1
|
Kanda T, Santos PD, Höper D, Beer M, Rubbenstroth D, Tomonaga K. Borna disease virus 2 maintains genomic polymorphisms by superinfection in persistently infected cells. NPJ VIRUSES 2025; 3:31. [PMID: 40295890 PMCID: PMC12006538 DOI: 10.1038/s44298-025-00117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
Mammalian orthobornaviruses, such as Borna disease virus 1 (BoDV-1) and variegated squirrel bornavirus 1, are zoonotic pathogens that cause fatal encephalitis in humans. BoDV-2, another mammalian orthobornavirus with high genetic homology to BoDV-1, is believed to share the same geographical distribution as BoDV-1, indicating its potential risk to human health. However, due to the limited number of isolations, the virological characteristics of BoDV-2, such as pathogenicity and infectivity, remain largely unexplored. Here, we re-evaluated the whole-genome sequence of BoDV-2 and established a reverse genetics system to investigate its virological properties. Compared to the published reference sequence, we identified two nonsynonymous nucleotide substitutions in the large (L) gene, one of which was critical for restoring polymerase activity, enabling the successful recovery of recombinant BoDV-2 (rBoDV-2). Additionally, we identified two nonsynonymous single-nucleotide polymorphisms (SNPs) in the L gene and one in the phosphoprotein (P) gene. Substitution of these SNPs significantly enhanced the growth ability of rBoDV-2. Furthermore, our studies demonstrated that BoDV-2 does not induce superinfection exclusion in cells, allowing the persistence of low-fitness genome variants for an extended period of time. These findings help to characterize the virological properties of BoDV-2 and shed light on how bornaviruses maintain genetic diversity in infected cells.
Collapse
Affiliation(s)
- Takehiro Kanda
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Science, Kyoto University, Kyoto, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Germany.
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Science, Kyoto University, Kyoto, Japan.
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Lieftüchter V, Vollmuth Y, Tacke M, Hoffmann F, Paolini M, Finck T, Liesche-Starnecker F, von Both U, Pörtner K, Tappe D, Grosse L. Bornavirus (BoDV-1) Encephalitis in Children: Update on Diagnosis and Treatment. Neuropediatrics 2025. [PMID: 40228529 DOI: 10.1055/a-2561-8303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Infectious encephalitis in children can be caused by several pathogens, very rarely this can be caused by bornaviruses (BoDV-1). Due to the recent discovery of the disease in humans and the small number of cases, especially pediatric infections, knowledge about the disease pathology as well as therapeutic options is limited. Therefore, this review shall help raise awareness of this rare and mostly fatal disease, promote an early diagnosis, and present current knowledge about possible treatment options.
Collapse
Affiliation(s)
- Victoria Lieftüchter
- Pediatric Intensive Care Unit, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
- Department of Pediatric Neurology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Yannik Vollmuth
- Pediatric Intensive Care Unit, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Moritz Tacke
- Pediatric Intensive Care Unit, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
- Department of Pediatric Neurology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Florian Hoffmann
- Pediatric Intensive Care Unit, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Marco Paolini
- Department of Radiology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Tom Finck
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Ulrich von Both
- Department of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Kirsten Pörtner
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Leonie Grosse
- Department of Pediatric Neurology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| |
Collapse
|
3
|
Jungbäck N, Vollmuth Y, Mögele T, Grochowski P, Schlegel J, Schaller T, Märkl B, Herden C, Matiasek K, Tappe D, Liesche-Starnecker F. Neuropathology, pathomechanism, and transmission in zoonotic Borna disease virus 1 infection: a systematic review. THE LANCET. INFECTIOUS DISEASES 2025; 25:e212-e222. [PMID: 39793593 DOI: 10.1016/s1473-3099(24)00675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 01/13/2025]
Abstract
Borna disease, which is a severe encephalitis that primarily affects horses and sheep, has been recognised for over two centuries. Borna disease virus 1 (BoDV-1) has been identified as a cause of a predominantly fatal encephalitis in humans. Little scientific data exist regarding the virus' transmission, entry portal, and excretion routes. Lesional patterns, immunological responses, and pathogenetic mechanisms remain largely unexplored in both reservoir and dead-end hosts. This systematic review compiles current knowledge on these aspects and provides guidance for future research. PubMed, ScienceDirect, and EBSCO were searched for publications from Jan 1, 2000, to April 30, 2024. 823 records were found, of which 41 studies were included. This systematic review discusses BoDV-1 transmission, pathogenesis, histopathological changes, and immunology in both reservoir and dead-end hosts, with special regard for humans. The exact propagation mechanisms, entry portal, and viral spread within the CNS are not entirely clear in humans. Although more data exist in animals, much remains hypothetical. Future research should focus on identifying potential entry sites and viral spread in dead-end hosts, which could help to clarify the pathogenesis and lesion distribution in the CNS, thereby contributing to a better understanding of BoDV-1 infection in humans and parallels with animal infections.
Collapse
Affiliation(s)
- Nicola Jungbäck
- Department of Neuropathology, Medical Faculty, University of Augsburg, Augsburg, Germany; Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Yannik Vollmuth
- Department of Neuropathology, Medical Faculty, University of Augsburg, Augsburg, Germany; Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany; Department of Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tatiana Mögele
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | | | - Jürgen Schlegel
- Department of Neuropathology, Medical Faculty, University of Augsburg, Augsburg, Germany; Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany; Department of Exercise Physiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tina Schaller
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Bruno Märkl
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany; Center of Mind, Brain and Behavior, Justus Liebig University, Giessen, Germany
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dennis Tappe
- National Reference Laboratory for Bornaviruses, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Friederike Liesche-Starnecker
- Department of Neuropathology, Medical Faculty, University of Augsburg, Augsburg, Germany; Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany.
| |
Collapse
|
4
|
Pörtner K, Wilking H, Frank C, Stark K, Wunderlich S, Tappe D. Clinical analysis of Bornavirus Encephalitis cases demonstrates a small time window for Etiological Diagnostics and treatment attempts, a large case series from Germany 1996-2022. Infection 2025; 53:155-164. [PMID: 39028389 PMCID: PMC11825613 DOI: 10.1007/s15010-024-02337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE The emerging zoonotic Borna disease virus 1 (BoDV-1) and the variegated squirrel bornavirus 1 (VSBV-1) cause severe and fatal human encephalitis in Germany. We conducted the first systematic clinical analysis of acute, molecularly confirmed fatal bornavirus encephalitis cases comprising 21 BoDV-1 and four VSBV-1 patients to identify options for better diagnosis and timely treatment. METHODS Analyses were based on medical records and, for BoDV-1, on additional medical interviews with patients' relatives. RESULTS Disease onset was unspecific, often with fever and headache, inconsistently mixed with early fluctuating neurological symptoms, all rapidly leading to severe encephalopathy and progressive vigilance decline. Very shortly after seeking the first medical advice (median time interval 2 and 0 days for BoDV-1 and VSBV-1, respectively), all except one patient were hospitalised upon manifest neurological symptoms (median 10 and 16 days respectively after general symptom onset). Neurological symptoms varied, always progressing to coma and death. BoDV-1 and VSBV-1 patients required ventilation a median of three and five days, and died a median of 32 and 72 days, after hospitalisation. Death occurred mostly after supportive treatment cessation at different points in time based on poor prognosis. Disease duration therefore showed a wide, incomparable range. CONCLUSION The extremely rapid progression is the most obvious clinical characteristic of bornavirus encephalitis and the timeframe for diagnosis and targeted therapy is very short. Therefore, our results demand an early clinical suspicion based on symptomatology, epidemiology, imaging, and laboratory findings, followed by prompt virological testing as a prerequisite for any potentially effective treatment.
Collapse
Affiliation(s)
- Kirsten Pörtner
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Seestr. 10, 13353, Berlin, Germany.
| | - Hendrik Wilking
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Seestr. 10, 13353, Berlin, Germany
| | - Christina Frank
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Seestr. 10, 13353, Berlin, Germany
| | - Klaus Stark
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Seestr. 10, 13353, Berlin, Germany
| | - Silke Wunderlich
- School of Medicine, Department of Neurology, Technical University of Munich, Munich, Germany
| | - Dennis Tappe
- Reference Laboratory for Bornaviruses, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
5
|
Zhang J, Yang Y, Wang B, Qiu W, Zhang H, Qiu Y, Yuan J, Dong R, Zha Y. Developing a universal multi-epitope protein vaccine candidate for enhanced borna virus pandemic preparedness. Front Immunol 2024; 15:1427677. [PMID: 39703502 PMCID: PMC11655343 DOI: 10.3389/fimmu.2024.1427677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Borna disease virus 1 (BoDV-1) is an emerging zoonotic RNA virus that can cause severe acute encephalitis with high mortality. Currently, there are no effective countermeasures, and the potential risk of a future outbreak requires urgent attention. To address this challenge, the complete genome sequence of BoDV-1 was utilized, and immunoinformatics was applied to identify antigenic peptides suitable for vaccine development. Methods Immunoinformatics and antigenicity-focused protein screening were employed to predict B-cell linear epitopes, B-cell conformational epitopes, and cytotoxic T lymphocyte (CTL) epitopes. Only overlapping epitopes with antigenicity greater than 1 and non-toxic, non-allergenic properties were selected for subsequent vaccine construction. The epitopes were linked using GPGPG linkers, incorporating β-defensins at the N-terminus to enhance immune response, and incorporating Hit-6 at the C-terminus to improve protein solubility and aid in protein purification. Computational tools were used to predict the immunogenicity, physicochemical properties, and structural stability of the vaccine. Molecular docking was performed to predict the stability and dynamics of the vaccine in complex with Toll-like receptor 4 (TLR-4) and major histocompatibility complex I (MHC I) receptors. The vaccine construct was cloned through in silico restriction to create a plasmid for expression in a suitable host. Results Among the six BoDV-1 proteins analyzed, five exhibited high antigenicity scores. From these, eight non-toxic, non-allergenic overlapping epitopes with antigenicity scores greater than 1 were selected for vaccine development. Computational predictions indicated favorable immunogenicity, physicochemical properties, and structural stability. Molecular docking analysis showed that the vaccine remained stable in complex with TLR-4 and MHC I receptors, suggesting strong potential for immune recognition. A plasmid construct was successfully generated, providing a foundation for the experimental validation of vaccines in future pandemic scenarios. Discussion These findings demonstrate the potential of the immunoinformatics-designed multi-epitope vaccines for the prevention and treatment of BoDV-1. Relevant preparations were made in advance for possible future outbreaks and could be quickly utilized for experimental verification.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Youfang Yang
- Department of Nephrology, The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Binyu Wang
- School of Medicine, Guizhou University, Guiyang, China
| | - Wanting Qiu
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Helin Zhang
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yuyang Qiu
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jing Yuan
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Rong Dong
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Zha
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
6
|
Vollmuth Y, Jungbäck N, Mögele T, Schmidt-Graf F, Wunderlich S, Schimmel M, Rothe C, Stark L, Schlegel J, Rieder G, Richter T, Schaller T, Tappe D, Märkl B, Matiasek K, Liesche-Starnecker F. Comparative study of virus and lymphocyte distribution with clinical data suggests early high dose immunosuppression as potential key factor for the therapy of patients with BoDV-1 infection. Emerg Microbes Infect 2024; 13:2350168. [PMID: 38687703 PMCID: PMC11107860 DOI: 10.1080/22221751.2024.2350168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
ABSTRACTBorna disease virus 1 (BoDV-1) was just recently shown to cause predominantly fatal encephalitis in humans. Despite its rarity, bornavirus encephalitis (BVE) can be considered a model disease for encephalitic infections caused by neurotropic viruses and understanding its pathomechanism is of utmost relevance. Aim of this study was to compare the extent and distribution pattern of cerebral inflammation with the clinical course of disease, and individual therapeutic procedures. For this, autoptic brain material from seven patients with fatal BVE was included in this study. Tissue was stained immunohistochemically for pan-lymphocytic marker CD45, the nucleoprotein of BoDV-1, as well as glial marker GFAP and microglial marker Iba1. Sections were digitalized and counted for CD45-positive and BoDV-1-positive cells. For GFAP and Iba1, a semiquantitative score was determined. Furthermore, detailed information about the individual clinical course and therapy were retrieved and summarized in a standardized way. Analysis of the distribution of lymphocytes shows interindividual patterns. In contrast, when looking at the BoDV-1-positive glial cells and neurons, a massive viral involvement in the brain stem was noticeable. Three of the seven patients received early high-dose steroids, which led to a significantly lower lymphocytic infiltration of the central nervous tissue and a longer survival compared to the patients who were treated with steroids later in the course of disease. This study highlights the potential importance of early high-dose immunosuppressive therapy in BVE. Our findings hint at a promising treatment option which should be corroborated in future observational or prospective therapy studies.ABBREVIATIONS: BoDV-1: Borna disease virus 1; BVE: bornavirus encephalitis; Cb: cerebellum; CNS: central nervous system; FL: frontal lobe; GFAP: glial fibrillary acid protein; Hc: hippocampus; Iba1: ionized calcium-binding adapter molecule 1; Iba1act: general activation of microglial cells; Iba1nod: formation of microglial nodules; IL: insula; Me: mesencephalon; Mo: medulla oblongata; OL: occipital lobe; pASS: per average of 10 screenshots; patearly: patients treated with early high dose steroid shot; patlate: patients treated with late or none high dose steroid shot; Po: pons; So: stria olfactoria; Str: striatum.
Collapse
Affiliation(s)
- Yannik Vollmuth
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nicola Jungbäck
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Tatiana Mögele
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Friederike Schmidt-Graf
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Silke Wunderlich
- Department of Neurology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Mareike Schimmel
- Department of Pediatrics and Adolescent Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Camilla Rothe
- Division of Infectious Diseases and Tropical Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Leonhard Stark
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jürgen Schlegel
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Georg Rieder
- Department of Neurology, InnKlinikum, Altötting, Germany
| | - Thomas Richter
- Clinic of Pathology, Pathology Rosenheim, Rosenheim, Germany
| | - Tina Schaller
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Dennis Tappe
- National Laboratory for Bornaviruses, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Bruno Märkl
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | | |
Collapse
|
7
|
Bauswein M, Zoubaa S, Toelge M, Eidenschink L, Riemenschneider MJ, Neumann B, Lee DH, Eid E, Tappe D, Niller HH, Gessner A, Schmidt B, Bülow S, Angstwurm K. Long-term Elevation of Complement Factors in Cerebrospinal Fluid of Patients With Borna Disease Virus 1 Encephalitis. J Infect Dis 2024; 230:e943-e953. [PMID: 38591239 PMCID: PMC11481329 DOI: 10.1093/infdis/jiae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Borna disease virus 1 (BoDV-1) causes rare but severe zoonotic infections in humans, presenting as encephalitis. The case-fatality risk is very high and no effective countermeasures have been established so far. An immunopathology is presumed, while data on immune responses in humans are limited. Evidence of a role of the complement system in various neurological disorders and in viral infections of the central nervous system is increasing and specific inhibitors are available as therapeutic options. METHODS In this study, we investigated factors of the complement system in the cerebrospinal fluid (CSF) of patients with BoDV-1 infections (n = 17) in comparison to noninflammatory control CSF samples (n = 11), using a bead-based multiplex assay. In addition, immunohistochemistry was performed using postmortem brain tissue samples. RESULTS We found an intrathecal elevation of complement factors of all complement pathways and an active cascade during human BoDV-1 infections. The increase of certain complement factors such as C1q was persistent, and C3 complement deposits were detected in postmortem brain sections. Intrathecal complement levels were negatively correlated with survival. CONCLUSIONS Further investigations are warranted to clarify whether targeting the complement cascade by specific inhibitors might be beneficial for patients suffering from severe BoDV-1 encephalitis.
Collapse
Affiliation(s)
- Markus Bauswein
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Saida Zoubaa
- Department of Neuropathology, University Hospital Regensburg, Regensburg, Germany
| | - Martina Toelge
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Lisa Eidenschink
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | | | - Bernhard Neumann
- Department of Neurology, Donau-Isar-Klinikum Deggendorf, Deggendorf, Germany
- Department of Neurology, University of Regensburg, Bezirksklinikum, Regensburg, Germany
| | - De-Hyung Lee
- Department of Neurology, University of Regensburg, Bezirksklinikum, Regensburg, Germany
| | - Ehab Eid
- Department of Neurology, University of Regensburg, Bezirksklinikum, Regensburg, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Sigrid Bülow
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Klemens Angstwurm
- Department of Neurology, University of Regensburg, Bezirksklinikum, Regensburg, Germany
| |
Collapse
|
8
|
Bauswein M, Eid E, Eidenschink L, Schmidt B, Gessner A, Tappe D, Cadar D, Böhmer MM, Jockel L, van Wickeren N, Garibashvili T, Wiesinger I, Wendl C, Heckmann JG, Angstwurm K, Freyer M. Detection of virus-specific T cells via ELISpot corroborates early diagnosis in human Borna disease virus 1 (BoDV-1) encephalitis. Infection 2024; 52:1663-1670. [PMID: 38607591 PMCID: PMC11499394 DOI: 10.1007/s15010-024-02246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Within endemic regions in southern and eastern Germany, Borna disease virus 1 (BoDV-1) causes rare zoonotic spill-over infections in humans, leading to encephalitis with a high case-fatality risk. So far, intra-vitam diagnosis has mainly been based on RT-qPCR from cerebrospinal fluid (CSF) and serology, both being associated with diagnostic challenges. Whilst low RNA copy numbers in CSF limit the sensitivity of RT-qPCR from this material, seroconversion often occurs late during the course of the disease. CASE PRESENTATION Here, we report the new case of a 40 - 50 year-old patient in whom the detection of virus-specific T cells via ELISpot corroborated the diagnosis of BoDV-1 infection. The patient showed a typical course of the disease with prodromal symptoms like fever and headaches 2.5 weeks prior to hospital admission, required mechanical ventilation from day three after hospitalisation and remained in deep coma until death ten days after admission. RESULTS Infection was first detected by positive RT-qPCR from a CSF sample drawn four days after admission (viral load 890 copies/mL). A positive ELISpot result was obtained from peripheral blood collected on day seven, when virus-specific IgG antibodies were not detectable in serum, possibly due to previous immune adsorption for suspected autoimmune-mediated encephalitis. CONCLUSION This case demonstrates that BoDV-1 ELISpot serves as additional diagnostic tool even in the first week after hospitalisation of patients with BoDV-1 encephalitis.
Collapse
Affiliation(s)
- Markus Bauswein
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany.
| | - Ehab Eid
- Department of Neurology, University of Regensburg, Bezirksklinikum, Regensburg, Germany
| | - Lisa Eidenschink
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Consiliary Laboratory for Bornaviruses, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Merle M Böhmer
- Bavarian Health and Food Safety Authority, Munich, Germany
- Institute of Social Medicine and Health Systems Research, Otto-von-Guericke-University, Magdeburg, Germany
| | - Laura Jockel
- Department of Neurology, University of Regensburg, Bezirksklinikum, Regensburg, Germany
| | - Nora van Wickeren
- Department of Neurology, University of Regensburg, Bezirksklinikum, Regensburg, Germany
| | | | - Isabel Wiesinger
- Institute of Neuroradiology, University of Regensburg, Bezirksklinikum, Regensburg, Germany
| | - Christina Wendl
- Institute of Neuroradiology, University of Regensburg, Bezirksklinikum, Regensburg, Germany
| | | | - Klemens Angstwurm
- Department of Neurology, University of Regensburg, Bezirksklinikum, Regensburg, Germany
| | - Martin Freyer
- Department of Neurology, Klinikum Landshut, Landshut, Germany
| |
Collapse
|
9
|
Ebinger A, Santos PD, Pfaff F, Dürrwald R, Kolodziejek J, Schlottau K, Ruf V, Liesche-Starnecker F, Ensser A, Korn K, Ulrich R, Fürstenau J, Matiasek K, Hansmann F, Seuberlich T, Nobach D, Müller M, Neubauer-Juric A, Suchowski M, Bauswein M, Niller HH, Schmidt B, Tappe D, Cadar D, Homeier-Bachmann T, Haring VC, Pörtner K, Frank C, Mundhenk L, Hoffmann B, Herms J, Baumgärtner W, Nowotny N, Schlegel J, Ulrich RG, Beer M, Rubbenstroth D. Lethal Borna disease virus 1 infections of humans and animals - in-depth molecular epidemiology and phylogeography. Nat Commun 2024; 15:7908. [PMID: 39256401 PMCID: PMC11387626 DOI: 10.1038/s41467-024-52192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Borna disease virus 1 (BoDV-1) is the causative agent of Borna disease, a fatal neurologic disorder of domestic mammals and humans, resulting from spill-over infection from its natural reservoir host, the bicolored white-toothed shrew (Crocidura leucodon). The known BoDV-1-endemic area is remarkably restricted to parts of Germany, Austria, Switzerland and Liechtenstein. To gain comprehensive data on its occurrence, we analysed diagnostic material from suspected BoDV-1-induced encephalitis cases based on clinical and/or histopathological diagnosis. BoDV-1 infection was confirmed by RT-qPCR in 207 domestic mammals, 28 humans and seven wild shrews. Thereby, this study markedly raises the number of published laboratory-confirmed human BoDV-1 infections and provides a first comprehensive summary. Generation of 136 new BoDV-1 genome sequences from animals and humans facilitated an in-depth phylogeographic analysis, allowing for the definition of risk areas for zoonotic BoDV-1 transmission and facilitating the assessment of geographical infection sources. Consistent with the low mobility of its reservoir host, BoDV-1 sequences showed a remarkable geographic association, with individual phylogenetic clades occupying distinct areas. The closest genetic relatives of most human-derived BoDV-1 sequences were located at distances of less than 40 km, indicating that spill-over transmission from the natural reservoir usually occurs in the patient´s home region.
Collapse
Affiliation(s)
- Arnt Ebinger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Pauline D Santos
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Ralf Dürrwald
- Robert Koch Institute, Department of Infectious Diseases, Unit 17 Influenza and Other Respiratory Viruses, National Reference Centre for Influenza, Berlin, Germany
| | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Friederike Liesche-Starnecker
- Department of Neuropathology, Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Armin Ensser
- Institute of Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Klaus Korn
- Institute of Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Jenny Fürstenau
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Hansmann
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Torsten Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Daniel Nobach
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
- Chemical and Veterinary Analysis Agency Stuttgart (CVUAS), Fellbach, Germany
| | - Matthias Müller
- Bavarian Health and Food Safety Authority, Erlangen, Germany
| | | | - Marcel Suchowski
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Markus Bauswein
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Hans-Helmut Niller
- Institute for Medical Microbiology, Regensburg University, Regensburg, Germany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Dennis Tappe
- Bernhard Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Daniel Cadar
- Bernhard Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Timo Homeier-Bachmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Viola C Haring
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kirsten Pörtner
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Berlin, Germany
| | - Christina Frank
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Berlin, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Jürgen Schlegel
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Munich, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
10
|
Lourbopoulos A, Schnurbus L, Guenther R, Steinlein S, Ruf V, Herms J, Jahn K, Huge V. Case report: Fatal Borna virus encephalitis manifesting with basal brain and brainstem symptoms. Front Neurol 2024; 14:1305748. [PMID: 38333183 PMCID: PMC10850352 DOI: 10.3389/fneur.2023.1305748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024] Open
Abstract
Background Since the first report of fatal Borna virus-1 (BoDV-1) encephalitis in 2018, cases gradually increased. There is a lack of diagnostic algorithm, and there is no effective treatment so far. Case presentation We report an acute BoDV-1 encephalitis in a 77-year-old female with flu-like onset, rapid progression to word-finding difficulties, personality changes, global disorientation, diffuse cognitive slowness, and gait ataxia and further deterioration with fever, meningism, severe hyponatremia, epileptic seizures, cognitive decline, and focal cortical and cerebellar symptoms/signs. The extensive diagnostic workup (cerebrovascular fluid, serum, and MRI) for (meningo-)encephalitis was negative for known causes. Our empirical common antiviral, antimicrobial, and immunosuppressive treatment efforts failed. The patient fell into coma 5 days after admission, lost all brainstem reflexes on day 18, remained fully dependent on invasive mechanical ventilation thereafter and died on day 42. Brain and spinal cord autopsy confirmed an extensive, diffuse, and severe non-purulent, lymphocytic sclerosing panencephalomyelitis due to BoDV-1, affecting neocortical, subcortical, cerebellar, neurohypophysis, and spinal cord areas. Along with our case, we critically reviewed all reported BoDV-1 encephalitis cases. Conclusion The diagnosis of acute BoDV-1 encephalitis is challenging and delayed, while it progresses to fatal. In this study, we list all tried and failed treatments so far for future reference and propose a diagnostic algorithm for prompt suspicion and diagnosis.
Collapse
Affiliation(s)
- Athanasios Lourbopoulos
- Department of Neurology and Neurointensive Care, Schoen Clinic Bad Aibling, Bad Aibling, Germany
- Institute for Stroke and Dementia Research (ISD), LMU Munich University Hospital, Munich, Germany
| | - Lea Schnurbus
- Department of Neurology and Neurointensive Care, Schoen Clinic Bad Aibling, Bad Aibling, Germany
| | - Ricarda Guenther
- Department of Neurology and Neurointensive Care, Schoen Clinic Bad Aibling, Bad Aibling, Germany
| | - Susanne Steinlein
- Department of Neurology and Neurointensive Care, Schoen Clinic Bad Aibling, Bad Aibling, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, LMU, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, LMU, Munich, Germany
| | - Klaus Jahn
- Department of Neurology and Neurointensive Care, Schoen Clinic Bad Aibling, Bad Aibling, Germany
- German Center of Vertigo and Balance Disorders (DSGZ), University of Munich (LMU), Munich, Germany
| | - Volker Huge
- Department of Neurology and Neurointensive Care, Schoen Clinic Bad Aibling, Bad Aibling, Germany
- Department of Anaesthesiology, LMU Munich University Hospital, Munich, Germany
| |
Collapse
|
11
|
Riccò M, Zanella I, Satta E, Ranzieri S, Corrado S, Marchesi F, Peruzzi S. BoDV-1 Infection in Children and Adolescents: A Systematic Review and Meta-Analysis. Pediatr Rep 2023; 15:512-531. [PMID: 37755407 PMCID: PMC10534910 DOI: 10.3390/pediatric15030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Borna disease virus 1 (BoDV-1) can cause a severe human syndrome characterized by meningo-myeloencephalitis. The actual epidemiology of BoDV-1 remains disputed, and our study summarized prevalence data among children and adolescents (<18-year-old). Through systematic research on three databases (PubMed, EMBASE, MedRxiv), all studies, including seroprevalence rates for BoDV-1 antigens and specific antibodies, were retrieved, and their results were summarized. We identified a total of six studies for a total of 2692 subjects aged less than 18 years (351 subjects sampled for BoDV-1 antibodies and 2557 for antigens). A pooled seroprevalence of 6.09% (95% Confidence Interval [95% CI] 2.14 to 16.17) was eventually calculated for BoDV-1 targeting antibodies and 0.76% (95% CI 0.26 to 2.19) for BoDV-1 antigens. Both estimates were affected by substantial heterogeneity. Seroprevalence rates for BoDV-1 in children and adolescents suggested that a substantial circulation of the pathogen does occur, and as infants and adolescents have relatively scarce opportunities for being exposed to hosts and animal reservoirs, the potential role of unknown vectors cannot be ruled out.
Collapse
Affiliation(s)
- Matteo Riccò
- Occupational Health and Safety Service on the Workplace/Servizio di Prevenzione e Sicurezza Ambienti di Lavoro (SPSAL), Department of Public Health, AUSL–IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Ilaria Zanella
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Elia Satta
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Silvia Corrado
- ASST Rhodense, Dipartimento Della Donna e Area Materno-Infantile, UOC Pediatria, 20024 Garbagnate Milanese, Italy;
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Simona Peruzzi
- Laboratorio Analisi Chimico Cliniche e Microbiologiche, Ospedale Civile di Guastalla, AUSL—IRCCS di Reggio Emilia, 42016 Guastalla, Italy;
| |
Collapse
|