1
|
Dinglasan JLN, Otani H, Doering DT, Udwary D, Mouncey NJ. Microbial secondary metabolites: advancements to accelerate discovery towards application. Nat Rev Microbiol 2025; 23:338-354. [PMID: 39824928 DOI: 10.1038/s41579-024-01141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/20/2025]
Abstract
Microbial secondary metabolites not only have key roles in microbial processes and relationships but are also valued in various sectors of today's economy, especially in human health and agriculture. The advent of genome sequencing has revealed a previously untapped reservoir of biosynthetic capacity for secondary metabolites indicating that there are new biochemistries, roles and applications of these molecules to be discovered. New predictive tools for biosynthetic gene clusters (BGCs) and their associated pathways have provided insights into this new diversity. Advanced molecular and synthetic biology tools and workflows including cell-based and cell-free expression facilitate the study of previously uncharacterized BGCs, accelerating the discovery of new metabolites and broadening our understanding of biosynthetic enzymology and the regulation of BGCs. These are complemented by new developments in metabolite detection and identification technologies, all of which are important for unlocking new chemistries that are encoded by BGCs. This renaissance of secondary metabolite research and development is catalysing toolbox development to power the bioeconomy.
Collapse
Affiliation(s)
- Jaime Lorenzo N Dinglasan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hiroshi Otani
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Drew T Doering
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Udwary
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nigel J Mouncey
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
2
|
Moktip T, Salaipeth L, Cope AE, Taherzadeh MJ, Watanabe T, Phitsuwan P. Current Understanding of Feather Keratin and Keratinase and Their Applications in Biotechnology. Biochem Res Int 2025; 2025:6619273. [PMID: 40308531 PMCID: PMC12041636 DOI: 10.1155/bri/6619273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/29/2025] [Indexed: 05/02/2025] Open
Abstract
The food industry generates substantial keratin waste, particularly chicken feathers, which are rich in amino acids and essential nutrients. However, the insolubility of keratin presents a significant challenge to its conversion. Keratinase, an enzyme produced by certain fungi and bacteria, offers a promising solution by degrading feather keratin into amino acids and soluble proteins. Among these, bacterial keratinase is notable for its superior stability and activity, although its production remains constrained, necessitating continued research to identify efficient microbial strains. Keratin-derived hydrolyzates, recognized for their biological and immunological properties, have garnered significant research interest. This review examines the structural characteristics of chicken feather keratin, its resistance to conventional proteases, and advances in keratinase production and purification techniques. Additionally, the keratin degradation mechanism and the adoption of environmentally friendly technologies for managing feather waste are explored. Finally, the review highlights the potential applications of keratinase across diverse industries, including animal feed and cosmetics.
Collapse
Affiliation(s)
- Thanakorn Moktip
- LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Lakha Salaipeth
- LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
- Natural Resource Management and Sustainability, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Ana Eusebio Cope
- Future Genetic Resources Cluster, Rice Breeding Innovation Platform, IRRI, Los Banos, Philippines
| | | | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
| | - Paripok Phitsuwan
- LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| |
Collapse
|
3
|
Binsi P, Parvathy U, Jeyakumari A, George Thomas N, Zynudheen A. Marine biopolymers in cosmetics. MARINE BIOPOLYMERS 2025:677-752. [DOI: 10.1016/b978-0-443-15606-9.00023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Haniffadli A, Ban Y, Rahmat E, Kang CH, Kang Y. Unforeseen current and future benefits of uncommon yeast: the Metschnikowia genus. Appl Microbiol Biotechnol 2024; 108:534. [PMID: 39661197 PMCID: PMC11634920 DOI: 10.1007/s00253-024-13369-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Metschnikowia, the single-cell yeast form, is a genus of 85 species in the Saccharomycetales order that developed in both aquatic and terrestrial ecosystems after being found in 1899. This yeast is commonly used to control microbial populations in many biological and artificial conditions, such as fermentation. However, current study of Metschnikowia is limited to biological control features rather than researching on lucrative sectors such as beverage production, bioconversion manufacturing, cosmetics, and the pharmaceutical industry. This review summarizes numerous possible applications of Metschnikowia in human life, including potential secondary metabolites in industrial fields such as cosmetics and pharmaceuticals. Furthermore, Metschnikowia-yeast interaction is mentioned as a potential area for further exploration in terms of co-cultured microbes as biocontrol. Since Metschnikowia yeast arose in a variety of ecosystems, more discussion will be held regarding the interactions between Metschnikowia and their surroundings, particularly in fruits. Finally, the current regulatory challenges of Metschnikowia-based products are examined, and future research opportunities on Metschnikowia utilization are presented. KEY POINTS: • Utilization of Metschnikowia genus in various human aspects. • Promising secondary metabolites produced by Metschnikowia. • Challenge and opportunity on developing Metschnikowia-based products.
Collapse
Affiliation(s)
- Ariranur Haniffadli
- Korean Medicine Convergence Science Major of KIOM School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, Jeollanam-Do, 58245, Republic of Korea
| | - Yeongjun Ban
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, Jeollanam-Do, 58245, Republic of Korea
| | - Endang Rahmat
- Biotechnology Department, Faculty of Engineering, Bina Nusantara University, Jakarta, 11480, Indonesia
| | - Chang Ho Kang
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Youngmin Kang
- Korean Medicine Convergence Science Major of KIOM School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, Jeollanam-Do, 58245, Republic of Korea.
| |
Collapse
|
5
|
Namdar N, Nayeri Fasaei B, Shariati P, Joghataei SM, Arpanaei A. Mesoporous silica nanoparticles co-loaded with lysozyme and vancomycin for synergistic antimicrobial action. Sci Rep 2024; 14:29242. [PMID: 39587211 PMCID: PMC11589144 DOI: 10.1038/s41598-024-78922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024] Open
Abstract
Nanotechnology offers a novel strategy for enhancing the susceptibility of pathogens resistant to traditional antibiotics. Another effective strategy is combination therapy, where multiple agents are used together to improve treatment efficacy. In this study, both nanoparticle-based formulation and combinatorial therapy were utilized to develop a potent antibacterial system targeting infectious bacteria. Lysozyme (Lys) and Vancomycin (Van) were co-loaded onto mesoporous silica nanoparticles (MSNs), forming Lys-Van-MSNs. The antimicrobial activity of these nanoparticles was evaluated by determining the minimum inhibitory concentration (MIC) against Staphylococcus aureus. The MIC values for Lys-Van-MSNs were 0.85 µg/ml for Van and 0.168 mg/ml for Lys, reflecting reductions of 86.4% and 93.7%, respectively, compared to the free forms. Additionally, cytotoxicity was tested using MTT, ROS, and hemolysis assays on human cell lines (breast, fibroblast, and AGS), showing over 80% cell viability, indicating minimal toxicity. The MSN-based formulation, with its synergistic antibacterial effects, reduced drug dosage, and high biocompatibility, offers a practical and effective solution for addressing bacterial infections.
Collapse
Affiliation(s)
- Nasrin Namdar
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Bahar Nayeri Fasaei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Parvin Shariati
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Seyed Mehdi Joghataei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Ayyoob Arpanaei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
- Scion, Private Bag 3020, Rotorua, 3046, New Zealand.
| |
Collapse
|
6
|
Tronnet A, Salas-Ambrosio P, Roman R, Bravo-Anaya LM, Ayala M, Bonduelle C. Star-Like Polypeptides as Simplified Analogues of Horseradish Peroxidase (HRP) Metalloenzymes. Macromol Biosci 2024; 24:e2400155. [PMID: 39122460 DOI: 10.1002/mabi.202400155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/19/2024] [Indexed: 08/12/2024]
Abstract
Peroxidases, like horseradish peroxidase (HRP), are heme metalloenzymes that are powerful biocatalysts for various oxidation reactions. By using simple grafting-from approach, ring-opening polymerization (ROP), and manganese porphyrins, star-shaped polypeptides analogues of HRP capable of catalyzing oxidation reactions with H2O2 is successfully prepared. Like their protein model, these simplified analogues show interesting Michaelis-Menten constant (KM) in the mM range for the oxidant. Interestingly, the polymer structures are more resistant to denaturation (heat, proteolysis and oxidant concentration) than HRP, opening up interesting prospects for their use in catalysis or in biosensing devices.
Collapse
Affiliation(s)
- Antoine Tronnet
- CNRS, LCPO (Laboratoire de Chimie des Polymères Organiques (UMR5629)), University of Bordeaux, Bordeaux INP, 16 avenue Pey Berland, Pessac, F-33600, France
- CNRS, LCC (Laboratoire de Chimie de Coordination (UPR8241)), University of Toulouse, 205 route de Narbonne, Toulouse, F-31077, France
| | - Pedro Salas-Ambrosio
- CNRS, LCPO (Laboratoire de Chimie des Polymères Organiques (UMR5629)), University of Bordeaux, Bordeaux INP, 16 avenue Pey Berland, Pessac, F-33600, France
| | - Rosa Roman
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM. Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos
| | | | - Marcela Ayala
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM. Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos
| | - Colin Bonduelle
- CNRS, LCPO (Laboratoire de Chimie des Polymères Organiques (UMR5629)), University of Bordeaux, Bordeaux INP, 16 avenue Pey Berland, Pessac, F-33600, France
| |
Collapse
|
7
|
Bagheri AM, Mirzahashemi M, Salarpour S, Dehghnnoudeh Y, Banat IM, Ohadi M, Dehghannoudeh G. Potential anti-aging applications of microbial-derived surfactantsin cosmetic formulations. Crit Rev Biotechnol 2024:1-22. [PMID: 39294002 DOI: 10.1080/07388551.2024.2393420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 09/20/2024]
Abstract
The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.
Collapse
Affiliation(s)
- Amir Mohammad Bagheri
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Mirzahashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasmin Dehghnnoudeh
- Departeman of Biology, Faculty of Science, York University, Toronto, Ontario, Canada
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Maurício EM, Branco P, Araújo ALB, Roma-Rodrigues C, Lima K, Duarte MP, Fernandes AR, Albergaria H. Evaluation of Biotechnological Active Peptides Secreted by Saccharomyces cerevisiae with Potential Skin Benefits. Antibiotics (Basel) 2024; 13:881. [PMID: 39335054 PMCID: PMC11429205 DOI: 10.3390/antibiotics13090881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Biotechnological active peptides are gaining interest in the cosmetics industry due to their antimicrobial, anti-inflammatory, antioxidant, and anti-collagenase (ACE) effects, as well as wound healing properties, making them suitable for cosmetic formulations. The antimicrobial activity of peptides (2-10 kDa) secreted by Saccharomyces cerevisiae Ethanol-Red was evaluated against dermal pathogens using broth microdilution and challenge tests. ACE was assessed using a collagenase activity colorimetric assay, antioxidant activity via spectrophotometric monitoring of nitrotetrazolium blue chloride (NBT) reduction, and anti-inflammatory effects by quantifying TNF-α mRNA in lipopolysaccharides (LPS)-exposed dermal fibroblasts. Wound healing assays involved human fibroblasts, endothelial cells, and dermal keratinocytes. The peptides (2-10 kDa) exhibited antimicrobial activity against 10 dermal pathogens, with the Minimum Inhibitory Concentrations (MICs) ranging from 125 µg/mL for Staphylococcus aureus to 1000 µg/mL for Candida albicans and Streptococcus pyogenes. In the challenge test, peptides at their MICs reduced microbial counts significantly, fulfilling ISO 11930:2019 standards, except against Aspergillus brasiliensis. The peptides combined with MicrocareⓇ SB showed synergy, particularly against C. albicans and A. brasilensis. In vitro, the peptides inhibited collagenase activity by 41.8% and 94.5% at 250 and 1000 µg/mL, respectively, and demonstrated antioxidant capacity. Pre-incubation with peptides decreased TNF-α expression in fibroblasts, indicating anti-inflammatory effects. The peptides do not show to promote or inhibit the angiogenesis of endothelial cells, but are able to attenuate fibrosis, scar formation, and chronic inflammation during the final phases of the wound healing process. The peptides showed antimicrobial, antioxidant, ACE, and anti-inflammatory properties, highlighting their potential as multifunctional bioactive ingredients in skincare, warranting further optimization and exploration in cosmetic applications.
Collapse
Affiliation(s)
- Elisabete Muchagato Maurício
- BIORG-Bioengineering and Sustainability Research Group, Faculdade de Engenharia, Universidade Lusófona, Av. Campo Grande 376, 1749-024 Lisbon, Portugal
- CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749-024 Lisbon, Portugal
- Elisa Câmara, Lda, Dermocosmética, Centro Empresarial de Talaíde, n°7 e 8, 2785-723 Lisbon, Portugal
| | - Patrícia Branco
- BIORG-Bioengineering and Sustainability Research Group, Faculdade de Engenharia, Universidade Lusófona, Av. Campo Grande 376, 1749-024 Lisbon, Portugal
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
- Unit of Bioenergy and Biorefinary, Laboratório Nacional de Energia e Geologia (LNEG), Estrada do Paço do Lumiar, 22, 1649-038 Lisbon, Portugal
| | - Ana Luiza Barros Araújo
- BIORG-Bioengineering and Sustainability Research Group, Faculdade de Engenharia, Universidade Lusófona, Av. Campo Grande 376, 1749-024 Lisbon, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO-Applied Molecular Biosciences Unit, Department Ciências da Vida, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Katelene Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Maria Paula Duarte
- The Mechanical Engineering and Resource Sustainability Center (MEtRICs), Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO-Applied Molecular Biosciences Unit, Department Ciências da Vida, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Helena Albergaria
- Unit of Bioenergy and Biorefinary, Laboratório Nacional de Energia e Geologia (LNEG), Estrada do Paço do Lumiar, 22, 1649-038 Lisbon, Portugal
| |
Collapse
|
9
|
Gupta N, El-Gawaad NSA, Mallasiy LO, Gupta H, Yadav VK, Alghamdi S, Qusty NF. Microbial dysbiosis and the aging process: a review on the potential age-deceleration role of Lactiplantibacillus plantarum. Front Microbiol 2024; 15:1260793. [PMID: 38440135 PMCID: PMC10909992 DOI: 10.3389/fmicb.2024.1260793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Gut microbiota dysbiosis has been a serious risk factor for several gastric and systemic diseases. Recently, gut microbiota's role in aging was discussed. Available preclinical evidence suggests that the probiotic bacteria Lactiplantibacillus plantarums (LP) may influence the aging process via modulation of the gut microbiota. The present review summarized compelling evidence of LP's potential effect on aging hallmarks such as oxidative stress, inflammation, DNA methylation, and mitochondrial dysfunction. LP gavage modulates gut microbiota and improves overall endurance in aging animal models. LP cell constituents exert considerable antioxidant potential which may reduce ROS levels directly. In addition, restored gut microbiota facilitate a healthy intestinal milieu and accelerate multi-channel communication via signaling factors such as SCFA and GABA. Signaling factors further activate specific transcription factor Nrf2 in order to reduce oxidative damage. Nrf2 regulates cellular defense systems involving anti-inflammatory cytokines, MMPs, and protective enzymes against MAPKs. We concluded that LP supplementation may be an effective approach to managing aging and associated health risks.
Collapse
Affiliation(s)
- Nishant Gupta
- Medical Research and Development, River Engineering, Noida, India
| | - N. S. Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - L. O. Mallasiy
- Department of Home Economics, Faculty of Science and Arts in Tihama, King Khalid University, Muhayil, Saudi Arabia
| | | | | | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naeem F. Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
10
|
Banerjee S, Cabrera-Barjas G, Tapia J, Fabi JP, Delattre C, Banerjee A. Characterization of Chilean hot spring-origin Staphylococcus sp. BSP3 produced exopolysaccharide as biological additive. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:15. [PMID: 38310179 PMCID: PMC10838260 DOI: 10.1007/s13659-024-00436-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
A type of high molecular weight bioactive polymers called exopolysaccharides (EPS) are produced by thermophiles, the extremophilic microbes that thrive in acidic environmental conditions of hot springs with excessively warm temperatures. Over time, EPS became important as natural biotechnological additives because of their noncytotoxic, emulsifying, antioxidant, or immunostimulant activities. In this article, we unravelled a new EPS produced by Staphylococcus sp. BSP3 from an acidic (pH 6.03) San Pedro hot spring (38.1 °C) located in the central Andean mountains in Chile. Several physicochemical techniques were performed to characterize the EPS structure including Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Atomic Force Microscopy (AFM), High-Performance Liquid Chromatography (HPLC), Gel permeation chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), 1D Nuclear Magnetic Resonance (NMR), and Thermogravimetric analysis (TGA). It was confirmed that the amorphous surface of the BSP3 EPS, composed of rough pillar-like nanostructures, is evenly distributed. The main EPS monosaccharide constituents were mannose (72%), glucose (24%) and galactose (4%). Also, it is a medium molecular weight (43.7 kDa) heteropolysaccharide. NMR spectroscopy demonstrated the presence of a [→ 6)-⍺-D-Manp-(1 → 6)-⍺-D-Manp-(1 →] backbone 2-O substituted with 1-⍺-D-Manp. A high thermal stability of EPS (287 °C) was confirmed by TGA analysis. Emulsification, antioxidant, flocculation, water-holding (WHC), and oil-holding (OHC) capacities are also studied for biotechnological industry applications. The results demonstrated that BSP3 EPS could be used as a biodegradable material for different purposes, like flocculation and natural additives in product formulation.
Collapse
Affiliation(s)
- Srijan Banerjee
- Instituto de Química de Recursos Naturales, Universidad de Talca, CP 3460000, Talca, Chile
| | - Gustavo Cabrera-Barjas
- Universidad San Sebastián Campus Las Tres Pascualas, Facultad de Ciencias Para el Cuidado de la Salud, Lientur 1457, CP 4080871, Concepción, Chile
| | - Jaime Tapia
- Instituto de Química de Recursos Naturales, Universidad de Talca, CP 3460000, Talca, Chile
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CePID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
| | - Cedric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France
| | - Aparna Banerjee
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, CP 3467987, Talca, Chile.
| |
Collapse
|
11
|
Sharma N, Shekhar P, Kumar V, Kaur H, Jayasena V. Microbial pigments: Sources, current status, future challenges in cosmetics and therapeutic applications. J Basic Microbiol 2024; 64:4-21. [PMID: 37861279 DOI: 10.1002/jobm.202300214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Color serves as the initial attraction and offers a pleasing aspect. While synthetic colorants have been popular for many years, their adverse environmental and health effects cannot be overlooked. This necessitates the search for natural colorants, especially microbial colorants, which have proven and more effective. Pigment-producing microorganisms offer substantial benefits. Natural colors improve product marketability and bestow additional benefits, including antioxidant, antiaging, anticancer, antiviral, antimicrobial, and antitumor properties. This review covers the various types of microbial pigments, the methods to enhance their production, and their cosmetic and therapeutic applications. We also address the challenges faced during the commercial production of microbial pigments and propose potential solutions.
Collapse
Affiliation(s)
- Nitin Sharma
- Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | | | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Harpreet Kaur
- Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | - Vijay Jayasena
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
12
|
Park G, Lee KM, Lee YS, Kim Y, Jeon CM, Lee OM, Kim YJ, Son HJ. Biodegradation and valorization of feather waste using the keratinase-producing bacteria and their application in environmentally hazardous industrial processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118986. [PMID: 37714086 DOI: 10.1016/j.jenvman.2023.118986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/21/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Poultry feathers are widely discarded as waste worldwide and are considered an environmental pollutant and a reservoir of pathogenic bacteria. Therefore, developing sustainable and environmentally friendly methods for managing feather waste is one of the important environmental protection requirements. In this study, we investigated a rapid and eco-friendly method for the degradation and valorization of feather waste using keratinase-producing Pseudomonas geniculata H10, and evaluated the applicability of keratinase in environmentally hazardous chemical processes. Strain H10 completely degraded chicken feathers within 48 h by producing keratinase using them as sources of carbon, nitrogen, and sulfur. The culture contained a total of 402.8 μM amino acids, including 8 essential amino acids, which was higher than the chemical treatment. Keratinase was a serine-type metalloprotease with optimal temperature and pH of 30 °C and 9, respectively, and showed relatively high stability at 10-40 °C and pH 3-10. Keratinase was also able to degrade various insoluble keratins such as duck feathers, wool, human hair, and nails. Furthermore, keratinase exhibited more efficient depilation and wool modification than chemical treatment, as well as novel functionalities such as nematicidal and exfoliating activities. This suggests that strain H10 is a promising candidate for the efficient degradation and valorization of feather waste, as well as the improvement of current industrial processes that use hazardous chemicals.
Collapse
Affiliation(s)
- Gyulim Park
- Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Kwang Min Lee
- Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Young Seok Lee
- Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Yedam Kim
- Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Chae Min Jeon
- Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - O-Mi Lee
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Hong-Joo Son
- Department of Life Science and Environmental Biochemistry/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea.
| |
Collapse
|
13
|
Petrosyan H, Nigaryan A, Hovhannisyan H, Soloyan A, Vardapetyan V, Martiryan A. Evaluation of antioxidant activity and heavy metals content in licorice ( Glycyrrhiza glabra L.) growing wild in Armenia. Heliyon 2023; 9:e22442. [PMID: 38045204 PMCID: PMC10689948 DOI: 10.1016/j.heliyon.2023.e22442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
In this study, for the first time an analysis of the metal content in extracts obtained from licorice roots grown in the forests of five different regions in Armenia was conducted. Our findings indicated that the concentrations of metals in the extracts did not exceed the permissible limits set by regulatory standards. Furthermore, we investigated the quantitative composition of flavonoids, tannins, and anthocyanins in the licorice roots, which had not been previously studied. Our results revealed that the composition of these substances is significantly influenced by the soil characteristics of the region. To assess the antioxidant properties of the licorice extract, we employed the approach known as the kinetics of competitive reaction method. Our study successfully demonstrated that the extract derived from the roots of the licorice plant, collected from all five regions under study, exhibited notable antioxidant properties.
Collapse
Affiliation(s)
- H.R. Petrosyan
- Yerevan State University, 1 A. Manoogian Street, 0025, Yerevan, Armenia
| | - A.A. Nigaryan
- Yerevan State University, 1 A. Manoogian Street, 0025, Yerevan, Armenia
| | - H.A. Hovhannisyan
- Yerevan State University, 1 A. Manoogian Street, 0025, Yerevan, Armenia
| | - A.M. Soloyan
- Yerevan State University, 1 A. Manoogian Street, 0025, Yerevan, Armenia
| | - V.V. Vardapetyan
- Yerevan State University, 1 A. Manoogian Street, 0025, Yerevan, Armenia
| | - A.I. Martiryan
- Yerevan State University, 1 A. Manoogian Street, 0025, Yerevan, Armenia
| |
Collapse
|
14
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
15
|
Covas C, Figueiredo G, Gomes M, Santos T, Mendo S, Caetano TS. The Pangenome of Gram-Negative Environmental Bacteria Hides a Promising Biotechnological Potential. Microorganisms 2023; 11:2445. [PMID: 37894103 PMCID: PMC10609062 DOI: 10.3390/microorganisms11102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Secondary metabolites (SMs) from environmental bacteria offer viable solutions for various health and environmental challenges. Researchers are employing advanced bioinformatic tools to investigate less-explored microorganisms and unearth novel bioactive compounds. In this research area, our understanding of SMs from environmental Gram-negative bacteria lags behind that of its Gram-positive counterparts. In this regard, Pedobacter spp. have recently gained attention, not only for their role as plant growth promoters but also for their potential in producing antimicrobials. This study focuses on the genomic analysis of Pedobacter spp. to unveil the diversity of the SMs encoded in their genomes. Among the 41 genomes analyzed, a total of 233 biosynthetic gene clusters (BGCs) were identified, revealing the potential for the production of diverse SMs, including RiPPs (27%), terpenes (22%), hybrid SMs (17%), PKs (12%), NRPs (9%) and siderophores (6%). Overall, BGC distribution did not correlate with phylogenetic lineage and most of the BGCs showed no significant hits in the MIBiG database, emphasizing the uniqueness of the compounds that Pedobacter spp. can produce. Of all the species examined, P. cryoconitis and P. lusitanus stood out for having the highest number and diversity of BGCs. Focusing on their applicability and ecological functions, we investigated in greater detail the BGCs responsible for siderophore and terpenoid production in these species and their relatives. Our findings suggest that P. cryoconitis and P. lusitanus have the potential to produce novel mixtures of siderophores, involving bifunctional IucAC/AcD NIS synthetases, as well as carotenoids and squalene. This study highlights the biotechnological potential of Pedobacter spp. in medicine, agriculture and other industries, emphasizing the need for a continued exploration of its SMs and their applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Tânia S. Caetano
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.C.); (G.F.); (S.M.)
| |
Collapse
|
16
|
Singh P, Farheen, Sachdev S, Manori S, Bhardwaj S, Chitme H, Sharma A, Raina KK, Shukla RK. Graphene quantum dot doped viscoelastic lyotropic liquid crystal nanocolloids for antibacterial applications. SOFT MATTER 2023; 19:6589-6603. [PMID: 37605525 DOI: 10.1039/d3sm00686g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Graphene quantum dots (GQDs) are prepared and characterized via X-ray diffraction (XRD), UV-Visible spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and photoluminescence (PL). GQDs are doped (5 mg and 10 mg) in the lyotropic liquid crystalline (LLC) lamellar and hexagonal phases to prepare GQD/LLC nanocolloids. Polarizing optical microscopy and X-ray diffraction measurement reveals that GQDs do not affect the lamellar and hexagonal LLC structures and may organize on their interface. Pure LLC phases and nanocolloids are studied for steady and dynamic rheological behavior. LLC phases and GQD/LLC nanocolloids possess shear thinning and frequency dependent liquid viscoelastic behavior. A complex moduli study of LLCs and GQD/LLC nanocolloids is carried out which indicates the gel to viscous transition in LLCs and GQD/LLC nanocolloids as a function of frequency. LLC phases and GQD/LLC nanocolloids are tested for antibacterial activity against Listeria ivanovii. The effect of surfactant concentration, LLC phase geometry and GQD concentration has been studied and discussed. A probable mechanism for the strong antimicrobial activity of LLCs and GQD/LLC nanocolloids is presented considering intermolecular interactions. The viscoelastic behavior and strong antibacterial activity (inhibition zone 49.2 mm) of LLCs and GQD/LLC nanocolloids make them valuable candidates for lubrication, cleaning, cosmetics and pharmaceutical applications.
Collapse
Affiliation(s)
- Prayas Singh
- Advanced Functional Smart Materials Laboratory, School of Physical Sciences, Department of Physics, DIT University, Dehradun, Uttarakhand, 248009, India.
| | - Farheen
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana, 122103, India
| | - Surbhi Sachdev
- Advanced Functional Smart Materials Laboratory, School of Physical Sciences, Department of Physics, DIT University, Dehradun, Uttarakhand, 248009, India.
| | - Samta Manori
- Advanced Functional Smart Materials Laboratory, School of Physical Sciences, Department of Physics, DIT University, Dehradun, Uttarakhand, 248009, India.
| | - Sumit Bhardwaj
- Department of Physics, Chandigarh University, Chandigarh, 140413, India
| | - Havagiray Chitme
- School of Pharmaceutical & Populations Health Informatics, Department of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Ashish Sharma
- Advanced Functional Smart Materials Laboratory, School of Physical Sciences, Department of Physics, DIT University, Dehradun, Uttarakhand, 248009, India.
| | | | - Ravi K Shukla
- Advanced Functional Smart Materials Laboratory, School of Physical Sciences, Department of Physics, DIT University, Dehradun, Uttarakhand, 248009, India.
| |
Collapse
|
17
|
Waoo AA, Singh S, Pandey A, Kant G, Choure K, Amesho KT, Srivastava S. Microbial exopolysaccharides in the biomedical and pharmaceutical industries. Heliyon 2023; 9:e18613. [PMID: 37593641 PMCID: PMC10432183 DOI: 10.1016/j.heliyon.2023.e18613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The most significant and renewable class of polymeric materials are extracellular exopolysaccharides (EPSs) produced by microorganisms. Because of their diverse chemical and structural makeup, EPSs play a variety of functions in a variety of industries, including the agricultural industry, dairy industry, biofilms, cosmetics, and others, demonstrating their biotechnological significance. EPSs are typically utilized in high-value applications, and current research has focused heavily on them because of their biocompatibility, biodegradability, and compatibility with both people and the environment. Due to their high production costs, only a few microbial EPSs have been commercially successful. The emergence of financial barriers and the growing significance of microbial EPSs in industrial and medical biotechnology has increased interest in exopolysaccharides. Since exopolysaccharides can be altered in a variety of ways, their use is expected to increase across a wide range of industries in the coming years. This review introduces some significant EPSs and their composites while concentrating on their biomedical uses.
Collapse
Affiliation(s)
| | - Sukhendra Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, India
| | - Ashutosh Pandey
- Department of Biotechnology, AKS University, Satna, India
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Gaurav Kant
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Kamlesh Choure
- Department of Biotechnology, AKS University, Satna, India
| | - Kassian T.T. Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia
- Destinies Biomass Energy and Farming Pty Ltd, P.O. Box 7387, Swakomund, Namibia
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
18
|
Adu SA, Twigg MS, Naughton PJ, Marchant R, Banat IM. Glycolipid Biosurfactants in Skincare Applications: Challenges and Recommendations for Future Exploitation. Molecules 2023; 28:molecules28114463. [PMID: 37298939 DOI: 10.3390/molecules28114463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The 21st century has seen a substantial increase in the industrial applications of glycolipid biosurfactant technology. The market value of the glycolipid class of molecules, sophorolipids, was estimated to be USD 409.84 million in 2021, with that of rhamnolipid molecules projected to reach USD 2.7 billion by 2026. In the skincare industry, sophorolipid and rhamnolipid biosurfactants have demonstrated the potential to offer a natural, sustainable, and skin-compatible alternative to synthetically derived surfactant compounds. However, there are still many barriers to the wide-scale market adoption of glycolipid technology. These barriers include low product yield (particularly for rhamnolipids) and potential pathogenicity of some native glycolipid-producing microorganisms. Additionally, the use of impure preparations and/or poorly characterised congeners as well as low-throughput methodologies in the safety and bioactivity assessment of sophorolipids and rhamnolipids challenges their increased utilisation in both academic research and skincare applications. This review considers the current trend towards the utilisation of sophorolipid and rhamnolipid biosurfactants as substitutes to synthetically derived surfactant molecules in skincare applications, the challenges associated with their application, and relevant solutions proposed by the biotechnology industry. In addition, we recommend experimental techniques/methodologies, which, if employed, could contribute significantly to increasing the acceptance of glycolipid biosurfactants for use in skincare applications while maintaining consistency in biosurfactant research outputs.
Collapse
Affiliation(s)
- Simms A Adu
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Matthew S Twigg
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | - Patrick J Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Roger Marchant
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine BT52 1SA, UK
| | - Ibrahim M Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
19
|
Gasparek M, Steel H, Papachristodoulou A. Deciphering mechanisms of production of natural compounds using inducer-producer microbial consortia. Biotechnol Adv 2023; 64:108117. [PMID: 36813010 DOI: 10.1016/j.biotechadv.2023.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023]
Abstract
Living organisms produce a wide range of metabolites. Because of their potential antibacterial, antifungal, antiviral, or cytostatic properties, such natural molecules are of high interest to the pharmaceutical industry. In nature, these metabolites are often synthesized via secondary metabolic biosynthetic gene clusters that are silent under the typical culturing conditions. Among different techniques used to activate these silent gene clusters, co-culturing of "producer" species with specific "inducer" microbes is a particularly appealing approach due to its simplicity. Although several "inducer-producer" microbial consortia have been reported in the literature and hundreds of different secondary metabolites with attractive biopharmaceutical properties have been described as a result of co-cultivating inducer-producer consortia, less attention has been devoted to the understanding of the mechanisms and possible means of induction for production of secondary metabolites in co-cultures. This lack of understanding of fundamental biological functions and inter-species interactions significantly limits the diversity and yield of valuable compounds using biological engineering tools. In this review, we summarize and categorize the known physiological mechanisms of production of secondary metabolites in inducer-producer consortia, and then discuss approaches that could be exploited to optimize the discovery and production of secondary metabolites.
Collapse
Affiliation(s)
- Miroslav Gasparek
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom.
| | - Harrison Steel
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | | |
Collapse
|
20
|
Hasköylü ME, Gökalsin B, Tornaci S, Sesal C, Öner ET. Exploring the potential of Halomonas levan and its derivatives as active ingredients in cosmeceutical and skin regenerating formulations. Int J Biol Macromol 2023; 240:124418. [PMID: 37080400 DOI: 10.1016/j.ijbiomac.2023.124418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023]
Abstract
Demand on natural products that contain biological ingredients mimicking growth factors and cytokines made natural polysaccharides popular in pharmaceutical and cosmetic industries. Levan is the β-(2-6) linked, nontoxic, biocompatible, water-soluble, film former fructan polymer that has diverse applications in pharmacy and cosmeceutical industries with its moisturizing, whitening, anti-irritant, anti-aging and slimming activities. Driven by the limited reports on few structurally similar levan polymers, this study presents the first systematic investigation on the effects of structurally different extremophilic Halomonas levan polysaccharides on human skin epidermis cells. In-vitro experiments with microbially produced linear Halomonas levan (HL), its hydrolyzed, (hHL) and sulfonated (ShHL) derivatives as well as enzymatically produced branched levan (EL) revealed increased keratinocyte and fibroblast proliferation (113-118 %), improved skin barrier function through induced expressions of involucrin (2.0 and 6.43 fold changes for HL and EL) and filaggrin (1.74 and 3.89 fold changes for hHL and ShHL) genes and increased type I collagen (2.63 for ShHL) and hyaluronan synthase 3 (1.41 for HL) gene expressions together with fast wound healing ability within 24 h (100 %, HL) on 2D wound models clearly showed that HL and its derivatives have high potential to be used as natural active ingredients in cosmeceutical and skin regenerating formulations.
Collapse
Affiliation(s)
- Merve Erginer Hasköylü
- Istanbul University-Cerrahpaşa, Institute of Nanotechnology and Biotechnology, Istanbul, Turkey.
| | - Barış Gökalsin
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Selay Tornaci
- IBSB, Marmara University, Department of Bioengineering, Istanbul, Turkey
| | - Cenk Sesal
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Ebru Toksoy Öner
- IBSB, Marmara University, Department of Bioengineering, Istanbul, Turkey
| |
Collapse
|
21
|
Di Salvo E, Lo Vecchio G, De Pasquale R, De Maria L, Tardugno R, Vadalà R, Cicero N. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 2023; 15:nu15081923. [PMID: 37111142 PMCID: PMC10144550 DOI: 10.3390/nu15081923] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In addition to fulfilling their function of giving color, many natural pigments are known as interesting bioactive compounds with potential health benefits. These compounds have various applications. In recent times, in the food industry, there has been a spread of natural pigment application in many fields, such as pharmacology and toxicology, in the textile and printing industry and in the dairy and fish industry, with almost all major natural pigment classes being used in at least one sector of the food industry. In this scenario, the cost-effective benefits for the industry will be welcome, but they will be obscured by the benefits for people. Obtaining easily usable, non-toxic, eco-sustainable, cheap and biodegradable pigments represents the future in which researchers should invest.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Lo Vecchio
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rita De Pasquale
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Laura De Maria
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari, 70121 Bari, Italy
| | - Rossella Vadalà
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| |
Collapse
|
22
|
Oh Y, Mun S, Choi YB, Jo H, Lee DG, Han K. Genome-Wide Pathway Exploration of the Epidermidibacterium keratini EPI-7 T. Microorganisms 2023; 11:870. [PMID: 37110293 PMCID: PMC10143877 DOI: 10.3390/microorganisms11040870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Functional cosmetics industries using skin microbiome screening and beneficial materials isolated from key microorganisms are receiving increasing attention. Since Epidermidibacterium keratini EPI-7T was first discovered in human skin, previous studies have confirmed that it can produce a new pyrimidine compound, 1,1'-biuracil, having anti-aging effects on human skin. Therefore, we conducted genomic analyses to judge the use value of E. keratini EPI-7T and provide up-to-date information. Whole-genome sequencing analysis of E. keratini EPI-7T was performed to generate new complete genome and annotation information. E. keratini EPI-7T genome was subjected to comparative genomic analysis with a group of closely-related strains and skin flora strains through bioinformatic analysis. Furthermore, based on annotation information, we explored metabolic pathways for valuable substances that can be used in functional cosmetics. In this study, the whole-genome sequencing (WGS) and annotation results of E. keratini EPI-7T were improved, and through comparative analysis, it was confirmed that the E. keratini EPI-7T has more metabolite-related genes than comparison strains. In addition, we annotated the vital genes for biosynthesis of 20 amino acids, orotic acid, riboflavin (B2) and chorismate. In particular, we were able to prospect that orotic acid could accumulate inside E. keratini EPI-7T under uracil-enriched conditions. Therefore, through a genomics approach, this study aims to provide genetic information for the hidden potential of E. keratini EPI-7T and the strain development and biotechnology utilization to be conducted in further studies.
Collapse
Affiliation(s)
- Yunseok Oh
- Department of Bioconvergence Engineering, Dankook University, Jukjeon, Yongin 16890, Republic of Korea;
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
| | - Seyoung Mun
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| | - Young-Bong Choi
- Department of Chemistry, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea;
| | - HyungWoo Jo
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam 13486, Republic of Korea
| | - Dong-Geol Lee
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam 13486, Republic of Korea
| | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Jukjeon, Yongin 16890, Republic of Korea;
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
- R&D Center, HuNBiome Co., Ltd., Gasan Digital 1-ro, Geumcheon-gu, Seoul 08507, Republic of Korea
| |
Collapse
|
23
|
Majeed M, Nagabhushanam K, Paulose S, Rajalakshmi HR, Mundkur L. A Randomized Double-Blind, Placebo-Controlled Study to Evaluate the Anti-Skin-Aging Effect of LactoSporin – The Extracellular Metabolite from Bacillus coagulans (Weizmannia coagulans) MTCC 5856 in Healthy Female Volunteers. Clin Cosmet Investig Dermatol 2023; 16:769-782. [PMID: 37016604 PMCID: PMC10066892 DOI: 10.2147/ccid.s403418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Purpose There has been a growing interest in the use of probiotics and their products for skin care, over the last decade. LactoSporin is the extracellular metabolite of a spore-forming probiotic Bacillus coagulans (Weizmannia coagulans) MTCC 5856, with antimicrobial and skin protecting activity. Patients and Methods The anti-skin-aging potential of LactoSporin was evaluated in a randomized, double-blinded, placebo-controlled study in healthy female participants (70 screened and 56 randomized). The participants applied either LactoSporin or matched placebo formulation (N=28 in each group) for 10 weeks, and the effects were assessed by dermatological, and non-invasive instrument-based evaluation using Antera, Cutometer, Corneometer, and Tewameter. All the 56 participants completed the study and were included for the analysis. Results The regular use of LactoSporin cream for 10 weeks showed a significant reduction in visibility of wrinkles around crow's feet, nasolabial folds, frown lines, and facial fine lines compared to baseline and placebo by dermatological and Antera assessments. LactoSporin showed improvement in skin elasticity and hydration by dermatological assessments, but the effect was not significantly different from placebo when assessed by Cutometer, Corneometer, and Tewameter. No adverse events or skin irritation was observed in any participants during the study. Conclusion These results suggest that LactoSporin could be a safe natural ingredient to reduce wrinkles and fine lines in cosmetic formulations.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, Bengaluru (Bangalore), Karnataka, 560 058, India
- Sabinsa Corporation, East Windsor, NJ, 08520, USA
| | | | - Shaji Paulose
- Sami-Sabinsa Group Limited, Bengaluru (Bangalore), Karnataka, 560 058, India
| | - H R Rajalakshmi
- Sami-Sabinsa Group Limited, Bengaluru (Bangalore), Karnataka, 560 058, India
| | - Lakshmi Mundkur
- Sami-Sabinsa Group Limited, Bengaluru (Bangalore), Karnataka, 560 058, India
- Correspondence: Lakshmi Mundkur, Sami-Sabinsa Group Limited, 19/1&19/2, I Main, II Phase, Peenya Industrial Area, Bengaluru, Karnataka, 560 058, India, Fax +91 8068527706, Email
| |
Collapse
|
24
|
Nakanishi A, Yamamoto N, Sakihama Y, Okino T, Matoba N. Development of Targeted Protein-Displaying Technology with a Novel Carbon Material. BIOTECH (BASEL (SWITZERLAND)) 2022; 12:biotech12010002. [PMID: 36648828 PMCID: PMC9844296 DOI: 10.3390/biotech12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
This study reports a new carbon material and its specific display of targeted protein. The properties of the carbon materials fabricated with carbon black MOGUL® were analyzed. The carbon materials were spherical structures with 55.421 µm as a median value. The specific surface area, pore volume, average pore diameter, and total of the acidic functional group were 130 m2·g-1, 0.55 cm3·g-1, 17.2 nm, and 0.29 mEq·g-1, respectively. The adsorption-desorption isoform of the carbon materials showed type IV of the hysteresis loop as defined by IUPAC, indicating non-uniform mesoporous structures (2-50 nm). The distribution of the log differential pore volume also indicated non-uniform porous structures because (i) the difference between the average pore size and the most frequent pore size was significant and (ii) the σ value was larger than the average value regarding the pore sizes. However, 10-90% of the integrated values of the log differential pore volume were 57.4% of the total integrated values, and the distribution was similar to the Gauss distribution model. Although the value of the total of the acidic functional group was 2.5-5.4 times lower than the values of the HPLC columns, the carbon materials require good scaffold quality rather than good HPLC quality. Therefore, the amounts could be enough for the scaffold of biotin hydrazide. To demonstrate the property of displaying the targeted proteins, carbon materials displaying biotin hydrazide by covalent bonding were prepared and avidin-labeled horse radish peroxidase (HRP) was bound to the biotin region. The carbon materials were porous structures, so the unspecific adsorption of HRP was estimated. Then, the maintenance ratios of HRP activities were analyzed in the repeated-use-with-wash processes after each evaluation, resulting in the activities of HRP on the carbon materials being treated with biotin hydrazide being significantly maintained compared to that of the ones without biotin hydrazide. The study revealed the properties of the carbon materials and indicated the display of HRP, suggesting that the carbon materials could be a new material for displaying targeted proteins.
Collapse
Affiliation(s)
- Akihito Nakanishi
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan
- Correspondence:
| | - Naotaka Yamamoto
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan
| | - Yuri Sakihama
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| | - Tomoya Okino
- Kansai Coke & Chemicals Co., Ltd., Amagasaki 661-0976, Japan
| | - Naoki Matoba
- Kansai Coke & Chemicals Co., Ltd., Amagasaki 661-0976, Japan
| |
Collapse
|
25
|
Liu JK. Natural products in cosmetics. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:40. [PMID: 36437391 PMCID: PMC9702281 DOI: 10.1007/s13659-022-00363-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/11/2022] [Indexed: 05/14/2023]
Abstract
The global cosmetics market reached US$500 billion in 2017 and is expected to exceed US$800 billion by 2023, at around a 7% annual growth rate. The cosmetics industry is emerging as one of the fastest-growing industries of the past decade. Data shows that the Chinese cosmetics market was US$60 billion in 2021. It is expected to be the world's number one consumer cosmetics market by 2050, with a size of approximately US$450 billion. The influence of social media and the internet has raised awareness of the risks associated with the usage of many chemicals in cosmetics and the health benefits of natural products derived from plants and other natural resources. As a result, the cosmetic industry is now paying more attention to natural products. The present review focus on the possible applications of natural products from various biological sources in skin care cosmetics, including topical care products, fragrances, moisturizers, UV protective, and anti-wrinkle products. In addition, the mechanisms of targets for evaluation of active ingredients in cosmetics and the possible benefits of these bioactive compounds in rejuvenation and health, and their potential role in cosmetics are also discussed.
Collapse
Affiliation(s)
- Ji-Kai Liu
- Wuhan Institute of Health, Shenzhen Moore Vaporization Health & Medical Technology Co., Ltd., Wuhan, 430074, People's Republic of China.
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
26
|
Obtaining Bioproducts from the Studies of Signals and Interactions between Microalgae and Bacteria. Microorganisms 2022; 10:microorganisms10102029. [PMID: 36296305 PMCID: PMC9607603 DOI: 10.3390/microorganisms10102029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
The applications of microalgae biomass have been widely studied worldwide. The classical processes used in outdoor cultivations of microalgae, in closed or open photobioreactors, occur in the presence of bacteria. Understanding how communication between cells occurs through quorum sensing and evaluating co-cultures allows the production of microalgae and cyanobacteria to be positively impacted by bacteria, in order to guarantee safety and profitability in the production process. In addition, the definition of the effects that occur during an interaction, promotes insights to improve the production of biomolecules, and to develop innovative products. This review presents the interactions between microalgae and bacteria, including compounds exchanges and communication, and addresses the development of new pharmaceutical, cosmetic and food bioproducts from microalgae based on these evaluations, such as prebiotics, vegan skincare products, antimicrobial compounds, and culture media with animal free protein for producing vaccines and other biopharmaceutical products. The use of microalgae as raw biomass or in biotechnological platforms is in line with the fulfillment of the 2030 Agenda related to the Sustainable Development Goals (SDGs).
Collapse
|
27
|
Majchrzak W, Motyl I, Śmigielski K. Biological and Cosmetical Importance of Fermented Raw Materials: An Overview. Molecules 2022; 27:molecules27154845. [PMID: 35956792 PMCID: PMC9369470 DOI: 10.3390/molecules27154845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
The cosmetics industry is currently looking for innovative ingredients with higher bioactivity and bioavailability for the masses of natural and organic cosmetics. Bioferments are innovative ingredients extracted from natural raw materials by carrying out a fermentation process with appropriate strains of microorganisms. The review was conducted using the SciFinder database with the keywords “fermented plant”, “cosmetics”, and “fermentation”. Mainly bioferments are made from plant-based raw materials. The review covers a wide range of fermented raw materials, from waste materials (whey with beet pulp) to plant oils (F-Shiunko, F-Artemisia, F-Glycyrrhiza). The spectrum of applications for bioferments is broad and includes properties such as skin whitening, antioxidant properties (blackberry, soybean, goji berry), anti-aging (red ginseng, black ginseng, Citrus unshiu peel), hydrating, and anti-allergic (aloe vera, skimmed milk). Fermentation increases the biochemical and physiological activity of the substrate by converting high-molecular compounds into low-molecular structures, making fermented raw materials more compatible compared to unfermented raw materials.
Collapse
Affiliation(s)
- Weronika Majchrzak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Interdisciplinary Doctoral School, Lodz University of Technology, 171/173 Wólczańska Street, 90-924 Lodz, Poland
- Correspondence: ; Tel.: +48-42-631-34-92
| | - Ilona Motyl
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wólczańska Street, 90-924 Lodz, Poland; (I.M.); (K.Ś.)
| | - Krzysztof Śmigielski
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wólczańska Street, 90-924 Lodz, Poland; (I.M.); (K.Ś.)
| |
Collapse
|
28
|
Lu H, Yadav V, Bilal M, Iqbal HMN. Bioprospecting microbial hosts to valorize lignocellulose biomass - Environmental perspectives and value-added bioproducts. CHEMOSPHERE 2022; 288:132574. [PMID: 34656619 DOI: 10.1016/j.chemosphere.2021.132574] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023]
Abstract
Current biorefinery approaches comprehend diverse biomass feedstocks and various conversion techniques to produce a variety of high-value biochemicals and biofuels. Lignocellulose is among the most abundant, bio-renewable, and sustainable bioresources on earth. It is regarded as a prodigious alternative raw feedstock to produce a large number of chemicals and biofuels. Producing biofuels and platform chemicals from lignocellulosic biomasses represent advantages in terms of energy and environmental perspectives. Lignocellulose is a main structural constituent of non-woody and woody plants consisting of lignin, cellulose, and hemicellulose. Efficient exploitation of all these components is likely to play a considerable contribution to the economic viability of the processes since lignocellulosic biomass often necessitate pretreatment for liberating fermentable sugars and added value products that might serve as feedstocks for microbial strains to produce biofuels and biochemicals. Developing robust microbial culture and advancements in metabolic engineering approaches might lead to the rapid construction of cell factories for the effective biotechnological transformation of biomass feedstocks to produce biorefinery products. In this comprehensive review, we discuss the recent progress in the valorization of agro-industrial wastes as prospective microbial feedstocks to produce a spectrum of high-value products, such as microbial pigments, biopolymers, industrial biocatalysts, biofuels, biologically active compounds, bioplastics, biosurfactants, and biocontrol agents with therapeutic and industrial potentialities. Lignocellulosic biomass architecture, compositional aspects, revalorization, and pretreatment strategies are outlined for efficient conversion of lignocellulosic biomass. Moreover, metabolic engineering approaches are briefly highlighted to develop cell factories to make the lignocellulose biorefinery platforms appealing.
Collapse
Affiliation(s)
- Hedong Lu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
29
|
Rao SS, Athmika, Rekha PD. Biopolymers in Cosmetics, Pharmaceutical, and Biomedical Applications. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Vieira IMM, Santos BLP, Silva LS, Ramos LC, de Souza RR, Ruzene DS, Silva DP. Potential of pineapple peel in the alternative composition of culture media for biosurfactant production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68957-68971. [PMID: 34282549 DOI: 10.1007/s11356-021-15393-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
The large pineapple's consumption and processing have generated a massive amount of waste yearly, which requires adequate treatment measures to avoid damages to the environment. Pineapple peel is one of the main residues obtained from this fruit and a promising strategy to take advantage of its potential is using it for biosurfactant production due to the peel's rich composition in fermentable sugars and nutrients, such as potassium and magnesium that favor the Bacillus subtilis growth and biosurfactant excretion as well. The current research performed a central composite design (CCD) with four independent variables (glucose, pineapple peel, potassium, and magnesium), evaluating substrates' influence on the surface tension reduction rate (STRR) and the emulsification index (EI24). The results indicated that pineapple peel has the necessary potential to act as a partial substitute for glucose and salt nutrients, minimizing the costs of supplementing with exogenous minerals. The highest surface tension reduction rate (57.744%) was obtained at 2.18% glucose (w/v); 14.67% pineapple peel (v/v); 2.38 g/L KH2PO4; and 0.15 g/L MgSO4.7H2O; whereas to obtain the maximum predicted value for EI24 (61.92%) the medium was composed by 2.24% glucose (w/v); 12.63% pineapple peel (v/v); 2.53 g/L KH2PO4; and 0.29 g/L MgSO4.7H2O.
Collapse
Affiliation(s)
- Isabela Maria Monteiro Vieira
- Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Brenda Lohanny Passos Santos
- Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Lucas Santos Silva
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Larissa Castor Ramos
- Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Roberto Rodrigues de Souza
- Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Denise Santos Ruzene
- Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
- Graduate Program in Biotechnology, Federal University of Sergipe, Rodovia Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, SE, 49100-000, Brazil
| | - Daniel Pereira Silva
- Northeastern Biotechnology Network, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil.
- Center for Exact Sciences and Technology, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil.
- Graduate Program in Biotechnology, Federal University of Sergipe, Rodovia Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, SE, 49100-000, Brazil.
| |
Collapse
|
31
|
Exploring the Potential of Icelandic Seaweeds Extracts Produced by Aqueous Pulsed Electric Fields-Assisted Extraction for Cosmetic Applications. Mar Drugs 2021; 19:md19120662. [PMID: 34940661 PMCID: PMC8704373 DOI: 10.3390/md19120662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
A growing concern for overall health is driving a global market of natural ingredients not only in the food industry but also in the cosmetic field. In this study, a screening on potential cosmetic applications of aqueous extracts from three Icelandic seaweeds produced by pulsed electric fields (PEF) was performed. Produced extracts by PEF from Ulva lactuca, Alaria esculenta and Palmaria palmata were compared with the traditional hot water extraction in terms of polyphenol, flavonoid and carbohydrate content. Moreover, antioxidant properties and enzymatic inhibitory activities were evaluated by using in vitro assays. PEF exhibited similar results to the traditional method, showing several advantages such as its non-thermal nature and shorter extraction time. Amongst the three Icelandic species, Alaria esculenta showed the highest content of phenolic (mean value 8869.7 µg GAE/g dw) and flavonoid (mean value 12,098.7 µg QE/g dw) compounds, also exhibiting the highest antioxidant capacities. Moreover, Alaria esculenta extracts exhibited excellent anti-enzymatic activities (76.9, 72.8, 93.0 and 100% for collagenase, elastase, tyrosinase and hyaluronidase, respectively) for their use in skin whitening and anti-aging products. Thus, our preliminary study suggests that Icelandic Alaria esculenta-based extracts produced by PEF could be used as potential ingredients for natural cosmetic and cosmeceutical formulations.
Collapse
|
32
|
Sawant N, Singh H, Appukuttan D. Overview of the Cellular Stress Responses Involved in Fatty Acid Overproduction in E. coli. Mol Biotechnol 2021; 64:373-387. [PMID: 34796451 DOI: 10.1007/s12033-021-00426-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022]
Abstract
Research on microbial fatty acid metabolism started in the late 1960s, and till date, various developments have aided in elucidating the fatty acid metabolism in great depth. Over the years, synthesis of microbial fatty acid has drawn industrial attention due to its diverse applications. However, fatty acid overproduction imparts various stresses on its metabolic pathways causing a bottleneck to further increase the fatty acid yields. Numerous strategies to increase fatty acid titres in Escherichia coli by pathway modulation have already been published, but the stress generated during fatty acid overproduction is relatively less studied. Stresses like pH, osmolarity and oxidative stress, not only lower fatty acid titres, but also alter the cell membrane composition, protein expression and membrane fluidity. This review discusses an overview of fatty acid synthesis pathway and presents a panoramic view of various stresses caused due to fatty acid overproduction in E. coli. It also addresses how certain stresses like high temperature and nitrogen limitation can boost fatty acid production. This review paper also highlights the interconnections that exist between these stresses.
Collapse
Affiliation(s)
- Neha Sawant
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (West), Mumbai, 400056, India
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (West), Mumbai, 400056, India.
| | - Deepti Appukuttan
- Biosystems Engineering Lab, Department of Chemical Engineering, IIT Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
33
|
Ceriporia lacerata Mycelium Culture Medium as a Novel Anti-Aging Microbial Material for Cosmeceutical Application. COSMETICS 2021. [DOI: 10.3390/cosmetics8040101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Skincare is very critical in preventing aging and skin trouble, which is difficult to recover if progressed. However, the development of effective anti-aging solutions is still on the horizon. The purpose of this study was to evaluate the functional efficacy of Ceriporia lacerata exo-pharmaceutical substance (CLEPS) in view of its use in innovative skin care cosmetics. CLEPS was found to have no cytotoxicity against normal human dermal fibroblasts and B16 melanoma cells in a wide concentration range of 0.05–7 mg/mL. It exhibited a whitening effect by inhibiting melanin synthesis comparable to that of the respective reference compound (arbutin). Notably, CLEPS not only substantially increased collagen (65.4%) and filaggrin synthesis (36%), but also significantly inhibited the activity of collagenase (93.4%), suggesting that CLEPS could prevent skin barrier damage or skin wrinkles. In addition, it showed an excellent anti-inflammatory effect and wound-healing effect. Overall, CLEPS exhibited exceptional anti-aging effects in human skin cells, designating as a potential natural cosmeceutical ingredient.
Collapse
|
34
|
Rushdi MI, Abdel-Rahman IAM, Saber H, Attia EZ, Abdelraheem WM, Madkour HA, Abdelmohsen UR. The genus Turbinaria: chemical and pharmacological diversity. Nat Prod Res 2021; 35:4560-4578. [PMID: 32091241 DOI: 10.1080/14786419.2020.1731741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/19/2020] [Accepted: 02/09/2020] [Indexed: 12/22/2022]
Abstract
The Genus Turbinaria is still chemically and pharmacologically underexplored. These brown algae belong to the family Sargassaceae. Therapeutic potentials of pure compounds isolated from the Genus Turbinaria are extraordinarily promising as antiproliferative, antipyretic, anti-inflammatory immunostimulatory, anti-diabetic, anti-obesity, antiviral, antimicrobial, cardioprotective, hepatoprotective and hypolipidemic. Those activities are represented by diverse classes of compounds including sterols, amino acids, fatty acids, alcohols, halocarbons, hydrocarbons, carbohydrates, esters and cyclic tetrapyrrole compounds. This review focuses on the Genus Turbinaria during the period 1972 to 2019.
Collapse
Affiliation(s)
- Mohammed I Rushdi
- Faculty of Pharmacy, Department of Pharmacognosy, South Valley University, Qena, Egypt
| | - Iman A M Abdel-Rahman
- Faculty of Pharmacy, Department of Pharmacognosy, South Valley University, Qena, Egypt
| | - Hani Saber
- Faculty of Science, Department of Botany and Microbiology, South Valley University, Qena, Egypt
| | - Eman Zekry Attia
- Faculty of Pharmacy, Department of Pharmacognosy, Minia University, Minia, Egypt
| | - Wedad M Abdelraheem
- Faculty of Medicine, Department of Medical Microbiology and Immunology, Minia University, Minia, Egypt
| | - Hashem A Madkour
- Department of Marine and Environmental Geology, National Institute of Oceanography and Fisheries, Hurghada, Egypt
| | - Usama Ramadan Abdelmohsen
- Faculty of Pharmacy, Department of Pharmacognosy, Minia University, Minia, Egypt
- Faculty of Pharmacy, Department of Pharmacognosy, Deraya University, New Minia City, Egypt
| |
Collapse
|
35
|
Gangalla R, Gattu S, Palaniappan S, Ahamed M, Macha B, Thampu RK, Fais A, Cincotti A, Gatto G, Dama M, Kumar A. Structural Characterisation and Assessment of the Novel Bacillus amyloliquefaciens RK3 Exopolysaccharide on the Improvement of Cognitive Function in Alzheimer's Disease Mice. Polymers (Basel) 2021; 13:polym13172842. [PMID: 34502882 PMCID: PMC8434388 DOI: 10.3390/polym13172842] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
In this study Bacillus amyloliquefaciens RK3 was isolated from a sugar mill effluent-contaminated soil and utilised to generate a potential polysaccharide with anti-Alzheimer's activity. Traditional and molecular methods were used to validate the strain. The polysaccharide produced by B. amyloliquefaciens RK3 was purified, and the yield was estimated to be 10.35 gL-1. Following purification, the polysaccharide was structurally and chemically analysed. The structural analysis revealed the polysaccharide consists of α-d-mannopyranose (α-d-Manp) and β-d-galactopyranose (β-d-Galp) monosaccharide units connected through glycosidic linkages (i.e., β-d-Galp(1→6)β-d-Galp (1→6)β-d-Galp(1→2)β-d-Galp(1→2)[β-d-Galp(1→6)]β-d-Galp(1→2)α-d-Manp(1→6)α-d-Manp (1→6)α-d-Manp(1→6)α-d-Manp(1→6)α-d-Manp). The scanning electron microscopy and energy-dispersive X-ray spectroscopy imaging of polysaccharides emphasise their compactness and branching in the usual tubular heteropolysaccharide structure. The purified exopolysaccharide significantly impacted the plaques formed by the amyloid proteins during Alzheimer's disease. Further, the results also highlighted the potential applicability of exopolysaccharide in various industrial and pharmaceutical applications.
Collapse
Affiliation(s)
- Ravi Gangalla
- Department of Microbiology, Kakatiya University, Warangal 506009, India;
| | - Sampath Gattu
- Department of Zoology, School of Life Sciences, Periyar University, Salem 636011, India;
| | - Sivasankar Palaniappan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, India
- Correspondence: (S.P.); (R.K.T.)
| | - Maqusood Ahamed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Baswaraju Macha
- Medicinal Chemistry Division, University College of Pharmaceutical Sciences, Kakatiya University, Warangal 506009, India;
| | - Raja Komuraiah Thampu
- Department of Microbiology, Kakatiya University, Warangal 506009, India;
- Correspondence: (S.P.); (R.K.T.)
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy;
| | - Alberto Cincotti
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy;
| | - Gianluca Gatto
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy; (G.G.); (A.K.)
| | - Murali Dama
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy; (G.G.); (A.K.)
| |
Collapse
|
36
|
Vieira IMM, Santos BLP, Ruzene DS, Silva DP. An overview of current research and developments in biosurfactants. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Resende DI, Ferreira M, Magalhães C, Sousa Lobo J, Sousa E, Almeida IF. Trends in the use of marine ingredients in anti-aging cosmetics. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Bioprospecting and Applications of Fungi: A Game Changer in Present Scenario. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Effects of a complex mixture prepared from agrimonia, houttuynia, licorice, peony, and phellodendron on human skin cells. Sci Rep 2020; 10:22132. [PMID: 33335246 PMCID: PMC7746697 DOI: 10.1038/s41598-020-79301-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023] Open
Abstract
Active ingredients derived from natural sources are widely utilized in many industries. Cosmetic active ingredients are largely derived from various plants. In this study, we examined whether a mixture of plant extracts obtained from agrimonia, houttuynia, licorice, peony, and phellodendron (hereafter AHLPP), which are well-known for their effects on skin, could affect skin barrier function, inflammation, and aging in human skin cells. We also determined whether AHLPP extracts sterilized using γ-irradiation (to avoid preservatives) retained their skin cell regulating activity. The AHLPP mixture could downregulate representative pro-inflammatory cytokines including IL 1-β and IL 7. Procollagen peptide synthesis was also increased by AHLPP treatment along with mRNA upregulation of barrier proteins such as filaggrin and desmoplakin. The AHLPP mixture showed an anti-aging effect by significantly upregulating telomerase activity in human keratinocytes. We further observed TERT upregulation and CDKN1B downregulation, implying a weakening of pro-aging signal transduction. Co-cultivation of a hydrogel polymer containing the AHLPP mixture with human skin cells showed an alteration in skin-significant genes such as FLG, which encodes filaggrin. Thus, the AHLPP mixture with or without γ-irradiation can be utilized for skin protection as it alters the expression of some significant genes in human skin cells.
Collapse
|
40
|
Tiwari U, Ganesan NG, Junnarkar J, Rangarajan V. Toward the formulation of bio-cosmetic nanoemulsions: from plant-derived to microbial-derived ingredients. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1847664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Utkarsh Tiwari
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa, India
| | - Neela Gayathri Ganesan
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa, India
| | - Jui Junnarkar
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa, India
| | - Vivek Rangarajan
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa, India
| |
Collapse
|
41
|
Microbial Biosurfactants in Cosmetic and Personal Skincare Pharmaceutical Formulations. Pharmaceutics 2020; 12:pharmaceutics12111099. [PMID: 33207832 PMCID: PMC7696787 DOI: 10.3390/pharmaceutics12111099] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Cosmetic and personal care products are globally used and often applied directly on the human skin. According to a recent survey in Europe, the market value of cosmetic and personal care products in Western Europe reached about 84 billion euros in 2018 and are predicted to increase by approximately 6% by the end of 2020. With these significant sums of money spent annually on cosmetic and personal care products, along with chemical surfactants being the main ingredient in a number of their formulations, of which many have been reported to have the potential to cause detrimental effects such as allergic reactions and skin irritations to the human skin; hence, the need for the replacement of chemical surfactants with other compounds that would have less or no negative effects on skin health. Biosurfactants (surfactants of biological origin) have exhibited great potential such as lower toxicity, skin compatibility, protection and surface moisturizing effects which are key components for an effective skincare routine. This review discusses the antimicrobial, skin surface moisturizing and low toxicity properties of glycolipid and lipopeptide biosurfactants which could make them suitable substitutes for chemical surfactants in current cosmetic and personal skincare pharmaceutical formulations. Finally, we discuss some challenges and possible solutions for biosurfactant applications.
Collapse
|
42
|
Vargas-Sinisterra AF, Ramírez-Castrillón M. Yeast carotenoids: production and activity as antimicrobial biomolecule. Arch Microbiol 2020; 203:873-888. [PMID: 33151382 DOI: 10.1007/s00203-020-02111-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Carotenoids are a large group of organic, pigmented, isoprenoid-type compounds that play biological activities in plants and microorganisms (yeasts, bacteria, and microalgae). Literature reported it as vitamin A precursors and antioxidant activity. Carotenoids also can act as antimicrobial agents and few reports showed quantitative measurements of Minimal Inhibitory Concentrations against different pathogens. In this sense, some carotenoids were added to medical-surgical materials. The demand for scale-up of different naturally obtained carotenoids has increased due to the concern about the detrimental health effects caused by synthetic molecules and antimicrobial resistance. In this review, we reported the variability in pigment production and culture conditions, extraction methods used in laboratory, and we discussed the antimicrobial activity carried out by these molecules and the promising acting as new molecules to be scaled-up to industry.
Collapse
Affiliation(s)
- Andrés Felipe Vargas-Sinisterra
- Maestría en Ciencias Biomédicas, Grupo de Investigación BIOSALUD, Facultad de Ciencias para la salud, Universidad de Caldas, Calle 65 # 26-10, Manizales, Colombia.,Grupo de Investigación iCUBO, Facultad de Ingeniería, Departamento de Ingeniería Bioquímica, Universidad Icesi, Calle 18 # 122-135, Cali, Colombia
| | - Mauricio Ramírez-Castrillón
- Research Group in Mycology (GIM/CICBA), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 # 62-00, Cali, Colombia.
| |
Collapse
|
43
|
Wohlgemuth R. Biocatalysis - Key enabling tools from biocatalytic one-step and multi-step reactions to biocatalytic total synthesis. N Biotechnol 2020; 60:113-123. [PMID: 33045418 DOI: 10.1016/j.nbt.2020.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/07/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
In the area of human-made innovations to improve the quality of life, biocatalysis has already had a great impact and contributed enormously to a growing number of catalytic transformations aimed at the detection and analysis of compounds, the bioconversion of starting materials and the preparation of target compounds at any scale, from laboratory small scale to industrial large scale. The key enabling tools which have been developed in biocatalysis over the last decades also provide great opportunities for further development and numerous applications in various sectors of the global bioeconomy. Systems biocatalysis is a modular, bottom-up approach to designing the architecture of enzyme-catalyzed reaction steps in a synthetic route from starting materials to target molecules. The integration of biocatalysis and sustainable chemistry in vitro aims at ideal conversions with high molecular economy and their intensification. Retrosynthetic analysis in the chemical and biological domain has been a valuable tool for target-oriented synthesis while, on the other hand, diversity-oriented synthesis builds on forward-looking analysis. Bioinformatic tools for rapid identification of the required enzyme functions, efficient enzyme production systems, as well as generalized bioprocess design tools, are important for rapid prototyping of the biocatalytic reactions. The tools for enzyme engineering and the reaction engineering of each enzyme-catalyzed one-step reaction are also valuable for coupling reactions. The tools to overcome interaction issues with other components or enzymes are of great interest in designing multi-step reactions as well as in biocatalytic total synthesis.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland; Swiss Coordination Committee on Biotechnology (SKB), Nordstrasse 15, 8021 Zürich, Switzerland.
| |
Collapse
|
44
|
Skin Protective Activity of LactoSporin-the Extracellular Metabolite from Bacillus Coagulans MTCC 5856. COSMETICS 2020. [DOI: 10.3390/cosmetics7040076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Probiotics and their products are increasingly used in skincare in recent years. Postbiotics are defined as any substance derived through the metabolic activity of a probiotic microorganism, which exerts a direct or indirect beneficial effect on the host. The extracellular metabolites of probiotic bacteria have antimicrobial activities, protect against acne, and improve skin condition. We studied skin protective activities of the extracellular metabolite (LactoSporin) of a spore-forming probiotic Bacillus coagulans MTCC 5856 in vitro. Methods: LactoSporin was evaluated for antioxidant activity by free radical scavenging activity and reactive oxygen quenching activity in human dermal fibroblast cells. Protection of fibroblasts from UV-induced apoptosis and cell death was studied by flow cytometry and neutral red uptake assays. Enzyme inhibition assays were carried out for collagenase, Elastase, and Hyaluronidase. Gene expression studies were carried out using polymerase chain reaction. Results: LactoSporin showed antioxidant activity and was found to protect skin cells from UV-induced apoptosis and cell death. LactoSporin inhibited collagenase, elastase, and hyaluronidase activity and upregulated the expression of hyaluronan synthase, transforming growth factor and epidermal growth factor, which are associated with extracellular matrix integrity. Conclusions: These results suggest LactoSporin is a skin protective postbiotic with wide application in cosmetic formulations.
Collapse
|
45
|
Ratnikova MS, Titok MA. Molecular Genetic Markers for Identification of Rhodococcus erythropolis and Rhodococcus qingshengii. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720040116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
46
|
Bacteria as genetically programmable producers of bioactive natural products. Nat Rev Chem 2020; 4:172-193. [PMID: 37128046 DOI: 10.1038/s41570-020-0176-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
Next to plants, bacteria account for most of the biomass on Earth. They are found everywhere, although certain species thrive only in specific ecological niches. These microorganisms biosynthesize a plethora of both primary and secondary metabolites, defined, respectively, as those required for the growth and maintenance of cellular functions and those not required for survival but offering a selective advantage for the producer under certain conditions. As a result, bacterial fermentation has long been used to manufacture valuable natural products of nutritional, agrochemical and pharmaceutical interest. The interactions of secondary metabolites with their biological targets have been optimized by millions of years of evolution and they are, thus, considered to be privileged chemical structures, not only for drug discovery. During the last two decades, functional genomics has allowed for an in-depth understanding of the underlying biosynthetic logic of secondary metabolites. This has, in turn, paved the way for the unprecedented use of bacteria as programmable biochemical workhorses. In this Review, we discuss the multifaceted use of bacteria as biological factories in diverse applications and highlight recent advances in targeted genetic engineering of bacteria for the production of valuable bioactive compounds. Emphasis is on current advances to access nature's abundance of natural products.
Collapse
|
47
|
Prasedya ES, Martyasari NWR, Abidin AS, Pebriani SA, Ilhami BTK, Frediansyah A, Sunarwidhi AL, Widyastuti S, Sunarpi H. Macroalgae Sargassum cristaefolium Extract Inhibits Proinflammatory Cytokine Expression in BALB/C Mice. SCIENTIFICA 2020; 2020:9769454. [PMID: 33101756 PMCID: PMC7569464 DOI: 10.1155/2020/9769454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/24/2020] [Indexed: 05/05/2023]
Abstract
Ultraviolet radiation (UVR) which could induce skin damage and skin disease is a growing concern due to the increase in global warming. Brown macroalgae Sargassum cristaefolium has been recognized to exhibit UV protective activities. However, the mechanism of its photoprotective activity remains unclear. The purpose of this study is to investigate the potential mechanism of S. cristaefolium's photoprotective activity against UV radiation. Phytochemical analyses revealed valuable bioactive compounds in SCE, such as fucoxanthin which is widely known as an anti-inflammatory carotenoid. Treatment with SCE before UV-A radiation show reduced levels of wrinkles and desquamation. Interestingly, SCE treatment induces the skin healing process after UV radiation. SCE effectively inhibited proinflammatory TNF-α and IL-6 expression while increasing IL-10 production in the BALB/c mice skin. Current results suggest that SCE potentially protects the skin by attenuation of inflammatory cytokines. In addition, SCE demonstrates promising antibacterial activity (MIC = 1.302 µg/mL) against Staphylococcus aureus. Overall, SCE could be a source of an effective anti-inflammatory agent protecting against UV irradiation-induced skin damages.
Collapse
Affiliation(s)
- Eka Sunarwidhi Prasedya
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram, Indonesia
| | | | - Angga Susmana Abidin
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram, Indonesia
| | - Sonia Ardilla Pebriani
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram, Indonesia
| | - Bq Tri Khairina Ilhami
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram, Indonesia
| | - Andri Frediansyah
- Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
- Research Division for Natural Product Technology (BPTBA), Indonesian Institute of Sciences (LIPI), Wonosari, Indonesia
| | | | - Sri Widyastuti
- Faculty of Food Technology and Agroindustry, University of Mataram, Mataram, Indonesia
| | - Haji Sunarpi
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram, Indonesia
| |
Collapse
|