1
|
Mathur V, Agarwal P, Kasturi M, Srinivasan V, Seetharam RN, Vasanthan KS. Innovative bioinks for 3D bioprinting: Exploring technological potential and regulatory challenges. J Tissue Eng 2025; 16:20417314241308022. [PMID: 39839985 PMCID: PMC11748162 DOI: 10.1177/20417314241308022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
The field of three dimensional (3D) bioprinting has witnessed significant advancements, with bioinks playing a crucial role in enabling the fabrication of complex tissue constructs. This review explores the innovative bioinks that are currently shaping the future of 3D bioprinting, focusing on their composition, functionality, and potential for tissue engineering, drug delivery, and regenerative medicine. The development of bioinks, incorporating natural and synthetic materials, offers unprecedented opportunities for personalized medicine. However, the rapid technological progress raises regulatory challenges regarding safety, standardization, and long-term biocompatibility. This paper addresses these challenges, examining the current regulatory frameworks and the need for updated guidelines to ensure patient safety and product efficacy. By highlighting both the technological potential and regulatory hurdles, this review offers a comprehensive overview of the future landscape of bioinks in bioprinting, emphasizing the necessity for cross-disciplinary collaboration between scientists, clinicians, and regulatory bodies to achieve successful clinical applications.
Collapse
Affiliation(s)
- Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prachi Agarwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Meghana Kasturi
- Department of Mechanical Engineering, University of Michigan, Dearborn, MI, USA
| | - Varadharajan Srinivasan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
2
|
Lee SJ, Jeong W, Atala A. 3D Bioprinting for Engineered Tissue Constructs and Patient-Specific Models: Current Progress and Prospects in Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408032. [PMID: 39420757 PMCID: PMC11875024 DOI: 10.1002/adma.202408032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Advancements in bioprinting technology are driving the creation of complex, functional tissue constructs for use in tissue engineering and regenerative medicine. Various methods, including extrusion, jetting, and light-based bioprinting, have their unique advantages and drawbacks. Over the years, researchers and industry leaders have made significant progress in enhancing bioprinting techniques and materials, resulting in the production of increasingly sophisticated tissue constructs. Despite this progress, challenges still need to be addressed in achieving clinically relevant, human-scale tissue constructs, presenting a hurdle to widespread clinical translation. However, with ongoing interdisciplinary research and collaboration, the field is rapidly evolving and holds promise for personalized medical interventions. Continued development and refinement of bioprinting technologies have the potential to address complex medical needs, enabling the development of functional, transplantable tissues and organs, as well as advanced in vitro tissue models.
Collapse
Affiliation(s)
| | | | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
3
|
Klak M, Kosowska K, Czajka M, Dec M, Domański S, Zakrzewska A, Korycka P, Jankowska K, Romanik-Chruścielewska A, Wszoła M. The Impact of the Methacrylation Process on the Usefulness of Chitosan as a Biomaterial Component for 3D Printing. J Funct Biomater 2024; 15:251. [PMID: 39330227 PMCID: PMC11433516 DOI: 10.3390/jfb15090251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Chitosan is a very promising material for tissue model printing. It is also known that the introduction of chemical modifications to the structure of the material in the form of methacrylate groups makes it very attractive for application in the bioprinting of tissue models. The aim of this work is to study the characteristics of biomaterials containing chitosan (BCH) and its methacrylated equivalent (BCM) in order to identify differences in their usefulness in 3D bioprinting technology. It has been shown that the BCM material containing methacrylic chitosan is three times more viscous than its non-methacrylated BCH counterpart. Additionally, the BCM material is characterized by stability in a larger range of stresses, as well as better printability, resolution, and fiber stability. The BCM material has higher mechanical parameters, both mechanical strength and Young's modulus, than the BCH material. Both materials are ideal for bioprinting, but BCM has unique rheological properties and significant mechanical resistance. In addition, biological tests have shown that the addition of chitosan to biomaterials increases cell proliferation, particularly in 3D-printed models. Moreover, modification in the form of methacrylation encourages reduced toxicity of the biomaterial in 3D constructs. Our investigation demonstrates the suitability of a chitosan-enhanced biomaterial, specifically methacrylate-treated, for application in tissue engineering, and particularly for tissues requiring resistance to high stress, i.e., vascular or cartilage models.
Collapse
Affiliation(s)
- Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Ltd., 01-793 Warsaw, Poland
| | - Katarzyna Kosowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Ltd., 01-793 Warsaw, Poland
| | - Milena Czajka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Ltd., 01-793 Warsaw, Poland
| | - Magdalena Dec
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Ltd., 01-793 Warsaw, Poland
| | | | | | - Paulina Korycka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
| | - Kamila Jankowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
| | | | - Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Ltd., 01-793 Warsaw, Poland
| |
Collapse
|
4
|
Park DY, Kim SH, Park SH, Jang JS, Yoo JJ, Lee SJ. 3D Bioprinting Strategies for Articular Cartilage Tissue Engineering. Ann Biomed Eng 2024; 52:1883-1893. [PMID: 37204546 DOI: 10.1007/s10439-023-03236-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Articular cartilage is the avascular and aneural tissue which is the primary connective tissue covering the surface of articulating bone. Traumatic damage or degenerative diseases can cause articular cartilage injuries that are common in the population. As a result, the demand for new therapeutic options is continually increasing for older people and traumatic young patients. Many attempts have been made to address these clinical needs to treat articular cartilage injuries, including osteoarthritis (OA); however, regenerating highly qualified cartilage tissue remains a significant obstacle. 3D bioprinting technology combined with tissue engineering principles has been developed to create biological tissue constructs that recapitulate the anatomical, structural, and functional properties of native tissues. In addition, this cutting-edge technology can precisely place multiple cell types in a 3D tissue architecture. Thus, 3D bioprinting has rapidly become the most innovative tool for manufacturing clinically applicable bioengineered tissue constructs. This has led to increased interest in 3D bioprinting in articular cartilage tissue engineering applications. Here, we reviewed current advances in bioprinting for articular cartilage tissue engineering.
Collapse
Affiliation(s)
- Do Young Park
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Orthopedic Surgery, Ajou University Hospital, Suwon, Republic of Korea
| | - Seon-Hwa Kim
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Sang-Hyug Park
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Ji Su Jang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Anesthesiology and Pain Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
5
|
Roppolo I, Caprioli M, Pirri CF, Magdassi S. 3D Printing of Self-Healing Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305537. [PMID: 37877817 DOI: 10.1002/adma.202305537] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Indexed: 10/26/2023]
Abstract
This review article presents a comprehensive overview of the latest advances in the field of 3D printable structures with self-healing properties. Three-dimensional printing (3DP) is a versatile technology that enables the rapid manufacturing of complex geometric structures with precision and functionality not previously attainable. However, the application of 3DP technology is still limited by the availability of materials with customizable properties specifically designed for additive manufacturing. The addition of self-healing properties within 3D printed objects is of high interest as it can improve the performance and lifespan of structural components, and even enable the mimicking of living tissues for biomedical applications, such as organs printing. The review will discuss and analyze the most relevant results reported in recent years in the development of self-healing polymeric materials that can be processed via 3D printing. After introducing the chemical and physical self-healing mechanism that can be exploited, the literature review here reported will focus in particular on printability and repairing performances. At last, actual perspective and possible development field will be critically discussed.
Collapse
Affiliation(s)
- Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Matteo Caprioli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| | - Candido F Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Shlomo Magdassi
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| |
Collapse
|
6
|
Baecher H, Hoch CC, Knoedler S, Maheta BJ, Kauke-Navarro M, Safi AF, Alfertshofer M, Knoedler L. From bench to bedside - current clinical and translational challenges in fibula free flap reconstruction. Front Med (Lausanne) 2023; 10:1246690. [PMID: 37886365 PMCID: PMC10598714 DOI: 10.3389/fmed.2023.1246690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Fibula free flaps (FFF) represent a working horse for different reconstructive scenarios in facial surgery. While FFF were initially established for mandible reconstruction, advancements in planning for microsurgical techniques have paved the way toward a broader spectrum of indications, including maxillary defects. Essential factors to improve patient outcomes following FFF include minimal donor site morbidity, adequate bone length, and dual blood supply. Yet, persisting clinical and translational challenges hamper the effectiveness of FFF. In the preoperative phase, virtual surgical planning and artificial intelligence tools carry untapped potential, while the intraoperative role of individualized surgical templates and bioprinted prostheses remains to be summarized. Further, the integration of novel flap monitoring technologies into postoperative patient management has been subject to translational and clinical research efforts. Overall, there is a paucity of studies condensing the body of knowledge on emerging technologies and techniques in FFF surgery. Herein, we aim to review current challenges and solution possibilities in FFF. This line of research may serve as a pocket guide on cutting-edge developments and facilitate future targeted research in FFF.
Collapse
Affiliation(s)
- Helena Baecher
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Cosima C. Hoch
- Medical Faculty, Friedrich Schiller University Jena, Jena, Germany
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bhagvat J. Maheta
- College of Medicine, California Northstate University, Elk Grove, CA, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Ali-Farid Safi
- Craniologicum, Center for Cranio-Maxillo-Facial Surgery, Bern, Switzerland
- Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
7
|
Seok JM, Kim MJ, Park JH, Kim D, Lee D, Yeo SJ, Lee JH, Lee K, Byun JH, Oh SH, Park SA. A bioactive microparticle-loaded osteogenically enhanced bioprinted scaffold that permits sustained release of BMP-2. Mater Today Bio 2023; 21:100685. [PMID: 37545560 PMCID: PMC10401289 DOI: 10.1016/j.mtbio.2023.100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/29/2023] [Indexed: 08/08/2023] Open
Abstract
Extrusion-based bioprinting technology is widely used for tissue regeneration and reconstruction. However, the method that uses only hydrogel as the bioink base material exhibits limited biofunctional properties and needs improvement to achieve the desired tissue regeneration. In this study, we present a three-dimensionally printed bioactive microparticle-loaded scaffold for use in bone regeneration applications. The unique structure of the microparticles provided sustained release of growth factor for > 4 weeks without the use of toxic or harmful substances. Before and after printing, the optimal particle ratio in the bioink for cell viability demonstrated a survival rate of ≥ 85% over 7 days. Notably, osteogenic differentiation and mineralization-mediated by human periosteum-derived cells in scaffolds with bioactive microparticles-increased over a 2-week interval. Here, we present an alternative bioprinting strategy that uses the sustained release of bioactive microparticles to improve biofunctional properties in a manner that is acceptable for clinical bone regeneration applications.
Collapse
Affiliation(s)
- Ji Min Seok
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Ji Kim
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jin Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Dahong Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongjin Lee
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Seon Ju Yeo
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Jun Hee Lee
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Su A Park
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| |
Collapse
|
8
|
Ortega MA, De Leon-Oliva D, Boaru DL, Fraile-Martinez O, García-Montero C, Diaz R, Coca S, Barrena-Blázquez S, Bujan J, García-Honduvilla N, Saez MA, Álvarez-Mon M, Saz JV. Unraveling the New Perspectives on Antimicrobial Hydrogels: State-of-the-Art and Translational Applications. Gels 2023; 9:617. [PMID: 37623072 PMCID: PMC10453485 DOI: 10.3390/gels9080617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
The growing impact of infections and the rapid emergence of antibiotic resistance represent a public health concern worldwide. The exponential development in the field of biomaterials and its multiple applications can offer a solution to the problems that derive from these situations. In this sense, antimicrobial hydrogels represent a promising opportunity with multiple translational expectations in the medical management of infectious diseases due to their unique physicochemical and biological properties as well as for drug delivery in specific areas. Hydrogels are three-dimensional cross-linked networks of hydrophilic polymers that can absorb and retain large amounts of water or biological fluids. Moreover, antimicrobial hydrogels (AMH) present good biocompatibility, low toxicity, availability, viscoelasticity, biodegradability, and antimicrobial properties. In the present review, we collect and discuss the most promising strategies in the development of AMH, which are divided into hydrogels with inherent antimicrobial activity and antimicrobial agent-loaded hydrogels based on their composition. Then, we present an overview of the main translational applications: wound healing, tissue engineering and regeneration, drug delivery systems, contact lenses, 3D printing, biosensing, and water purification.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Immune System Diseases-Rheumatology Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Jose V. Saz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| |
Collapse
|
9
|
Yang S, Chen Q, Wang L, Xu M. In situ defect detection and feedback control with three-dimensional extrusion-based bioprinter-associated optical coherence tomography. Int J Bioprint 2022; 9:624. [PMID: 36636135 PMCID: PMC9830991 DOI: 10.18063/ijb.v9i1.624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/14/2022] [Indexed: 01/18/2023] Open
Abstract
Extrusion-based three-dimensional (3D) bioprinting is one of the most common methods used for tissue fabrication and is the most widely used additive manufacturing technique in all industries. In extrusion-based bioprinting, printing defects related to material deposition errors lead to a significant deviation from shape to function between the printed construct and design model. Using 3D extrusion-based bioprinter-associated optical coherence tomography (3D P-OCT), an in situ defect detection and feedback system was presented based on the accurate defect analysis and location, and a pre-built feedback mechanism. Using 3D P-OCT, multi-parameter quantification of the material deposition was carried out in real time, including the filament size, layer thickness, and layer fidelity. The material deposition errors under different paths were quantified and located specifically, including the start-stop points, straight-line path, and turnarounds. The pre-built feedback mechanism involving the control inputs, such as printing path, pressure, and velocity, provided the basis for in situ defect detection and real-time feedback control. In particular, the second printing repair can be performed after the broken filament defect is detected and located. After printing, fidelity can be quantitatively analyzed based on the point cloud registration between the 3D P-OCT result and the design model. In conclusion, 3D P-OCT enables in situ defect detection and feedback control, broken filament repair, and 3D fidelity analysis to achieve high-fidelity printing from shape to function.
Collapse
Affiliation(s)
- Shanshan Yang
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Qi Chen
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Ling Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
- Key Laboratory of Medical Information and 3D Bioprinting, Zhejiang Province, Hangzhou, China
| | - Mingen Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
- Key Laboratory of Medical Information and 3D Bioprinting, Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Park HI, Lee JH, Lee SJ. The comprehensive on-demand 3D bio-printing for composite reconstruction of mandibular defects. Maxillofac Plast Reconstr Surg 2022; 44:31. [PMID: 36195777 PMCID: PMC9532487 DOI: 10.1186/s40902-022-00361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background The mandible is a functional bio-organ that supports facial structures and helps mastication and speaking. Large mandible defects, generally greater than 6-cm segment loss, may require composite tissue reconstruction such as osteocutaneous-vascularized free flap which has a limitation of additional surgery and a functional morbidity at the donor site. A 3D bio-printing technology is recently developed to overcome the limitation in the composite reconstruction of the mandible using osteocutaneous-vascularized free flap. Review Scaffold, cells, and bioactive molecules are essential for a 3D bio-printing. For mandibular reconstruction, materials in a 3D bio-printing require mechanical strength, resilience, and biocompatibility. Recently, an integrated tissue and organ printing system with multiple cartridges are designed and it is capable of printing polymers to reinforce the printed structure, such as hydrogel. Conclusion For successful composite tissue reconstruction of the mandible, biologic considerations and components should be presented with a comprehensive on-demand online platform model of customized approaches.
Collapse
Affiliation(s)
- Han Ick Park
- Department of Oral and Maxillofacial Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Jee-Ho Lee
- Department of Oral and Maxillofacial Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea.
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| |
Collapse
|
11
|
Angiogenic Potential of Co-Cultured Human Umbilical Vein Endothelial Cells and Adipose Stromal Cells in Customizable 3D Engineered Collagen Sheets. J Funct Biomater 2022; 13:jfb13030107. [PMID: 35997445 PMCID: PMC9397038 DOI: 10.3390/jfb13030107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
The wound healing process is much more complex than just the four phases of hemostasis, inflammation, proliferation, and maturation. Three-dimensional (3D) scaffolds made of biopolymers or ECM molecules using bioprinting can be used to promote the wound healing process, especially for complex 3D tissue lesions like chronic wounds. Here, a 3D-printed mold has been designed to produce customizable collagen type-I sheets containing human umbilical vein endothelial cells (HUVECs) and adipose stromal cells (ASCs) for the first time. In these 3D collagen sheets, the cellular activity leads to a restructuring of the collagen matrix. The upregulation of the growth factors Serpin E1 and TIMP-1 could be demonstrated in the 3D scaffolds with ACSs and HUVECs in co-culture. Both growth factors play a key role in the wound healing process. The capillary-like tube formation of HUVECs treated with supernatant from the collagen sheets revealed the secretion of angiogenic growth factors. Altogether, this demonstrates that collagen type I combined with the co-cultivation of HUVECs and ACSs has the potential to accelerate the process of angiogenesis and, thereby, might promote wound healing.
Collapse
|
12
|
Zschüntzsch J, Meyer S, Shahriyari M, Kummer K, Schmidt M, Kummer S, Tiburcy M. The Evolution of Complex Muscle Cell In Vitro Models to Study Pathomechanisms and Drug Development of Neuromuscular Disease. Cells 2022; 11:1233. [PMID: 35406795 PMCID: PMC8997482 DOI: 10.3390/cells11071233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Many neuromuscular disease entities possess a significant disease burden and therapeutic options remain limited. Innovative human preclinical models may help to uncover relevant disease mechanisms and enhance the translation of therapeutic findings to strengthen neuromuscular disease precision medicine. By concentrating on idiopathic inflammatory muscle disorders, we summarize the recent evolution of the novel in vitro models to study disease mechanisms and therapeutic strategies. A particular focus is laid on the integration and simulation of multicellular interactions of muscle tissue in disease phenotypes in vitro. Finally, the requirements of a neuromuscular disease drug development workflow are discussed with a particular emphasis on cell sources, co-culture systems (including organoids), functionality, and throughput.
Collapse
Affiliation(s)
- Jana Zschüntzsch
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Stefanie Meyer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Mina Shahriyari
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Karsten Kummer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Matthias Schmidt
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Susann Kummer
- Risk Group 4 Pathogens–Stability and Persistence, Biosafety Level-4 Laboratory, Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany;
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| |
Collapse
|
13
|
Jiang Y, Torun T, Maffioletti SM, Serio A, Tedesco FS. Bioengineering human skeletal muscle models: Recent advances, current challenges and future perspectives. Exp Cell Res 2022; 416:113133. [DOI: 10.1016/j.yexcr.2022.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/30/2021] [Accepted: 03/28/2022] [Indexed: 11/04/2022]
|
14
|
Yoshida M, Turner PR, McAdam CJ, Ali MA, Cabral JD. A comparison between β-tricalcium phosphate verse chitosan poly-caprolactone-based 3D melt extruded composite scaffolds. Biopolymers 2021; 113:e23482. [PMID: 34812488 DOI: 10.1002/bip.23482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/18/2021] [Accepted: 11/10/2021] [Indexed: 11/07/2022]
Abstract
Melt extrusion 3D printing has become an attractive additive manufacturing technology to construct degradable scaffolds as tissue precursors in order to create clinically relevant medical devices. Towards this end, a commonly used synthetic polyester, poly-caprolactone (PCL), was used to make scaffolds composed of different biomaterial compositions to increase bioactivity using 3D melt pneumatic extrusion technology. Varying ratios of the natural biopolymer, chitosan, or the bioceramic, β-tricalcium phosphate (TCP) were blended with PCL to fabricate support scaffolds with three-dimensional (3D) architecture for human bone-marrow derived mesenchymal stem cell (hBMSC) growth for potential bone regeneration application. In this study, basic printing requirements as well as biomaterial dynamic mechanical (DMA), elemental, and thermogravimetric (TGA) analysis results demonstrate material homogeneity as well as thermal stability. Scaffold morphology and microarchitecture were assessed using scanning electron microscopy (SEM) alongside in vitro scaffold degradation and biological characterisation. Human BMSC proliferation was assessed using fluorescence imaging, and quantitated via the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) colorimetric assay. These in vitro cell viability studies revealed that the highest chitosan concentration blend of 20% favoured the most hBMSC growth, exhibited the most swelling, and showed minimal degradation after 28 days. The 20% TCP blend had the second highest hBMSC growth, exhibited moderate swelling, and the fastest degradation rate. Overall, this study demonstrates the first direct comparison of a natural biopolymer-based, that is, chitosan, 3D melt extruded PCL composite with that of a bioceramic-based, that is, β-TCP, PCL composite and their effects on hBMSC 3D proliferation. 3D melt extruded PCL-based composite scaffolds methodology offers a straightforward way to print scaffolds with good shape fidelity, interconnected porosities and enhanced bioactivity; and demonstrates their potential use for regenerative, bone repair applications.
Collapse
Affiliation(s)
- Minami Yoshida
- Centre of Bioengineering & Nanomedicine, School of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Paul R Turner
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Mohammed Azam Ali
- Centre of Bioengineering & Nanomedicine, School of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Jaydee D Cabral
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Araf Y, Galib M, Naser IB, Promon SK. Prospects of 3D Bioprinting as a Possible Treatment for Cancer Cachexia. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2021. [DOI: 10.29333/jcei/11289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Di Piazza E, Pandolfi E, Cacciotti I, Del Fattore A, Tozzi AE, Secinaro A, Borro L. Bioprinting Technology in Skin, Heart, Pancreas and Cartilage Tissues: Progress and Challenges in Clinical Practice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010806. [PMID: 34682564 PMCID: PMC8535210 DOI: 10.3390/ijerph182010806] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022]
Abstract
Bioprinting is an emerging additive manufacturing technique which shows an outstanding potential for shaping customized functional substitutes for tissue engineering. Its introduction into the clinical space in order to replace injured organs could ideally overcome the limitations faced with allografts. Presently, even though there have been years of prolific research in the field, there is a wide gap to bridge in order to bring bioprinting from "bench to bedside". This is due to the fact that bioprinted designs have not yet reached the complexity required for clinical use, nor have clear GMP (good manufacturing practices) rules or precise regulatory guidelines been established. This review provides an overview of some of the most recent and remarkable achievements for skin, heart, pancreas and cartilage bioprinting breakthroughs while highlighting the critical shortcomings for each tissue type which is keeping this technique from becoming widespread reality.
Collapse
Affiliation(s)
- Eleonora Di Piazza
- Multifactorial and Complex Disease Research Area, Preventive and Predictive Medicine Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (E.D.P.); (A.E.T.)
| | - Elisabetta Pandolfi
- Multifactorial and Complex Disease Research Area, Preventive and Predictive Medicine Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (E.D.P.); (A.E.T.)
- Correspondence:
| | - Ilaria Cacciotti
- Engineering Department, Niccolò Cusano University of Rome, INSTM RU, 00166 Rome, Italy;
| | - Andrea Del Fattore
- Genetics and Rare Diseases Research Area, Bone Physiopathology Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Alberto Eugenio Tozzi
- Multifactorial and Complex Disease Research Area, Preventive and Predictive Medicine Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (E.D.P.); (A.E.T.)
| | - Aurelio Secinaro
- Clinical Management and Technological Innovations Area, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.S.); (L.B.)
| | - Luca Borro
- Clinical Management and Technological Innovations Area, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.S.); (L.B.)
| |
Collapse
|
17
|
Fonseca AC, Melchels FPW, Ferreira MJS, Moxon SR, Potjewyd G, Dargaville TR, Kimber SJ, Domingos M. Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine. Chem Rev 2020; 120:11128-11174. [PMID: 32937071 PMCID: PMC7645917 DOI: 10.1021/acs.chemrev.0c00342] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 02/06/2023]
Abstract
The lack of in vitro tissue and organ models capable of mimicking human physiology severely hinders the development and clinical translation of therapies and drugs with higher in vivo efficacy. Bioprinting allow us to fill this gap and generate 3D tissue analogues with complex functional and structural organization through the precise spatial positioning of multiple materials and cells. In this review, we report the latest developments in terms of bioprinting technologies for the manufacturing of cellular constructs with particular emphasis on material extrusion, jetting, and vat photopolymerization. We then describe the different base polymers employed in the formulation of bioinks for bioprinting and examine the strategies used to tailor their properties according to both processability and tissue maturation requirements. By relating function to organization in human development, we examine the potential of pluripotent stem cells in the context of bioprinting toward a new generation of tissue models for personalized medicine. We also highlight the most relevant attempts to engineer artificial models for the study of human organogenesis, disease, and drug screening. Finally, we discuss the most pressing challenges, opportunities, and future prospects in the field of bioprinting for tissue engineering (TE) and regenerative medicine (RM).
Collapse
Affiliation(s)
- Ana Clotilde Fonseca
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Ferry P. W. Melchels
- Institute
of Biological Chemistry, Biophysics and Bioengineering, School of
Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, U.K.
| | - Miguel J. S. Ferreira
- Department
of Mechanical, Aerospace and Civil Engineering, School of Engineering,
Faculty of Science and Engineering, The
University of Manchester, Manchester M13 9PL, U.K.
| | - Samuel R. Moxon
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Geoffrey Potjewyd
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Tim R. Dargaville
- Institute
of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia
| | - Susan J. Kimber
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Marco Domingos
- Department
of Mechanical, Aerospace and Civil Engineering, School of Engineering,
Faculty of Science and Engineering, The
University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
18
|
Lee SC, Gillispie G, Prim P, Lee SJ. Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks. Chem Rev 2020; 120:10834-10886. [PMID: 32815369 PMCID: PMC7673205 DOI: 10.1021/acs.chemrev.0c00015] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioprinting researchers agree that "printability" is a key characteristic for bioink development, but neither the meaning of the term nor the best way to experimentally measure it has been established. Furthermore, little is known with respect to the underlying mechanisms which determine a bioink's printability. A thorough understanding of these mechanisms is key to the intentional design of new bioinks. For the purposes of this review, the domain of printability is defined as the bioink requirements which are unique to bioprinting and occur during the printing process. Within this domain, the different aspects of printability and the factors which influence them are reviewed. The extrudability, filament classification, shape fidelity, and printing accuracy of bioinks are examined in detail with respect to their rheological properties, chemical structure, and printing parameters. These relationships are discussed and areas where further research is needed, are identified. This review serves to aid the bioink development process, which will continue to play a major role in the successes and failures of bioprinting, tissue engineering, and regenerative medicine going forward.
Collapse
Affiliation(s)
- Sang Cheon Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gregory Gillispie
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina 27157, USA
| | - Peter Prim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 , USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
19
|
Costa JB, Park J, Jorgensen AM, Silva-Correia J, Reis RL, Oliveira JM, Atala A, Yoo JJ, Lee SJ. 3D Bioprinted Highly Elastic Hybrid Constructs for Advanced Fibrocartilaginous Tissue Regeneration. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:8733-8746. [PMID: 34295019 PMCID: PMC8294671 DOI: 10.1021/acs.chemmater.0c03556] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Advanced strategies to bioengineer a fibrocartilaginous tissue to restore the function of the meniscus are necessary. Currently, 3D bioprinting technologies have been employed to fabricate clinically relevant patient-specific complex constructs to address unmet clinical needs. In this study, a highly elastic hybrid construct for fibrocartilaginous regeneration is produced by co-printing a cell-laden gellan gum/fibrinogen (GG/FB) composite bioink together with a silk fibroin methacrylate (Sil-MA) bioink in an interleaved crosshatch pattern. We characterize each bioink formulation by measuring the rheological properties, swelling ratio, and compressive mechanical behavior. For in vitro biological evaluations, porcine primary meniscus cells (pMCs) are isolated and suspended in the GG/FB bioink for the printing process. The results show that the GG/FB bioink provides a proper cellular microenvironment for maintaining the cell viability and proliferation capacity, as well as the maturation of the pMCs in the bioprinted constructs, while the Sil-MA bioink offers excellent biomechanical behavior and structural integrity. More importantly, this bioprinted hybrid system shows the fibrocartilaginous tissue formation without a dimensional change in a mouse subcutaneous implantation model during the 10-week postimplantation. Especially, the alignment of collagen fibers is achieved in the bioprinted hybrid constructs. The results demonstrate this bioprinted mechanically reinforced hybrid construct offers a versatile and promising alternative for the production of advanced fibrocartilaginous tissue.
Collapse
Affiliation(s)
- João B. Costa
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Jihoon Park
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Adam M. Jorgensen
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Joana Silva-Correia
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
- Corresponding authors. Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States., James J. Yoo, MD, PhD and Sang Jin Lee, PhD, (J. J. Yoo), (S. J. Lee)
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
- Corresponding authors. Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States., James J. Yoo, MD, PhD and Sang Jin Lee, PhD, (J. J. Yoo), (S. J. Lee)
| |
Collapse
|
20
|
Shin DY, Park JU, Choi MH, Kim S, Kim HE, Jeong SH. Polydeoxyribonucleotide-delivering therapeutic hydrogel for diabetic wound healing. Sci Rep 2020; 10:16811. [PMID: 33033366 PMCID: PMC7546631 DOI: 10.1038/s41598-020-74004-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with diabetes experience delayed wound healing because of the uncontrolled glucose level in their bloodstream, which leads to impaired function of white blood cells, poor circulation, decreased production and repair of new blood vessels. Treatment using polydeoxyribonucleotide (PDRN), which is a DNA extracted from the sperm cells of salmon, has been introduced to accelerate the healing process of diabetic wounds. To accelerate the wound-healing process, sustained delivery of PDRN is critical. In this study, taking advantage of the non-invasive gelation property of alginate, PDRN was loaded inside the hydrogel (Alg-PDRN). The release behavior of PDRN was altered by controlling the crosslinking density of the Alg hydrogel. The amount of PDRN was the greatest inside the hydrogel with the highest crosslinking density because of the decreased diffusion. However, there was an optimal degree of crosslinking for the effective release of PDRN. In vitro studies using human dermal fibroblasts and diabetes mellitus fibroblasts and an in ovo chorioallantoic membrane assay confirmed that the Alg-PDRN hydrogel effectively induced cell proliferation and expression of angiogenic growth factors and promoted new blood vessel formation. Its effectiveness for accelerated diabetic wound healing was also confirmed in an in-vivo animal experiment using a diabetic mouse model.
Collapse
Affiliation(s)
- Da Yong Shin
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Min-Ha Choi
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Sukwha Kim
- Medical Big Data Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Gwanggyo, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Seol-Ha Jeong
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
21
|
Distler T, Solisito AA, Schneidereit D, Friedrich O, Detsch R, Boccaccini AR. 3D printed oxidized alginate-gelatin bioink provides guidance for C2C12 muscle precursor cell orientation and differentiation via shear stress during bioprinting. Biofabrication 2020; 12:045005. [PMID: 32485696 DOI: 10.1088/1758-5090/ab98e4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biofabrication can be a tool to three-dimensionally (3D) print muscle cells embedded inside hydrogel biomaterials, ultimately aiming to mimic the complexity of the native muscle tissue and to create in-vitro muscle analogues for advanced repair therapies and drug testing. However, to 3D print muscle analogues of high cell alignment and synchronous contraction, the effect of biofabrication process parameters on myoblast growth has to be understood. A suitable biomaterial matrix is required to provide 3D printability as well as matrix degradation to create space for cell proliferation, matrix remodelling capacity, and cell differentiation. We demonstrate that by the proper selection of nozzle size and extrusion pressure, the shear stress during extrusion-bioprinting of mouse myoblast cells (C2C12) can achieve cell orientation when using oxidized alginate-gelatin (ADA-GEL) hydrogel bionk. The cells grow in the direction of printing, migrate to the hydrogel surface over time, and differentiate into ordered myotube segments in areas of high cell density. Together, our results show that ADA-GEL hydrogel can be a simple and cost-efficient biodegradable bioink that allows the successful 3D bioprinting and cultivation of C2C12 cells in-vitro to study muscle engineering.
Collapse
Affiliation(s)
- Thomas Distler
- Department of Materials Science and Engineering, Institute of Biomaterials, Erlangen 91058, Germany. These authors contributed equally to this work
| | | | | | | | | | | |
Collapse
|
22
|
Bour RK, Sharma PR, Turner JS, Hess WE, Mintz EL, Latvis CR, Shepherd BR, Presnell SC, McConnell MJ, Highley C, Peirce SM, Christ GJ. Bioprinting on sheet-based scaffolds applied to the creation of implantable tissue-engineered constructs with potentially diverse clinical applications: Tissue-Engineered Muscle Repair (TEMR) as a representative testbed. Connect Tissue Res 2020; 61:216-228. [PMID: 31899969 DOI: 10.1080/03008207.2019.1679800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: This report explores the overlooked potential of bioprinting to automate biomanufacturing of simple tissue structures, such as the uniform deposition of (mono)layers of progenitor cells on sheetlike decellularized extracellular matrices (dECM). In this scenario, dECM serves as a biodegradable celldelivery matrix to provide enhanced regenerative microenvironments for tissue repair. The Tissue-Engineered Muscle Repair (TEMR) technology-where muscle progenitor cells are seeded onto a porcine bladder acellular matrix (BAM), serves as a representative testbed for bioprinting applications. Previous work demonstrated that TEMR implantation improved functional outcomes following VML injury in biologically relevant rodent models.Materials and Methods: In the described bioprinting system, a cell-laden hydrogel bioink is used to deposit high cell densities (1.4 × 105-3.5 × 105 cells/cm2), onto both sides of the bladder acellular matrix as proof-of-concept.Results: These bioprinting methods achieve a reproducible and homogeneous distribution of cells, on both sides of the BAM scaffold, after just 24hrs, with cell viability as high as 98%. These preliminary results suggest bioprinting allows for improved dual-sided cell coverage compared to manual-seeding.Conclusions: Bioprinting can enable automated fabrication of TEMR constructs with high fidelity and scalability, while reducing biomanufacturing costs and timelines. Such bioprinting applications are underappreciated, yet critical, to expand the overall biomanufacturing paradigm for tissue engineered medical products. In addition, biofabrication of sheet-like implantable constructs, with cells deposited on both sides, is a process that is both scaffold and cell-type agnostic, and furthermore, is amenable to many geometries, and thus, additional tissue engineering applications beyond skeletal muscle.
Collapse
Affiliation(s)
- R K Bour
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - P R Sharma
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - J S Turner
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - W E Hess
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - E L Mintz
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - C R Latvis
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | | | | | - M J McConnell
- Departments of Biochemistry and Molecular Genetics, and Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - C Highley
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.,Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA
| | - S M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.,Department of Plastic Surgery, University of Virginia, Charlottesville, VA, USA
| | - G J Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.,Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
23
|
Kim JH, Kim I, Seol YJ, Ko IK, Yoo JJ, Atala A, Lee SJ. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat Commun 2020; 11:1025. [PMID: 32094341 PMCID: PMC7039897 DOI: 10.1038/s41467-020-14930-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/11/2020] [Indexed: 01/20/2023] Open
Abstract
A bioengineered skeletal muscle construct that mimics structural and functional characteristics of native skeletal muscle is a promising therapeutic option to treat extensive muscle defect injuries. We previously showed that bioprinted human skeletal muscle constructs were able to form multi-layered bundles with aligned myofibers. In this study, we investigate the effects of neural cell integration into the bioprinted skeletal muscle construct to accelerate functional muscle regeneration in vivo. Neural input into this bioprinted skeletal muscle construct shows the improvement of myofiber formation, long-term survival, and neuromuscular junction formation in vitro. More importantly, the bioprinted constructs with neural cell integration facilitate rapid innervation and mature into organized muscle tissue that restores normal muscle weight and function in a rodent model of muscle defect injury. These results suggest that the 3D bioprinted human neural-skeletal muscle constructs can be rapidly integrated with the host neural network, resulting in accelerated muscle function restoration. 3D bioprinting of skeletal muscle using primary human muscle progenitor cells results in correct muscle architecture, but functional restoration in rodent models is limited. Here the authors include human neural stem cells into bioprinted skeletal muscle and observe improved architecture and function in vivo.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ickhee Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Young-Joon Seol
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
24
|
Gillispie G, Prim P, Copus J, Fisher J, Mikos AG, Yoo JJ, Atala A, Lee SJ. Assessment methodologies for extrusion-based bioink printability. Biofabrication 2020; 12:022003. [PMID: 31972558 PMCID: PMC7039534 DOI: 10.1088/1758-5090/ab6f0d] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extrusion-based bioprinting is one of the leading manufacturing techniques for tissue engineering and regenerative medicine. Its primary limitation is the lack of materials, known as bioinks, which are suitable for the bioprinting process. The degree to which a bioink is suitable for bioprinting has been described as its 'printability.' However, a lack of clarity surrounding the methodologies used to evaluate a bioink's printability, as well as the usage of the term itself, have hindered the field. This article presents a review of measures used to assess the printability of extrusion-based bioinks in an attempt to assist researchers during the bioink development process. Many different aspects of printability exist and many different measurements have been proposed as a consequence. Researchers often do not evaluate a new bioink's printability at all, while others simply do so qualitatively. Several quantitative measures have been presented for the extrudability, shape fidelity, and printing accuracy of bioinks. Different measures have been developed even within these aspects, each testing the bioink in a slightly different way. Additionally, other relevant measures which had little or no examples of quantifiable methods are also to be considered. Looking forward, further work is needed to improve upon current assessment methodologies, to move towards a more comprehensive view of printability, and to standardize these printability measurements between researchers. Better assessment techniques will naturally lead to a better understanding of the underlying mechanisms which affect printability and better comparisons between bioinks. This in turn will help improve upon the bioink development process and the bioinks available for use in bioprinting.
Collapse
Affiliation(s)
- Gregory Gillispie
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| | - Peter Prim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Joshua Copus
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| | - John Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Antonios G. Mikos
- Departments of Bioengineering and Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| |
Collapse
|
25
|
Kathawala MH, Ng WL, Liu D, Naing MW, Yeong WY, Spiller KL, Van Dyke M, Ng KW. Healing of Chronic Wounds: An Update of Recent Developments and Future Possibilities. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:429-444. [PMID: 31068101 DOI: 10.1089/ten.teb.2019.0019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic wounds are the result of disruptions in the body's usual process of healing. They are not only a source of significant pain and discomfort but also, more importantly, an unguarded port of entry for pathogens into the body. While our current understanding of this phenomenon is far from complete, findings in physiological patterns and advancements in wound healing technologies have helped develop wound management and healing solutions to this long-standing medical challenge. This review presents an overview of known wound healing mechanics, abnormalities that lead to chronic wounds, and a summary of established and new wound healing technologies. Various approaches to heal wounds are discussed, from dermal replacements to advanced biomaterial-based treatments, from cell-, synthetic-, and composite-based approaches to preclinical approaches, which make developing such products possible. While tested breakthrough products are described, the authors focused more on recently developed innovations, which are at varying stages of maturity. The review concludes with a note on future perspectives and opinions on where the field and industry are headed and where they should be. Impact Statement Wound healing is an important area of research and clinical practice, and has captured the attention of tissue engineers since the nascent beginnings of the discipline. Tissue-engineered skin was the first FDA-approved product, achieved in 1996. Despite this success, and the passage of time, healing wounds, particularly chronic wounds, remains a vexing challenge. This comprehensive review article will provide readers with a synopsis of current issues, research approaches, animal models, technologies, and products that span the continuum from early development to clinical studies, in the hope of fueling new interests and ideas to overcome this long-standing medical challenge.
Collapse
Affiliation(s)
| | - Wei Long Ng
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Dan Liu
- Singapore Institute of Manufacturing Technology (SIMTECH), Singapore, Singapore
| | - May Win Naing
- Singapore Institute of Manufacturing Technology (SIMTECH), Singapore, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Mark Van Dyke
- Department of Biomedical Engineering and Mechanics (BEAM), Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Skin Research Institute of Singapore (SRIS), Singapore, Singapore.,Environmental Chemistry & Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Singapore, Singapore
| |
Collapse
|
26
|
Lee SH, Lee KG, Hwang JH, Cho YS, Lee KS, Jeong HJ, Park SH, Park Y, Cho YS, Lee BK. Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:949-959. [DOI: 10.1016/j.msec.2019.01.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/27/2018] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
|
27
|
Ali M, PR AK, Yoo JJ, Zahran F, Atala A, Lee SJ. A Photo-Crosslinkable Kidney ECM-Derived Bioink Accelerates Renal Tissue Formation. Adv Healthc Mater 2019; 8:e1800992. [PMID: 30725520 DOI: 10.1002/adhm.201800992] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/20/2019] [Indexed: 11/10/2022]
Abstract
3D bioprinting strategies in tissue engineering aim to fabricate clinically applicable tissue constructs that can replace the damaged or diseased tissues and organs. One of the main prerequisites in 3D bioprinting is finding an appropriate bioink that provides a tissue-specific microenvironment supporting the cellular growth and maturation. In this respect, decellularized extracellular matrix (dECM)-derived hydrogels have been considered as bioinks for the cell-based bioprinting due to their capability to inherit the intrinsic cues from native ECM. Herein, a photo-crosslinkable kidney ECM-derived bioink (KdECMMA) is developed that could provide a kidney-specific microenvironment for renal tissue bioprinting. Porcine whole kidneys are decellularized through a perfusion method, dissolved in an acid solution, and chemically modified by methacrylation. A KdECMMA-based bioink is formulated and evaluated for rheological properties and printability for the printing process. The results show that the bioprinted human kidney cells in the KdECMMA bioink are highly viable and mature with time. Moreover, the bioprinted renal constructs exhibit the structural and functional characteristics of the native renal tissue. The potential of the tissue-specific ECM-derived bioink is demonstrated for cell-based bioprinting that could enhance the cellular maturation and eventually tissue formation.
Collapse
Affiliation(s)
- Mohamed Ali
- Wake Forest Institute for Regenerative MedicineWake Forest School of MedicineMedical Center Boulevard Winston‐Salem NC 27157 USA
- Department of ChemistryFaculty of ScienceZagazig University Zagazig Sharkia 44519 Egypt
| | - Anil Kumar PR
- Wake Forest Institute for Regenerative MedicineWake Forest School of MedicineMedical Center Boulevard Winston‐Salem NC 27157 USA
| | - James J. Yoo
- Wake Forest Institute for Regenerative MedicineWake Forest School of MedicineMedical Center Boulevard Winston‐Salem NC 27157 USA
- School of Biomedical Engineering and SciencesWake Forest University‐Virginia Tech Winston‐Salem NC 27157 USA
| | - Faten Zahran
- Department of ChemistryFaculty of ScienceZagazig University Zagazig Sharkia 44519 Egypt
| | - Anthony Atala
- Wake Forest Institute for Regenerative MedicineWake Forest School of MedicineMedical Center Boulevard Winston‐Salem NC 27157 USA
- School of Biomedical Engineering and SciencesWake Forest University‐Virginia Tech Winston‐Salem NC 27157 USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative MedicineWake Forest School of MedicineMedical Center Boulevard Winston‐Salem NC 27157 USA
- School of Biomedical Engineering and SciencesWake Forest University‐Virginia Tech Winston‐Salem NC 27157 USA
| |
Collapse
|
28
|
Lee J, Lee SH, Kim BS, Cho YS, Park Y. Development and Evaluation of Hyaluronic Acid-Based Hybrid Bio-Ink for Tissue Regeneration. Tissue Eng Regen Med 2018; 15:761-769. [PMID: 30603594 DOI: 10.1007/s13770-018-0144-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/17/2018] [Accepted: 07/10/2018] [Indexed: 01/21/2023] Open
Abstract
Background Bioprinting has recently appeared as a powerful tool for building complex tissue and organ structures. However, the application of bioprinting to regenerative medicine has limitations, due to the restricted choices of bio-ink for cytocompatible cell encapsulation and the integrity of the fabricated structures. Methods In this study, we developed hybrid bio-inks based on acrylated hyaluronic acid (HA) for immobilizing bio-active peptides and tyramine-conjugated hyaluronic acids for fast gelation. Results Conventional acrylated HA-based hydrogels have a gelation time of more than 30 min, whereas hybrid bio-ink has been rapidly gelated within 200 s. Fibroblast cells cultured in this hybrid bio-ink up to 7 days showed > 90% viability. As a guidance cue for stem cell differentiation, we immobilized four different bio-active peptides: BMP-7-derived peptides (BMP-7D) and osteopontin for osteogenesis, and substance-P (SP) and Ac-SDKP (SDKP) for angiogenesis. Mesenchymal stem cells cultured in these hybrid bio-inks showed the highest angiogenic and osteogenic activity cultured in bio-ink immobilized with a SP or BMP-7D peptide. This bio-ink was loaded in a three-dimensional (3D) bioprinting device showing reproducible printing features. Conclusion We have developed bio-inks that combine biochemical and mechanical cues. Biochemical cues were able to regulate differentiation of cells, and mechanical cues enabled printing structuring. This multi-functional bio-ink can be used for complex tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jaeyeon Lee
- 1Department of Biomedical Engineering, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Se-Hwan Lee
- 2Department of Mechanical Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538 Republic of Korea
| | - Byung Soo Kim
- 3Department of Internal Medicine, Korea University Medical Center, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Young-Sam Cho
- 2Department of Mechanical Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538 Republic of Korea
| | - Yongdoo Park
- 1Department of Biomedical Engineering, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| |
Collapse
|
29
|
Groell F, Jordan O, Borchard G. In vitro models for immunogenicity prediction of therapeutic proteins. Eur J Pharm Biopharm 2018; 130:128-142. [DOI: 10.1016/j.ejpb.2018.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
|
30
|
Gao T, Gillispie GJ, Copus JS, Asari AKPR, Seol YJ, Atala A, Yoo JJ, Lee SJ. Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach. Biofabrication 2018; 10:034106. [PMID: 29923501 PMCID: PMC6040670 DOI: 10.1088/1758-5090/aacdc7] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three-dimensional bioprinting has emerged as a promising technique in tissue engineering applications through the precise deposition of cells and biomaterials in a layer-by-layer fashion. However, the limited availability of hydrogel bioinks is frequently cited as a major issue for the advancement of cell-based extrusion bioprinting technologies. It is well known that highly viscous materials maintain their structure better, but also have decreased cell viability due to the higher forces which are required for extrusion. However, little is known about the effect of the two distinct components of dynamic modulus of viscoelastic materials, storage modulus (G') and loss modulus (G″), on the printability of hydrogel-based bioinks. Additionally, 'printability' has been poorly defined in the literature, mostly consisting of gross qualitative measures which do not allow for direct comparison of bioinks. This study developed a framework for evaluating printability and investigated the effect of dynamic modulus, including storage modulus (G'), loss modulus (G″), and loss tangent (G″/G') on the printing outcome. Gelatin and alginate as model hydrogels were mixed at various concentrations to obtain hydrogel formulations with a wide range of storage and loss moduli. These formulations were then evaluated for the quantitatively defined values of extrudability, extrusion uniformity, and structural integrity. For extrudability, increasing either the loss or storage modulus increased the pressure required to extrude the bioink. A mathematical model relating the G' and G″ to the required extrusion pressure was derived based on the data. A lower loss tangent was correlated with increased structural integrity while a higher loss tangent correlated with increased extrusion uniformity. Gelatin-alginate composite hydrogels with a loss tangent in the range of 0.25-0.45 exhibited an excellent compromise between structural integrity and extrusion uniformity. In addition to the characterization of a common bioink, the methodology introduced in this paper could also be used to evaluate the printability of other bioinks in the future.
Collapse
Affiliation(s)
- Teng Gao
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Gregory J. Gillispie
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| | - Joshua S. Copus
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| | | | - Young-Joon Seol
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| |
Collapse
|
31
|
Jung CS, Kim BK, Lee J, Min BH, Park SH. Development of Printable Natural Cartilage Matrix Bioink for 3D Printing of Irregular Tissue Shape. Tissue Eng Regen Med 2018; 15:155-162. [PMID: 30603543 PMCID: PMC6171689 DOI: 10.1007/s13770-017-0104-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022] Open
Abstract
The extracellular matrix (ECM) is known to provide instructive cues for cell attachment, proliferation, differentiation, and ultimately tissue regeneration. The use of decellularized ECM scaffolds for regenerative-medicine approaches is rapidly expanding. In this study, cartilage acellular matrix (CAM)-based bioink was developed to fabricate functional biomolecule-containing scaffolds. The CAM provides an adequate cartilage tissue-favorable environment for chondrogenic differentiation of cells. Conventional manufacturing techniques such as salt leaching, solvent casting, gas forming, and freeze drying when applied to CAM-based scaffolds cannot precisely control the scaffold geometry for mimicking tissue shape. As an alternative to the scaffold fabrication methods, 3D printing was recently introduced in the field of tissue engineering. 3D printing may better control the internal microstructure and external appearance because of the computer-assisted construction process. Hence, applications of the 3D printing technology to tissue engineering are rapidly proliferating. Therefore, printable ECM-based bioink should be developed for 3D structure stratification. The aim of this study was to develop printable natural CAM bioink for 3D printing of a tissue of irregular shape. Silk fibroin was chosen to support the printing of the CAM powder because it can be physically cross-linked and its viscosity can be easily controlled. The newly developed CAM-silk bioink was evaluated regarding printability, cell viability, and tissue differentiation. Moreover, we successfully demonstrated 3D printing of a cartilage-shaped scaffold using only this CAM-silk bioink. Future studies should assess the efficacy of in vivo implantation of 3D-printed cartilage-shaped scaffolds.
Collapse
Affiliation(s)
- Chi Sung Jung
- Departments of Molecular Science and Technology, Ajou University, 206, World Cup-ro, Yeongtonggu, Suwon, 16499 Korea
| | - Byeong Kook Kim
- Departments of Molecular Science and Technology, Ajou University, 206, World Cup-ro, Yeongtonggu, Suwon, 16499 Korea
| | - Junhee Lee
- Department of Nature-Inspired Nano Convergence System, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103 Korea
| | - Byoung-Hyun Min
- Departments of Molecular Science and Technology, Ajou University, 206, World Cup-ro, Yeongtonggu, Suwon, 16499 Korea
- Department of Orthopedic Surgery, School of Medicine, Ajou University, 206, World Cup-ro, Yeongtonggu, Suwon, 16499 Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, 45, Yongso-ro, Namgu, Busan, 48513 Korea
| |
Collapse
|
32
|
Jang J, Park JY, Gao G, Cho DW. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials 2018; 156:88-106. [DOI: 10.1016/j.biomaterials.2017.11.030] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/30/2017] [Accepted: 11/21/2017] [Indexed: 01/17/2023]
|
33
|
Rayate A, Jain PK. A Review on 4D Printing Material Composites and Their Applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2018.06.424] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Nam SY, Park SH. ECM Based Bioink for Tissue Mimetic 3D Bioprinting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:335-353. [DOI: 10.1007/978-981-13-0445-3_20] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Gu BK, Park SJ, Kim CH. Beneficial effect of aligned nanofiber scaffolds with electrical conductivity for the directional guide of cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:1053-1065. [DOI: 10.1080/09205063.2017.1364097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Bon Kang Gu
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Korea
| | - Sang Jun Park
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Korea
| | - Chun-Ho Kim
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Korea
| |
Collapse
|