for future studies to support research translation, including (1) utilizing accurate and reliable body composition techniques to assess changes in skeletal muscle mass, (2) incorporating comprehensive assessments of patient health status to allow personalized exercise prescription, (3) coupling exercise with robust nutritional recommendations to maximize the impact on skeletal muscle outcomes, and (4) considering key exercise intervention features that may improve exercise efficacy and adherence. Ultimately, the driving forces behind skeletal muscle mass loss are complex and may impede exercise tolerability and efficacy. Our recommendations are intended to foster the design of high-quality patient-centred research studies to determine whether exercise can counteract muscle mass loss in people with cancer and, as such, improve knowledge on this topic.
Collapse
Affiliation(s)
- Kelcey A Bland
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.,The Szalmuk Family Department of Medical Oncology, Cabrini Cancer Institute, Cabrini Health, Melbourne, VIC, Australia
| | - Imre W K Kouw
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, SA, Australia.,Centre of Research Excellence in Translating Nutritional Science To Good Health, The University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Luc J C van Loon
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.,Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Eva M Zopf
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.,The Szalmuk Family Department of Medical Oncology, Cabrini Cancer Institute, Cabrini Health, Melbourne, VIC, Australia
| | - Ciaran M Fairman
- Exercise Science Department, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, PHRC 220, Columbia, SC, 29208, USA.
| |
Collapse
|
38
|
Daily JW, Park S. Sarcopenia Is a Cause and Consequence of Metabolic Dysregulation in Aging Humans: Effects of Gut Dysbiosis, Glucose Dysregulation, Diet and Lifestyle. Cells 2022; 11:cells11030338. [PMID: 35159148 PMCID: PMC8834403 DOI: 10.3390/cells11030338] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscle mass plays a critical role in a healthy lifespan by helping to regulate glucose homeostasis. As seen in sarcopenia, decreased skeletal muscle mass impairs glucose homeostasis, but it may also be caused by glucose dysregulation. Gut microbiota modulates lipopolysaccharide (LPS) production, short-chain fatty acids (SCFA), and various metabolites that affect the host metabolism, including skeletal muscle tissues, and may have a role in the sarcopenia etiology. Here, we aimed to review the relationship between skeletal muscle mass, glucose homeostasis, and gut microbiota, and the effect of consuming probiotics and prebiotics on the development and pathological consequences of sarcopenia in the aging human population. This review includes discussions about the effects of glucose metabolism and gut microbiota on skeletal muscle mass and sarcopenia and the interaction of dietary intake, physical activity, and gut microbiome to influence sarcopenia through modulating the gut–muscle axis. Emerging evidence suggests that the microbiome can regulate both skeletal muscle mass and function, in part through modulating the metabolisms of short-chain fatty acids and branch-chain amino acids that might act directly on muscle in humans or indirectly through the brain and liver. Dietary factors such as fats, proteins, and indigestible carbohydrates and lifestyle interventions such as exercise, smoking, and alcohol intake can both help and hinder the putative gut–muscle axis. The evidence presented in this review suggests that loss of muscle mass and function are not an inevitable consequence of the aging process, and that dietary and lifestyle interventions may prevent or delay sarcopenia.
Collapse
Affiliation(s)
- James W. Daily
- Department of R & D, Daily Manufacturing Inc., Rockwell, 28138 NC, USA;
| | - Sunmin Park
- Department of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea
- Correspondence: ; Tel.: +82-41-540-5345; Fax: +82-41-548-0670
| |
Collapse
|
39
|
Bilski J, Pierzchalski P, Szczepanik M, Bonior J, Zoladz JA. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells 2022; 11:cells11010160. [PMID: 35011721 PMCID: PMC8750433 DOI: 10.3390/cells11010160] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity and ageing place a tremendous strain on the global healthcare system. Age-related sarcopenia is characterized by decreased muscular strength, decreased muscle quantity, quality, and decreased functional performance. Sarcopenic obesity (SO) is a condition that combines sarcopenia and obesity and has a substantial influence on the older adults’ health. Because of the complicated pathophysiology, there are disagreements and challenges in identifying and diagnosing SO. Recently, it has become clear that dysbiosis may play a role in the onset and progression of sarcopenia and SO. Skeletal muscle secretes myokines during contraction, which play an important role in controlling muscle growth, function, and metabolic balance. Myokine dysfunction can cause and aggravate obesity, sarcopenia, and SO. The only ways to prevent and slow the progression of sarcopenia, particularly sarcopenic obesity, are physical activity and correct nutritional support. While exercise cannot completely prevent sarcopenia and age-related loss in muscular function, it can certainly delay development and slow down the rate of sarcopenia. The purpose of this review was to discuss potential pathways to muscle deterioration in obese individuals. We also want to present the current understanding of the role of various factors, including microbiota and myokines, in the process of sarcopenia and SO.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-008 Krakow, Poland
- Correspondence: ; Tel.: +48-12-421-93-51
| | - Piotr Pierzchalski
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Marian Szczepanik
- Department of Medical Biology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland;
| |
Collapse
|
40
|
Mohammadpour S, Ghorbaninejad P, Shahavandi M, Shab-Bidar S. Interaction of dietary acid load and general and central obesity with muscle strength and skeletal muscle mass. Clin Nutr ESPEN 2022; 48:361-369. [DOI: 10.1016/j.clnesp.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
|
41
|
本川 佳. [Food and nutrition for older adults to prevent frailty sarcopenia]. Nihon Ronen Igakkai Zasshi 2021; 58:550-555. [PMID: 34880173 DOI: 10.3143/geriatrics.58.550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Rivas DA, Peng F, Benard T, Ramos da Silva AS, Fielding RA, Margolis LM. miR-19b-3p is associated with a diametric response to resistance exercise in older adults and regulates skeletal muscle anabolism via PTEN inhibition. Am J Physiol Cell Physiol 2021; 321:C977-C991. [PMID: 34705586 PMCID: PMC8714992 DOI: 10.1152/ajpcell.00190.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Understanding paradoxical responses to anabolic stimulation and identifying the mechanisms for this inconsistency in mobility-limited older adults may provide new targets for the treatment of sarcopenia. Our laboratory has discovered that dysregulation in microRNA (miRNA) that target anabolic pathways is a potential mechanism resulting in age-associated decreases in skeletal muscle mass and function (sarcopenia). The objective of the current study was to assess circulating miRNA expression profiles in diametric response of leg lean mass in mobility-limited older individuals after a 6-mo progressive resistance exercise training intervention (PRET) and determine the influence of differentially expressing miRNA on regulation of skeletal muscle mass. Participants were dichotomized by gain (Gainers; mean +561.4 g, n = 33) or loss (Losers; mean −589.8 g, n = 40) of leg lean mass after PRET. Gainers significantly increased fat-free mass 2.4% vs. −0.4% for Losers. Six miRNA (miR-1-3p, miR-19b-3p, miR-92a, miR-126, miR-133a-3p, and miR-133b) were significantly identified to be differentially expressed between Gainers and Losers, with miR-19b-3p being the miRNA most highly associated with increases in fat-free mass. Using an aging mouse model, we then assessed if miR-19b-3p expression was different in young mice with larger muscle mass compared with older mice. Circulating and skeletal muscle miR-19b-3p expression was higher in young compared with old mice and was positively associated with muscle mass and grip strength. We then used a novel integrative approach to determine if differences in circulating miR-19b-3p potentially translate to augmented anabolic response in human skeletal muscle cells in vitro. Results from this analysis identified that overexpression of miR-19b-3p targeted and downregulated PTEN by 64% to facilitate significant ∼50% increase in muscle protein synthetic rate as measured with SUnSET. The combine results of these three models identify miR-19b-3p as a potent regulator of muscle anabolism that may contribute to an inter-individual response to PRET in mobility-limited older adults.
Collapse
Affiliation(s)
- Donato A Rivas
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Fei Peng
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Townsend Benard
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Adelino Sanchez Ramos da Silva
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States.,School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Roger A Fielding
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Lee M Margolis
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States.,Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States
| |
Collapse
|
43
|
Takegaki J, Sase K, Kono Y, Nakano D, Fujita T, Konishi S, Fujita S. Intramuscular injection of mesenchymal stem cells activates anabolic and catabolic systems in mouse skeletal muscle. Sci Rep 2021; 11:21224. [PMID: 34707171 PMCID: PMC8551189 DOI: 10.1038/s41598-021-00627-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/01/2021] [Indexed: 01/06/2023] Open
Abstract
Skeletal muscle mass is critical for good quality of life. Mesenchymal stem cells (MSCs) are multipotent stem cells distributed across various tissues. They are characterized by the capacity to secrete growth factors and differentiate into skeletal muscle cells. These capabilities suggest that MSCs might be beneficial for muscle growth. Nevertheless, little is known regarding the effects on muscle protein anabolic and catabolic systems of intramuscular injection of MSCs into skeletal muscle. Therefore, in the present study, we measured changes in mechanistic target of rapamycin complex 1 (mTORC1) signaling, the ubiquitin–proteasome system, and autophagy-lysosome system-related factors after a single intramuscular injection of MSCs with green fluorescence protein (GFP) into mouse muscles. The intramuscularly-injected MSCs were retained in the gastrocnemius muscle for 7 days after the injection, indicated by detection of GFP and expression of platelet-derived growth factor receptor-alpha. The injection of MSCs increased the expression of satellite cell-related genes, activated mTORC1 signaling and muscle protein synthesis, and increased protein ubiquitination and autophagosome formation (indicated by the expression of microtubule-associated protein 1 light chain 3-II). These results suggest that the intramuscular injection of MSCs activated muscle anabolic and catabolic systems and accelerated muscle protein turnover.
Collapse
Affiliation(s)
- Junya Takegaki
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.,Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Kohei Sase
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yusuke Kono
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Daiki Nakano
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takuya Fujita
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Satoshi Konishi
- Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
44
|
Kim JW, Kim R, Choi H, Lee SJ, Bae GU. Understanding of sarcopenia: from definition to therapeutic strategies. Arch Pharm Res 2021; 44:876-889. [PMID: 34537916 DOI: 10.1007/s12272-021-01349-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Sarcopenia refers to the gradual loss of skeletal muscle mass and function along with aging and is a social burden due to growing healthcare cost associated with a super-aging society. Therefore, researchers have established guidelines and tests to diagnose sarcopenia. Several studies have been conducted actively to reveal the cause of sarcopenia and find an economic therapy to improve the quality of life in elderly individuals. Sarcopenia is caused by multiple factors such as reduced regenerative capacity, imbalance in protein turnover, alteration of fat and fibrotic composition in muscle, increased reactive oxygen species, dysfunction of mitochondria and increased inflammation. Based on these mechanisms, nonpharmacological and pharmacological strategies have been developed to prevent and treat sarcopenia. Although several studies are currently in progress, no treatment is available yet. This review presents the definition of sarcopenia and summarizes recent understanding on the detailed mechanisms, diagnostic criteria, and strategies for prevention and treatment.
Collapse
Affiliation(s)
- Jee Won Kim
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Ryuni Kim
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hyerim Choi
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Sang-Jin Lee
- Research Institute of Aging-Related Disease, AniMusCure Inc., Suwon, 16419, Republic of Korea.
| | - Gyu-Un Bae
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
45
|
Moore DR. Protein Requirements for Master Athletes: Just Older Versions of Their Younger Selves. Sports Med 2021; 51:13-30. [PMID: 34515969 PMCID: PMC8566396 DOI: 10.1007/s40279-021-01510-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 12/24/2022]
Abstract
It is established that protein requirements are elevated in athletes to support their training and post-exercise recovery and adaptation, especially within skeletal muscle. However, research on the requirements for this macronutrient has been performed almost exclusively in younger athletes, which may complicate their translation to the growing population of Master athletes (i.e. > 35 years old). In contrast to older (> 65 years) untrained adults who typically demonstrate anabolic resistance to dietary protein as a primary mediator of the ‘normal’ age-related loss of muscle mass and strength, Master athletes are generally considered successful models of aging as evidenced by possessing similar body composition, muscle mass, and aerobic fitness as untrained adults more than half their age. The primary physiology changes considered to underpin the anabolic resistance of aging are precipitated or exacerbated by physical inactivity, which has led to higher protein recommendations to stimulate muscle protein synthesis in older untrained compared to younger untrained adults. This review puts forth the argument that Master athletes have similar muscle characteristics, physiological responses to exercise, and protein metabolism as young athletes and, therefore, are unlikely to have protein requirements that are different from their young contemporaries. Recommendations for protein amount, type, and pattern will be discussed for Master athletes to enhance their recovery from and adaptation to resistance and endurance training.
Collapse
Affiliation(s)
- Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, 100 Devonshire Place, Toronto, ON, M5S 2C9, Canada.
| |
Collapse
|
46
|
Koh FH, Chua JMW, Tan JLJ, Foo FJ, Tan WJ, Sivarajah SS, Ho LML, Teh BT, Chew MH. Paradigm shift in gastrointestinal surgery − combating sarcopenia with prehabilitation: Multimodal review of clinical and scientific data. World J Gastrointest Surg 2021; 13:734-755. [PMID: 34512898 PMCID: PMC8394378 DOI: 10.4240/wjgs.v13.i8.734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/08/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
A growing body of evidence has demonstrated the prognostic significance of sarcopenia in surgical patients as an independent predictor of postoperative complications and outcomes. These included an increased risk of total complications, major complications, re-admissions, infections, severe infections, 30 d mortality, longer hospital stay and increased hospitalization expenditures. A program to enhance recovery after surgery was meant to address these complications; however, compliance to the program since its introduction has been less than ideal. Over the last decade, the concept of prehabilitation, or “pre-surgery rehabilitation”, has been discussed. The presurgical period represents a window of opportunity to boost and optimize the health of an individual, providing a compensatory “buffer” for the imminent reduction in physiological reserve post-surgery. Initial results have been promising. We review the literature to critically review the utility of prehabilitation, not just in the clinical realm, but also in the scientific realm, with a resource management point-of-view.
Collapse
Affiliation(s)
- Frederick H Koh
- Division of Surgery, Sengkang General Hospital, Singapore 544886, Singapore
| | - Jason MW Chua
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore
| | - Joselyn LJ Tan
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore
| | - Fung-Joon Foo
- Division of Surgery, Sengkang General Hospital, Singapore 544886, Singapore
| | - Winson J Tan
- Division of Surgery, Sengkang General Hospital, Singapore 544886, Singapore
| | | | - Leonard Ming Li Ho
- Division of Surgery, Sengkang General Hospital, Singapore 544886, Singapore
| | - Bin-Tean Teh
- Duke-NUS Graduate Medical School, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Min-Hoe Chew
- Division of Surgery, Sengkang General Hospital, Singapore 544886, Singapore
| |
Collapse
|
47
|
Arends J, Strasser F, Gonella S, Solheim TS, Madeddu C, Ravasco P, Buonaccorso L, de van der Schueren MAE, Baldwin C, Chasen M, Ripamonti CI. Cancer cachexia in adult patients: ESMO Clinical Practice Guidelines ☆. ESMO Open 2021; 6:100092. [PMID: 34144781 PMCID: PMC8233663 DOI: 10.1016/j.esmoop.2021.100092] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
•This ESMO Clinical Practice Guideline provides key recommendations for managing cancer-related cachexia. •It covers screening, assessment and multimodal management of cancer cachexia. •All recommendations were compiled by a multidisciplinary group of experts. •Recommendations are based on available scientific data and the author's expert opinion.
Collapse
Affiliation(s)
- J Arends
- Department of Medicine I, Medical Center - University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - F Strasser
- Integrated Cancer Rehabilitation and Cancer Fatigue Clinic, Klinik Gais/Kliniken Valens; Clinic Medical Oncology and Hematology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - S Gonella
- Direction of Health Professions, Azienda Ospedaliero Universitaria Città della Salute e della Scienza of Turin, University of Turin, Turin, Italy; Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - T S Solheim
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Cancer Clinic, Trondheim University Hospital, Trondheim, Norway
| | - C Madeddu
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - P Ravasco
- Immuno-Hemotherapy and Oncology, University Hospital of Santa Maria, CHULN, Lisbon, Portugal; Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisbon, Portugal; University of Lisbon, Portugal
| | - L Buonaccorso
- Psycho-Oncology Unit, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - M A E de van der Schueren
- Department of Nutrition, Dietetics and Life Style, School of Allied Health, HAN University of Applied Sciences, Nijmegen, The Netherlands; Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - C Baldwin
- Department of Nutritional Sciences, King's College London, London, UK
| | - M Chasen
- Department of Medicine, University of Toronto, Toronto, Canada; Department of Family Medicine, McMaster University, Hamilton, Canada; William Osler Health Services, Brampton, Canada
| | - C I Ripamonti
- Oncology-Supportive Care in Cancer Unit, Department of Onco-Haematology, Fondazione IRCCS Istituto Nazionale dei Tumori Milano, Milan, Italy
| |
Collapse
|
48
|
Alterations in intestinal microbiota diversity, composition, and function in patients with sarcopenia. Sci Rep 2021; 11:4628. [PMID: 33633246 PMCID: PMC7907362 DOI: 10.1038/s41598-021-84031-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
16S rRNA sequencing of human fecal samples has been tremendously successful in identifying microbiome changes associated with both aging and disease. A number of studies have described microbial alterations corresponding to physical frailty and nursing home residence among aging individuals. A gut-muscle axis through which the microbiome influences skeletal muscle growth/function has been hypothesized. However, the microbiome has yet to be examined in sarcopenia. Here, we collected fecal samples of 60 healthy controls (CON) and 27 sarcopenic (Case)/possibly sarcopenic (preCase) individuals and analyzed the intestinal microbiota using 16S rRNA sequencing. We observed an overall reduction in microbial diversity in Case and preCase samples. The genera Lachnospira, Fusicantenibacter, Roseburia, Eubacterium, and Lachnoclostridium—known butyrate producers—were significantly less abundant in Case and preCase subjects while Lactobacillus was more abundant. Functional pathways underrepresented in Case subjects included numerous transporters and phenylalanine, tyrosine, and tryptophan biosynthesis suggesting that protein processing and nutrient transport may be impaired. In contrast, lipopolysaccharide biosynthesis was overrepresented in Case and PreCase subjects suggesting that sarcopenia is associated with a pro-inflammatory metagenome. These analyses demonstrate structural and functional alterations in the intestinal microbiota that may contribute to loss of skeletal muscle mass and function in sarcopenia.
Collapse
|
49
|
Watson MD, Cross BL, Grosicki GJ. Evidence for the Contribution of Gut Microbiota to Age-Related Anabolic Resistance. Nutrients 2021; 13:706. [PMID: 33672207 PMCID: PMC7926629 DOI: 10.3390/nu13020706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Globally, people 65 years of age and older are the fastest growing segment of the population. Physiological manifestations of the aging process include undesirable changes in body composition, declines in cardiorespiratory fitness, and reductions in skeletal muscle size and function (i.e., sarcopenia) that are independently associated with mortality. Decrements in muscle protein synthetic responses to anabolic stimuli (i.e., anabolic resistance), such as protein feeding or physical activity, are highly characteristic of the aging skeletal muscle phenotype and play a fundamental role in the development of sarcopenia. A more definitive understanding of the mechanisms underlying this age-associated reduction in anabolic responsiveness will help to guide promyogenic and function promoting therapies. Recent studies have provided evidence in support of a bidirectional gut-muscle axis with implications for aging muscle health. This review will examine how age-related changes in gut microbiota composition may impact anabolic response to protein feeding through adverse changes in protein digestion and amino acid absorption, circulating amino acid availability, anabolic hormone production and responsiveness, and intramuscular anabolic signaling. We conclude by reviewing literature describing lifestyle habits suspected to contribute to age-related changes in the microbiome with the goal of identifying evidence-informed strategies to preserve microbial homeostasis, anabolic sensitivity, and skeletal muscle with advancing age.
Collapse
Affiliation(s)
| | | | - Gregory J. Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, GA 31419, USA; (M.D.W.); (B.L.C.)
| |
Collapse
|
50
|
Kono Y, Takegaki J, Ohba T, Matsuda K, Negoro R, Fujita S, Fujita T. Magnetization of mesenchymal stem cells using magnetic liposomes enhances their retention and immunomodulatory efficacy in mouse inflamed skeletal muscle. Int J Pharm 2021; 596:120298. [PMID: 33529784 DOI: 10.1016/j.ijpharm.2021.120298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/24/2022]
Abstract
Sarcopenia, an age-related reduction in skeletal muscle mass and strength, is mainly caused by chronic inflammation. Because mesenchymal stem cells (MSCs) have the capacity to both promote myogenic cell differentiation and suppress inflammation, they are a promising candidate for sarcopenia treatment. In this study, to achieve the long-term retention of MSCs in skeletal muscle, we prepared magnetized MSCs using magnetic anionic liposome/atelocollagen complexes that we had previously developed, and evaluated their retention efficiency and immunomodulatory effects in mouse inflamed skeletal muscle. Mouse MSCs were efficiently magnetized by incubation with magnetic anionic liposome/atelocollagen complexes for 30 min under a magnetic field. The magnetized MSCs differentiated normally into osteoblasts and adipocytes. Additionally, non-magnetized MSCs and magnetized MSCs increased IL-6 and inducible nitric oxide synthase mRNA expression and decreased TNF-α and IL-1β mRNA expression in C2C12 mouse skeletal muscle myotubes through paracrine effects. Moreover, magnetized MSCs were significantly retained in cell culture plates and mouse skeletal muscle after their local injection in the presence of a magnetic field. Furthermore, magnetized MSCs significantly increased IL-6 and IL-10 mRNA expression and decreased TNF-α and IL-1β mRNA expression in inflamed skeletal muscle. These results suggest that magnetized MSCs may be useful for effective sarcopenia treatment.
Collapse
Affiliation(s)
- Yusuke Kono
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan.
| | - Junya Takegaki
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Takeshi Ohba
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Koji Matsuda
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Satoshi Fujita
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Takuya Fujita
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; Research Center for Drug Discovery and Development, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| |
Collapse
|