1
|
Raj N, Karmakar A, Narayan G, Thummer RP. Small Molecules and Epigenetic Modifiers in Facilitating Pancreatic β-cell Formation: A Comprehensive Insight. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40178799 DOI: 10.1007/5584_2025_859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Diabetes mellitus, arising due to inadequate insulin release or insulin resistance, can be addressed through β-cell replacement therapy. Given the limited availability of islet cadaveric donors, alternative strategies such as differentiation of stem cells into pancreatic β-cells or direct reprogramming of somatic cells into pancreatic β-cells are emerging as viable options. This chapter elucidates the pivotal role of small molecules and associated signaling pathways in in vivo pancreatic organogenesis, allowing their emulation in vitro to facilitate pancreatic development. Small molecules exhibit distinct advantages, such as cell-permeability and non-immunogenic properties, thereby generating efficient functional β-like cells. Recent investigations highlight alterations in epigenetic marks unique to pancreatic β-cells during cellular reprogramming and diabetes pathogenesis. The study further delineates the distinctive histone modifications and DNA methylation within pancreatic β-cells, underscoring their contributions to pancreas development.
Collapse
Affiliation(s)
- Naveen Raj
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Asmita Karmakar
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
2
|
Abdallah S, Tabebi M, Qanadilo S, Ali N, Wang J, D'Arcy P, Zhong W, Sjoberg F, Elmasry M, El-Serafi A. Modulation of biological activities in adipose derived stem cells by histone deacetylation. Sci Rep 2025; 15:3629. [PMID: 39880862 PMCID: PMC11779964 DOI: 10.1038/s41598-024-84652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/25/2024] [Indexed: 01/31/2025] Open
Abstract
Difficult-to-heal wounds management accounts for about 4% of healthcare costs, highlighting the need for innovative solutions. Extracellular signals drive cell proliferation during tissue regeneration, while epigenetic mechanisms regulate stem cell homeostasis, differentiation, and skin repair. Exploring epigenetic regulation in adipose-derived stem cells (ADSCs) holds promise for improving skin injury treatments. We investigated the effects of histone deacetylase inhibitor (SAHA) on ADSCs to better understand its cellular and molecular impacts. ADSCs were treated with SAHA for 72 h, showing no change in cell viability at the studied concentrations. However, the expression of histone deacetylase decreased at 1000 nM, while the cell proliferation marker Ki-67 increased after SAHA treatment, as confirmed by immunofluorescence. CCND1 gene expression increased, whereas protein expression of the proliferating cell nuclear antigen (PCNA) decreased. Cell cycle analysis showed an increase in G2 phase in SAHA-treated cells. Microarray analysis revealed 74 upregulated and 40 downregulated differentially expressed genes, including upregulation of P53 targets, CDKN1A and MDM2. Proteomic analysis identified 631 upregulated and 823 downregulated proteins compared to the vehicle. Pathway enrichment analysis showed cell cycle, ATP-dependent chromatin remodeling and DNA processes were among the affected pathways. This study suggests SAHA modulates ADSCs' biological processes, highlighting its potential for skin regeneration.
Collapse
Affiliation(s)
- Sallam Abdallah
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Mouna Tabebi
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Clinical Genomics Linköping, Linköping University, Linköping, Sweden
| | - Sawsan Qanadilo
- Department of Biological Sciences, The University of Jordan, Amman, Jordan
| | - Neserin Ali
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jing Wang
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Pádraig D'Arcy
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Wen Zhong
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Folke Sjoberg
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Moustafa Elmasry
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Department of Hand Surgery and Plastic Surgery and Burns, University Hospital, Linköping, Sweden
| | - Ahmed El-Serafi
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.
- Department of Hand Surgery and Plastic Surgery and Burns, University Hospital, Linköping, Sweden.
| |
Collapse
|
3
|
Kumar KK, Aburawi EH, Ljubisavljevic M, Leow MKS, Feng X, Ansari SA, Emerald BS. Exploring histone deacetylases in type 2 diabetes mellitus: pathophysiological insights and therapeutic avenues. Clin Epigenetics 2024; 16:78. [PMID: 38862980 PMCID: PMC11167878 DOI: 10.1186/s13148-024-01692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetes mellitus is a chronic disease that impairs metabolism, and its prevalence has reached an epidemic proportion globally. Most people affected are with type 2 diabetes mellitus (T2DM), which is caused by a decline in the numbers or functioning of pancreatic endocrine islet cells, specifically the β-cells that release insulin in sufficient quantity to overcome any insulin resistance of the metabolic tissues. Genetic and epigenetic factors have been implicated as the main contributors to the T2DM. Epigenetic modifiers, histone deacetylases (HDACs), are enzymes that remove acetyl groups from histones and play an important role in a variety of molecular processes, including pancreatic cell destiny, insulin release, insulin production, insulin signalling, and glucose metabolism. HDACs also govern other regulatory processes related to diabetes, such as oxidative stress, inflammation, apoptosis, and fibrosis, revealed by network and functional analysis. This review explains the current understanding of the function of HDACs in diabetic pathophysiology, the inhibitory role of various HDAC inhibitors (HDACi), and their functional importance as biomarkers and possible therapeutic targets for T2DM. While their role in T2DM is still emerging, a better understanding of the role of HDACi may be relevant in improving insulin sensitivity, protecting β-cells and reducing T2DM-associated complications, among others.
Collapse
Affiliation(s)
- Kukkala Kiran Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Elhadi Husein Aburawi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Melvin Khee Shing Leow
- LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
- Dept of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Xu Feng
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Pereira B, Correia FP, Alves IA, Costa M, Gameiro M, Martins AP, Saraiva JA. Epigenetic reprogramming as a key to reverse ageing and increase longevity. Ageing Res Rev 2024; 95:102204. [PMID: 38272265 DOI: 10.1016/j.arr.2024.102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The pursuit for the fountain of youth has long been a fascination amongst scientists and humanity. Ageing is broadly characterized by a cellular decline with increased susceptibility to age-related diseases, being intimately associated with epigenetic modifications. Recently, reprogramming-induced rejuvenation strategies have begun to greatly alter longevity research not only to tackle age-related defects but also to possibly reverse the cellular ageing process. Hence, in this review, we highlight the major epigenetic changes during ageing and the state-of-art of the current emerging epigenetic reprogramming strategies leveraging on transcription factors. Notably, partial reprogramming enables the resetting of the ageing clock without erasing cellular identity. Promising chemical-based rejuvenation strategies harnessing small molecules, including DNA methyltransferase and histone deacetylase inhibitors are also discussed. Moreover, in parallel to longevity interventions, the foundations of epigenetic clocks for accurate ageing assessment and evaluation of reprogramming approaches are briefly presented. Going further, with such scientific breakthroughs, we are witnessing a rise in the longevity biotech industry aiming to extend the health span and ideally achieve human rejuvenation one day. In this context, we overview the main scenarios proposed for the future of the socio-economic and ethical challenges associated with such an emerging field. Ultimately, this review aims to inspire future research on interventions that promote healthy ageing for all.
Collapse
Affiliation(s)
- Beatriz Pereira
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Inês A Alves
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Margarida Costa
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mariana Gameiro
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ana P Martins
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
5
|
Alghazali R, Nugud A, El-Serafi A. Glycan Modifications as Regulators of Stem Cell Fate. BIOLOGY 2024; 13:76. [PMID: 38392295 PMCID: PMC10886185 DOI: 10.3390/biology13020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
Glycosylation is a process where proteins or lipids are modified with glycans. The presence of glycans determines the structure, stability, and localization of glycoproteins, thereby impacting various biological processes, including embryogenesis, intercellular communication, and disease progression. Glycans can influence stem cell behavior by modulating signaling molecules that govern the critical aspects of self-renewal and differentiation. Furthermore, being located at the cell surface, glycans are utilized as markers for stem cell pluripotency and differentiation state determination. This review aims to provide a comprehensive overview of the current literature, focusing on the effect of glycans on stem cells with a reflection on the application of synthetic glycans in directing stem cell differentiation. Additionally, this review will serve as a primer for researchers seeking a deeper understanding of how synthetic glycans can be used to control stem cell differentiation, which may help establish new approaches to guide stem cell differentiation into specific lineages. Ultimately, this knowledge can facilitate the identification of efficient strategies for advancing stem cell-based therapeutic interventions.
Collapse
Affiliation(s)
- Raghad Alghazali
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden
| | - Ahmed Nugud
- Clinical Sciences, University of Edinburgh, Edinburgh EH4 2XU, UK
- Gastroenterology, Hepatology & Nutrition, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Ahmed El-Serafi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
6
|
Shahin H, Abdallah S, Das J, He W, El-Serafi I, Steinvall I, Sjöberg F, Elmasry M, El-Serafi AT. miRNome and Proteome Profiling of Human Keratinocytes and Adipose Derived Stem Cells Proposed miRNA-Mediated Regulations of Epidermal Growth Factor and Interleukin 1-Alpha. Int J Mol Sci 2023; 24:4956. [PMID: 36902387 PMCID: PMC10002856 DOI: 10.3390/ijms24054956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023] Open
Abstract
Wound healing is regulated by complex crosstalk between keratinocytes and other cell types, including stem cells. In this study, a 7-day direct co-culture model of human keratinocytes and adipose-derived stem cells (ADSCs) was proposed to study the interaction between the two cell types, in order to identify regulators of ADSCs differentiation toward the epidermal lineage. As major mediators of cell communication, miRNome and proteome profiles in cell lysates of cultured human keratinocytes and ADSCs were explored through experimental and computational analyses. GeneChip® miRNA microarray, identified 378 differentially expressed miRNAs; of these, 114 miRNAs were upregulated and 264 miRNAs were downregulated in keratinocytes. According to miRNA target prediction databases and the Expression Atlas database, 109 skin-related genes were obtained. Pathway enrichment analysis revealed 14 pathways including vesicle-mediated transport, signaling by interleukin, and others. Proteome profiling showed a significant upregulation of the epidermal growth factor (EGF) and Interleukin 1-alpha (IL-1α) compared to ADSCs. Integrated analysis through cross-matching the differentially expressed miRNA and proteins suggested two potential pathways for regulations of epidermal differentiation; the first is EGF-based through the downregulation of miR-485-5p and miR-6765-5p and/or the upregulation of miR-4459. The second is mediated by IL-1α overexpression through four isomers of miR-30-5p and miR-181a-5p.
Collapse
Affiliation(s)
- Hady Shahin
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
- Faculty of Biotechnology, Modern Sciences and Arts University, Cario 12585, Egypt
| | - Sallam Abdallah
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Jyotirmoy Das
- Bioinformatics, Core Facility, Division of Cell Biology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, 58183 Linköping, Sweden
- Clinical Genomics Linköping, SciLife Laboratory, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, 58183 Linköping, Sweden
| | - Weihai He
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Ibrahim El-Serafi
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Biochemistry, Faculty of Medicine, Port-Said University, Port Fouad City 42526, Egypt
| | - Ingrid Steinvall
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Folke Sjöberg
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Moustafa Elmasry
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Ahmed T. El-Serafi
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
7
|
Sonthalia M, Roy BS, Chandrawanshi D, Ganesh GV, Jayasuriya R, Mohandas S, Rajagopal S, Ramkumar KM. Histone deacetylase inhibitors as antidiabetic agents: Advances and opportunities. Eur J Pharmacol 2022; 935:175328. [DOI: 10.1016/j.ejphar.2022.175328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022]
|
8
|
Nugud A, Alghfeli L, Elmasry M, El-Serafi I, El-Serafi AT. Biomaterials as a Vital Frontier for Stem Cell-Based Tissue Regeneration. Front Cell Dev Biol 2022; 10:713934. [PMID: 35399531 PMCID: PMC8987776 DOI: 10.3389/fcell.2022.713934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 03/11/2022] [Indexed: 01/01/2023] Open
Abstract
Biomaterials and tissue regeneration represent two fields of intense research and rapid advancement. Their combination allowed the utilization of the different characteristics of biomaterials to enhance the expansion of stem cells or their differentiation into various lineages. Furthermore, the use of biomaterials in tissue regeneration would help in the creation of larger tissue constructs that can allow for significant clinical application. Several studies investigated the role of one or more biomaterial on stem cell characteristics or their differentiation potential into a certain target. In order to achieve real advancement in the field of stem cell-based tissue regeneration, a careful analysis of the currently published information is critically needed. This review describes the fundamental description of biomaterials as well as their classification according to their source, bioactivity and different biological effects. The effect of different biomaterials on stem cell expansion and differentiation into the primarily studied lineages was further discussed. In conclusion, biomaterials should be considered as an essential component of stem cell differentiation strategies. An intense investigation is still required. Establishing a consortium of stem cell biologists and biomaterial developers would help in a systematic development of this field.
Collapse
Affiliation(s)
- Ahmed Nugud
- Pediatric Department, Aljalila Children Hospital, Dubai, United Arab Emirates
| | - Latifa Alghfeli
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Moustafa Elmasry
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
| | - Ibrahim El-Serafi
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Ahmed T. El-Serafi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
9
|
Kaimala S, Kumar CA, Allouh MZ, Ansari SA, Emerald BS. Epigenetic modifications in pancreas development, diabetes, and therapeutics. Med Res Rev 2022; 42:1343-1371. [PMID: 34984701 PMCID: PMC9306699 DOI: 10.1002/med.21878] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022]
Abstract
A recent International Diabetes Federation report suggests that more than 463 million people between 20 and 79 years have diabetes. Of the 20 million women affected by hyperglycemia during pregnancy, 84% have gestational diabetes. In addition, more than 1.1 million children or adolescents are affected by type 1 diabetes. Factors contributing to the increase in diabetes prevalence are complex and include contributions from genetic, environmental, and epigenetic factors. However, molecular regulatory mechanisms influencing the progression of an individual towards increased susceptibility to metabolic diseases such as diabetes are not fully understood. Recent studies suggest that the pathogenesis of diabetes involves epigenetic changes, resulting in a persistently dysregulated metabolic phenotype. This review summarizes the role of epigenetic mechanisms, mainly DNA methylation and histone modifications, in the development of the pancreas, their contribution to the development of diabetes, and the potential employment of epigenetic modulators in diabetes treatment.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Challagandla Anil Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Mohammed Z Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
10
|
Baumel-Alterzon S, Scott DK. Regulation of Pdx1 by oxidative stress and Nrf2 in pancreatic beta-cells. Front Endocrinol (Lausanne) 2022; 13:1011187. [PMID: 36187092 PMCID: PMC9521308 DOI: 10.3389/fendo.2022.1011187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 01/05/2023] Open
Abstract
The beta-cell identity gene, pancreatic duodenal homeobox 1 (Pdx1), plays critical roles in many aspects of the life of beta-cells including differentiation, maturation, function, survival and proliferation. High levels of reactive oxygen species (ROS) are extremely toxic to cells and especially to beta-cells due to their relatively low expression of antioxidant enzymes. One of the major mechanisms for beta-cell dysfunction in type-2 diabetes results from oxidative stress-dependent inhibition of PDX1 levels and function. ROS inhibits Pdx1 by reducing Pdx1 mRNA and protein levels, inhibiting PDX1 nuclear localization, and suppressing PDX1 coactivator complexes. The nuclear factor erythroid 2-related factor (Nrf2) antioxidant pathway controls the redox balance and allows the maintenance of high Pdx1 levels. Therefore, pharmacological activation of the Nrf2 pathway may alleviate diabetes by preserving Pdx1 levels.
Collapse
Affiliation(s)
- Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Sharon Baumel-Alterzon,
| | - Donald K. Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
11
|
Khan AA, Khattak MNK, Parambath D, El-Serafi AT. Significant transcriptomic changes are associated with the inhibitory effects of 5-aza-2-deoxycytidine during adipogenic differentiation of MG-63 cells. Saudi J Biol Sci 2021; 28:7336-7348. [PMID: 34867036 PMCID: PMC8626271 DOI: 10.1016/j.sjbs.2021.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/25/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
Our previous study revealed that the treatment of 5-aza-2-deoxycytidine (5-aza) inhibited while treatment of suberoylanilide hydroxamic acid (SAHA) enhanced the adipogenic differentiation of MG-63 cells. In this study, we examined the transcriptomic profiles of the derived adipocyte-like cells from MG-63 cells in the presence of 5-aza (Treatment 1) and SAHA (Treatment 2). Genome wide expression analysis showed high within sample variability for the adipocytes derived with 5-aza versus vehicle. Additionally, the expression profile of 5-aza derived cells was separated from the other sample groups. Differential analysis on the pairwise comparison of 5-aza versus control and SAHA versus 5-aza identified 1290 and 1086 differentially expressed (DE) genes, respectively. Furthermore, some overlap was observed between the up and down-regulated DE genes of 5-aza versus control and SAHA versus control (jaccard score 0.3) as well as between the differentially regulated genes of 5-aza versus control and 5-aza versus SAHA (jaccard score 0.29). A total of 73 transcription factors (TFs) were differentially expressed across all the pair wise comparisons with some overlap between the under and over expressed TFs of 5-aza versus control and 5-aza versus SAHA (jaccard score 0.29). Unsupervised clustering of TFs showed that the samples within the group are consistent in expression and the samples cluster in accordance with the group. Several GO terms related to enhanced adipogenesis such as neutral lipid biosynthetic process, lipid metabolic processes, cellular amide metabolic processes and cellular carbohydrate metabolic processes were enriched in the down regulated genes of 5-aza derived adipocytes versus control, indicating 5-aza inhibit the adipogenic differentiation of MG-63 cells. GSEA analysis on selected gene sets of MAPK and PI3K signaling pathway in MSigDB identified the pathways were up-regulated in 5-aza versus control. This study revealed that inhibition of MG-63 adipogenesis due to 5-aza treatment is associated with large transcriptomics changes and further research is needed to unravel the roles of these genes in the adipogenesis.
Collapse
Affiliation(s)
- Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.,Human Genetics and Stem Cells Research Group, Research Institute of Sciences & Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Muhammad Nasir Khan Khattak
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.,Human Genetics and Stem Cells Research Group, Research Institute of Sciences & Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Divyasree Parambath
- Sharjah Institute for Medical and Health Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed Taher El-Serafi
- Sharjah Institute for Medical and Health Research, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Biomedical and Clinical Sciences (BKV), Linköping University, P.O. Box 581 83, Linköping, Sweden.,Medical Biochemistry department, Faculty of Medicine, Suez Canal University, 41522, Ismailia, Egypt
| |
Collapse
|
12
|
Alghfeli L, Parambath D, Manzoor S, Roach HI, Oreffo RO, El-Serafi AT. Synthesis of scaffold-free, three dimensional, osteogenic constructs following culture of skeletal osteoprogenitor cells on glass surfaces. Bone Rep 2021; 15:101143. [PMID: 34746337 PMCID: PMC8554168 DOI: 10.1016/j.bonr.2021.101143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Efficient differentiation of stem cells into three-dimensional (3D) osteogenic construct is still an unmet challenge. These constructs can be crucial for patients with bone defects due to congenital or traumatic reasons. The modulation of cell fate and function as a consequence of interaction with the physical and chemical properties of materials is well known. METHODS The current study has examined the osteogenic differentiation potential of human skeletal populations following culture on glass surfaces, as a monolayer, or in glass tubes as a pellet culture. The 3D prosperities were assessed morphometrically and the differentiation was evaluated through molecular characterization as well as matrix formation. RESULTS Early temporal expression of alkaline phosphatase expression of skeletal populations was observed following culture on glass surfaces. Skeletal populations seeded on glass tubes, adhered as a monolayer to the tube base and subsequently formed 3D pellets at the air -media interface. The pellets cultured on glass displayed 4.9 ± 1.3 times the weight and 2.9 ± 0.1 the diameter of their counterpart cultured in plastic tubes and displayed enhanced production of osteogenic matrix proteins, such a collagen I and osteonectin. The size and weight of the pellets correlated with surface area in contrast to cell numbers seeded. Global DNA methylation level was decreased in pellets cultured on glass. In contrast, gene expression analysis confirmed upregulation extracellular matrix proteins and osteogenesis-related growth factors. CONCLUSION This simple approach to the culture of skeletal cells on glass tubes provides a scaffold-free, 3D construct platform for generating pellets enabling analysis and evaluation of tissue development and integration of multiple constructs with implications for tissue repair and regenerative application on scale-up.
Collapse
Key Words
- 3D culture
- 3D, three-dimensional
- A/S, Alcian blue/Sirius red/Weigert's haematoxylin
- ALP, Alkaline Phosphatase
- BMP, bone morphogenic protein
- BMSC, human bone marrow stromal
- CSF, colony stimulating factor
- Ct, Cycle threshold
- Differentiation
- EGF, epidermal growth factor
- FC, Fetal bone cells
- FCS, Fetal Calf Serum
- FGF, fibroblast growth factor
- FN1, fibronectin
- GLI, GLI family zinc finger 1
- HIPPIE, Human Integrated Protein Interaction Reference
- ITGA3, integrin A3
- MMP, matrix metalloprotease
- Osteogenesis
- Osteoprogenitor cells
- P/S, penicillin and streptomycin
- Pellets
- R, receptor
- TGF, β transforming growth factor beta
- TGFBR2 transforming growth factor beta receptor 2 VDR, vitamin D receptor
- gDNA, genomic DNA
- iMSC, immortalized human bone marrow derived, mesenchymal stem cells
- vWF, von Willebrand factor
Collapse
Affiliation(s)
- Latifa Alghfeli
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates
| | - Divyasree Parambath
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates
| | - Shaista Manzoor
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates
| | - Helmtrud I. Roach
- Bone and Joint Research Group, Institute of Developmental Sciences, University of Southampton, School of Medicine, UK
| | - Richard O.C. Oreffo
- Bone and Joint Research Group, Institute of Developmental Sciences, University of Southampton, School of Medicine, UK
| | - Ahmed T. El-Serafi
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates
- Medical Biochemistry Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Sweden
| |
Collapse
|
13
|
Abstract
Present-day treatments for people that are insulin dependent require multiple insulin injections, sometimes with an insulin pump, coupled with regular blood glucose monitoring. The availability of modified insulins, each with peaks of activity at varying times, has improved diabetes management. On the other hand, there have been impressive results leading to insulin independence by transplantation of cadaveric islets coupled with immune suppression. This review focuses on the possibility of treating diabetes with cellular transplants, specifically with the use of pluripotent stem cells, to produce a virtually unlimited and uniform supply of human islet-like clusters by directed differentiation. Prospects for improving the in vitro differentiation of human endocrine cells for the study of endocrine function and their possible clinical uses are also discussed.
Collapse
Affiliation(s)
- Douglas Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard College and Medical School, Cambridge, MA, USA.
| |
Collapse
|
14
|
Liu J, Lang G, Shi J. Epigenetic Regulation of PDX-1 in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:431-442. [PMID: 33564250 PMCID: PMC7866918 DOI: 10.2147/dmso.s291932] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/16/2021] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia which is caused by insufficient insulin secretion or insulin resistance. Interaction of genetic, epigenetic and environmental factors plays a significant role in the development of T2DM. Several environmental factors including diet and lifestyle, as well as age have been associated with an increased risk for T2DM. It has been demonstrated that these environmental factors may affect global epigenetic status, and alter the expression of susceptible genes, thereby contributing to the pathogenesis of T2DM. In recent years, a growing body of molecular and genetic studies in diabetes have been focused on the ways to restore the numbers or function of β-cells in order to reverse a range of metabolic consequences of insulin deficiency. The pancreatic duodenal homeobox 1 (PDX-1) is a transcriptional factor that is essential for the development and function of islet cells. A number of studies have shown that there is a significant increase in the level of DNA methylation of PDX-1 resulting in reduced activity in T2DM islets. The decrease in PDX-1 activity may be a critical mediator causing dysregulation of pancreatic β cells in T2DM. This article reviews the epigenetic mechanisms of PDX-1 involved in T2DM, focusing on diabetes and DNA methylation, and discusses some potential strategies for the application of PDX-1 in the treatment of diabetes.
Collapse
Affiliation(s)
- Jiangman Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Guangping Lang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Correspondence: Jingshan Shi Tel +86-851-286-436-66Fax +86-851-286-423-03 Email
| |
Collapse
|
15
|
Insulin/Glucose-Responsive Cells Derived from Induced Pluripotent Stem Cells: Disease Modeling and Treatment of Diabetes. Cells 2020; 9:cells9112465. [PMID: 33198288 PMCID: PMC7696367 DOI: 10.3390/cells9112465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes, characterized by dysfunction of pancreatic β-cells and insulin resistance in peripheral organs, accounts for more than 90% of all diabetes. Despite current developments of new drugs and strategies to prevent/treat diabetes, there is no ideal therapy targeting all aspects of the disease. Restoration, however, of insulin-producing β-cells, as well as insulin-responsive cells, would be a logical strategy for the treatment of diabetes. In recent years, generation of transplantable cells derived from stem cells in vitro has emerged as an important research area. Pluripotent stem cells, either embryonic or induced, are alternative and feasible sources of insulin-secreting and glucose-responsive cells. This notwithstanding, consistent generation of robust glucose/insulin-responsive cells remains challenging. In this review, we describe basic concepts of the generation of induced pluripotent stem cells and subsequent differentiation of these into pancreatic β-like cells, myotubes, as well as adipocyte- and hepatocyte-like cells. Use of these for modeling of human disease is now feasible, while development of replacement therapies requires continued efforts.
Collapse
|
16
|
Shahin H, Elmasry M, Steinvall I, Söberg F, El-Serafi A. Vascularization is the next challenge for skin tissue engineering as a solution for burn management. BURNS & TRAUMA 2020; 8:tkaa022. [PMID: 32766342 PMCID: PMC7396265 DOI: 10.1093/burnst/tkaa022] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/23/2020] [Indexed: 12/19/2022]
Abstract
Skin regeneration represents a promising line of management for patients with skin loss, including burn victims. The current approach of spraying single cells over the defective areas results in variable success rates in different centers. The modern approach is to synthesize a multilayer skin construct that is based on autologous stem cells. One of the main complications with different types of transplants is sloughing due to the absence of proper vascularization. Ensuring proper vascularization will be crucial for the integration of skin constructs with the surrounding tissues. Combination of the right cells with scaffolds of proper physico-chemical properties, vascularization can be markedly enhanced. The material effect, pore size and adsorption of certain proteins, as well as the application of appropriate growth factors, such as vascular endothelial growth factors, can have an additive effect. A selection of the most effective protocols is discussed in this review.
Collapse
Affiliation(s)
- Hady Shahin
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
- Faculty of Biotechnology, MSA University, 26 July Mehwar Road, 125 85, 6th October City. Egypt
| | - Moustafa Elmasry
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
| | - Ingrid Steinvall
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
| | - Folke Söberg
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
| | - Ahmed El-Serafi
- Department of Hand Surgery and Plastic Surgery and Burns, Linköping University Hospital, 581 85, Linköping, Östergötland, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping University Hospital, 581 83, Linköping, Östergötland, Sweden
| |
Collapse
|