1
|
Li J, Mou C, Yuan Y, Wang L, Wu C. Sevoflurane Mediates LINC00339/miR-671-5p/PSMB2 Axis to Improve Cardiomyocytes Against Hypoxia/Reoxygenation Injury. J Biochem Mol Toxicol 2025; 39:e70234. [PMID: 40143635 DOI: 10.1002/jbt.70234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/03/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
Ischemia/reperfusion (I/R) causes a deterioration in heart function, leading to myocardial infarction. It is aimed at investigating the protective mechanism of sevoflurane (Sevo) on cardiomyocytes by constructing a cellular model of hypoxic/reoxygenation (H/R) in this study.[Human hybrid] epithelioid cells (AC16) were induced by H/R to establish a model of myocardial I/R injury and Sevo postconditioning. The expression of long intergenic non-protein coding RNA 339 (LINC00339), microRNA-671-5p (miR-671-5p) and proteasome 20S subunit beta 2 (PSMB2) was detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Viability and apoptosis of AC16 cells were detected by cell counting kit-8 (CCK-8) assay and flow cytometry, respectively. The levels of interleukin-6 (IL-6), IL-10, tumor necrosis factor-a (TNF-a), reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), were detected. LINC00339 expression was upregulated in H/R cardiomyocytes relative to the Control group, whereas Sevo decreased LINC00339 expression in H/R cardiomyocytes. The viability of AC16 cells were increased, and apoptosis, oxidative stress, and inflammatory responses decreased in the Sevo postconditioning group relative to the H/R group, but the protective effect of Sevo on H/R cardiomyocytes was partially reversed by LINC00339 overexpression. LINC00339 negatively regulated miR-671-5p, and miR-671-5p upregulation could alleviate the damage of LINC00339 on H/R cardiomyocytes. PSMB2, a downstream target gene of miR-671-5p, could inhibit the protective effect of Sevo on H/R cardiomyocytes. Sevo postconditioning exerts a protective effect in H/R-induced cardiomyocyte injury, which may be achieved by interfering with LINC00339/miR-671-5p/PSMB2 expression.
Collapse
Affiliation(s)
- Juan Li
- The Third Ward of Cardiology Department, Tengzhou Central People's Hospital, Tengzhou, China
| | - Chuan Mou
- Department of Cardiovascular Medicine, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Yawei Yuan
- Department of Anesthesiology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Long Wang
- Department of Pain Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Caihong Wu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Chen J, Zhang G, Guo A, Mou C, Du M, Zhai S, Huang M. Sevoflurane attenuates hypoxia/reoxygenation-induced cardiomyocyte injury by regulating miR-4454. Toxicol Res (Camb) 2024; 13:tfae219. [PMID: 39712638 PMCID: PMC11659642 DOI: 10.1093/toxres/tfae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/17/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Sevoflurane (Sevo) prevents hypoxia/reoxygenation (H/R)-induced cardiomyocytes injury. The expression of miR-4,454 was increased in individuals experiencing an acute myocardial infarction. OBJECTIVE The purpose of current investigation was to delved into whether the effects of Sevo on cardiomyocytes are mediated through regulation of miR-4,454 expression. METHOD In this study, the expression levels of miR-4,454 and BAG5 were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability was detected by cell counting kit-8 (CCK-8). The levels of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin I (cTnI) were detected by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) were detected using various commercially available kits to assess the level of oxidative stress in the cells. The luciferase reporter gene assay was used to verify the interaction of miR-4,454 with downstream target genes. RESULTS There was a notable upregulation of miR-4,454 expression in H/R-induced cardiomyocyte models. This was accompanied by a decrease in the viability of myocardial cells induced by H/R and an intensification of the extent of myocardial injury and oxidative stress. However, the detrimental effects were mitigated by the administration of Sevo. miR-4,454 had a target site for binding to BAG5, and its expression was negatively modulated by miR-4,454. An increase in the expression of BAG5 was shown to directly offset the exacerbation of cardiomyocyte damage induced by the overexpression of miR-4,454. CONCLUSION Sevo may attenuate H/R-induced cardiomyocyte injury by regulating miR-4454.
Collapse
Affiliation(s)
- Jianxing Chen
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Fuzhou 350005, China
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, No. 999, Wansha Road, Changle District, Fuzhou 350212, China
- Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Fuzhou 350005, China
| | - Gaofeng Zhang
- Department of Critical Care Medicine, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6, Huanghe Road, Yushan Town, Changshu 215500, China
| | - Aili Guo
- Department of Anesthesiology and Surgery, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying 257034, China
| | - Changliang Mou
- Department of Anesthesiology and Surgery, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying 257034, China
| | - Meiqing Du
- Department of Anesthesiology and Surgery, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying 257034, China
| | - Shuang Zhai
- Department of Anesthesiology and Surgery, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying 257034, China
| | - Mingshan Huang
- Department of Cardiovascular Medicine, Ganzhou People's Hospital, No. 16 Meiguan Avenue, Ganzhou 341000, China
| |
Collapse
|
3
|
Qian D, Wen J, Yuan Y, Wang L, Feng X. Sevoflurane preconditioning attenuates myocardial cell damage caused by hypoxia and reoxygenation via regulating the NORAD/miR-144-3p axis. Hum Exp Toxicol 2024; 43:9603271241297883. [PMID: 39586668 DOI: 10.1177/09603271241297883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
OBJECTIVE This study aimed to investigate the function and mechanism of lncRNA NORAD in Sevoflurane (Sev) protection against myocardial hypoxia-reoxygenation (H/R). METHODS Preprocess rat cardiomyocytes H9c2 cells with Sev at concentrations of 0.5%, 1.0%, and 1.5%, and subjected them to H/R treatment. qRT-PCR was used to detect levels of NORAD and miR-144-3p. Measure concentrations of the inflammatory cytokines IL-6, TNF-α, and IL-10, as well as cardiac injury markers cTnI, CK-MB, and LDH using ELISA. Assess cell proliferation and apoptosis using CCK-8 and flow cytometry. Perform dual-luciferase reporter assay and RIP assay to validate the targeting relationship between NORAD and miR-144-3p. RESULTS H/R induced inhibition of cell proliferation, increase in apoptosis, and production of IL-6, TNF-α, CK-MB, LDH, and cTnI were significantly attenuated by Sev. As hypoxic treatment time lengthened, the NORAD levels in myocardial cells showed an increase, with Sev pretreatment being able to suppress the NORAD levels elevation. The overexpression of NORAD notably weakened the cardioprotective effect of Sev. NORAD targetedly binds to miR-144-3p and negatively regulates miR-144-3p. Increased miR-144-3p levels inhibited the antagonistic effect of NORAD on the cardioprotective effects of Sev. CONCLUSION The current study confirmed that sevoflurane attenuated H/R-induced cardiomyocyte injury via the NORAD/miR-144-3p axis.
Collapse
Affiliation(s)
- Duo Qian
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jie Wen
- Cardiology Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yawei Yuan
- Department of Anesthesiology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Long Wang
- Department of Pain Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaona Feng
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
4
|
Wang Q, Zuurbier CJ, Huhn R, Torregroza C, Hollmann MW, Preckel B, van den Brom CE, Weber NC. Pharmacological Cardioprotection against Ischemia Reperfusion Injury-The Search for a Clinical Effective Therapy. Cells 2023; 12:1432. [PMID: 37408266 DOI: 10.3390/cells12101432] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
Pharmacological conditioning aims to protect the heart from myocardial ischemia-reperfusion injury (IRI). Despite extensive research in this area, today, a significant gap remains between experimental findings and clinical practice. This review provides an update on recent developments in pharmacological conditioning in the experimental setting and summarizes the clinical evidence of these cardioprotective strategies in the perioperative setting. We start describing the crucial cellular processes during ischemia and reperfusion that drive acute IRI through changes in critical compounds (∆GATP, Na+, Ca2+, pH, glycogen, succinate, glucose-6-phosphate, mitoHKII, acylcarnitines, BH4, and NAD+). These compounds all precipitate common end-effector mechanisms of IRI, such as reactive oxygen species (ROS) generation, Ca2+ overload, and mitochondrial permeability transition pore opening (mPTP). We further discuss novel promising interventions targeting these processes, with emphasis on cardiomyocytes and the endothelium. The limited translatability from basic research to clinical practice is likely due to the lack of comorbidities, comedications, and peri-operative treatments in preclinical animal models, employing only monotherapy/monointervention, and the use of no-flow (always in preclinical models) versus low-flow ischemia (often in humans). Future research should focus on improved matching between preclinical models and clinical reality, and on aligning multitarget therapy with optimized dosing and timing towards the human condition.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Ragnar Huhn
- Department of Anesthesiology, Kerckhoff-Clinic-Center for Heart, Lung, Vascular and Rheumatic Disease, Justus-Liebig-University Giessen, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Carolin Torregroza
- Department of Anesthesiology, Kerckhoff-Clinic-Center for Heart, Lung, Vascular and Rheumatic Disease, Justus-Liebig-University Giessen, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Markus W Hollmann
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Nina C Weber
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
5
|
Roth Z'graggen B, Urner M, Beck-Schimmer B, Schläpfer M. Effects of sevoflurane and its metabolite hexafluoroisopropanol on hypoxia/reoxygenation-induced injury and mitochondrial bioenergetics in murine cardiomyocytes. BJA OPEN 2023; 5:100116. [PMID: 37587996 PMCID: PMC10430838 DOI: 10.1016/j.bjao.2022.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/22/2022] [Indexed: 08/18/2023]
Abstract
Background The volatile anaesthetic sevoflurane protects cardiac tissue from reoxygenation/reperfusion. Mitochondria play an essential role in conditioning. We aimed to investigate how sevoflurane and its primary metabolite hexafluoroisopropanol (HFIP) affect necrosis, apoptosis, and reactive oxygen species formation in cardiomyocytes upon hypoxia/reoxygenation injury. Moreover, we aimed to describe the similarities in the mode of action in a mitochondrial bioenergetics analysis. Methods Murine cardiomyocytes were exposed to hypoxia (0.2% O2 for 6 h), followed by reoxygenation (air with 5% CO2 for 2 h) in the presence or absence sevoflurane 2.2% or HFIP 4 mM. Lactate dehydrogenase (LDH) release (necrosis), caspase activation (apoptosis), reactive oxygen species, mitochondrial membrane potential, and mitochondrial function (Seahorse XF analyser) were measured. Results Hypoxia/reoxygenation increased cell death by 44% (+31 to +55%, P<0.001). Reoxygenation in the presence of sevoflurane 2.2% or HFIP 4 mM increased LDH release only by +18% (+6 to +30%) and 20% (+7 to +32%), respectively. Apoptosis and reactive oxygen species formation were attenuated by sevoflurane and HFIP. Mitochondrial bioenergetics analysis of the two substances was profoundly different. Sevoflurane did not influence oxygen consumption rate (OCR) or extracellular acidification rate (ECAR), whereas HFIP reduced OCR and increased ECAR, an effect similar to oligomycin, an adenosine triphosphate (ATP) synthase inhibitor. When blocking the metabolism of sevoflurane into HFIP, protective effects of sevoflurane - but not of HFIP - on LDH release and caspase were mitigated. Conclusion Together, our data suggest that sevoflurane metabolism into HFIP plays an essential role in cardiomyocyte postconditioning after hypoxia/reoxygenation injury.
Collapse
Affiliation(s)
| | - Martin Urner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Interdepartmental Division of Critical Care Medicine and University of Toronto, Toronto, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Canada
| | - Beatrice Beck-Schimmer
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Institute of Anaesthesiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Schläpfer
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Institute of Anaesthesiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Popov SV, Mukhomedzyanov AV, Voronkov NS, Derkachev IA, Boshchenko AA, Fu F, Sufianova GZ, Khlestkina MS, Maslov LN. Regulation of autophagy of the heart in ischemia and reperfusion. Apoptosis 2023; 28:55-80. [PMID: 36369366 DOI: 10.1007/s10495-022-01786-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Ischemia/reperfusion (I/R) of the heart leads to increased autophagic flux. Preconditioning stimulates autophagic flux by AMPK and PI3-kinase activation and mTOR inhibition. The cardioprotective effect of postconditioning is associated with activation of autophagy and increased activity of NO-synthase and AMPK. Oxidative stress stimulates autophagy in the heart during I/R. Superoxide radicals generated by NADPH-oxidase acts as a trigger for autophagy, possibly due to AMPK activation. There is reason to believe that AMPK, GSK-3β, PINK1, JNK, hexokinase II, MEK, PKCα, and ERK kinases stimulate autophagy, while mTOR, PKCδ, Akt, and PI3-kinase can inhibit autophagy in the heart during I/R. However, there is evidence that PI3-kinase could stimulate autophagy in ischemic preconditioning of the heart. It was found that transcription factors FoxO1, FoxO3, NF-κB, HIF-1α, TFEB, and Nrf-2 enhance autophagy in the heart in I/R. Transcriptional factors STAT1, STAT3, and p53 inhibit autophagy in I/R. MicroRNAs could stimulate and inhibit autophagy in the heart in I/R. Long noncoding RNAs regulate the viability and autophagy of cardiomyocytes in hypoxia/reoxygenation (H/R). Nitric oxide (NO) donors and endogenous NO could activate autophagy of cardiomyocytes. Activation of heme oxygenase-1 promotes cardiomyocyte tolerance to H/R and enhances autophagy. Hydrogen sulfide increases cardiac tolerance to I/R and inhibits apoptosis and autophagy via mTOR and PI3-kinase activation.
Collapse
Affiliation(s)
- Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Alexander V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Nikita S Voronkov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Feng Fu
- School of Basic Medicine, Fourth Military Medical University, No.169, West Changle Road, Xi'an, 710032, China
| | | | | | - Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012.
| |
Collapse
|
7
|
Protective Effect of Sevoflurane Preconditioning on Cardiomyocytes Against Hypoxia/Reoxygenation Injury by Modulating Iron Homeostasis and Ferroptosis. Cardiovasc Toxicol 2023; 23:86-92. [PMID: 36800141 DOI: 10.1007/s12012-023-09782-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
To investigate the mechanism whereby sevoflurane (Sev) protects cardiomyocytes from hypoxia/reoxygenation (H/R) injury. The rat cardiomyocyte line H9C2 was exposed to hypoxia (1% oxygen) for 24 h, followed by reoxygenation for 2 h to construct a model of H/R injury. H9C2 was exposed to 2.4% Sev for 45 min before creating a hypoxic environment to observe the effect of Sev. MTT was taken to assess the viability of each group of cells, flow cytometry to detect cell apoptosis, and qRT-PCR or western blot to detect the expression of iron metabolism-related proteins and apoptosis-related proteins in the cells. And the kit determined the levels of total Fe and Fe2+ as well as factors related to oxidative stress in the cells. Administration of Sev significantly increased the cell viability of the H/R group while decreasing the expression of apoptosis-related proteins (Bax, cleaved caspase-3). Ferroportin 1 and mitochondrial ferritin, which are associated with iron metabolism, were considerably up-regulated by Sev, while iron regulatory protein 1, divalent metal transporter 1, and transferrin receptor 1 were significantly down-regulated in H/R cells. Additionally, Sev substantially reduced the levels of total Fe and Fe2+, reactive oxygen species, malondialdehyde, and 4-hydroxynonenal in H/R cells. In conclusion, Sev relieves H/R-induced cardiomyocyte injury by regulating iron homeostasis and ferroptosis.
Collapse
|
8
|
Anesthetic sevoflurane simultaneously regulates autophagic flux and pyroptotic cell death-associated cellular inflammation in the hypoxic/re-oxygenated cardiomyocytes: Identification of sevoflurane as putative drug for the treatment of myocardial ischemia-reperfusion injury. Eur J Pharmacol 2022; 936:175363. [DOI: 10.1016/j.ejphar.2022.175363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
9
|
He L, Wang Y, Luo J. Epigenetic modification mechanism of histone demethylase KDM1A in regulating cardiomyocyte apoptosis after myocardial ischemia-reperfusion injury. PeerJ 2022; 10:e13823. [PMID: 35959481 PMCID: PMC9359132 DOI: 10.7717/peerj.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/10/2022] [Indexed: 01/18/2023] Open
Abstract
Hypoxia and reoxygenation (H/R) play a prevalent role in heart-related diseases. Histone demethylases are involved in myocardial injury. In this study, the mechanism of the lysine-specific histone demethylase 1A (KDM1A/LSD1) on cardiomyocyte apoptosis after myocardial ischemia-reperfusion injury (MIRI) was investigated. Firstly, HL-1 cells were treated with H/R to establish the MIRI models. The expressions of KDM1A and Sex Determining Region Y-Box Transcription Factor 9 (SOX9) in H/R-treated HL-1 cells were examined. The cell viability, markers of myocardial injury (LDH, AST, and CK-MB) and apoptosis (Bax and Bcl-2), and Caspase-3 and Caspase-9 protein activities were detected, respectively. We found that H/R treatment promoted cardiomyocyte apoptosis and downregulated KDM1A, and overexpressing KDM1A reduced apoptosis in H/R-treated cardiomyocytes. Subsequently, tri-methylation of lysine 4 on histone H3 (H3K4me3) level on the SOX9 promoter region was detected. We found that KDM1A repressed SOX9 transcription by reducing H3K4me3. Then, HL-1 cells were treated with CPI-455 and plasmid pcDNA3.1-SOX9 and had joint experiments with pcDNA3.1-KDM1A. We disclosed that upregulating H3K4me3 or overexpressing SOX9 reversed the inhibitory effect of overexpressing KDM1A on apoptosis of H/R-treated cardiomyocytes. In conclusion, KDM1A inhibited SOX9 transcription by reducing the H3K4me3 on the SOX9 promoter region and thus inhibited H/R-induced apoptosis of cardiomyocytes.
Collapse
Affiliation(s)
- Lin He
- Department of Cardiology, The Center Hospital of Shaoyang, Shaoyang, China
| | - Yanbo Wang
- Department of Cardiology, The Center Hospital of Shaoyang, Shaoyang, China
| | - Jin Luo
- Department of Cardiology, The Center Hospital of Shaoyang, Shaoyang, China
| |
Collapse
|
10
|
Wu Z, Tan J, Lin L, Zhang W, Yuan W. Sevoflurane up-regulates miR-7a to protect against ischemic brain injury in rats by down-regulating ATG7 and reducing neuronal autophagy. Brain Res Bull 2022; 188:214-222. [PMID: 35835410 DOI: 10.1016/j.brainresbull.2022.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/23/2022] [Accepted: 07/08/2022] [Indexed: 12/01/2022]
Abstract
The current study aimed to elucidate the effects of Sevoflurane on neuronal autophagy and ischemic brain injury by regulating miR-7a/ATG7 axis. The rat model of middle cerebral artery occlusion (MCAO) was established by thread embolization. The expression pattern of microRNA-7a (miR-7a) and autophagy-related gene 7 (ATG7) was subsequently determined in Sevoflurane-treated MCAO rats with their relation and effects on neuronal autophagy and ischemic brain injury further analyzed. Bioinformatics analysis confirmed that miR-7a could target to inhibit ATG7 in ischemic brain injury samples. Sevoflurane could alleviate ischemic brain injury in rats by reducing the level of neuronal autophagy-related factors. The expression of miR-7a was up-regulated and ATG7 was down-regulated in the brain tissues of MCAO rats after Sevoflurane treatment. ATG7 was found to induce neuronal autophagy during autophagy in the brain tissues of MCAO rats. In summary, Sevoflurane exerts protective effects on ischemic brain injury via inhibiting autophagy of neurons and microglia through the miR-7a-mediated downregulation of ATG7.
Collapse
Affiliation(s)
- Zhiguo Wu
- Department of Anesthesiology, Pingxiang People's Hospital of Southern Medical University,Pingxiang 337055, P.R. China.
| | - Jian Tan
- Department of Anesthesiology, Pingxiang People's Hospital of Southern Medical University,Pingxiang 337055, P.R. China
| | - Lichang Lin
- Department of Anesthesiology, Pingxiang People's Hospital of Southern Medical University,Pingxiang 337055, P.R. China
| | - Wenting Zhang
- Department of Anesthesiology, Pingxiang People's Hospital of Southern Medical University,Pingxiang 337055, P.R. China
| | - Wanqiu Yuan
- Department of Anesthesiology, Pingxiang People's Hospital of Southern Medical University,Pingxiang 337055, P.R. China
| |
Collapse
|
11
|
Song S, Wang Y, Wang HY, Guo LL. Role of sevoflurane in myocardial ischemia-reperfusion injury via the ubiquitin-specific protease 22/lysine-specific demethylase 3A axis. Bioengineered 2022; 13:13366-13383. [PMID: 36700466 PMCID: PMC9275884 DOI: 10.1080/21655979.2022.2062535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) represents a coronary artery disease, accompanied by high morbidity and mortality. Sevoflurane post-conditioning (SPC) is importantly reported in myocardial disease. Accordingly, the current study sought to evaluate the role of Sevo in MI/RI. Firstly, MI/RI models were established and subjected to SPC. Subsequently, pathological injury in the myocardium, myocardial infarction areas, H9c2 cell viability, apoptosis, and levels of creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH) were all measured. Ubiquitin-specific peptidase (22USP22), lysine-specific demethylase 3A (KDM3A), and Yes1 associated transcriptional regulator (YAP1) were down-regulated in H9c2 cells using cell transfection to verify their roles. The interaction between USP22 and KDM3A and between KDM3A and YAP1 was further validated. USP 22, KDM3A, and YAP1 were found to be down-regulated in MI/RI and SPC protected MI/RI rats, as evidenced by up-regulated expressions of USP22, KDM3A, and YAP1, reduced pathological injury in the myocardium, myocardial infarction areas, apoptosis, and levels of CK-MB, cTnI, and LDH, and enhanced H9c2 cell viability; while the protective effects of Sevo were counteracted by silencing of USP22, KDM3A, and SPC upregulated USP22, which stabilized KDM3A protein levels via deubiquitination, and KDM3A inhibited histone 3 lysine 9 di-methylation (H3K9me2) levels in the YAP1 promoter to encourage YAP1 transcription, to reduce MI/RI.
Collapse
Affiliation(s)
- Shan Song
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yang Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Hai-Yan Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China,Hai-Yan Wang Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Zhifu District, Yantai City264000, Shandong Province, China
| | - Long-Long Guo
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China,CONTACT Long-Long Guo
| |
Collapse
|
12
|
Effects of Sevoflurane on Apoptosis of Myocardial Cells in IRI Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2021:3347949. [PMID: 35005016 PMCID: PMC8741344 DOI: 10.1155/2021/3347949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/18/2022]
Abstract
Background Cardiomyocyte apoptosis functions essentially in ischemia/reperfusion- (I/R-) induced myocardial injury. It is suggested that autophagy is widely implicated in the regulation of cell survival and death. Sevoflurane, as a largely used inhalational general anesthetic, has been shown to have a protective effect on cardiomyocytes. However, it was yet elusive on the underlying mechanisms. Aim The objective of this study is to investigate the association of sevoflurane-mediated cardioprotective effects with autophagy regulation. Methods An in vitro hypoxia model was established in primary cardiomyocytes from fresh myocardial tissue of the rats. The apoptosis rate of myocardial cells treated with hypoxia and treated with sevoflurane was measured. Western blot and immunocytochemical assay were used to measure the protein expression. The cell proliferation rate and cell apoptosis were measured using the MTT assay and flow cytometry, respectively. Results The expression of apoptotic proteins including B cell lymphoma-2 (Bcl-2), CCAAT/enhancer-binding protein homologous protein (CHOP), glucose-regulated protein 78 (GRP78), and Bcl-2-associated X protein (BAX) in myocardium treated with sevoflurane was significantly lower than that in myocardium treated with hypoxia. The expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in myocardium treated with sevoflurane was higher than that in myocardium treated with hypoxia, suggesting better connectivity of the myocardium. Conclusion Sevoflurane treatment reduced the apoptosis of myocardial cells after hypoxia treatment.
Collapse
|
13
|
Upregulated microRNA-210-3p improves sevoflurane-induced protective effect on ventricular remodeling in rats with myocardial infarction by inhibiting ADCY9. Funct Integr Genomics 2022; 22:279-289. [PMID: 34988676 DOI: 10.1007/s10142-021-00816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/04/2022]
Abstract
Myocardial infarction (MI) is a significant cause of death and disability, and sevoflurane (sevo) can protect myocardium in clinic. We aim to assess the effects of miR-210-3p on MI rats undergoing sevo treatment with the involvement of adenylyl cyclase type 9 (ADCY9). Rat MI models were constructed by ligation of the left anterior descending, and the modeled rats were respectively treated with sevo, miR-210-3p agomir, antagomir, or overexpressed ADCY9. Then, miR-210-3p and ADCY9 expression, cardiac function, myocardial injury and fibrosis, and cardiomyocyte apoptosis in rats were evaluated. Target relation between miR-210-3p and ADCY9 was detected. miR-210-3p was downregulated while ADCY9 was upregulated in MI rats. Sevo was able to promote cardiac function and attenuate myocardial injury and fibrosis, as well as cardiomyocyte apoptosis in MI rats. These effects of sevo were strengthened by miR-210-3p elevation but abolished by miR-210-3p inhibition in MI rats. The role of elevated miR-210-3p in MI rats was reversed by overexpression of ADCY9. Upregulated miR-210-3p improves sevo-induced protective effect on ventricular remodeling in rats with MI through inhibiting ADCY9.
Collapse
|
14
|
Human Induced Pluripotent Stem Cell as a Disease Modeling and Drug Development Platform-A Cardiac Perspective. Cells 2021; 10:cells10123483. [PMID: 34943991 PMCID: PMC8699880 DOI: 10.3390/cells10123483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of the pathophysiology and cellular responses to drugs in human heart disease is limited by species differences between humans and experimental animals. In addition, isolation of human cardiomyocytes (CMs) is complicated because cells obtained by biopsy do not proliferate to provide sufficient numbers of cells for preclinical studies in vitro. Interestingly, the discovery of human-induced pluripotent stem cell (hiPSC) has opened up the possibility of generating and studying heart disease in a culture dish. The combination of reprogramming and genome editing technologies to generate a broad spectrum of human heart diseases in vitro offers a great opportunity to elucidate gene function and mechanisms. However, to exploit the potential applications of hiPSC-derived-CMs for drug testing and studying adult-onset cardiac disease, a full functional characterization of maturation and metabolic traits is required. In this review, we focus on methods to reprogram somatic cells into hiPSC and the solutions for overcome immaturity of the hiPSC-derived-CMs to mimic the structure and physiological properties of the adult human CMs to accurately model disease and test drug safety. Finally, we discuss how to improve the culture, differentiation, and purification of CMs to obtain sufficient numbers of desired types of hiPSC-derived-CMs for disease modeling and drug development platform.
Collapse
|
15
|
García-Niño WR, Zazueta C, Buelna-Chontal M, Silva-Palacios A. Mitochondrial Quality Control in Cardiac-Conditioning Strategies against Ischemia-Reperfusion Injury. Life (Basel) 2021; 11:1123. [PMID: 34832998 PMCID: PMC8620839 DOI: 10.3390/life11111123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the central target of ischemic preconditioning and postconditioning cardioprotective strategies, which consist of either the application of brief intermittent ischemia/reperfusion (I/R) cycles or the administration of pharmacological agents. Such strategies reduce cardiac I/R injury by activating protective signaling pathways that prevent the exacerbated production of reactive oxygen/nitrogen species, inhibit opening of mitochondrial permeability transition pore and reduce apoptosis, maintaining normal mitochondrial function. Cardioprotection also involves the activation of mitochondrial quality control (MQC) processes, which replace defective mitochondria or eliminate mitochondrial debris, preserving the structure and function of the network of these organelles, and consequently ensuring homeostasis and survival of cardiomyocytes. Such processes include mitochondrial biogenesis, fission, fusion, mitophagy and mitochondrial-controlled cell death. This review updates recent advances in MQC mechanisms that are activated in the protection conferred by different cardiac conditioning interventions. Furthermore, the role of extracellular vesicles in mitochondrial protection and turnover of these organelles will be discussed. It is concluded that modulation of MQC mechanisms and recognition of mitochondrial targets could provide a potential and selective therapeutic approach for I/R-induced mitochondrial dysfunction.
Collapse
|
16
|
Guo H, Liu L, Nishiga M, Cong L, Wu JC. Deciphering pathogenicity of variants of uncertain significance with CRISPR-edited iPSCs. Trends Genet 2021; 37:1109-1123. [PMID: 34509299 DOI: 10.1016/j.tig.2021.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Genetic variants play an important role in conferring risk for cardiovascular diseases (CVDs). With the rapid development of next-generation sequencing (NGS), thousands of genetic variants associated with CVDs have been identified by genome-wide association studies (GWAS), but the function of more than 40% of genetic variants is still unknown. This gap of knowledge is a barrier to the clinical application of the genetic information. However, determining the pathogenicity of a variant of uncertain significance (VUS) is challenging due to the lack of suitable model systems and accessible technologies. By combining clustered regularly interspaced short palindromic repeats (CRISPR) and human induced pluripotent stem cells (iPSCs), unprecedented advances are now possible in determining the pathogenicity of VUS in CVDs. Here, we summarize recent progress and new strategies in deciphering pathogenic variants for CVDs using CRISPR-edited human iPSCs.
Collapse
Affiliation(s)
- Hongchao Guo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lichao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Le Cong
- Department of Pathology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Zhang Y, Zhan B, Hu Y, Chen S, Zhang Q. Sevoflurane inhibits the apoptosis of hypoxia/reoxygenation-induced cardiomyocytes via regulating miR-27a-3p-mediated autophagy. J Pharm Pharmacol 2021; 73:1470-1479. [PMID: 34383044 DOI: 10.1093/jpp/rgab111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 07/14/2021] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Sevoflurane (Sevo) prevents hypoxia/reoxygenation (H/R)-induced cardiomyocytes apoptosis. MiR-27a-3p expression is up-regulated in Sevo-treated hippocampal neurons. OBJECTIVE This study explored whether the effect of Sevo on cardiomyocytes was mediated by miR-27a-3p. METHODS The cardiomyocytes were cultured under H/R condition or pre-treated with Sevo, and further transfected with miR-27a-3p inhibitor or treated with an autophagy inhibitor 3-methyladenine (3-MA). Then the cell morphology was observed under an optical microscope. The cell viability and apoptosis were measured by MTT and flow cytometry. Expressions of miR-27a-3p, apoptosis-related, and autophagy-related factors were determined by western blot or RT-qPCR. KEY FINDINGS Sevo improved the abnormal morphology, promoted the cell viability and the expressions of Bcl-2 and miR-27a-3p, but reduced the apoptosis and Bax and C-caspase-3 levels of H/R-induced cardiomyocytes. MiR-27a-3p inhibitor had an effect opposite to Sevo on the cardiomyocytes and further counteracted the effect of Sevo on the H/R-induced cardiomyocytes. Downregulation miR-27a-3p increased the expression of Beclin 1 and the ratio of LC3B-II to LC3B-I in H/R-induced cardiomyocytes. Furthermore, 3-MA had an opposite effect to miR-27a-3p inhibitor and further counteracted the effect of the miR-27a-3p inhibitor on H/R-induced cardiomyocytes. CONCLUSION Sevo inhibited the apoptosis of H/R-induced cardiomyocytes via regulating miR-27a-3p-mediated autophagy.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Biming Zhan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ying Hu
- Endocrinology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shibiao Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Xie D, Deng H, Feng H. Sevoflurane exerts improved protective effects than propofol on hypoxia-reoxygenation injury by regulating the microRNA-221-5p/ADAM8 axis in cardiomyocytes. Exp Ther Med 2021; 22:893. [PMID: 34257708 PMCID: PMC8243314 DOI: 10.3892/etm.2021.10325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/24/2021] [Indexed: 11/10/2022] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a leading cause of heart disease and death. Decreasing the detrimental effect of I/R remains an urgent issue in clinical practice. The present study examined the interaction of the anesthetics (sevoflurane and propofol), ADAM8, and microRNA (miR)-221-5p in myocardial tissue protection in the hypoxia-reoxygenation (H/R) model. H9C2 cells were cultured and subjected to H/R stimulation for further verifications in vitro. Reverse transcription-quantitative PCR or western blotting was performed to evaluate mRNA or protein expression levels. Cell Counting Kit-8, BrdU, and caspase-3 activity assays were performed to investigate cell viability, proliferation and apoptosis. A dual-luciferase reporter assay was performed to verify the association between miR-221-5p and ADAM8. Sevoflurane had greater protective effects on the life of cardiomyocytes with H/R injury compared with propofol by promoting cell viability, proliferation and inhibiting apoptosis. Concurrently, compared with propofol-treated H/R injured cardiomyocytes, the expression level of ADAM8 in sevoflurane-treated H/R injured cardiomyocytes was higher. In addition, overexpression of ADAM8 promoted the cell viability and proliferation of sevoflurane-treated cardiomyocytes with H/R injury but inhibited cell apoptosis, while the downregulation of miR-221-5p showed an opposite trend to that of ADAM8 overexpression. The present data provide evidence that sevoflurane can mediate the miR-221-5p/ADAM8 axis, playing a better protective role compared with propofol in cardiomyocytes with H/R injury.
Collapse
Affiliation(s)
- Dan Xie
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Huifei Deng
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Hao Feng
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
19
|
Sevoflurane protects against ischemia-reperfusion injury in mice after total knee arthroplasty via facilitating RASD1-mediated protein kinase A pathway activation. Aging (Albany NY) 2021; 13:13333-13348. [PMID: 33982674 PMCID: PMC8148473 DOI: 10.18632/aging.103899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
This study aimed to explore effects of Sevoflurane on ischemia-reperfusion (I/R) injury after total knee arthroplasty (TKA). To explore potential molecular mechanism, Ras related dexamethasone induced 1 (RASD1), a Protein kinase A (PKA) activator, frequently associated with various models of I/R injury, was also investigated. In vivo mouse models with I/R injury after TKA and in vitro cell models with I/R injury were induced. Contents of creatinine kinase (CK), lactic dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA), serum levels of inflammatory factors, expression of PKA pathway-related genes and cell proliferation and apoptosis were measured. RASD1 was altered and PKA pathway was inhibited in mice and cells to elucidate the involvement of RASD1 and PKA pathway in Sevoflurane treatment on I/R injury. RASD1 was upregulated in I/R injury after TKA. Sevoflurane treatment or silencing RASD1 reduced RASD1 expression, CK, LDH and MDA contents, inflammation, apoptosis, but increased proliferation, SOD content, cAMP expression, and extents of PKA and cAMP responsive element binding protein (CREB) phosphorylation in skeletal muscle cells of I/R injury. Additionally, PKA pathway activation potentiated the therapeutic effect of Sevoflurane on I/R injury after TKA. Altogether, Sevoflurane treatment confines I/R injury after TKA via RASD1-mediated PKA pathway activation.
Collapse
|
20
|
Roth S, Torregroza C, Feige K, Preckel B, Hollmann MW, Weber NC, Huhn R. Pharmacological Conditioning of the Heart: An Update on Experimental Developments and Clinical Implications. Int J Mol Sci 2021; 22:ijms22052519. [PMID: 33802308 PMCID: PMC7959135 DOI: 10.3390/ijms22052519] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of pharmacological conditioning is to protect the heart against myocardial ischemia-reperfusion (I/R) injury and its consequences. There is extensive literature that reports a multitude of different cardioprotective signaling molecules and mechanisms in diverse experimental protocols. Several pharmacological agents have been evaluated in terms of myocardial I/R injury. While results from experimental studies are immensely encouraging, translation into the clinical setting remains unsatisfactory. This narrative review wants to focus on two aspects: (1) give a comprehensive update on new developments of pharmacological conditioning in the experimental setting concentrating on recent literature of the last two years and (2) briefly summarize clinical evidence of these cardioprotective substances in the perioperative setting highlighting their clinical implications. By directly opposing each pharmacological agent regarding its recent experimental knowledge and most important available clinical data, a clear overview is given demonstrating the remaining gap between basic research and clinical practice. Finally, future perspectives are given on how we might overcome the limited translatability in the field of pharmacological conditioning.
Collapse
Affiliation(s)
- Sebastian Roth
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (S.R.); (K.F.); (R.H.)
| | - Carolin Torregroza
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (S.R.); (K.F.); (R.H.)
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands; (B.P.); (M.W.H.); (N.C.W.)
- Correspondence:
| | - Katharina Feige
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (S.R.); (K.F.); (R.H.)
| | - Benedikt Preckel
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands; (B.P.); (M.W.H.); (N.C.W.)
| | - Markus W. Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands; (B.P.); (M.W.H.); (N.C.W.)
| | - Nina C. Weber
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands; (B.P.); (M.W.H.); (N.C.W.)
| | - Ragnar Huhn
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (S.R.); (K.F.); (R.H.)
| |
Collapse
|
21
|
Häkli M, Kreutzer J, Mäki AJ, Välimäki H, Lappi H, Huhtala H, Kallio P, Aalto-Setälä K, Pekkanen-Mattila M. Human induced pluripotent stem cell-based platform for modeling cardiac ischemia. Sci Rep 2021; 11:4153. [PMID: 33603154 PMCID: PMC7893031 DOI: 10.1038/s41598-021-83740-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Ischemic heart disease is a major cause of death worldwide, and the only available therapy to salvage the tissue is reperfusion, which can initially cause further damage. Many therapeutics that have been promising in animal models have failed in human trials. Thus, functional human based cardiac ischemia models are required. In this study, a human induced pluripotent stem cell derived-cardiomyocyte (hiPSC-CM)-based platform for modeling ischemia-reperfusion was developed utilizing a system enabling precise control over oxygen concentration and real-time monitoring of the oxygen dynamics as well as iPS-CM functionality. In addition, morphology and expression of hypoxia-related genes and proteins were evaluated as hiPSC-CM response to 8 or 24 h hypoxia and 24 h reoxygenation. During hypoxia, initial decrease in hiPSC-CM beating frequency was observed, after which the CMs adapted to the conditions and the beating frequency gradually increased already before reoxygenation. During reoxygenation, the beating frequency typically first surpassed the baseline before settling down to the values close the baseline. Furthermore, slowing on the field potential propagation throughout the hiPSC-CM sheet as well as increase in depolarization time and decrease in overall field potential duration were observed during hypoxia. These changes were reversed during reoxygenation. Disorganization of sarcomere structures was observed after hypoxia and reoxygenation, supported by decrease in the expression of sarcomeric proteins. Furthermore, increase in the expression of gene encoding glucose transporter 1 was observed. These findings indicate, that despite their immature phenotype, hiPSC-CMs can be utilized in modeling ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Martta Häkli
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| | - Joose Kreutzer
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti-Juhana Mäki
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hannu Välimäki
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Henna Lappi
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Pasi Kallio
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Katriina Aalto-Setälä
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Mari Pekkanen-Mattila
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| |
Collapse
|
22
|
Torregroza C, Raupach A, Feige K, Weber NC, Hollmann MW, Huhn R. Perioperative Cardioprotection: General Mechanisms and Pharmacological Approaches. Anesth Analg 2020; 131:1765-1780. [PMID: 33186163 DOI: 10.1213/ane.0000000000005243] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardioprotection encompasses a variety of strategies protecting the heart against myocardial injury that occurs during and after inadequate blood supply to the heart during myocardial infarction. While restoring reperfusion is crucial for salvaging myocardium from further damage, paradoxically, it itself accounts for additional cell death-a phenomenon named ischemia/reperfusion injury. Therefore, therapeutic strategies are necessary to render the heart protected against myocardial infarction. Ischemic pre- and postconditioning, by short periods of sublethal cardiac ischemia and reperfusion, are still the strongest mechanisms to achieve cardioprotection. However, it is highly impractical and far too invasive for clinical use. Fortunately, it can be mimicked pharmacologically, for example, by volatile anesthetics, noble gases, opioids, propofol, dexmedetomidine, and phosphodiesterase inhibitors. These substances are all routinely used in the clinical setting and seem promising candidates for successful translation of cardioprotection from experimental protocols to clinical trials. This review presents the fundamental mechanisms of conditioning strategies and provides an overview of the most recent and relevant findings on different concepts achieving cardioprotection in the experimental setting, specifically emphasizing pharmacological approaches in the perioperative context.
Collapse
Affiliation(s)
- Carolin Torregroza
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany.,Department of Anesthesiology, Amsterdam University Medical Centers (AUMC), Amsterdam, the Netherlands
| | - Annika Raupach
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Katharina Feige
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Nina C Weber
- Department of Anesthesiology, Amsterdam University Medical Centers (AUMC), Amsterdam, the Netherlands
| | - Markus W Hollmann
- Department of Anesthesiology, Amsterdam University Medical Centers (AUMC), Amsterdam, the Netherlands
| | - Ragnar Huhn
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
23
|
Tan DX, Chen XX, Bai TZ, Zhang J, Li ZF. RETRACTED: Sevoflurane up-regulates microRNA-204 to ameliorate myocardial ischemia/reperfusion injury in mice by suppressing Cotl1. Life Sci 2020; 259:118162. [PMID: 32730836 DOI: 10.1016/j.lfs.2020.118162] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figures 4C+E and 7E, which appear to have a similar phenotype as seen in many other publications, as detailed here: https://pubpeer.com/publications/CE1E814DD630D160BEEBFC2842FE45; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. The journal requested that the corresponding author comment on these concerns and provide the raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Dian-Xiang Tan
- Department of Anesthesiology, Hengyang City Central Hospital, Hengyang 421001, Hunan, China.
| | - Xiao-Xi Chen
- Department of Anesthesiology, Hengyang City Central Hospital, Hengyang 421001, Hunan, China.
| | - Tai-Zhu Bai
- Department of Cardiovascular Medicine, Hengyang City Central Hospital, Hengyang 421001, Hunan, China.
| | - Juan Zhang
- Department of Anesthesiology, Hengyang City Central Hospital, Hengyang 421001, Hunan, China.
| | - Zhen-Fa Li
- Department of General Surgery, Hengyang City Central Hospital, Hengyang 421001, Hunan, China.
| |
Collapse
|
24
|
Li W, Ren Y, Meng T, Yang W, Zhang W. miR‐129‐5p attenuates hypoxia‐induced apoptosis in rat H9c2 cardiomyocytes by activating autophagy. J Gene Med 2020; 22:e3200. [PMID: 32298509 DOI: 10.1002/jgm.3200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Wenjia Li
- Department of Geriatric MedicineThe First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi China
| | - Yanping Ren
- Department of Geriatric MedicineThe First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi China
| | - Tianyu Meng
- Department of Geriatric MedicineThe First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi China
| | - Wei Yang
- Department of Geriatric MedicineThe First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi China
| | - Wei Zhang
- Department of Geriatric MedicineThe First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi China
| |
Collapse
|
25
|
Martewicz S, Magnussen M, Elvassore N. Beyond Family: Modeling Non-hereditary Heart Diseases With Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Physiol 2020; 11:384. [PMID: 32390874 PMCID: PMC7188911 DOI: 10.3389/fphys.2020.00384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/30/2020] [Indexed: 12/23/2022] Open
Abstract
Non-genetic cardiac pathologies develop as an aftermath of extracellular stress-conditions. Nevertheless, the response to pathological stimuli depends deeply on intracellular factors such as physiological state and complex genetic backgrounds. Without a thorough characterization of their in vitro phenotype, modeling of maladaptive hypertrophy, ischemia and reperfusion injury or diabetes in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has been more challenging than hereditary diseases with defined molecular causes. In past years, greater insights into hPSC-CM in vitro physiology and advancements in technological solutions and culture protocols have generated cell types displaying stress-responsive phenotypes reminiscent of in vivo pathological events, unlocking their application as a reductionist model of human cardiomyocytes, if not the adult human myocardium. Here, we provide an overview of the available literature of pathology models for cardiac non-genetic conditions employing healthy (or asymptomatic) hPSC-CMs. In terms of numbers of published articles, these models are significantly lagging behind monogenic diseases, which misrepresents the incidence of heart disease causes in the human population.
Collapse
Affiliation(s)
- Sebastian Martewicz
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Michael Magnussen
- Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nicola Elvassore
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China.,Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Venetian Institute of Molecular Medicine, Padua, Italy.,Department of Industrial Engineering, University of Padova, Padua, Italy
| |
Collapse
|
26
|
Zou L, Lei H, Shen J, Liu X, Zhang X, Wu L, Hao J, Jiang W, Hu Z. HO-1 induced autophagy protects against IL-1 β-mediated apoptosis in human nucleus pulposus cells by inhibiting NF-κB. Aging (Albany NY) 2020; 12:2440-2452. [PMID: 32015215 PMCID: PMC7041769 DOI: 10.18632/aging.102753] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 01/01/2023]
Abstract
In this study, we investigated the role of heme oxygenase-1 (HO-1) in intervertebral disc degeneration (IDD) by assessing the effects of HO-1 overexpression on IL-1β-induced apoptosis in nucleus pulposus cells (NPCs). Immunohistochemical staining showed HO-1 expression to be lower in NPCs from IDD patients than from patients with lumbar vertebral fractures (LVF). Western blot analysis showed HO-1 and LC3-II/I levels to be lower in NP tissues from IDD patients than from LVF patients, suggesting suppression of autophagy in degenerative intervertebral disc. Consistent with that idea, autophagy was increased in HO-1-overexpressing NPCs while IL-1β-induced apoptosis was reduced. These effects were reversed by treatment with the early autophagy inhibitor 3-methyl adenine, which suggests HO-1-induced autophagy suppresses IL-1β-induced apoptosis in NPCs. HO-1 overexpression promoted autophagy by increasing levels of Beclin-1/PI3KC3 complex. Phospho-P65 levels were lower in HO-1-overexpressing NPCs, suggesting inhibition of NF-κB-mediated apoptosis. Our study thus demonstrates that HO-1 promotes autophagy by enhancing formation of Beclin-1/PI3KC3 complex and suppresses IL-1β-induced apoptosis by inhibiting NF-κB. We suggest that HO-1 is a potential therapeutic target to alleviate IDD.
Collapse
Affiliation(s)
- Luetao Zou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hongyan Lei
- Department of the First Clinical Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jieliang Shen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xulin Liu
- Department of the First Clinical Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Longxi Wu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jie Hao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Jiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhenming Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
27
|
Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019; 20:ijms20184381. [PMID: 31489928 PMCID: PMC6770343 DOI: 10.3390/ijms20184381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| |
Collapse
|