1
|
Zarif Attalla K, Hassan DH, Teaima MH, Yousry C, El-Nabarawi MA, Said MA, Elhabal SF. Enhanced Intranasal Delivery of Atorvastatin via Superparamagnetic Iron-Oxide-Loaded Nanocarriers: Cytotoxicity and Inflammation Evaluation and In Vivo, In Silico, and Network Pharmacology Study for Targeting Glioblastoma Management. Pharmaceuticals (Basel) 2025; 18:421. [PMID: 40143197 PMCID: PMC11944838 DOI: 10.3390/ph18030421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Objective: This study aims to develop an intranasal (IN) delivery system for glioblastoma multiforme (GBM) management using repurposed superparamagnetic iron-oxide (SPION) loaded with atorvastatin (ATO)-nanostructured lipid carrier (NLC). Methods: Emulsification and ultrasonication were used to formulate ATO-NLCs, and the best formula was loaded with SPION to make the final atorvastatin/superparamagnetic iron oxide-loaded nanostructured lipid carrier (ASN) formulation. Entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and drug release after 6 h (Q6h) were evaluated for NLCs. ASN was tested for cytotoxicity on T98G cancer cells, and the cell cycle was examined to determine cell death. Furthermore, the ability of the optimal formulation to suppress the levels of inflammatory biomarkers was investigated in Lipopolysaccharide (LPS)-induced inflammation. The brain-targeting behavior of IN-ASN was visualized in rabbits via confocal laser scanning microscopy (CLSM). Results: The optimum NLC exhibited a spherical shape, EE% of 84.0 ± 0.67%, PS of 282.50 ± 0.51 nm, ZP of -18.40 ± 0.15 mV, and Q6h of 89.23%. The cytotoxicity of ASN against cancer cells was 4.4-fold higher than ATO suspension, with a 1.3-fold increment in cell apoptosis. ASN showed significantly reduced pro-inflammatory biomarkers (IL-β, IL-6, TNF-α, TLR4, NF-қB), whereas CLSM revealed enhanced brain delivery with no observed histopathological nasal irritation. The in silico analysis demonstrated enhanced ATO-ADME (absorption, distribution, metabolism, and excretion) properties, while the network pharmacology study identified 10 target GBM genes, among which MAPK3 was the most prominent with a good binding score as elucidated by the simulated docking study. Conclusions: These findings may present ATO/SPION-NLCs as significant evidence for repurposing atorvastatin in the treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Kristina Zarif Attalla
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt;
| | - Doaa H. Hassan
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 12566, Egypt;
| | - Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.H.T.); (C.Y.); (M.A.E.-N.)
| | - Carol Yousry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.H.T.); (C.Y.); (M.A.E.-N.)
- Department of Pharmaceutics and Industrial Pharmacy, School of Pharmacy, Newgiza University, km. 22 Cairo-Alex Road, Giza P.O. Box 12577, Egypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.H.T.); (C.Y.); (M.A.E.-N.)
| | - Mohamed A. Said
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt;
| | - Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| |
Collapse
|
2
|
Alanazi M, Alanazi J, Alharby TN, Huwaimel B. Correlation of rivaroxaban solubility in mixed solvents for optimization of solubility using machine learning analysis and validation. Sci Rep 2025; 15:4725. [PMID: 39922955 PMCID: PMC11807219 DOI: 10.1038/s41598-025-89093-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
In this study, the solubility of rivaroxaban, a poorly water-soluble drug, was investigated in mixed solvent systems to address challenges in pharmaceutical formulation and bioavailability enhancement. Solubility optimization is essential for the effective delivery and therapeutic performance of rivaroxaban, as its low aqueous solubility limits oral bioavailability and necessitates innovative approaches for drug formulation. The study explored the role of primary alcohols combined with dichloromethane in improving solubility, emphasizing their industrial relevance in crystallization, purification, and drug manufacturing processes. To complement experimental insights, machine learning models were employed to predict rivaroxaban solubility based on temperature, solvent type, and mass fraction of dichloromethane. Three models-AdaBoost Gaussian process regression (ADAGPR), AdaBoost multilayer perceptron (ADAMLP), and AdaBoost LASSO regression (ADALASSO)-were evaluated using [Formula: see text], RMSE, and MAPE metrics. Among these, ADAGPR demonstrated superior performance with an R² score of [Formula: see text], outperforming ADAMLP [Formula: see text] and [Formula: see text]. It also achieved the lowest total RMSE [Formula: see text] and MAPE [Formula: see text], confirming its predictive precision and reliability. Optimal solubility conditions were identified at [Formula: see text] with a mass fraction of 0.8190 in a dichloromethane-methanol mixture, yielding a predicted solubility of [Formula: see text]. These findings highlight the potential of combining chemical engineering principles with advanced predictive modeling to optimize solubility in complex solvent systems, offering significant value to pharmaceutical development and process optimization.
Collapse
Affiliation(s)
- Muteb Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Ha'il, 81442, Saudi Arabia.
| | - Jowaher Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il, 81442, Saudi Arabia
| | - Tareq Nafea Alharby
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Ha'il, 81442, Saudi Arabia
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Hail, 81442, Saudi Arabia
- Medical and Diagnostic Research Center, University of Ha'il, Hail, 55473, Saudi Arabia
| |
Collapse
|
3
|
Elbeltagi S, Madkhali N, Alharbi HM, Eldin ZE. MXene-encapsulated ZIF-8@Liposomes for NIR-enhanced photothermal therapy in hepatocellular carcinoma treatment: In vitro, in vivo, and in silico study. Arch Biochem Biophys 2025; 764:110256. [PMID: 39638142 DOI: 10.1016/j.abb.2024.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Photothermal therapy (PTT) utilizes near-infrared (NIR) light to enhance localized, non-invasive cancer treatments and drug delivery systems (DDS). Combination chemotherapy with PTT (chemo-PTT) offers multiple therapeutic advantages, involving synergistic effects, reduced side effects, and decreased drug toxicity. In this study, 2D titanium carbide (Ti3C2Tx) MXene nanosheets were encapsulated in a zeolitic imidazolate framework-8 (ZIF-8) to form (MX-ZIF-8) nanoparticles (NPs) for PTT applications. Sorafenib (SB), an anticancer drug was loaded onto MX-ZIF-8 and further modified with a liposomes (LPs) lipid bilayer to create (SB-MX-ZIF-8@LPs) nanocomposites. TEM imaging revealed that SB-MX-ZIF-8@LPs had a lamellar structure and spherical shape, with an average diameter of 75.2 nm and a zeta potential (ZP) of -8.4 ± 4.5 mV. Additionally, the PT stability, drug encapsulation, and in-vitro release kinetics of SB-MX-ZIF-8@LPs were assessed. These nanocomposites exhibited an impressive PT conversion efficiency of 55 % at 50 μg/mL under NIR irradiation. The cumulative release of SB from SB-MX-ZIF-8@LPs reached 86.15 % at pH 7.4 and 89.3 % at pH 4.8 under NIR over a period of 72 h, with an encapsulation efficiency of 87.34 %. MTT assays revealed strong cytotoxicity against HepG2 cells, with SB-MX-ZIF-8@LPs showing an IC50 value of 2.7 μg/mL and inducing approximately 96 % total apoptosis. The SB-MX-ZIF-8@lip nanocomposite demonstrated excellent biological stability in a serum environment, retaining over 98 % of sorafenib and maintaining consistent particle size (∼347 nm) over 30 days. An in vivo xenograft study in BALB/c mice further demonstrated the efficacy of SB-MX-ZIF-8@LPs, with this treatment group showing the smallest tumor volume compared to other groups and a significantly higher tumor volume reduction than SB alone. Molecular docking studies indicated that SB exhibited strong binding affinities particularly with ABL1 (-8.7 kcal/mol) and EGFR (-9.3 kcal/mol). Docking interactions between MXene and SB, conducted using the Hdock Server, resulted in a docking score of -10.53, with one bond forming at a distance of 4 Å. These findings were consistent with experimental results, highlighting the favorable interaction between MXene and SB. ADMET analysis confirmed that MX-ZIF-8@LPs possessed favorable drug carrier properties, including high intestinal absorption (96.6 %), and low toxicity supporting its potential as an effective DDS for cancer therapy.
Collapse
Affiliation(s)
- Shehab Elbeltagi
- Department of Physics, Faculty of Science, New Valley University, El-Kharga, 72511, Egypt.
| | - Nawal Madkhali
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMISU), Riyadh, 11623, Saudi Arabia
| | - Hanan M Alharbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Zienab E Eldin
- Center for Material Science, Zewail City of Science and Technology, 6th of October, 12578, Giza, Egypt; Faculty of Postgraduate Studies for Advanced Sciences, Material Science and Nanotechnology Department, (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
4
|
Shin Y, Kim M, Kim C, Jeon H, Koo J, Oh J, Shin S, Youn YS, Lim C, Oh KT. Development and Characterization of Olaparib-Loaded Solid Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) for Pharmaceutical Applications. AAPS PharmSciTech 2024; 25:221. [PMID: 39317842 DOI: 10.1208/s12249-024-02927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
This study aims to enhance the solubility of Olaparib, classified as biopharmaceutical classification system (BCS) class IV due to its low solubility and bioavailability using a solid self-nanoemulsifying drug delivery system (S-SNEDDS). For this purpose, SNEDDS formulations were created using Capmul MCM as the oil, Tween 80 as the surfactant, and PEG 400 as the co-surfactant. The SNEDDS formulation containing olaparib (OLS-352), selected as the optimal formulation, showed a mean droplet size of 87.0 ± 0.4 nm and drug content of 5.53 ± 0.09%. OLS-352 also demonstrated anticancer activity against commonly studied ovarian (SK-OV-3) and breast (MCF-7) cancer cell lines. Aerosil® 200 and polyvinylpyrrolidone (PVP) K30 were selected as solid carriers, and S-SNEDDS formulations were prepared using the spray drying method. The drug concentration in S-SNEDDS showed no significant changes (98.4 ± 0.30%, 25℃) with temperature fluctuations during the 4-week period, demonstrating improved storage stability compared to liquid SNEDDS (L-SNEDDS). Dissolution tests under simulated gastric and intestinal conditions revealed enhanced drug release profiles compared to those of the raw drug. Additionally, the S-SNEDDS formulation showed a fourfold greater absorption in the Caco-2 assay than the raw drug, suggesting that S-SNEDDS could improve the oral bioavailability of poorly soluble drugs like olaparib, thus enhancing therapeutic outcomes. Furthermore, this study holds significance in crafting a potent and cost-effective pharmaceutical formulation tailored for the oral delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Yuseon Shin
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Mikyung Kim
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Chaeyeon Kim
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Hyewon Jeon
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Jain Koo
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Jimin Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Soyoung Shin
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
- College of Pharmacy, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Chaemin Lim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13488, Republic of Korea.
| | - Kyung Taek Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea.
- College of Pharmacy, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
5
|
Sweed NM, Dawoud MHS, Aborehab NM, Ezzat SM. An approach for an enhanced anticancer activity of ferulic acid-loaded polymeric micelles via MicroRNA-221 mediated activation of TP53INP1 in caco-2 cell line. Sci Rep 2024; 14:2073. [PMID: 38267567 PMCID: PMC10808409 DOI: 10.1038/s41598-024-52143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
Ferulic acid (FA) has powerful antioxidant and antitumor activities, but it has low bioavailability owing to its poor water solubility. Our aim is to formulate polymeric mixed micelles loaded with FA to overcome its poor solubility and investigate its potential anticancer activity via miRNA-221/TP53INP1 axis-mediated autophagy in colon cancer. A D-optimal design with three factors was used for the optimization of polymeric mixed micelles by studying the effects of each of total Pluronics mixture (mg), Pluronic P123 percentage (%w/w), and drug amount (mg) on both entrapment efficiency (EE%) and particle size. The anticancer activity of FA and Tocopheryl polyethylene glycol 1000 succinate (TPGS) mixed micelles formula (O2) was assessed by MTT and flow cytometry. O2 showed an EE% of 99.89%, a particle size of 13.86 nm, and a zeta potential of - 6.02 mv. In-vitro drug release studies showed a notable increase in the release rate of FA from O2, as compared to the free FA. The (IC50) values for FA from O2 and free FA were calculated against different cell lines showing a prominent IC50 against Caco-2 (17.1 µg/ml, 191 µg/ml respectively). Flow cytometry showed that FA caused cell cycle arrest at the G2/M phase in Caco-2. RT-PCR showed that O2 significantly increased the mRNA expression level of Bax and CASP-3 (4.72 ± 0.17, 3.67 ± 0.14), respectively when compared to free FA (2.59 ± 0.13, 2.14 ± 0.15), while miRNA 221 levels were decreased by the treatment with O2 (0.58 ± 0.02) when compared to free FA treatment (0.79 ± 0.03). The gene expression of TP53INP1 was increased by the treatment with O2 compared to FA at P < 0.0001. FA-loaded TPGS mixed micelles showed promising results for enhancing the anticancer effect of FA against colorectal cancer, probably due to its enhanced solubility. Thus, FA-loaded TPGS mixed micelles could be a potential therapeutic agent for colorectal cancer by targeting miRNA-221/TP53INP1 axis-mediated autophagy.
Collapse
Affiliation(s)
- Nabila M Sweed
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Marwa H S Dawoud
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt.
| |
Collapse
|
6
|
Lim C, Lee D, Kim M, Lee S, Shin Y, Ramsey JD, Choi HG, Lee ES, Youn YS, Oh KT. Development of a sorafenib-loaded solid self-nanoemulsifying drug delivery system: Formulation optimization and characterization of enhanced properties. J Drug Deliv Sci Technol 2023; 82:104374. [PMID: 37124157 PMCID: PMC10139733 DOI: 10.1016/j.jddst.2023.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Sorafenib, marketed under the brand name Nexavar®, is a multiple tyrosine kinase inhibitor drug that has been actively used in the clinical setting for the treatment of several cancers. However, the low solubility and bioavailability of sorafenib constitute a significant barrier to achieving a good therapeutic outcome. We developed a sorafenib-loaded self-nanoemulsifying drug delivery system (SNEDDS) formulation composed of capmul MCM, tween 80, and tetraglycol, and demonstrated that the SNEDDS formulation could improve drug solubility with excellent self-emulsification ability. Moreover, the sorafenib-loaded SNEDDS exhibited anticancer activity against Hep3B and KB cells, which are the most commonly used hepatocellular carcinoma and oral cancer cell lines, respectively. Subsequently, to improve the storage stability and to increase the possibility of commercialization, a solid SNEDDS for sorafenib was further developed through the spray drying method using Aerosil® 200 and PVP K 30. X-ray diffraction and differential scanning calorimeter data showed that the crystallinity of the drug was markedly reduced, and the dissolution rate of the drug was further improved in formulation in simulated gastric and intestinal fluid conditions. In vivo study, the bioavailability of the orally administered formulation increases dramatically compared to the free drug. Our results highlight the use of the solid-SNEDDS formulation to enhance sorafenib's bioavailability and outlines potential translational directions for oral drug development.
Collapse
Affiliation(s)
- Chaemin Lim
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| | - Dayoon Lee
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| | - Mikyung Kim
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| | - Subin Lee
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| | - Yuseon Shin
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| | - Jacob D. Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, South Korea
| |
Collapse
|
7
|
Chhitij T, Seo JE, Keum T, Noh G, Bashyal S, Lamichhane S, Kim JH, Lee JH, Park JH, Choi J, Song SH, Lee S. Optimized self-microemulsifying drug delivery system improves the oral bioavailability and brain delivery of coenzyme Q 10. Drug Deliv 2022; 29:2330-2342. [PMID: 35850616 PMCID: PMC9848412 DOI: 10.1080/10717544.2022.2100515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Our study aimed to develop a self-microemulsifying drug delivery system for the poorly aqueous-soluble drug Coenzyme Q10, to improve the dissolution and the oral bioavailability. Excipients were selected based on their Coenzyme Q10 solubility, and their concentrations were set for the optimization of the microemulsion by using a D-optimal mixture design to achieve a minimum droplet size and a maximum solubility of Coenzyme Q10 within 15 min. The optimized formulation was composed of an oil (omega-3; 38.55%), a co-surfactant (Lauroglycol® 90; 31.42%), and a surfactant (Gelucire® 44/14; 30%) and exhibited a mean droplet size of 237.6 ± 5.8 nm and a drug solubilization (at 15 min) of 16 ± 2.48%. The drug dissolution of the optimized formulation conducted over 8 h in phosphate buffer medium (pH 6.8) was significantly higher when compared to that of the Coenzyme Q10 suspension. A pharmacokinetic study in rats revealed a 4.5-fold and a 4.1-fold increase in the area under curve and the peak plasma concentration values generated by the optimized formulation respectively, as compared to the Coenzyme Q10 suspension. A Coenzyme Q10 brain distribution study revealed a higher Coenzyme Q10 distribution in the brains of rats treated with the optimized formulation than the Coenzyme Q10 suspension. Coenzyme Q10-loaded self microemulsifying drug delivery system was successfully formulated and optimized by a response surface methodology based on a D-optimal mixture design and could be used as a delivery vehicle for the enhancement of the oral bioavailability and brain distribution of poorly soluble drugs such as Coenzyme Q10.
Collapse
Affiliation(s)
- Thapa Chhitij
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Jo-Eun Seo
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Taekwang Keum
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Gyubin Noh
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Santosh Bashyal
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Shrawani Lamichhane
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Jung Hwan Kim
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Jae Heon Lee
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Jee Hun Park
- R&D Center, Korean Drug Co., Ltd, Seoul, Republic of Korea
| | - Jaewoong Choi
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea,R&D Center, Korean Drug Co., Ltd, Seoul, Republic of Korea
| | - Se Hyun Song
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea
| | - Sangkil Lee
- Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, Daegu, Republic of Korea,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA,CONTACT Sangkil Lee Center for Forensic Pharmaceutical Sciences, College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu42601, Republic of Korea, Tel: +82-53-580-6655, FAX: +82-53-580-5164
| |
Collapse
|
8
|
Abdelmonem R, Al-Samadi IEI, El Nashar RM, Jasti BR, El-Nabarawi MA. Fabrication of nanostructured lipid carriers ocugel for enhancing Loratadine used in treatment of COVID-19 related symptoms: statistical optimization, in-vitro, ex-vivo, and in-vivo studies evaluation. Drug Deliv 2022; 29:2868-2882. [PMID: 36065090 PMCID: PMC9448409 DOI: 10.1080/10717544.2022.2115164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Loratadine (LORA), is a topical antihistamine utilized in the treatment of ocular symptoms of COVID-19. The study aimed to develop a Loratadine Nanostructured Lipid Carriers Ocugel (LORA-NLCs Ocugel), enhance its solubility, trans-corneal penetrability, and bioavailability. full-factorial design was established with 24 trials to investigate the impact of several variables upon NLCs properties. LORA-NLCs were fabricated by using hot melt emulsification combined with high-speed stirring and ultrasonication methods. All obtained formulae were assessed in terms of percent of entrapment efficiency (EE%), size of the particle (PS), zeta potential (ZP), as well as in-vitro release. Via using Design Expert® software the optimum formula was selected, characterized using FTIR, Raman spectroscopy, and stability studies. Gel-based of optimized LORA-NLCs was prepared using 4% HPMC k100m which was further evaluated in terms of physicochemical properties, Ex-vivo, and In-vivo studies. The optimized LORA-NLCs, comprising Compritol 888 ATO®, Labrasol®, and Span® 60 showed EE% of 95.78 ± 0.67%, PS of 156.11 ± 0.54 nm, ZP of -40.10 ± 0.55 Mv, and Qh6% of 99.67 ± 1.09%, respectively. Additionally, it illustrated a spherical morphology and compatibility of LORA with other excipients. Consequently, gel-based on optimized LORA-NLCs showed pH (7.11 ± 0.52), drug content (98.62%± 1.31%), viscosity 2736 cp, and Q12% (90.49 ± 1.32%). LORA-NLCs and LORA-NLCs Ocugel exhibited higher ex-vivo trans-corneal penetrability compared with the aqueous drug dispersion. Confocal laser scanning showed valuable penetration of fluoro-labeled optimized formula and LORA-NLCs Ocugel through corneal. The optimized formula was subjected to an ocular irritation test (Draize Test) that showed the absence of any signs of inflammation in rabbits, and histological analysis showed no effect or damage to rabbit eyeballs. Cmax and the AUC0-24 were higher in LORA-NLCs Ocugel compared with pure Lora dispersion-loaded gel The research findings confirmed that NLCs could enhance solubility, trans-corneal penetrability, and the bioavailability of LORA.
Collapse
Affiliation(s)
- Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Inas Essam Ibrahim Al-Samadi
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Rasha M El Nashar
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Bhaskara R Jasti
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Healthy Science-Pacific University, Stockton, CA, USA
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University Giza, Giza, Egypt
| |
Collapse
|
9
|
Panigrahi KC, Patra CN, Rao MEB, Jena GK, Sahoo L. SEDDS Basic Design and Recent Formulation Advancement: A Concurrent Review. Pharm Nanotechnol 2022; 10:289-298. [PMID: 35980062 DOI: 10.2174/2211738510666220817124744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 12/29/2022]
Abstract
In the present scenario, lipid-based novel drug delivery systems are the area of interest for the formulation scientist in order to improve the bioavailability of poorly water-soluble drugs. A selfemulsifying drug delivery system (SEDDS) upon contact with the gastrointestinal fluid, forms an o/w emulsion. SEDDS has gained popularity as a potential platform for improving the bioavailability of the lipophilic drug by overcoming several challenges. The various advantages like improved solubility, bypassing lymphatic transport, and improvement in bioavailability are associated with SMEDDS or SNEDDS. The extent of the formation of stable SEDDS depends on a specific combination of surfactant, co-surfactant, and oil. The present review highlighted the different aspects of formulation design along with optimization and characterization of SEDDS formulation. It also gives a brief description of the various aspects of the excipients used in SEDDS formulation. This review also includes the conflict between types of SEDDS based on droplet size. There is an extensive review of various research regarding different solidification techniques used for SEDDS in the last three years.
Collapse
Affiliation(s)
- K C Panigrahi
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| | - C N Patra
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| | - M E B Rao
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| | - G K Jena
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| | - L Sahoo
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences (Affiliated to Biju Patnaik University of Technology), Odisha, India
| |
Collapse
|
10
|
Effects of Polymers on the Drug Solubility and Dissolution Enhancement of Poorly Water-Soluble Rivaroxaban. Int J Mol Sci 2022; 23:ijms23169491. [PMID: 36012748 PMCID: PMC9409000 DOI: 10.3390/ijms23169491] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 01/12/2023] Open
Abstract
The purpose of this study was to investigate the efficacy of hydrophilic polymers in a solid dispersion formulation in improving the solubility and dissolution rate of rivaroxaban (RXB), a poorly soluble drug. The developed solid dispersion consisted of two components, a drug and a polymer, and the drug was dispersed as amorphous particles in a polymer matrix using the spray drying method. Polymeric solid dispersions were evaluated using solubility tests, in vitro dissolution tests, powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and particle size distribution analysis. To maximize physical stability against crystallization and improve the solubility and dissolution of RXB, it is important to select the appropriate polymer type and the optimal ratio of the polymer to the drug. The optimized polyvinyl alcohol (PVA)-based (1/0.5, w/w) and gelatin-based (1/5, w/w) solid dispersion formulations showed 6.3 and 3.6 times higher drug solubilities than pure RXB powder, respectively, and the final dissolution rate was improved by approximately 1.5 times. Scanning electron microscopy and particle size distribution analyses confirmed that the gelatin-based solid dispersion was smaller and more spherical than the PVA-based solid dispersion, suggesting that the gelatin-based solid dispersion had a faster initial dissolution rate. Differential scanning calorimetry and powder X-ray diffraction analyses confirmed that RXB had successfully changed from a crystalline form to an amorphous form, contributing to the improvement in its solubility and dissolution rate. This study provides a strategy for selecting suitable polymers for the development of amorphous polymer solid dispersions that can overcome precipitation during dissolution and stabilization of the amorphous state. In addition, the selected polymer solid dispersion improved the drug solubility and dissolution rate of RXB, a poorly soluble drug, and may be used as a promising drug delivery system.
Collapse
|
11
|
Enhanced Oral Bioavailability of MT-102, a New Anti-inflammatory Agent, via a Ternary Solid Dispersion Formulation. Pharmaceutics 2022; 14:pharmaceutics14071510. [PMID: 35890405 PMCID: PMC9323944 DOI: 10.3390/pharmaceutics14071510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 01/25/2023] Open
Abstract
This study aimed to develop a solid dispersion (SD) of MT-102, a new anti-inflammatory agent, to improve its oral bioavailability. The ternary SD formulations of MT-102 (a poorly soluble extract of Isatis indigotica and Juglans mandshurica) were prepared using a solvent evaporation method with various drug/excipient ratios. Following that, the effectiveness of various SDs as an oral formulation of MT-102 was investigated using indirubin as a marker component. By forming SDs with hydrophilic polymers, the aqueous solubility of indirubin was significantly increased. SD-F4, containing drug, poloxamer 407 (P407), and povidone K30 (PVP K30) at a 1:2:2 weight ratio, exhibited the optimal dissolution profiles in the acidic to neutral pH range. Compared to pure MT-102 and a physical mixture, SD-F4 increased indirubin’s dissolution from MT-102 by approximately 9.86-fold and 2.21-fold, respectively. Additionally, SD-F4 caused the sticky extract to solidify, resulting in improved flowability and handling. As a result, compared to pure MT-102, the oral administration of SD-F4 significantly improved the systemic exposure of MT-102 in rats. Overall, the ternary SD formulation of MT-102 with a blended mixture of P407 and PVP K30 appeared to be effective at improving the dissolution and oral absorption of MT-102.
Collapse
|
12
|
Jung M, Jin M, Jeon WJ, Lee H, Kim H, Won JH, Yoo H, Bai HW, Han SC, Suh H, Kang KU, Lee HK, Cho CW. Development of a long-acting tablet with ticagrelor high-loaded nanostructured lipid carriers. Drug Deliv Transl Res 2022; 13:1212-1227. [PMID: 35794353 DOI: 10.1007/s13346-022-01205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
Ticagrelor (TCG), an antiplatelet agent, has low solubility and permeability; thus, there are many trials to apply the pharmaceutical technology for the enhancement of TCG solubility and permeability. Herein, we have developed the TCG high-loaded nanostructured lipid carrier (HL-NLC) and solidified the HL-NLC to develop the oral tablet. The HL-NLC was successfully fabricated and optimized with a particle size of 164.5 nm, a PDI of 0.199, an encapsulation efficiency of 98.5%, and a drug loading of 16.4%. For the solidification of HL-NLC (S-HL-NLC), the adsorbent was determined based on the physical properties of the S-HL-NLC, such as bulk density, tap density, angle of repose, Hausner ratio, Carr's index, and drug content. Florite R was chosen because of its excellent adsorption capacity, excellent physical properties, and solubility of the powder after manufacturing. Using an S-HL-NLC, the S-HL-NLC tablet with HPMC 4 K was prepared, which is showed a released extent of more than 90% at 24 h. Thus, we have developed the sustained release tablet containing the TCG-loaded HL-NLC. Moreover, the formulations have exhibited no cytotoxicity against Caco-2 cells and improved the cellular uptake of TCG. In pharmacokinetic study, compared with raw TCG, the bioavailability of HL-NLC and S-HL-NLC was increased by 293% and 323%, respectively. In conclusion, we successfully developed the TCG high-loaded NLC tablet, that exhibited a sustained release profile and enhanced oral bioavailability.
Collapse
Affiliation(s)
- Minwoo Jung
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Minki Jin
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Woo-Jin Jeon
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - HaeSoo Lee
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Haeun Kim
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Jong-Hee Won
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Hyelim Yoo
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Hyoung-Woo Bai
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Institute of Toxicology (KIT), Jeollabuk-do, Jeongeup, 53212, South Korea.,Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Su-Cheol Han
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Institute of Toxicology (KIT), Jeollabuk-do, Jeongeup, 53212, South Korea
| | - Hearan Suh
- Postera Health Science Inc, Han River Misa 1st at Hyundai Knowledge Industry Center 550, Misa-daero, Hanam-si, 1005, Gyeonggi-do, South Korea
| | - Kyoung Un Kang
- Postera Health Science Inc, Han River Misa 1st at Hyundai Knowledge Industry Center 550, Misa-daero, Hanam-si, 1005, Gyeonggi-do, South Korea
| | - Hong-Ki Lee
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Institute of Toxicology (KIT), Jeollabuk-do, Jeongeup, 53212, South Korea.
| | - Cheong-Weon Cho
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea.
| |
Collapse
|
13
|
Jeong JS, Ha ES, Park H, Lee SK, Kim JS, Kim MS. Measurement and correlation of solubility of rivaroxaban in dichloromethane and primary alcohol binary solvent mixtures at different temperatures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Mahmoud K, Swidan S, El-Nabarawi M, Teaima M. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. J Nanobiotechnology 2022; 20:109. [PMID: 35248080 PMCID: PMC8898455 DOI: 10.1186/s12951-022-01309-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is considered one of the deadliest diseases with one of the highest disease burdens worldwide. Among the different types of liver cancer, hepatocellular carcinoma is considered to be the most common type. Multiple conventional approaches are being used in treating hepatocellular carcinoma. Focusing on drug treatment, regular agents in conventional forms fail to achieve the intended clinical outcomes. In order to improve the treatment outcomes, utilizing nanoparticles-specifically lipid based nanoparticles-are considered to be one of the most promising approaches being set in motion. Multiple forms of lipid based nanoparticles exist including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, phytosomes, lipid coated nanoparticles, and nanoassemblies. Multiple approaches are used to enhance the tumor uptake as well tumor specificity such as intratumoral injection, passive targeting, active targeting, and stimuli responsive nanoparticles. In this review, the effect of utilizing lipidic nanoparticles is being discussed as well as the different tumor uptake enhancement techniques used.
Collapse
Affiliation(s)
- Khaled Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| | - Shady Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt.
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt.
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
15
|
Khan MI, Hossain MI, Hossain MK, Rubel MHK, Hossain KM, Mahfuz AMUB, Anik MI. Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review. ACS APPLIED BIO MATERIALS 2022; 5:971-1012. [PMID: 35226465 DOI: 10.1021/acsabm.2c00002] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.
Collapse
Affiliation(s)
- Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - M Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71270, United States
| | - M Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan.,Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M H K Rubel
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - K M Hossain
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - A M U B Mahfuz
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, South Kingston, Rhode Island 02881, United States
| |
Collapse
|
16
|
Park H, Kim JS, Kim S, Ha ES, Kim MS, Hwang SJ. Pharmaceutical Applications of Supercritical Fluid Extraction of Emulsions for Micro-/Nanoparticle Formation. Pharmaceutics 2021; 13:pharmaceutics13111928. [PMID: 34834343 PMCID: PMC8625501 DOI: 10.3390/pharmaceutics13111928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022] Open
Abstract
Micro-/nanoparticle formulations containing drugs with or without various biocompatible excipients are widely used in the pharmaceutical field to improve the physicochemical and clinical properties of the final drug product. Among the various micro-/nanoparticle production technologies, emulsion-based particle formation is the most widely used because of its unique advantages such as uniform generation of spherical small particles and higher encapsulation efficiency (EE). For this emulsion-based micro-/nanoparticle technology, one of the most important factors is the extraction efficiency associated with the fast removal of the organic solvent. In consideration of this, a technology called supercritical fluid extraction of emulsions (SFEE) that uses the unique mass transfer mechanism and solvent power of a supercritical fluid (SCF) has been proposed to overcome the shortcomings of several conventional technologies such as solvent evaporation, extraction, and spray drying. This review article presents the main aspects of SFEE technology for the preparation of micro-/nanoparticles by focusing on its pharmaceutical applications, which have been organized and classified according to several types of drug delivery systems and active pharmaceutical ingredients. It was definitely confirmed that SFEE can be applied in a variety of drugs from water-soluble to poorly water-soluble. In addition, it has advantages such as low organic solvent residual, high EE, desirable release control, better particle size control, and agglomeration prevention through efficient and fast solvent removal compared to conventional micro-/nanoparticle technologies. Therefore, this review will be a good resource for determining the applicability of SFEE to obtain better pharmaceutical quality when researchers in related fields want to select a suitable manufacturing process for preparing desired micro-/nanoparticle drug delivery systems containing their active material.
Collapse
Affiliation(s)
- Heejun Park
- College of Pharmacy, Duksung Women’s University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Korea; (H.P.); (S.K.)
| | - Jeong-Soo Kim
- Dong-A ST Co. Ltd., 21, Geumhwa-ro 105beon-gil, Giheung-gu, Yongin-si 17073, Korea;
| | - Sebin Kim
- College of Pharmacy, Duksung Women’s University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Korea; (H.P.); (S.K.)
| | - Eun-Sol Ha
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea;
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea;
- Correspondence: (M.-S.K.); (S.-J.H.); Tel.: +82-51-510-2813 (M.-S.K.)
| | - Sung-Joo Hwang
- Yonsei Institute of Pharmaceutical Sciences & College of Pharmacy, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
- Correspondence: (M.-S.K.); (S.-J.H.); Tel.: +82-51-510-2813 (M.-S.K.)
| |
Collapse
|
17
|
Dawoud MHS, Fayez AM, Mohamed RA, Sweed NM. Optimization of nanovesicular carriers of a poorly soluble drug using factorial design methodology and artificial neural network by applying quality by design approach. Pharm Dev Technol 2021; 26:1035-1050. [PMID: 34514957 DOI: 10.1080/10837450.2021.1980009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The current work aims to utilize a quality by design (QbD) approach to develop and optimize nanovesicular carriers of a hydrophobic drug. Rosuvastatin calcium was used as a model drug, which suffers poor bioavailability. Several tools were used in the risk assessment study as Ishikawa diagrams. The critical process parameters (CPP) were found to be the particle size, polydispersity index, zeta potential, and entrapment efficiency. A factorial design was used in risk analysis, which was complemented with an artificial neural network (ANN); to assure its accuracy. A design space was established, with an optimized nanostructured lipid carrier formula containing 3.2% total lipid content, 0.139% surfactant, and 0.1197 mg % drug. The optimized formula showed a sustained drug release up to 72 h. It successfully lowered each of the total cholesterol, low-density lipoprotein, and triglycerides and elevated the high-density lipoprotein levels, as compared to the standard drug. Thus, the concurrent use of the factorial design with ANN using the QbD approach permitted the exploration of the experimental regions for a successful nanovesicular carrier formulation and could be used as a reference for many nanostructured drug delivery studies during their pharmaceutical development and product manufacturing.
Collapse
Affiliation(s)
- Marwa H S Dawoud
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo, Egypt
| | - Ahmed M Fayez
- Department of Pharmacology, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo, Egypt
| | - Reem A Mohamed
- Department of Pharmacology, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo, Egypt
| | - Nabila M Sweed
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo, Egypt
| |
Collapse
|
18
|
Preparation and In Vivo Evaluation of a Lidocaine Self-Nanoemulsifying Ointment with Glycerol Monostearate for Local Delivery. Pharmaceutics 2021; 13:pharmaceutics13091468. [PMID: 34575544 PMCID: PMC8464853 DOI: 10.3390/pharmaceutics13091468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Lidocaine, a commonly used local anesthetic, has recently been developed into a number of ointment products to treat hemorrhoids. This study examined its efficient delivery to the dermis through the pharmaceutical improvement of hemorrhoid treatment ointments. We attempted to increase the amount of skin deposition of lidocaine by forming a nanoemulsion through the self-nanoemulsifying effect that occurs when glycerol monostearate (GMS) is saturated with water. Using Raman mapping, the depth of penetration of lidocaine was visualized and confirmed, and the local anesthetic effect was evaluated via an in vivo tail-flick test. Evaluation of the physicochemical properties confirmed that lidocaine was amorphous and evenly dispersed in the ointment. The in vitro dissolution test confirmed that the nanoemulsifying effect of GMS accelerated the release of the drug from the ointment. At a specific concentration of GMS, lidocaine penetrated deeper into the dermis; the in vitro permeation test showed similar results. When compared with reference product A in the tail-flick test, the L5 and L6 compounds containing GMS had a significantly higher anesthetic effect. Altogether, the self-nanoemulsifying effect of GMS accelerated the release of lidocaine from the ointment. The compound with 5% GMS, the lowest concentration that saturated the dermis, was deemed most appropriate.
Collapse
|