1
|
Alanazi M, Al-Kuraishy HM, Albuhadily AK, Al-Gareeb AI, Abdelaziz AM, Alexiou A, Papadakis M, Batiha GES. The protective effect of amylin in type 2 diabetes: Yes or no. Eur J Pharmacol 2025; 996:177593. [PMID: 40187597 DOI: 10.1016/j.ejphar.2025.177593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Amylin, which is also called a human islet amyloid polypeptide, is a peptide hormone made up of 37 amino acids that is released from pancreatic β cells. It helps keep blood sugar levels stable by controlling the release of insulin and glucagon. Various studies have indicated its involvement in the pathogenesis of type 2 diabetes (T2D) through the induction of apoptosis in pancreatic cells. Conversely, other studies found that amylin plays a critical role in the pathogenesis of T2D by affecting the release of insulin and glucagon. Therefore, amylin has protective and detrimental effects on the pathogenesis of T2D. Consequently, this review aims to discuss the beneficial and detrimental roles of amylin in T2D.
Collapse
Affiliation(s)
- Mansour Alanazi
- Department of Internal Medicine, College of Medicine, Northern Border University, Arar, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, 14132, Baghdad, Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, 14132, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, 14132, Baghdad, Iraq; Jabir ibn Hayyan Medical University, Al-Ameer Qu, PO. Box13 Kufa, Najaf, Iraq.
| | - Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University-Arish Branch, Arish, 45511, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens, 11741, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten, Herdecke, Heusnerstrasse 40, Wuppertal, 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Zarei N, De Craene JO, Shekarforoush SS, Nazifi S, Golmakani MT, Giglioli-Guivarc'h N, Eskandari MH. Anti-obesity potential of selected medicinal plants: A focused study on in vitro inhibitory effects on lipase, α-amylase and α-glucosidase enzymes. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119733. [PMID: 40228587 DOI: 10.1016/j.jep.2025.119733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
Obesity is a prominent global public health challenge. Current drugs used for its treatment have significant side effects. Medicinal plants, rich in phytochemicals, offer anti-obesity effects through various mechanisms, including enzyme inhibition. The current research evaluated ethanolic extracts from more than 100 plants to address obesity. The dried plant organs were ground and macerated in ethanol 70 % to generate powder extracts. Physalis minima (62.5 %) and Terminalia chebula (59.1 %) yielded the highest amount of extracts. The antioxidant activity of the extracts was determined using the scavenging of free radical DPPH and total phenolic content. Their ability to inhibit α-amylase, α-glucosidase, and pancreatic lipase (enzymes linked to obesity) was also a source of variation in vitro. Among the plants, Bistorta polygonum exhibited the lowest IC50 (1.43 ppm) in the DPPH test, and Semecarpus anacardium showed the highest total phenol content (54.21 mg GAE/g). We found that Ginkgo biloba (1000 ppm) inhibited pancreatic lipase (81.48 %), Cinnamomum cassia inhibited α-amylase (78.44 %), and Punica granatum inhibited α-glucosidase (101.55 %). A significant (P ≤ 0.05) correlation exists between antioxidant properties and enzyme inhibition. Some plants may focus on a single function due to variations in their chemical compositions. The extracts of Semecarpus anacardium (Anacardiaceae), Myristica fragrans (Myristicaceae), Cinnamomum cassia (Lauraceae), Rhus coriaria (Anacardiaceae), and Ephedra sinica (Ephedraceae) exhibited highly effective inhibitory activities against all three enzymes, making them promising candidates for obesity treatment. Many of these extracts originate in plants already consumed in the human diet. Thus, they could potentially be novel remedies for obesity treatment.
Collapse
Affiliation(s)
- Negin Zarei
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Johan-Owen De Craene
- UR 2106 Biomolécules et Biotechnologies Végétales, Faculté des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200, Tours, France
| | - Seyed Shahram Shekarforoush
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Department of Clinical Studies, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad-Taghi Golmakani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Nathalie Giglioli-Guivarc'h
- UR 2106 Biomolécules et Biotechnologies Végétales, Faculté des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200, Tours, France
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
3
|
Yi Y, Qin S, Ding S, Fang J. Polysaccharides in the medicine and food homology to combat obesity via gut-liver axis: A review of possible mechanisms. Int J Biol Macromol 2025; 312:144044. [PMID: 40345304 DOI: 10.1016/j.ijbiomac.2025.144044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/13/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Polysaccharides, as macromolecular carbohydrates present in various medicine and food homology, have gained growing recognition for their potential in combating obesity through multiple mechanisms. Their natural origin and favorable safety profile have made polysaccharides from medicine and food homology (PMFH) an area of significant research interest, particularly in the context of developing effective, safe, and sustainable interventions for obesity management. This review summarized the classification and biological properties of PMFH and then elucidated the pathological characteristics of obesity. We primarily focused on the effects of PMFHs on obesity, with particular attention to the potential mechanisms mediated through the gut-liver axis. These mechanisms encompassed the improvement of fat metabolism imbalances, manager of appetite and energy balance, adjustment of intestinal microbial imbalances, and alleviation of oxidative stress and inflammation. The findings provided critical theoretical insights and data to support the development of anti-obesity dietary and pharmaceutical products. In brief, this review outlined future research directions regarding the potential mechanisms underlying the anti-obesity effects of PMFH, particularly those involving the gut-liver axis.
Collapse
Affiliation(s)
- Yuhang Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China
| | - Si Qin
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China.
| |
Collapse
|
4
|
Jerlhag E. GLP-1 Receptor Agonists: Promising Therapeutic Targets for Alcohol Use Disorder. Endocrinology 2025; 166:bqaf028. [PMID: 39980336 PMCID: PMC11879929 DOI: 10.1210/endocr/bqaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/07/2024] [Accepted: 02/18/2025] [Indexed: 02/22/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) is abundant in the circulation, and it is well-known to regulate glucose homeostasis, feeding, and body weight. GLP-1 receptor agonists are therefore approved for treating type 2 diabetes and obesity. However, more recent research has demonstrated that GLP-1 acts within the brain to modulate reward responses, thereby highlighting GLP-1 as a potential target for addiction. Specifically, preclinical studies demonstrated that GLP-1 receptor agonists decrease alcohol intake, reduce the motivation to consume alcohol, and prevent relapse drinking by potentially lowering alcohol-induced reward. These preclinical results have been confirmed and extended in human studies in which GLP-1 receptor agonists reduce alcohol intake in patients with alcohol use disorder (AUD) who have a regular weight or comorbidity of obesity or type 2 diabetes. On a similar note, genetic variations in genes encoding for the GLP-1 receptor are associated with AUD and heavy drinking. The central mechanisms by which GLP-1 regulates alcohol-related behaviors are not fully defined, but may involve areas central to reward as well as regions projecting to these reward areas, such as the nucleus tractus solitarius of the brainstem. Together, existing preclinical and clinical data suggest that GLP-1 is involved in the AUD process and implies its role as a tentative treatment for AUD.
Collapse
Affiliation(s)
- Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
5
|
Zhang J, Wei J, Lai W, Sun J, Bai Y, Cao H, Guo J, Su Z. Focus on Glucagon-like Peptide-1 Target: Drugs Approved or Designed to Treat Obesity. Int J Mol Sci 2025; 26:1651. [PMID: 40004115 PMCID: PMC11855704 DOI: 10.3390/ijms26041651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Obesity is closely related to metabolic diseases, which brings a heavy burden to the health care system. It is urgent to formulate and implement effective treatment strategies. Glucagon-like peptide-1 (GLP-1) is a protein with seven transmembrane domains connected by type B and G proteins, which is widely distributed and expressed in many organs and tissues. GLP-1 analogues can reduce weight, lower blood pressure, and improve blood lipids. Obesity, diabetes, cardiovascular diseases, and other diseases have caused scientists' research and development boom. Among them, GLP-1R agonist drugs have developed rapidly in weight-loss drugs. In this paper, based on the target of GLP-1, the mechanism of action of GLP-1 in obesity treatment was deeply studied, and the drugs approved and designed for obesity treatment based on GLP-1 target were elaborated in detail. Innovatively put forward and summarized the double and triple GLP-1 targeted drugs in the treatment of obesity with better effects and less toxic and side effects, and this can make full use of multi-target methods to treat other diseases in the future. Finally, it is pointed out that intestinal flora and microorganisms have many benefits in the treatment of obesity, and fecal bacteria transplantation may be a potential treatment for obesity with less harm to the body. This article provides some promising methods to treat obesity, which have strong practical value.
Collapse
Affiliation(s)
- Jiahua Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.Z.); (J.W.); (W.L.); (J.S.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jintao Wei
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.Z.); (J.W.); (W.L.); (J.S.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiwen Lai
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.Z.); (J.W.); (W.L.); (J.S.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiawei Sun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.Z.); (J.W.); (W.L.); (J.S.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China;
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.Z.); (J.W.); (W.L.); (J.S.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
6
|
Kokkorakis M, Chakhtoura M, Rhayem C, Al Rifai J, Ghezzawi M, Valenzuela-Vallejo L, Mantzoros CS. Emerging pharmacotherapies for obesity: A systematic review. Pharmacol Rev 2025; 77:100002. [PMID: 39952695 DOI: 10.1124/pharmrev.123.001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The history of antiobesity pharmacotherapies is marked by disappointments, often entangled with societal pressure promoting weight loss and the prevailing conviction that excess body weight signifies a lack of willpower. However, categories of emerging pharmacotherapies generate hope to reduce obesity rates. This systematic review of phase 2 and phase 3 trials in adults with overweight/obesity investigates the effect of novel weight loss pharmacotherapies, compared to placebo/control or US Food and Drug Administration-approved weight loss medication, through searching Medline, Embase, and ClinicalTrials.gov (2012-2024). We identified 53 phase 3 and phase 2 trials, with 36 emerging antiobesity drugs or combinations thereof and 4 withdrawn or terminated trials. Oral semaglutide 50 mg is the only medication that has completed a phase 3 trial. There are 14 ongoing phase 3 trials on glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) (ecnoglutide, orforglipron, and TG103), GLP-1 RA/amylin agonist (CagriSema), GLP-1/glucagon RAs (mazdutide and survodutide), GLP-1/glucose-dependent insulinotropic polypeptide and glucagon RA (retatrutide), dapagliflozin, and the combination sibutramine/topiramate. Completed phase 2 trials on incretin-based therapies showed a mean percent weight loss of 7.4% to 24.2%. Almost half of the drugs undergoing phase 2 trials are incretin analogs. The obesity drug pipeline is expanding rapidly, with the most promising results reported with incretin analogs. Data on mortality and obesity-related complications, such as cardio-renal-metabolic events, are needed. Moreover, long-term follow-up data on the safety and efficacy of weight maintenance with novel obesity pharmacotherapies, along with studies focused on underrepresented populations, cost-effectiveness assessments, and drug availability, are needed to bridge the care gap for patients with obesity. SIGNIFICANCE STATEMENT: Obesity is the epidemic of the 21st century. Except for the newer injectable medications, drugs with suboptimal efficacy have been available in the clinician's armamentarium for weight management. However, emerging alternatives of novel agents and combinations populate the current obesity therapeutic pipeline. This systematic review identifies the state and mechanism of action of emerging pharmacotherapies undergoing or having completed phase 2 and phase 3 clinical trials. The information provided herein furthers the understanding of obesity management, implying direct clinical implications and stimulating research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marlene Chakhtoura
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Caline Rhayem
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jana Al Rifai
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Malak Ghezzawi
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
7
|
Emini M, Bhargava R, Aldhwayan M, Chhina N, Rodriguez Flores M, Aldubaikhi G, Al Lababidi M, Al-Najim W, Miras AD, Ruban A, Glaysher MA, Prechtl CG, Byrne JP, Teare JP, Goldstone AP. Satiety Hormone LEAP2 After Low-Calorie Diet With/Without Endobarrier Insertion in Obesity and Type 2 Diabetes Mellitus. J Endocr Soc 2024; 9:bvae214. [PMID: 39659543 PMCID: PMC11631353 DOI: 10.1210/jendso/bvae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Indexed: 12/12/2024] Open
Abstract
Context The liver/foregut satiety hormone liver-expressed antimicrobial peptide 2 (LEAP2) is an inverse agonist at the acyl ghrelin receptor (GHSR), increasing after food intake and decreasing after bariatric surgery and short-term nonsurgical weight loss, but effects of long-term dietary weight loss are unknown. Objective The objective of this study was to examine and compare the effects of these interventions on fasting and postprandial plasma LEAP2 and investigate potential metabolic mediators of changes in plasma LEAP2. Methods Plasma LEAP2 was measured in a previously published 2-year trial comparing standard medical management (SMM) (including 600-kcal/day deficit) with duodenal-jejunal bypass liner (DJBL, Endobarrier) insertion (explanted after 1 year) in adults with obesity and inadequately controlled type 2 diabetes mellitus. Results In the SMM group (n = 25-37), weight decreased by 4.3%, 8.1%, 7.8%, and 6.4% at 2, 26, 50, and 104 weeks and fasting plasma LEAP2 decreased from baseline mean ± SD 15.3 ± 0.9 ng/mL by 1.7, 3.8, 2.1, and 2.0 ng/mL, respectively. Absolute/decreases in fasting plasma LEAP2 positively correlated with absolute/decreases in body mass index, glycated hemoglobin A1c, fasting plasma glucose, serum insulin, homeostatic model assessment for insulin resistance, and serum triglycerides. Despite greater weight loss in the DJBL group (n = 23-30) at 26 to 50 weeks (10.4%-11.4%), the decrease in fasting plasma LEAP2 was delayed and attenuated (vs SMM), which may contribute to greater weight loss by attenuating GHSR signaling. Plasma LEAP2 did not increase with weight regain from 50 to 104 weeks after DJBL explant, suggesting a new set point with weight loss maintenance. Increases in plasma LEAP2 after a 600-kcal meal (10.8%-16.1% at 1-2 hours) were unaffected by weight loss, improved glucose metabolism, or DJBL insertion (n = 9-25), suggesting liver rather than duodenum/jejunum may be the primary source of postprandial LEAP2 secretion. Conclusion These findings add to our understanding of the regulation and potential physiological role of plasma LEAP2.
Collapse
Affiliation(s)
- Mimoza Emini
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Raghav Bhargava
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Madhawi Aldhwayan
- College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Navpreet Chhina
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Marcela Rodriguez Flores
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Ghadah Aldubaikhi
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Moaz Al Lababidi
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Werd Al-Najim
- Department of Metabolism, Diabetes and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Alexander D Miras
- Department of Metabolism, Diabetes and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Aruchuna Ruban
- Department of Surgery and Cancer, Imperial College London, St. Mary‘s Hospital, London W2 1NY, UK
| | - Michael A Glaysher
- Division of Surgery, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Christina G Prechtl
- Clinical Trials Unit, Department of Public Health, Imperial College London, London W12 7TA, UK
| | - James P Byrne
- Division of Surgery, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Julian P Teare
- Department of Surgery and Cancer, Imperial College London, St. Mary‘s Hospital, London W2 1NY, UK
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| |
Collapse
|
8
|
Martinelli S, Mazzotta A, Longaroni M, Petrucciani N. Potential role of glucagon-like peptide-1 (GLP-1) receptor agonists in substance use disorder: A systematic review of randomized trials. Drug Alcohol Depend 2024; 264:112424. [PMID: 39288591 DOI: 10.1016/j.drugalcdep.2024.112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Increasing evidence suggests that GLP-1 receptor agonists (GLP-1RA) have a potential use in addiction treatment. Few studies have assessed the impact of GLP-1RA on substance use disorder (SUD), particularly in humans. The study aimed to do systematic review of clinical trials to assess GLP-1RA's effect on reducing SUD in patients. METHODS The scientific literature was reviewed using the MEDLINE, Scopus and Cochrane Library databases, following PRISMA guidelines. Studies including patients with a diagnosis of SU who were treated with GLP-1RA were selected. The primary outcome was GLP-1RA's therapeutic effect on SUD, and the secondary outcomes were therapeutic effects of GLP-1RA on weight, BMI and HbA1c. RESULTS 1218 studies were retrieved, resulting in 507 papers after title and abstract screening. Following full-text review, only 5 articles met inclusion criteria. We incorporated a total of 630 participants utilizing Exenatide (n=3) and Dulaglutide (n=2) as GLP-1RAs. Therapeutic effect of GLP-1RA on SUD was assessed in 5 studies, with 3 demonstrating a significant decrease in SUD (alcohol and nicotine). GLP-1RA's impact on body weight, BMI, and HbA1c, was reported in 3 studies. These revealed a notable reduction in these parameters among the GLP-1RA treated group. CONCLUSION This review will give an overview of current new findings in human studies; we suggest that the effects of GLP-1RA in SUD is a possible new option of therapy in addiction medicine.
Collapse
Affiliation(s)
- Silvia Martinelli
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy; Department of Mental Health, Local Health Authority Viterbo, Viterbo, Italy
| | - Alessandro Mazzotta
- Department of Surgery, M.G. General Vannini Hospital, Istituto Figlie Di San Camillo, Rome, Italy
| | - Mattia Longaroni
- Department of Surgery, Santa Maria della Misericordia Hospital, University of Perugia, Italy
| | - Niccolò Petrucciani
- Department of Medical and Surgical Sciences and Translational Medicine, Division of General and Hepatobiliary Surgery, St. Andrea Hospital, Sapienza University of Rome, Italy.
| |
Collapse
|
9
|
Jerlhag E. Ghrelin system and GLP-1 as potential treatment targets for alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:401-432. [PMID: 39523062 DOI: 10.1016/bs.irn.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Peptides of the gut-brain axis have gained recent attention as potential treatment targets for addiction. While the number of gut-brain peptides is vast, ghrelin and glucagon-like peptide-1 (GLP-1) have been suggested as important players. Ghrelin is traditionally considered an orexigenic peptide, but recent studies found that it increases alcohol intake in rodents and craving for alcohol in humans. Additionally, suppression of the ghrelin receptor attenuates alcohol-related responses in animal models reflecting alcohol use disorder (AUD). For instance, a lower alcohol intake, suppressed motivation to consume alcohol, and attenuated reward from alcohol is observed after ghrelin receptor antagonism treatment. On a similar note, a partial ghrelin receptor agonist prevents hangover symptoms in humans. When it comes to the anorexigenic peptide GLP-1, agonists of its receptor are approved to treat diabetes type 2 and obesity. Extensive preclinical studies have revealed that these GLP-1 receptor agonists reduce alcohol intake, suppress the motivation to consume alcohol, and prevent relapse drink, with effects tentatively associated with a reduced alcohol-induced reward. These preclinical findings have to some extent been varied in humans, as GLP-1 receptor agonists decrease alcohol intake in overweight patients with AUD. Furthermore, genetic variations in either the genes encoding for pre-pro-ghrelin, GHSR, GLP-1, or its receptor, are associated with AUD and heavy alcohol drinking. While central mechanisms appear to modulate the ability of either ghrelin or GLP-1 to regulate alcohol-related responses the exact mechanisms have not been defined. Taken together these preclinical and clinical data imply that gut-brain peptides participate in the addiction process and should be considered as potential targets for AUD treatment.
Collapse
Affiliation(s)
- Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
10
|
Savulescu-Fiedler I, Mihalcea R, Dragosloveanu S, Scheau C, Baz RO, Caruntu A, Scheau AE, Caruntu C, Benea SN. The Interplay between Obesity and Inflammation. Life (Basel) 2024; 14:856. [PMID: 39063610 PMCID: PMC11277997 DOI: 10.3390/life14070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is an important condition affecting the quality of life of numerous patients and increasing their associated risk for multiple diseases, including tumors and immune-mediated disorders. Inflammation appears to play a major role in the development of obesity and represents a central point for the activity of cellular and humoral components in the adipose tissue. Macrophages play a key role as the main cellular component of the adipose tissue regulating the chronic inflammation and modulating the secretion and differentiation of various pro- and anti-inflammatory cytokines. Inflammation also involves a series of signaling pathways that might represent the focus for new therapies and interventions. Weight loss is essential in decreasing cardiometabolic risks and the degree of associated inflammation; however, the latter can persist for long after the excess weight is lost, and can involve changes in macrophage phenotypes that can ensure the metabolic adjustment. A clear understanding of the pathophysiological processes in the adipose tissue and the interplay between obesity and chronic inflammation can lead to a better understanding of the development of comorbidities and may ensure future targets for the treatment of obesity.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Razvan Mihalcea
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Radu Octavian Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania
- Department of Radiology and Medical Imaging, Faculty of Medicine, “Ovidius” University, 900527 Constanta, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Serban Nicolae Benea
- Department of Infectious Diseases, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- “Prof. Dr. Matei Balș” National Institute for Infectious Diseases, 021105 Bucharest, Romania
| |
Collapse
|
11
|
Leibold NS, Despa F. Neuroinflammation induced by amyloid-forming pancreatic amylin: Rationale for a mechanistic hypothesis. Biophys Chem 2024; 310:107252. [PMID: 38663120 PMCID: PMC11111340 DOI: 10.1016/j.bpc.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/15/2024]
Abstract
Amylin is a systemic neuroendocrine hormone co-expressed and co-secreted with insulin by pancreatic β-cells. In persons with thype-2 diabetes, amylin forms pancreatic amyloid triggering inflammasome and interleukin-1β signaling and inducing β-cell apoptosis. Here, we summarize recent progress in understanding the potential link between amyloid-forming pancreatic amylin and Alzheimer's disease (AD). Clinical data describing amylin pathology in AD alongside mechanistic studies in animals are reviewed. Data from multiple research teams indicate higher amylin concentrations are associated with increased frequency of cognitive impairment and amylin co-aggregates with β-amyloid in AD-type dementia. Evidence from rodent models further suggests cerebrovascular amylin accumulation as a causative factor underlying neurological deficits. Analysis of relevant literature suggests that modulating the amylin-interleukin-1β pathway may provide an approach for counteracting neuroinflammation in AD.
Collapse
Affiliation(s)
- Noah S Leibold
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
12
|
Leibold N, Bain JR, Despa F. Type-2 Diabetes, Pancreatic Amylin, and Neuronal Metabolic Remodeling in Alzheimer's Disease. Mol Nutr Food Res 2024; 68:e2200405. [PMID: 36708219 PMCID: PMC10374875 DOI: 10.1002/mnfr.202200405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/26/2022] [Indexed: 01/29/2023]
Abstract
Type-2 diabetes raises the risk for Alzheimer's disease (AD)-type dementia and the conversion from mild cognitive impairment to dementia, yet mechanisms connecting type-2 diabetes to AD remain largely unknown. Amylin, a pancreatic β-cell hormone co-secreted with insulin, participates in the central regulation of satiation, but also forms pancreatic amyloid in persons with type-2 diabetes and synergistically interacts with brain amyloid β (Aβ) pathology, in both sporadic and familial Alzheimer's disease (AD). Growing evidence from studies of tumor growth, together with early observations in skeletal muscle, indicates amylin as a potential trigger of cellular metabolic reprogramming. Because the blood, cerebrospinal fluid, and brain parenchyma in humans with AD have increased concentrations of amylin, amylin-mediated pathological processes in the brain may involve neuronal metabolic remodeling. This review summarizes recent progress in understanding the link between prediabetic hypersecretion of amylin and risk of neuronal metabolic remodeling and AD and suggests nutritional and medical effects of food constituents that might prevent and/or ameliorate amylin-mediated neuronal metabolic remodeling.
Collapse
Affiliation(s)
- Noah Leibold
- Department of Pharmacology and Nutritional Sciences, The University of Kentucky, Lexington, KY, USA
- The Research Center for Healthy Metabolism, The University of Kentucky, Lexington, KY, USA
| | - James R. Bain
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Claude D. Pepper Older Americans Independence Center, and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, The University of Kentucky, Lexington, KY, USA
- The Research Center for Healthy Metabolism, The University of Kentucky, Lexington, KY, USA
- Department of Neurology, The University of Kentucky, Lexington, KY, USA
| |
Collapse
|
13
|
Zhang S, Yang S, Zhuang Y, Yang D, Gu X, Wang Y, Wang Z, Chen R, Yan F. Lactobacillus acidophilus CICC 6075 attenuates high-fat diet-induced obesity by improving gut microbiota composition and histidine biosynthesis. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:367-380. [PMID: 39364122 PMCID: PMC11444864 DOI: 10.12938/bmfh.2024-008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/04/2024] [Indexed: 10/05/2024]
Abstract
This study aimed to investigate the potential anti-obesity efficacy of Lactobacillus acidophilus CICC 6075. The study analyzed fecal metagenomic data from 120 obese and 100 non-obese individuals. C57BL/6 mice on normal diet or high-fat diet (HFD) were treated with L. acidophilus CICC 6075 by daily oral gavage for 12 weeks, followed by evaluations of the obesity phenotype. Metagenomic analysis revealed depletion of L. acidophilus in obese individuals. Administration of L. acidophilus CICC 6075 attenuated excessive weight gain and fat accumulation and maintained the intestinal barrier in HFD-induced obese mice. Sequencing results showed that HFD hindered α- and β-diversity while reducing the relative abundance of Lactobacillus and norank_f_Muribaculaceae and significantly increasing the relative abundance of Ileibacterium. L. acidophilus CICC 6075 reversed these results and reduced the Firmicutes/Bacteroidetes ratio. Supplementation of L. acidophilus CICC 6075 enhanced histidine biosynthesis, inhibited the NF-κB pathway, and significantly reduced the expression levels of inflammatory factors in adipose tissue. These results indicate that L. acidophilus CICC 6075 alleviates HFD-induced obesity in mice by inhibiting the activation of the NF-κB pathway and enhancing gut microbiota functionality. This suggests that L. acidophilus CICC 6075 may be a good candidate probiotic for preventing obesity.
Collapse
Affiliation(s)
- Shenyang Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuai Yang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yun Zhuang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Yang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiqun Gu
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yi Wang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenzhen Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renjin Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fuling Yan
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
14
|
Shin SM, Park JS, Kim SB, Cho YH, Seo H, Lee HS. A 12-Week, Single-Centre, Randomised, Double-Blind, Placebo-Controlled, Parallel-Design Clinical Trial for the Evaluation of the Efficacy and Safety of Lactiplantibacillus plantarum SKO-001 in Reducing Body Fat. Nutrients 2024; 16:1137. [PMID: 38674828 PMCID: PMC11053414 DOI: 10.3390/nu16081137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
There is growing evidence linking gut microbiota to overall health, including obesity risk and associated diseases. Lactiplantibacillus plantarum SKO-001, a probiotic strain isolated from Angelica gigas, has been reported to reduce obesity by controlling the gut microbiome. In this double-blind, randomised clinical trial, we aimed to evaluate the efficacy and safety of SKO-001 in reducing body fat. We included 100 participants randomised into SKO-001 or placebo groups (1:1) for 12 weeks. Dual-energy X-ray absorptiometry was used to objectively evaluate body fat reduction. Body fat percentage (p = 0.016), body fat mass (p = 0.02), low-density lipoprotein-cholesterol levels (p = 0.025), and adiponectin levels (p = 0.023) were lower in the SKO-001 group than in the placebo group after 12 weeks of SKO-001 consumption. In the SKO-001 group, the subcutaneous fat area (p = 0.003), total cholesterol levels (p = 0.003), and leptin levels (p = 0.014) significantly decreased after 12 weeks of SKO-001 consumption compared with baseline values. Additionally, SKO-001 did not cause any severe adverse reactions. In conclusion, SKO-001 is safe and effective for reducing body fat and has the potential for further clinical testing in humans.
Collapse
Affiliation(s)
- Seon Mi Shin
- Department of Internal Medicine, College of Korean Medicine, Semyung University, Semyeong-ro 65, Jecheon-si 27136, Republic of Korea
| | - Jeong-Su Park
- Department of Preventive Medicine, College of Korean Medicine, Semyung University, Semyeong-ro 65, Jecheon-si 27136, Republic of Korea;
| | - Sang Back Kim
- Food Science R&D Center, Kolmar BNH Co., Ltd., 61, Heolleung-ro 8-gil, Seocho-gu, Seoul 06800, Republic of Korea; (S.B.K.); (Y.H.C.); (H.S.); (H.S.L.)
| | - Young Hee Cho
- Food Science R&D Center, Kolmar BNH Co., Ltd., 61, Heolleung-ro 8-gil, Seocho-gu, Seoul 06800, Republic of Korea; (S.B.K.); (Y.H.C.); (H.S.); (H.S.L.)
| | - Hee Seo
- Food Science R&D Center, Kolmar BNH Co., Ltd., 61, Heolleung-ro 8-gil, Seocho-gu, Seoul 06800, Republic of Korea; (S.B.K.); (Y.H.C.); (H.S.); (H.S.L.)
| | - Hak Sung Lee
- Food Science R&D Center, Kolmar BNH Co., Ltd., 61, Heolleung-ro 8-gil, Seocho-gu, Seoul 06800, Republic of Korea; (S.B.K.); (Y.H.C.); (H.S.); (H.S.L.)
| |
Collapse
|
15
|
Abstract
Recent publicity around the use of new antiobesity medications (AOMs) has focused the attention of patients and healthcare providers on the role of pharmacotherapy in the treatment of obesity. Newer drug treatments have shown greater efficacy and safety compared with older drug treatments, yet access to these drug treatments is limited by providers' discomfort in prescribing, bias, and stigma around obesity, as well as by the lack of insurance coverage. Now more than ever, healthcare providers must be able to discuss the risks and benefits of the full range of antiobesity medications available to patients, and to incorporate both guideline based advice and emerging real world clinical evidence into daily clinical practice. The tremendous variability in response to antiobesity medications means that clinicians need to use a flexible approach that takes advantage of specific features of the antiobesity medication selected to provide the best option for individual patients. Future research is needed on how best to use available drug treatments in real world practice settings, the potential role of combination therapies, and the cost effectiveness of antiobesity medications. Several new drug treatments are being evaluated in ongoing clinical trials, suggesting that the future for pharmacotherapy of obesity is bright.
Collapse
Affiliation(s)
| | - Lewis
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Division of General Internal Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Caroline E Sloan
- Division of General Internal Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
- Margolis Center for Health Policy, Duke University, Durham, NC, USA
| | - Daniel H Bessesen
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - David Arterburn
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Division of General Internal Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
Park YJ, Seo DW, Gil TY, Kim HJ, Jin JS, Cha YY, An HJ. Sipyimigwanjung-tang, a traditional herbal medication, alleviates weight gain in a high-fat diet-induced obese mice model. Heliyon 2024; 10:e27463. [PMID: 38495187 PMCID: PMC10943437 DOI: 10.1016/j.heliyon.2024.e27463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Obesity leads to the development of metabolic syndrome and comorbidities. Overweight and obesity continue to be a relentless global issue. Sipyimigwanjung-tang (SGT), a traditional herbal medication, was first mentioned in Dongui Sasang Shinpyun and has been used to treat edema, meteorism, and jaundice, which are common findings associated with obesity. The main physiological feature of obesity is expanded adipose tissue, which causes several impairments in liver metabolism. Therefore, this study aimed to investigate the anti-obesity effects of SGT in the epididymal white adipose tissue (eWAT) and livers of high-fat diet (HFD)-induced obese mice. SGT significantly blocked HFD-induced weight gain in C57BL/6N mice. In addition, SGT effectively reduced the increased weight and adipocyte size in eWAT of HFD-induced obese C57BL/6 N mice. Moreover, SGT significantly decreased the elevated gene expression of Peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, and Sterol regulatory element-binding protein 1 in the eWAT of HFD-induced obese mice. Furthermore, SGT significantly decreased lipid accumulation in the livers of HFD-induced obese mice and differentiated 3T3-L1 adipocytes. Hence, the present study provides substantial evidence that SGT has potential therapeutic effects on obesity.
Collapse
Affiliation(s)
- Yea-Jin Park
- Department of Rehabilitative Medicine of Korean Medicine and Neuropsychiatry, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dong-Wook Seo
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Tae-Young Gil
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyo-Jung Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jong-Sik Jin
- Department of Oriental Medicine Resources, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Yun-Yeop Cha
- Department of Rehabilitative Medicine of Korean Medicine and Neuropsychiatry, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea
| | - Hyo-Jin An
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
17
|
Mondal I, Halder AK, Pattanayak N, Mandal SK, Cordeiro MNDS. Shaping the Future of Obesity Treatment: In Silico Multi-Modeling of IP6K1 Inhibitors for Obesity and Metabolic Dysfunction. Pharmaceuticals (Basel) 2024; 17:263. [PMID: 38399478 PMCID: PMC10891520 DOI: 10.3390/ph17020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Recent research has uncovered a promising approach to addressing the growing global health concern of obesity and related disorders. The inhibition of inositol hexakisphosphate kinase 1 (IP6K1) has emerged as a potential therapeutic strategy. This study employs multiple ligand-based in silico modeling techniques to investigate the structural requirements for benzisoxazole derivatives as IP6K1 inhibitors. Firstly, we developed linear 2D Quantitative Structure-Activity Relationship (2D-QSAR) models to ensure both their mechanistic interpretability and predictive accuracy. Then, ligand-based pharmacophore modeling was performed to identify the essential features responsible for the compounds' high activity. To gain insights into the 3D requirements for enhanced potency against the IP6K1 enzyme, we employed multiple alignment techniques to set up 3D-QSAR models. Given the absence of an available X-ray crystal structure for IP6K1, a reliable homology model for the enzyme was developed and structurally validated in order to perform structure-based analyses on the selected dataset compounds. Finally, molecular dynamic simulations, using the docked poses of these compounds, provided further insights. Our findings consistently supported the mechanistic interpretations derived from both ligand-based and structure-based analyses. This study offers valuable guidance on the design of novel IP6K1 inhibitors. Importantly, our work exclusively relies on non-commercial software packages, ensuring accessibility for reproducing the reported models.
Collapse
Affiliation(s)
- Ismail Mondal
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, India; (I.M.); (A.K.H.); (N.P.); (S.K.M.)
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, India; (I.M.); (A.K.H.); (N.P.); (S.K.M.)
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Nirupam Pattanayak
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, India; (I.M.); (A.K.H.); (N.P.); (S.K.M.)
| | - Sudip Kumar Mandal
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, India; (I.M.); (A.K.H.); (N.P.); (S.K.M.)
| | - Maria Natalia D. S. Cordeiro
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
18
|
Domingo E, Marques P, Francisco V, Piqueras L, Sanz MJ. Targeting systemic inflammation in metabolic disorders. A therapeutic candidate for the prevention of cardiovascular diseases? Pharmacol Res 2024; 200:107058. [PMID: 38218355 DOI: 10.1016/j.phrs.2024.107058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death and disability worldwide. While many factors can contribute to CVD, atherosclerosis is the cardinal underlying pathology, and its development is associated with several metabolic risk factors including dyslipidemia and obesity. Recent studies have definitively demonstrated a link between low-grade systemic inflammation and two relevant metabolic abnormalities: hypercholesterolemia and obesity. Interestingly, both metabolic disorders are also associated with endothelial dysfunction/activation, a proinflammatory and prothrombotic phenotype of the endothelium that involves leukocyte infiltration into the arterial wall, one of the earliest stages of atherogenesis. This article reviews the current literature on the intricate relationship between hypercholesterolemia and obesity and the associated systemic inflammation and endothelial dysfunction, and discusses the effectiveness of present, emerging and in-development pharmacological therapies used to treat these metabolic disorders with a focus on their effects on the associated systemic inflammatory state and cardiovascular risk.
Collapse
Affiliation(s)
- Elena Domingo
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Patrice Marques
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Vera Francisco
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Valencia, Spain
| | - Laura Piqueras
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| | - Maria-Jesus Sanz
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| |
Collapse
|
19
|
Kong X, Liu C, Zhang Z, Cheng M, Mei Z, Li X, Liu P, Diao L, Ma Y, Jiang P, Kong X, Nie S, Guo Y, Wang Z, Zhang X, Wang Y, Tang L, Guo S, Liu Z, Li D. BATMAN-TCM 2.0: an enhanced integrative database for known and predicted interactions between traditional Chinese medicine ingredients and target proteins. Nucleic Acids Res 2024; 52:D1110-D1120. [PMID: 37904598 PMCID: PMC10767940 DOI: 10.1093/nar/gkad926] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 11/01/2023] Open
Abstract
Traditional Chinese medicine (TCM) is increasingly recognized and utilized worldwide. However, the complex ingredients of TCM and their interactions with the human body make elucidating molecular mechanisms challenging, which greatly hinders the modernization of TCM. In 2016, we developed BATMAN-TCM 1.0, which is an integrated database of TCM ingredient-target protein interaction (TTI) for pharmacology research. Here, to address the growing need for a higher coverage TTI dataset, and using omics data to screen active TCM ingredients or herbs for complex disease treatment, we updated BATMAN-TCM to version 2.0 (http://bionet.ncpsb.org.cn/batman-tcm/). Using the same protocol as version 1.0, we collected 17 068 known TTIs by manual curation (with a 62.3-fold increase), and predicted ∼2.3 million high-confidence TTIs. In addition, we incorporated three new features into the updated version: (i) it enables simultaneous exploration of the target of TCM ingredient for pharmacology research and TCM ingredients binding to target proteins for drug discovery; (ii) it has significantly expanded TTI coverage; and (iii) the website was redesigned for better user experience and higher speed. We believe that BATMAN-TCM 2.0, as a discovery repository, will contribute to the study of TCM molecular mechanisms and the development of new drugs for complex diseases.
Collapse
Affiliation(s)
- Xiangren Kong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chao Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Zuzhen Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Meiqi Cheng
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Zhijun Mei
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiangdong Li
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Peng Liu
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Lihong Diao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yajie Ma
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Peng Jiang
- Beijing Geneworks Technology Co., Ltd, Beijing 100101, China
| | - Xiangya Kong
- Beijing Geneworks Technology Co., Ltd, Beijing 100101, China
| | - Shiyan Nie
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yingzi Guo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ze Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xinlei Zhang
- Beijing Geneworks Technology Co., Ltd, Beijing 100101, China
| | - Yan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Liujun Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhongyang Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- College of Life Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
20
|
Prabhakar PK. Combination Therapy: A New Tool for the Management of Obesity. Endocr Metab Immune Disord Drug Targets 2024; 24:402-417. [PMID: 37641995 DOI: 10.2174/1871530323666230825140808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/19/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023]
Abstract
Obesity is a chronic lifestyle issue with devastating results. Behavioral changes are one of the initial lines of management strategies for obesity, but they are not very efficient management strategies. Many people also use surgical intervention to maintain a healthy weight, now considered to be the most common and effective obesity management. Chemically synthesized medicines fill the gap between lifestyle interventions and minimally invasive surgical management of obesity. The most common issue associated with monotherapy without side effects is its moderate effectiveness and higher dose requirement. Combination therapy is already used for many serious and complicated disease treatments and management and has shown efficacy as well. Generally, we use two or more medicines with different mechanisms of action for a better effect. The commonly used combination therapy for obesity management includes low-dose phentermine and prolonged and slow-releasing mechanism topiramate; naltrexone, and bupropion. Phentermine with inhibitors of Na-glucose cotransporter-2 or glucagon-like peptide-1 (GLP-1) agonists with gastric hormone or Na-glucose cotransporter-2 are two more viable combo therapy. This combination strategy aims to achieve success in bariatric surgery and the scientific community is working in this direction.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Department of Research Impact and Outcome, Lovely Professional University, Punjab, 144411, India
| |
Collapse
|
21
|
Carbonetti MP, Almeida-Oliveira F, Majerowicz D. Use of FGF21 analogs for the treatment of metabolic disorders: a systematic review and meta-analysis. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 68:e220493. [PMID: 37948566 PMCID: PMC10916804 DOI: 10.20945/2359-4292-2022-0493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/23/2023] [Indexed: 11/12/2023]
Abstract
FGF21 is a hormone produced primarily by the liver with several metabolic functions, such as induction of heat production, control of glucose homeostasis, and regulation of blood lipid levels. Due to these actions, several laboratories have developed FGF21 analogs to treat patients with metabolic disorders such as obesity and diabetes. Here, we performed a systematic review and meta-analysis of randomized controlled trials that used FGF21 analogs and analyzed metabolic outcomes. Our search yielded 236 articles, and we included eight randomized clinical trials in the meta-analysis. The use of FGF21 analogs exhibited no effect on fasting blood glucose, glycated hemoglobin, HOMA index, blood free fatty acids or systolic blood pressure. However, the treatment significantly reduced fasting insulinemia, body weight and total cholesterolemia. None of the included studies were at high risk of bias. The quality of the evidence ranged from moderate to very low, especially due to imprecision and indirection issues. These results indicate that FGF21 analogs can potentially treat metabolic syndrome. However, more clinical trials are needed to increase the quality of evidence and confirm the effects seen thus far.
Collapse
Affiliation(s)
- Maria Paula Carbonetti
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Fernanda Almeida-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - David Majerowicz
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Programa de Pós-graduação em Biociências, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil,
| |
Collapse
|
22
|
Shi H, Zheng Y, Zhao J, Li Y, Jia H, Hou X, Li Y, Li J, Wu C, Gao L. Zexie decoction reduce glucose-dependent lipid accumulation and oxidative stress in Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155036. [PMID: 37643530 DOI: 10.1016/j.phymed.2023.155036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Obesity has become a global public health problem. Zexie decoction (ZXT) is a classic formula from Synopsis of the Golden Chamber. However, the long-term effect of ZXT in lipid accumulation remain unclear. PURPOSE This study aims to investigate the effect of ZXT on aging, lipid metabolism and oxidative stress. METHODS Different concentration of ZXT was administered to Caenorhabditis elegans (C. elegans) cultured in NGM or the high glucose nematode growth media (GNGM). The lifespan, heat stress resistance, lipid accumulation and related mRNA expression of the worms were examined. Oil Red staining and triglyceride were used to evaluated the lipid accumulation. Nhr-49, fat-5/fat-7, fat-5/fat-6 or skn-1 knockout mutants were used to clarify the effect on lipid metabolism of ZXT. GFP-binding mutants were used to observe the changes in protein expression. RESULTS ZXT improved the survival rate of C. elegans in lifespan test and heat stress test. ZXT also reduced lipid accumulation in C. elegans and significantly changed the expression of fatty acid synthesis related genes and lipid metabolism related genes. In addition, ZXT-treated C. elegans showed a higher expression of anti-oxidative protein, and reduced the expression of oxidative stress and mitochondrial dysfunction marker. However, when skn-1 was knockdown, ZXT no longer had the effect of maintaining the mitochondria membrane potential and lipid lowering but still effectively decreased the O2·- induced by high glucose. CONCLUSIONS ZXT reduced fat accumulation by regulating lipid metabolism via multiple targets and enhanced stress resistance by its antioxidant effect in C. elegans.
Collapse
Affiliation(s)
- Hao Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, China; Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Yantao Zheng
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Jiamin Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Yiwen Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Hui Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Xiaoning Hou
- South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yunjia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Junjie Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Chaofeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510000, China; Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China; Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
23
|
Perger E, Bertoli S, Lombardi C. Pharmacotherapy for obstructive sleep apnea: targeting specific pathophysiological traits. Expert Rev Respir Med 2023; 17:663-673. [PMID: 37646222 DOI: 10.1080/17476348.2023.2241353] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION The pathophysiology of obstructive sleep apnea (OSA) is multi-factorial and complex. Varying OSA's pathophysiological traits have been identified, including pharyngeal collapsibility, upper airway muscle reactivity, arousal threshold, and regulation of the ventilatory drive. Being CPAP of difficult tolerance and other interventions reserved to specific subpopulations new pharmacological treatments for OSA might be resolutive. AREAS COVERED Several existing and newly developed pharmacological drugs can impact one or more endotypes and could therefore be proposed as treatment options for sleep disordered breathing. With this review we will explore different pathophysiological traits as new targets for OSA therapy. This review will summarize the most promising pharmacological treatment for OSA accordingly with their mechanisms of action on upper airway collapsibility, muscle responsiveness, arousal threshold, and loop gain. EXPERT OPINION Only understanding the pathophysiological traits causing OSA in each patient and placing the disease in the framework of patient comorbidities, we will be able to evolve interventions toward OSA. The development of new drug's combinations will permit different approaches and different choices beside conventional treatments. In the next future, we hope that sleep specialists will select the treatment for a specific patient on the base of its pathophysiology, defining a precision medicine for OSA.
Collapse
Affiliation(s)
- Elisa Perger
- Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Simona Bertoli
- Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
- Lab of Nutrition and Obesity Research, Istituto Auxologico Italiano, IRCCS, Milan, Carolina
| | - Carolina Lombardi
- Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
24
|
Rocha S, Rufino AT, Freitas M, Silva AMS, Carvalho F, Fernandes E. Methodologies for Assessing Pancreatic Lipase Catalytic Activity: A Review. Crit Rev Anal Chem 2023; 54:3038-3065. [PMID: 37335098 DOI: 10.1080/10408347.2023.2221731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Obesity is a disease of epidemic proportions with a concerning increasing trend. Regarded as one of the main sources of energy, lipids can also represent a big part of an unnecessary intake of calories and be, therefore, directly related to the problem of obesity. Pancreatic lipase is an enzyme that is essential in the absorption and digestion of dietary fats and has been explored as an alternative for the reduction of fat absorption and consequent weigh loss. Literature describes a great variability of methodologies and experimental conditions used in research to evaluate the in vitro inhibitory activity of compounds against pancreatic lipase. However, in an attempt to choose the best approach, it is necessary to know all the reaction conditions and understand how these can affect the enzymatic assay. The objective of this review is to understand and summarize the methodologies and respective experimental conditions that are mainly used to evaluate pancreatic lipase catalytic activity. 156 studies were included in this work and a detailed description of the most commonly used UV/Vis spectrophotometric and fluorimetric instrumental techniques are presented, including a discussion regarding the differences found in the parameters used in both techniques, namely enzyme, substrate, buffer solutions, kinetics conditions, temperature and pH. This works shows that both UV/Vis spectrophotometry and fluorimetry are useful instrumental techniques for the evaluation of pancreatic lipase catalytic activity, presenting several advantages and limitations, which make the choice of parameters and experimental conditions a crucial decision to obtain the most reliable results.
Collapse
Affiliation(s)
- Sílvia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Artur M S Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
25
|
Jerlhag E. The therapeutic potential of glucagon-like peptide-1 for persons with addictions based on findings from preclinical and clinical studies. Front Pharmacol 2023; 14:1063033. [PMID: 37063267 PMCID: PMC10097922 DOI: 10.3389/fphar.2023.1063033] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Although the multifaceted mechanisms underlying alcohol use disorder (AUD) have been partially defined, the neurobiological complexity of this disorder is yet to be unraveled. One of the systems that have gained attention in recent times is the gut–brain axis. Although numerous peptides participate in this axis, glucagon-like peptide-1 (GLP-1) plays a central role. GLP-1 is a crucial anorexigenic peptide, with potent abilities to reduce food intake and body weight. The physiological complexity of GLP-1 entails glucose homeostasis, gastrointestinal motility, and the release of insulin and glucagon. As reviewed in this study, acute or repeated treatment with GLP-1 receptor (GLP-1R) agonists decreases alcohol consumption in rodents. Moreover, the abilities of alcohol to promote hyperlocomotion, dopamine release in the nucleus accumbens, and reward in the conditioned place preference paradigm are all suppressed by GLP-1R ligands. Moreover, activation of GLP-1R suppresses the motivation to consume alcohol, alcohol-seeking behaviors, and relapse drinking in male rodents. Similarly, abstinence symptoms experienced during alcohol withdrawal are attenuated by activation of the GLP-1 pathway. On a similar note, the activation of GLP-1 receptors within areas of the brain that are processing reward modulates these alcohol-related responses. Another area that is crucial for this ability is the nucleus of the solitary tract, which is where GLP-1 is produced and from which GLP-1-containing neurons project to areas of reward. These findings may have clinical relevance as AUD is associated with polymorphisms in GLP-1-related genes. Although a GLP-1R agonist does not alter alcohol intake in AUD patients, it reduces this consumption in a sub-population of obese AUD individuals. Given the uncertainty of this outcome, additional clinical studies of obese AUD patients should explore the effects of the GLP-1R agonists on alcohol intake and body weight. Furthermore, GLP-1 receptors modulate the behavioral and neurochemical responses to addictive drugs. Taken together, these preclinical and clinical findings imply that the GLP-1 pathway plays a role in the complex mechanisms regulating alcohol and drug consumption patterns, unveiling a novel aspect of addiction medicine.
Collapse
|
26
|
Mudgil P, Redha A, Nirmal NP, Maqsood S. In vitro antidiabetic and antihypercholesterolemic activities of camel milk protein hydrolysates derived upon simulated gastrointestinal digestion of milk from different camel breeds. J Dairy Sci 2023; 106:3098-3108. [PMID: 36935238 DOI: 10.3168/jds.2022-22701] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/11/2022] [Indexed: 03/19/2023]
Abstract
Milk protein hydrolysates derived from 4 camel breeds (Pakistani, Saheli, Hozami, and Omani) were evaluated for in vitro inhibition of antidiabetic enzymatic markers (dipeptidyl peptidase IV and α-amylase) and antihypercholesterolemic enzymatic markers (pancreatic lipase and cholesterol esterase). Milk samples were subjected to in vitro simulated gastric (SGD) and gastrointestinal digestion (SGID) conditions. In comparison with intact milk proteins, the SGD-derived milk protein hydrolysates showed enhanced inhibition of α-amylase, dipeptidyl peptidase IV, pancreatic lipase, and cholesterol esterase as reflected by lower half-maximal inhibitory concentration values. Overall, milk protein hydrolysates derived from the milk of Hozami and Omani camel breeds displayed higher inhibition of different enzymatic markers compared with milk protein hydrolysates from Pakistani and Saheli breeds. In vitro SGD and SGID processes significantly increased the bioactive properties of milk from all camel breeds. Milk protein hydrolysates from different camel breeds showed significant variations for inhibition of antidiabetic and antihypercholesterolemic enzymatic markers, suggesting the importance of breed selection for production of bioactive peptides. However, further studies on identifying the peptides generated upon SGD and SGID of milk from different camel breeds are needed.
Collapse
Affiliation(s)
- Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, United Kingdom; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nilesh P Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.
| |
Collapse
|
27
|
Cellular and Molecular Mechanisms Associating Obesity to Bone Loss. Cells 2023; 12:cells12040521. [PMID: 36831188 PMCID: PMC9954309 DOI: 10.3390/cells12040521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Obesity is an alarming disease that favors the upset of other illnesses and enhances mortality. It is spreading fast worldwide may affect more than 1 billion people by 2030. The imbalance between excessive food ingestion and less energy expenditure leads to pathological adipose tissue expansion, characterized by increased production of proinflammatory mediators with harmful interferences in the whole organism. Bone tissue is one of those target tissues in obesity. Bone is a mineralized connective tissue that is constantly renewed to maintain its mechanical properties. Osteoblasts are responsible for extracellular matrix synthesis, while osteoclasts resorb damaged bone, and the osteocytes have a regulatory role in this process, releasing growth factors and other proteins. A balanced activity among these actors is necessary for healthy bone remodeling. In obesity, several mechanisms may trigger incorrect remodeling, increasing bone resorption to the detriment of bone formation rates. Thus, excessive weight gain may represent higher bone fragility and fracture risk. This review highlights recent insights on the central mechanisms related to obesity-associated abnormal bone. Publications from the last ten years have shown that the main molecular mechanisms associated with obesity and bone loss involve: proinflammatory adipokines and osteokines production, oxidative stress, non-coding RNA interference, insulin resistance, and changes in gut microbiota. The data collection unveils new targets for prevention and putative therapeutic tools against unbalancing bone metabolism during obesity.
Collapse
|
28
|
Choi MJ, Yu H, Kim JI, Seo H, Kim JG, Kim SK, Lee HS, Cheon HG. Anti-obesity effects of Lactiplantibacillus plantarum SKO-001 in high-fat diet-induced obese mice. Eur J Nutr 2023; 62:1611-1622. [PMID: 36729332 DOI: 10.1007/s00394-023-03096-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
PURPOSE Previous reports showed that some probiotics provide beneficial effects on various diseases including metabolic disorders. This study aimed to investigate the anti-obesity effects of Lactiplantibacillus (L.) plantarum SKO-001 (SKO-001), a probiotic strain newly isolated from Angelica gigas. METHODS C57BL/6J mice were fed with high-fat diet (HFD, 60% fat) for four weeks, and then different doses of SKO-001 (n = 10 each group) were orally given for 12 weeks. Following treatment, body weight, fat weight, serum parameters and adipose and liver tissues were analyzed. RESULTS SKO-001 (2 × 1010 CFU/day, per os) reduced body weight gain after 10th week of administration, accompanied by a reduction in body fat mass of mice. In the SKO-001-fed group, increased serum adiponectin, decreased leptin, insulin, total cholesterol, low-density lipoprotein cholesterol, free fatty acids, and triglyceride levels were observed. Hematoxylin and eosin staining of various fat depots showed that increased adipocyte size caused by HFD intake was markedly reduced and correlated with reduced mRNA levels of lipogenesis genes, including sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor gamma, and CCAAT/enhancer binding protein alpha, and increased uncoupling protein 1 levels. Similarly, SKO-001 reduced lipid accumulation, decreased the mRNA levels of lipogenic genes, and reduced α-smooth muscle actin and collagen type 1 alpha 1 levels in the liver. CONCLUSIONS SKO-001 ameliorates obesity and related metabolic abnormalities in adipose and liver tissues, possibly via the regulation of lipid metabolism. Based on the results of the present study, SKO-001 may be applicable as an anti-obesity therapeutic or functional food.
Collapse
Affiliation(s)
- Mi Jin Choi
- Department of Pharmacology, Gachon University School of Medicine, Incheon, 21999, Republic of Korea
| | - Hana Yu
- Department of Pharmacology, Gachon University School of Medicine, Incheon, 21999, Republic of Korea
| | - Jea Il Kim
- Department of Health Sciences and Technology, GAIHST, Incheon, 21999, Republic of Korea
| | - Hee Seo
- Food Science R&D Center, Kolmar BNH CO., LTD, 61, Heolleung-ro 8-gil, Seocho-gu, Seoul, 06800, Republic of Korea
| | - Ju Gyeong Kim
- Food Science R&D Center, Kolmar BNH CO., LTD, 61, Heolleung-ro 8-gil, Seocho-gu, Seoul, 06800, Republic of Korea
| | - Seul-Ki Kim
- Food Science R&D Center, Kolmar BNH CO., LTD, 61, Heolleung-ro 8-gil, Seocho-gu, Seoul, 06800, Republic of Korea
| | - Hak Sung Lee
- Food Science R&D Center, Kolmar BNH CO., LTD, 61, Heolleung-ro 8-gil, Seocho-gu, Seoul, 06800, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Pharmacology, Gachon University School of Medicine, Incheon, 21999, Republic of Korea.
- Department of Health Sciences and Technology, GAIHST, Incheon, 21999, Republic of Korea.
| |
Collapse
|
29
|
Janez A, Herman R, Poredos P, Mikhailidis DP, Blinc A, Sabovic M, Studen KB, Jezovnik MK, Schernthaner GH, Anagnostis P, Antignani PL, Jensterle M. Cardiometabolic Risk, Peripheral Arterial Disease and Cardiovascular Events in Polycystic Ovary Syndrome: Time to Implement Systematic Screening and Update the Management. Curr Vasc Pharmacol 2023; 21:424-432. [PMID: 37779406 DOI: 10.2174/0115701611269146230920073301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine disorder in women of reproductive age. It presents with gynaecologic, metabolic, and psychologic manifestations. The dominant drivers of pathophysiology are hyperandrogenism and insulin resistance. Both conditions are related to cardiometabolic risk factors, such as obesity, hypertension, dyslipidaemia, hyperglycaemia, type 2 and gestational diabetes, nonalcoholic fatty liver disease and obstructive sleep apnoea. Women with PCOS of reproductive age consistently demonstrated an elevated risk of subclinical atherosclerosis, as indicated by different measurement methods, while findings for menopausal age groups exhibited mixed results. Translation of subclinical atherosclerosis into the increased incidence of peripheral arterial disease and major cardiovascular (CV) events is less clear. Although several expert groups have advised screening, the CV risk assessment and prevention of CV events are frequently underdiagnosed and overlooked aspects of the management of PCOS. A combination of lifestyle management and pharmacotherapy, including the promising new era of anti-obesity medicine, can lead to improvements in cardiometabolic health.
Collapse
Affiliation(s)
- Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Herman
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Pavel Poredos
- Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Dimitri P Mikhailidis
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London Medical School, University College London (UCL), UK
- Department of Clinical Biochemistry, Royal Free Hospital Campus (UCL), London, UK
| | - Ales Blinc
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Miso Sabovic
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katica Bajuk Studen
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mateja Kaja Jezovnik
- Department of Advanced Cardiopulmonary Therapies and Transplantation, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Gerit-Holger Schernthaner
- Division of Angiology, Department of Medicine 2, Division of Angiology, Medical University of Vienna, Vienna, Austria
| | - Panagiotis Anagnostis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynaecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
30
|
Przybysz JT, DiBrog AM, Kern KA, Mukherjee A, Japa JE, Waite MH, Mietlicki-Baase EG. Macronutrient intake: Hormonal controls, pathological states, and methodological considerations. Appetite 2023; 180:106365. [PMID: 36347305 PMCID: PMC10563642 DOI: 10.1016/j.appet.2022.106365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
A plethora of studies to date has examined the roles of feeding-related peptides in the control of food intake. However, the influence of these peptides on the intake of particular macronutrient constituents of food - carbohydrate, fat, and protein - has not been as extensively addressed in the literature. Here, the roles of several feeding-related peptides in controlling macronutrient intake are reviewed. Next, the relationship between macronutrient intake and diseases including diabetes mellitus, obesity, and eating disorders are examined. Finally, some key considerations in macronutrient intake research are discussed. We hope that this review will shed light onto this underappreciated topic in ingestive behavior research and will help to guide further scientific investigation in this area.
Collapse
Affiliation(s)
- Johnathan T Przybysz
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Adrianne M DiBrog
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Katherine A Kern
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Ashmita Mukherjee
- Psychology, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Jason E Japa
- Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Mariana H Waite
- Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Elizabeth G Mietlicki-Baase
- Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
31
|
Fox CK, Raatz SJ, Sweeney BR. Pharmacological Strategies for Pediatric Obesity. MANAGING PEDIATRIC OBESITY USING ADVANCED THERAPIES 2023:139-210. [DOI: 10.1007/978-3-031-37380-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Mirzaei F, Khodadadi I, Majdoub N, Vafaei SA, Tayebinia H, Abbasi E. Role of Glucagon-like Peptide-1 (GLP-1) Agonists in the Management of Diabetic Patients with or without COVID-19. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2022. [DOI: 10.2174/18741045-v16-e2212130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a gut-derived hormone released after a meal, which alleviates hyperglycemia, increases β-cell survival, reduces body weight, and reduces inflammation. These thrilling effects motivated clinical studies to discover the potential use of GLP-1 receptor agonists (GLP-1 RAs) in the management of T2D. GLP-1 RAs are potential anti-diabetic agents that can reduce blood pressure, glucose levels, HbA1c and, weight loss without hypoglycemia risk. This manuscript reviews the importance of GLP-1 RAs and their role in the management of T2D with or without COVID-19 infection. Hence, this manuscript can help physicians and researchers to choose the most appropriate drugs for the individualized treatment of subjects.
Collapse
|
33
|
Effect of the Melanocortin 4-Receptor Ile269Asn Mutation on Weight Loss Response to Dietary, Phentermine and Bariatric Surgery Interventions. Genes (Basel) 2022; 13:genes13122267. [PMID: 36553534 PMCID: PMC9778600 DOI: 10.3390/genes13122267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/05/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The loss of function melanocortin 4-receptor (MC4R) Ile269Asn mutation has been proposed as one of the most important genetic contributors to obesity in the Mexican population. However, whether patients bearing this mutation respond differently to weight loss treatments is unknown. We tested the association of this mutation with obesity in 1683 Mexican adults, and compared the response of mutation carriers and non-carriers to three different weight loss interventions: dietary restriction intervention, phentermine 30 mg/day treatment, and Roux-en-Y gastric bypass (RYGB) surgery. The Ile269Asn mutation was associated with obesity [OR = 3.8, 95% CI (1.5-9.7), p = 0.005]. Regarding interventions, in the dietary restriction group only two patients were MC4R Ile269Asn mutation carriers. After 1 month of treatment, both mutation carriers lost weight: -4.0 kg (-2.9%) in patient 1, and -1.8 kg (-1.5%) in patient 2; similar to the mean weight loss observed in six non-carrier subjects (-2.9 kg; -2.8%). Phentermine treatment produced similar weight loss in six carriers (-12.7 kg; 15.5%) and 18 non-carriers (-11.3 kg; 13.6%) after 6 months of pharmacological treatment. RYGB also caused similar weight loss in seven carriers (29.9%) and 24 non-carriers (27.8%), 6 months after surgery. Our findings suggest that while the presence of a single MC4R loss of function Ile269Asn allele significantly increases obesity risk, the presence of at least one functional MC4R allele seems sufficient to allow short-term weight loss in response to dietary restriction, phentermine and RYGB. Thus, these three different interventions may be useful for the short-term treatment of obesity in MC4R Ile269Asn mutation carriers.
Collapse
|
34
|
El Meouchy P, Wahoud M, Allam S, Chedid R, Karam W, Karam S. Hypertension Related to Obesity: Pathogenesis, Characteristics and Factors for Control. Int J Mol Sci 2022; 23:ijms232012305. [PMID: 36293177 PMCID: PMC9604511 DOI: 10.3390/ijms232012305] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
The World Health Organization (WHO) refers to obesity as abnormal or excessive fat accumulation that presents a health risk. Obesity was first designated as a disease in 2012 and since then the cost and the burden of the disease have witnessed a worrisome increase. Obesity and hypertension are closely interrelated as abdominal obesity interferes with the endocrine and immune systems and carries a greater risk for insulin resistance, diabetes, hypertension, and cardiovascular disease. Many factors are at the interplay between obesity and hypertension. They include hemodynamic alterations, oxidative stress, renal injury, hyperinsulinemia, and insulin resistance, sleep apnea syndrome and the leptin-melanocortin pathway. Genetics, epigenetics, and mitochondrial factors also play a major role. The measurement of blood pressure in obese patients requires an adapted cuff and the search for other secondary causes is necessary at higher thresholds than the general population. Lifestyle modifications such as diet and exercise are often not enough to control obesity, and so far, bariatric surgery constitutes the most reliable method to achieve weight loss. Nonetheless, the emergence of new agents such as Semaglutide and Tirzepatide offers promising alternatives. Finally, several molecular pathways are actively being explored, and they should significantly extend the treatment options available.
Collapse
Affiliation(s)
- Paul El Meouchy
- Department of Internal Medicine, MedStar Health, Baltimore, MD 21218, USA
| | - Mohamad Wahoud
- Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Sabine Allam
- Faculty of Medicine and Medical Sciences, University of Balamand, El Koura P.O. Box 100, Lebanon
| | - Roy Chedid
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
| | - Wissam Karam
- Department of Internal Medicine, University of Kansas School of Medicine, Wichita, KS 67214, USA
| | - Sabine Karam
- Division of Nephrology and Hypertension, University of Minnesota, Minneapolis, MN 55414, USA
- Correspondence:
| |
Collapse
|
35
|
Yao J, Yan X, Xiao X, You X, Li Y, Yang Y, Zhang W, Li Y. Electroacupuncture induces weight loss by regulating tuberous sclerosis complex 1-mammalian target of rapamycin methylation and hypothalamic autophagy in high-fat diet-induced obese rats. Front Pharmacol 2022; 13:1015784. [PMID: 36313328 PMCID: PMC9596966 DOI: 10.3389/fphar.2022.1015784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Obesity can be caused by abnormalities of hypothalamic autophagy, which is closely regulated by the epigenetic modification of TSC1-mTOR. However, whether the weight-reducing effect of EA may relate to the modification of TSC1-mTOR methylation and hypothalamic autophagy remain unclear. This study was conducted to reveal the possible mechanism by which EA reduces BW by measuring the levels of TSC1-mTOR methylation and hypothalamic autophagy-related components.Methods: The weight-reducing effect of EA was investigated in high-fat diet (HFD)-induced obese (DIO) rats by monitoring the BW, food consumption, and epididymal white adipose tissue (eWAT)/BW ratio. Hematoxylin and eosin staining was performed for morphological evaluation of eWAT. Immunofluorescence was utilized to observe the localization of LC3 in the hypothalamus. The expressions of autophagy components (Beclin-1, LC3, and p62) and mTOR signaling (mTOR, p-mTOR, p70S6K, and p-p70S6K) were assessed by western blot. The methylation rate of the TSC1 promoter was detected by bisulfite genomic sequencing.Results: Treatment with EA significantly reduced the BW, food consumption, and eWAT/BW ratio; attenuated the morphological alternations in the adipocytes of DIO rats. While HFD downregulated the expression levels of Beclin-1 and LC3 and upregulated those of p62, these changes were normalized by EA treatment. EA markedly decreased the methylation rate of the TSC1 gene promoter and suppressed the protein expressions of mTOR, p-mTOR, p70S6K, and p-p70S6K in the hypothalamus.Conclusion: EA could reduce BW and fat accumulation in DIO rats. This ameliorative effect of EA may be associated with its demethylation effect on TSC1-mTOR and regulation of autophagy in the hypothalamus.
Collapse
Affiliation(s)
- Junpeng Yao
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangyun Yan
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianjun Xiao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi You
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanqiu Li
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqing Yang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Zhang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Li
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Ying Li,
| |
Collapse
|
36
|
Watkins S, Toliver JC, Kim N, Whitmire S, Garvey WT. Economic outcomes of antiobesity medication use among adults in the United States: A retrospective cohort study. J Manag Care Spec Pharm 2022; 28:1066-1079. [DOI: 10.18553/jmcp.2022.22116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | - Nina Kim
- Novo Nordisk Inc, Plainsboro, NJ
| | | | - W. Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham
| |
Collapse
|
37
|
Abot A, Fried S, Cani PD, Knauf C. Reactive Oxygen Species/Reactive Nitrogen Species as Messengers in the Gut: Impact on Physiology and Metabolic Disorders. Antioxid Redox Signal 2022; 37:394-415. [PMID: 34714099 DOI: 10.1089/ars.2021.0100] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: The role of reactive oxygen/nitrogen species as "friend" or "foe" messengers in the whole body is well characterized. Depending on the concentration in the tissue considered, these molecular actors exert beneficial or deleterious impacts leading to a pathological state, as observed in metabolic disorders such as type 2 diabetes and obesity. Recent Advances: Among the tissues impacted by oxidation and inflammation in this pathological state, the intestine is a site of dysfunction that can establish diabetic symptoms, such as alterations in the intestinal barrier, gut motility, microbiota composition, and gut/brain axis communication. In the intestine, reactive oxygen/nitrogen species (from the host and/or microbiota) are key factors that modulate the transition from physiological to pathological signaling. Critical Issues: Controlling the levels of intestinal reactive oxygen/nitrogen species is a complicated balance between positive and negative impacts that is in constant equilibrium. Here, we describe the synthesis and degradation of intestinal reactive oxygen/nitrogen species and their interactions with the host. The development of novel redox-based therapeutics that alter these processes could restore intestinal health in patients with metabolic disorders. Future Directions: Deciphering the mode of action of reactive oxygen/nitrogen species in the gut of obese/diabetic patients could result in a future therapeutic strategy that combines nutritional and pharmacological approaches. Consequently, preventive and curative treatments must take into account one of the first sites of oxidative and inflammatory dysfunctions in the body, that is, the intestine. Antioxid. Redox Signal. 37, 394-415.
Collapse
Affiliation(s)
- Anne Abot
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Steven Fried
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Patrice D Cani
- International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France.,UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, WELBIO, Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Claude Knauf
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| |
Collapse
|
38
|
Campos A, Cifuentes L, Hashem A, Busebee B, Hurtado-Andrade MD, Ricardo-Silgado ML, McRae A, De la Rosa A, Feris F, Bublitz JT, Hensrud D, Camilleri M, Kellogg TA, Eckel-Passow JE, Olson J, Acosta A. Effects of Heterozygous Variants in the Leptin-Melanocortin Pathway on Roux-en-Y Gastric Bypass Outcomes: a 15-Year Case-Control Study. Obes Surg 2022; 32:2632-2640. [PMID: 35654930 PMCID: PMC9721531 DOI: 10.1007/s11695-022-06122-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Heterozygous variants in the leptin-melanocortin pathway are associated with obesity. However, their effect on the long-term outcomes after Roux-en-Y gastric bypass (RYGB) is still unknown. METHODS In this matched case-control study, 701 participants from the Mayo Clinic Biobank with a history of RYGB were genotyped. Sixty-three patients had a heterozygous variant in the leptin-melanocortin pathway. After excluding patients with potential confounders, carriers were randomly matched (on sex, age, body mass index [BMI], and years since surgery) with two non-carrier controls. The electronic medical record of carriers and matched non-carriers was reviewed for up to 15 years after RYGB. RESULTS A total of 50 carriers and 100 matched non-carriers with a history of RYGB were included in the study. Seven different genes (LEPR, PCSK1, POMC, SH2B1, SRC1, MC4R, and SIM1) in the leptin-melanocortin pathway were identified. At the time of surgery, the mean age was 50.8 ± 10.6 years, BMI 45.6 ± 7.3 kg/m2, and 79% women. There were no differences in postoperative years of follow-up, Roux limb length, or gastric pouch size between groups. Fifteen years after RYGB, the percentage of total body weight loss (%TBWL) in carriers was - 16.6 ± 10.7 compared with - 28.7 ± 12.9 in non-carriers (diff = 12.1%; 95% CI, 4.8 to 19.3) and the percentage of weight regain after maximum weight loss was 52.7 ± 29.7 in carriers compared with 29.8 ± 20.7 in non-carriers (diff = 22.9%; 95% CI, 5.3 to 40.5). The nadir %TBWL was lower - 32.1 ± 8.1 in carriers compared with - 36.8 ± 10.4 in non-carriers (diff = 4.8%; 95% CI 1.8 to 7.8). CONCLUSIONS Carriers of a heterozygous variant in the leptin-melanocortin pathway have a progressive and significant weight regain in the mid- and long-term after RYGB. Genotyping patients experiencing significant weight regain after RYGB could help implement multidisciplinary and individualized weight loss interventions to improve weight maintenance after surgery.
Collapse
Affiliation(s)
- Alejandro Campos
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Lizeth Cifuentes
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Anas Hashem
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Bradley Busebee
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Maria D Hurtado-Andrade
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Maria L Ricardo-Silgado
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Alison McRae
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Alan De la Rosa
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Fauzi Feris
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Joshua T Bublitz
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Donald Hensrud
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael Camilleri
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA
| | - Todd A Kellogg
- Division of Endocrine & Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jeanette E Eckel-Passow
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Janet Olson
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Charlton 8-142, 200 First St. S.W, Rochester, MN, 55902, USA.
| |
Collapse
|
39
|
Bays HE, Fitch A, Christensen S, Burridge K, Tondt J. Anti-Obesity Medications and Investigational Agents: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. OBESITY PILLARS 2022; 2:100018. [PMID: 37990711 PMCID: PMC10662004 DOI: 10.1016/j.obpill.2022.100018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2023]
Abstract
Background This "Anti-Obesity Medications and Investigational Agents: An Obesity Medicine Association Clinical Practice Statement 2022" is intended to provide clinicians an overview of Food and Drug Administration (FDA) approved anti-obesity medications and investigational anti-obesity agents in development. Methods The scientific information for this Clinical Practice Statement (CPS) is based upon published scientific citations, clinical perspectives of OMA authors, and peer review by the Obesity Medicine Association leadership. Results This CPS describes pharmacokinetic principles applicable to those with obesity, and discusses the efficacy and safety of anti-obesity medications [e.g., phentermine, semaglutide, liraglutide, phentermine/topiramate, naltrexone/bupropion, and orlistat, as well as non-systemic superabsorbent oral hydrogel particles (which is technically classified as a medical device)]. Other medications discussed include setmelanotide, metreleptin, and lisdexamfetamine dimesylate. Data regarding the use of combination anti-obesity pharmacotherapy, as well as use of anti-obesity pharmacotherapy after bariatric surgery are limited; however, published data support such approaches. Finally, this CPS discusses investigational anti-obesity medications, with an emphasis on the mechanisms of action and summary of available clinical trial data regarding tirzepatide. Conclusion This "Anti-Obesity Medications and Investigational Agents: An Obesity Medicine Association Clinical Practice Statement 2022" is one of a series of OMA CPSs designed to assist clinicians in the care of patients with pre-obesity/obesity.
Collapse
Affiliation(s)
- Harold E. Bays
- Louisville Metabolic and Atherosclerosis Research Center, University of Louisville School of Medicine, 3288 Illinois Avenue, Louisville, KY, 40213, USA
| | - Angela Fitch
- Assistant Professor of Medicine Harvard Medical School, Co-Director Massachusetts General Hospital Weight Center, Boston, MA, USA
| | - Sandra Christensen
- Integrative Medical Weight Management, 2611 NE 125th St, Suite 100B, Seattle, WA, 98125, USA
| | - Karli Burridge
- Enara Health, 16501 106th Court, Orland Park, IL, 60467, USA
- Gaining Health, 528 Pennsylvania Ave #708, Glen Ellyn, IL, 60137, USA
| | - Justin Tondt
- Department of Family and Community Medicine, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA, 23501, USA
| |
Collapse
|
40
|
Lee NH, Choi MJ, Yu H, Kim JI, Cheon HG. Adapalene induces adipose browning through the RARβ-p38 MAPK-ATF2 pathway. Arch Pharm Res 2022; 45:340-351. [PMID: 35608792 DOI: 10.1007/s12272-022-01384-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/16/2022] [Indexed: 11/02/2022]
Abstract
Adipose browning has recently been reported to be a novel therapeutic strategy for obesity. Because the retinoic acid receptor (RAR) is a potential target involved in browning, adapalene (AD), an anti-acne agent with RAR agonism, was examined in detail for its effects on adipose browning and the underlying mechanisms in vitro and in vivo. AD upregulated the expression of adipose browning-related markers in a concentration-dependent manner, promoted mitochondrial biogenesis, increased oxygen consumption rates, and lowered lipid droplet sizes in differentiated 3T3/L1 white adipocytes. Among the three retinoic acid receptors (RARα, RARβ, and RARγ), knockdown of the gene encoding RARβ mitigated AD-induced adipose browning. Similarly, LE135 (a selective RARβ antagonist) attenuated AD action, suggesting that AD promotes adipose browning through RARβ. Sequential phosphorylation of p38 mitogen-activated protein kinase (MAPK) and activating transcription factor 2 (ATF2) was critical for AD-induced adipose browning, based on the observations that either SB203580 (a p38 MAPK inhibitor) or ATF2 siRNA reduced the effects of AD. In vivo browning effects of AD were confirmed in C57BL/6J mice and high-fat diet-induced obese (DIO) mice after oral administration of AD either acutely or chronically. This study identifies new actions of AD as an adipose browning agent and demonstrates that RARβ activation followed by increased phosphorylation of p38 MAPK and ATF2 appears to be a key mechanism of AD action.
Collapse
Affiliation(s)
- Na Hyun Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Mi Jin Choi
- Department of Pharmacology, Gachon University School of Medicine, Incheon, 21999, Republic of Korea
| | - Hana Yu
- Department of Pharmacology, Gachon University School of Medicine, Incheon, 21999, Republic of Korea
| | - Jea Il Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea. .,Department of Pharmacology, Gachon University School of Medicine, Incheon, 21999, Republic of Korea.
| |
Collapse
|
41
|
Ren G, Hwang PTJ, Millican R, Shin J, Brott BC, van Groen T, Powell CM, Bhatnagar S, Young ME, Jun HW, Kim JA. Subcutaneous Administration of a Nitric Oxide-Releasing Nanomatrix Gel Ameliorates Obesity and Insulin Resistance in High-Fat Diet-Induced Obese Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19104-19115. [PMID: 35467831 PMCID: PMC9233978 DOI: 10.1021/acsami.1c24113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is a gaseous signaling molecule, which plays crucial roles in various biological processes, including inflammatory responses, metabolism, cardiovascular functions, and cognitive function. NO bioavailability is reduced with aging and cardiometabolic disorders in humans and rodents. NO stimulates the metabolic rate by increasing the mitochondrial biogenesis and brown fat activation. Therefore, we propose a novel technology of providing exogenous NO to improve the metabolic rate and cognitive function by promoting the development of brown adipose tissue. In the present study, we demonstrate the effects of the peptide amphiphiles-NO-releasing nanomatrix gel (PANO gel) on high-fat diet-induced obesity, insulin resistance, and cognitive functions. Eight-week-old male C57BL/6 mice were subcutaneously injected in the brown fat area with the PANO gel or vehicle (PA gel) every 2 weeks for 12 weeks. The PANO gel-injected mice gained less body weight, improved glucose tolerance, and decreased fasting serum insulin and leptin levels compared with the PA gel-injected mice. Insulin signaling in the muscle, liver, and epididymal white adipose tissue was improved by the PANO gel injection. The PANO gel reduced inflammation, increased lipolysis in the epididymal white adipose tissue, and decreased serum lipids and liver triglycerides. Interestingly, the PANO gel stimulated uncoupled protein 1 gene expression in the brown and beige fat tissues. Furthermore, the PANO gel increased the cerebral blood flow and improved learning and memory abilities. Our results suggest that using the PANO gel to supply exogenous NO is a novel technology to treat metabolic disorders and cognitive dysfunctions.
Collapse
Affiliation(s)
- Guang Ren
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | | | - Juhee Shin
- Department of Biomedical engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Brigitta C. Brott
- Endomimetics, LLC, Birmingham, AL 35242
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Thomas van Groen
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Craig M. Powell
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Martin E. Young
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ho-Wook Jun
- Endomimetics, LLC, Birmingham, AL 35242
- Department of Biomedical engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jeong-a Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
42
|
Zhou Y, Mukherjee S, Huang D, Chakraborty M, Gu C, Zong G, Stashko MA, Pearce KH, Shears SB, Chakraborty A, Wang H, Wang X. Development of Novel IP6K Inhibitors for the Treatment of Obesity and Obesity-Induced Metabolic Dysfunctions. J Med Chem 2022; 65:6869-6887. [PMID: 35467861 PMCID: PMC9383042 DOI: 10.1021/acs.jmedchem.2c00220] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Obesity and obesity-induced metabolic dysfunctions are significant risk factors for nonalcoholic fatty liver disease and cardiovascular diseases. Thus, obesity is an economic and social burden in developed countries. Blocking the synthesis of inositol pyrophosphates by inositol hexakisphosphate kinase (IP6K) has been identified as a potential therapeutic strategy for obesity and related diseases. We have developed a novel and potent IP6K inhibitor 20 (UNC7467) (IC50 values: IP6K1 8.9 nM; IP6K2 4.9 nM; IP6K3 1320 nM). Inositol phosphate profiling of the HCT116 colon cancer cell line demonstrates that 20 reduced levels of inositol pyrophosphates by 66-81%, without significantly perturbing levels of other inositol phosphates. Furthermore, intraperitoneal injection of 20 in diet-induced obese mice improved glycemic profiles, ameliorated hepatic steatosis, and reduced weight gain without altering food intake. Thus, inhibitor 20 can be used as an in vivo probe for IP6K-related research. Moreover, it may have therapeutic relevance in treating obesity and related diseases.
Collapse
Affiliation(s)
- Yubai Zhou
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sandip Mukherjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, M370, Schwitalla Hall, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, United States
| | - Daowei Huang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Molee Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, M370, Schwitalla Hall, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, United States
| | - Chunfang Gu
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Guangning Zong
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Michael A Stashko
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen B Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, M370, Schwitalla Hall, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, United States
| | - Huanchen Wang
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
43
|
Mediators of Amylin Action in Metabolic Control. J Clin Med 2022; 11:jcm11082207. [PMID: 35456307 PMCID: PMC9025724 DOI: 10.3390/jcm11082207] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Amylin (also called islet amyloid polypeptide (IAPP)) is a pancreatic beta-cell hormone that is co-secreted with insulin in response to nutrient stimuli. The last 35 years of intensive research have shown that amylin exerts important physiological effects on metabolic control. Most importantly, amylin is a physiological control of meal-ending satiation, and it limits the rate of gastric emptying and reduces the secretion of pancreatic glucagon, in particular in postprandial states. The physiological effects of amylin and its analogs are mediated by direct brain activation, with the caudal hindbrain playing the most prominent role. The clarification of the structure of amylin receptors, consisting of the calcitonin core receptor plus receptor-activity modifying proteins, aided in the development of amylin analogs with a broad pharmacological profile. The general interest in amylin physiology and pharmacology was boosted by the finding that amylin is a sensitizer to the catabolic actions of leptin. Today, amylin derived analogs are considered to be among the most promising approaches for the pharmacotherapy against obesity. At least in conjunction with insulin, amylin analogs are also considered important treatment options in diabetic patients, so that new drugs may soon be added to the only currently approved compound pramlintide (Symlin®). This review provides a brief summary of the physiology of amylin’s mode of actions and its role in the control of the metabolism, in particular energy intake and glucose metabolism.
Collapse
|
44
|
González M, González C, Hirschler V, Di Girolamo G. Pharmacotherapeutic options in pediatric obesity: an urgent call for further research. Expert Opin Pharmacother 2022; 23:869-872. [PMID: 35262443 DOI: 10.1080/14656566.2022.2050212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Maria González
- Departamento de Pediatría - Hospital Universitario Austral - Pediatría, Pilar, Argentina
| | - Claudio González
- Facultad de Medicina - Tercera Cátedra de Farmacología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Departamento de Farmacología, Instituto Universitario CEMIC Escuela de Medicina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Valeria Hirschler
- Sociedad Argentina de Diabetes - Comité de Epidemiología. Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo Di Girolamo
- Universidad de Buenos Aires - CONICET, Facultad de Medicina, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Ciudad Autónoma de Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Tercera Cátedra de Farmacología, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
45
|
Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov 2022; 21:201-223. [PMID: 34815532 PMCID: PMC8609996 DOI: 10.1038/s41573-021-00337-8] [Citation(s) in RCA: 520] [Impact Index Per Article: 173.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 12/27/2022]
Abstract
Enormous progress has been made in the last half-century in the management of diseases closely integrated with excess body weight, such as hypertension, adult-onset diabetes and elevated cholesterol. However, the treatment of obesity itself has proven largely resistant to therapy, with anti-obesity medications (AOMs) often delivering insufficient efficacy and dubious safety. Here, we provide an overview of the history of AOM development, focusing on lessons learned and ongoing obstacles. Recent advances, including increased understanding of the molecular gut-brain communication, are inspiring the pursuit of next-generation AOMs that appear capable of safely achieving sizeable and sustained body weight loss.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | | |
Collapse
|
46
|
Discriminative stimulus effects of an imidazolidine-derived appetite suppressant. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Bendicho-Lavilla C, Seoane-Viaño I, Otero-Espinar FJ, Luzardo-Álvarez A. Fighting type 2 diabetes: Formulation strategies for peptide-based therapeutics. Acta Pharm Sin B 2022; 12:621-636. [PMID: 35256935 PMCID: PMC8897023 DOI: 10.1016/j.apsb.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a major health problem with increasing prevalence at a global level. The discovery of insulin in the early 1900s represented a major breakthrough in diabetes management, with further milestones being subsequently achieved with the identification of glucagon-like peptide-1 (GLP-1) and the introduction of GLP-1 receptor agonists (GLP-1 RAs) in clinical practice. Moreover, the subcutaneous delivery of biotherapeutics is a well-established route of administration generally preferred over the intravenous route due to better patient compliance and prolonged drug absorption. However, current subcutaneous formulations of GLP-1 RAs present pharmacokinetic problems that lead to adverse reactions and treatment discontinuation. In this review, we discuss the current challenges of subcutaneous administration of peptide-based therapeutics and provide an overview of the formulations available for the different routes of administration with improved bioavailability and reduced frequency of administration.
Collapse
Affiliation(s)
- Carlos Bendicho-Lavilla
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Iria Seoane-Viaño
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Francisco J. Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Asteria Luzardo-Álvarez
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, Lugo 27002, Spain
| |
Collapse
|
48
|
Tufvesson-Alm M, Shevchouk OT, Jerlhag E. Insight into the role of the gut-brain axis in alcohol-related responses: Emphasis on GLP-1, amylin, and ghrelin. Front Psychiatry 2022; 13:1092828. [PMID: 36699502 PMCID: PMC9868418 DOI: 10.3389/fpsyt.2022.1092828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Alcohol use disorder (AUD) contributes substantially to global morbidity and mortality. Given the heterogenicity of this brain disease, available pharmacological treatments only display efficacy in sub-set of individuals. The need for additional treatment options is thus substantial and is the goal of preclinical studies unraveling neurobiological mechanisms underlying AUD. Although these neurobiological processes are complex and numerous, one system gaining recent attention is the gut-brain axis. Peptides of the gut-brain axis include anorexigenic peptide like glucagon-like peptide-1 (GLP-1) and amylin as well as the orexigenic peptide ghrelin. In animal models, agonists of the GLP-1 or amylin receptor and ghrelin receptor (GHSR) antagonists reduce alcohol drinking, relapse drinking, and alcohol-seeking. Moreover, these three gut-brain peptides modulate alcohol-related responses (behavioral and neurochemical) in rodents, suggesting that the alcohol reduction may involve a suppression of alcohol's rewarding properties. Brain areas participating in the ability of these gut-brain peptides to reduce alcohol-mediated behaviors/neurochemistry involve those important for reward. Human studies support these preclinical studies as polymorphisms of the genes encoding for GLP-1 receptor or the ghrelin pathway are associated with AUD. Moreover, a GLP-1 receptor agonist decreases alcohol drinking in overweight patients with AUD and an inverse GHSR agonist reduces alcohol craving. Although preclinical and clinical studies reveal an interaction between the gut-brain axis and AUD, additional studies should explore this in more detail.
Collapse
Affiliation(s)
- Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olesya T Shevchouk
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
49
|
Rubino F, Logue J, Bøgelund M, Madsen ME, Cancino A, Høy M, Panton UH. Attitudes about the treatment of obesity among healthcare providers involved in the care of obesity-related diseases: A survey across medical specialties in multiple European countries. Obes Sci Pract 2021; 7:659-668. [PMID: 34877005 PMCID: PMC8633947 DOI: 10.1002/osp4.518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 04/25/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND AND RATIONALE Obesity is associated with the development and progression of many diseases. Understanding and management of obesity have become increasingly important; however, a knowledge gap remains between how healthcare providers (HCPs) consider weight-loss treatment and the importance of weight loss for improving obesity-related diseases. OBJECTIVE The objective of this study was to investigate how HCPs assess obesity, how they interpret the relationship between obesity and 12 recognized co-morbidities of obesity (excluding diabetes), and their view about the value of various weight-loss therapies. METHODS This was a cross-sectional, non-interventional, descriptive study. Participants were medical doctors (HCPs) from eight European countries. RESULTS Eighty-nine percent of the 197 HCPs that completed the survey considered obesity a disease. For most of the 12 obesity-related diseases under consideration, a majority of HCPs agreed that weight loss could reverse the disease or prevent progression. Among HCPs who have recommended weight loss, lifestyle interventions were by far the most common recommendation. However, more than three out of four HCPs stated that they would be likely to prescribe anti-obesity medications if available and reimbursed. CONCLUSION Most HCPs in this survey consider obesity a disease that needs to be treated. However, the majority of HCPs appear to prefer recommending lifestyle changes, although it is well documented that weight loss obtained by lifestyle changes is difficult to maintain. These results underscore the need for improved education of HCPs involved in the treatment of obesity-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Høy
- Novo Nordisk North West Europe Pharmaceuticals A/SCopenhagenDenmark
| | | |
Collapse
|
50
|
Abstract
Older medications approved for chronic weight management (orlistat, naltrexone/bupropion, liraglutide 3 mg and, in the USA, phentermine/topiramate) have not been widely adopted by health care providers. Those medications produce only modest additional weight loss when used to augment lifestyle intervention. However, semaglutide 2.4 mg weekly has recently emerged and produces much more weight loss - on average 15% weight loss at 1 year. Semaglutide's enhanced efficacy and that its class (GLP-1 receptor analogs) is well-known may result in more clinicians adopting pharmacotherapy. Furthermore, the first dedicated cardiovascular outcome trial powered for superiority testing an anti-obesity medication (SELECT) is underway with semaglutide 2.4 mg. A positive outcome will further promote the concept that weight management should be a primary target for cardiometabolic disease control. In phase 3, tirzepatide and cagrilintide/semaglutide combination are showing promise for even greater weight loss efficacy. Another recently approved medication takes a personalized medicine approach; setmelanotide is approved as a therapy for those with some of the ultra-rare genetic diseases characterized by severe, early onset obesity. This chapter reviews the currently available and anticipated medications for chronic weight management as well as those approved for the genetic and syndromic obesities.
Collapse
Affiliation(s)
- Donna H Ryan
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|