1
|
Aydin SK, Yilmaz KC, Acar A. Benchmarking long-read structural variant calling tools and combinations for detecting somatic variants in cancer genomes. Sci Rep 2025; 15:8707. [PMID: 40082509 PMCID: PMC11906795 DOI: 10.1038/s41598-025-92750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Cancer genomes have a complicated landscape of mutations, including large-scale rearrangements known as structural variants (SVs). These SVs can disrupt genes or regulatory elements, playing a critical role in cancer development and progression. Despite their importance, accurate identification of somatic structural variants (SVs) remains a significant bottleneck in cancer genomics. Long-read sequencing technologies hold great promise in SV discovery, and there is an increasing number of efforts to develop new tools to detect them. In this study, we employ eight widely used SV callers on paired tumor and matched normal samples from both the NCI-H2009 lung cancer cell line and the COLO829 melanoma cell line, the latter of which has a well-established somatic SV truth set. Following separate variation detection in both tumor and normal DNA, the VCF merging procedure and a subtraction method were used to identify candidate somatic SVs. Additionally, we explored different combinations of the tools to enhance the accuracy of true somatic SV detection. Our analysis adopts a comprehensive approach, evaluating the performance of each SV caller across a spectrum of variant types and numbers in finding cancer-related somatic SVs. This study, by comparing eight different tools and their combinations, not only reveals the benefits and limitations of various techniques but also establishes a framework for developing more robust SV calling pipelines. Our findings highlight the strengths and weaknesses of current SV calling tools and suggest that combining multiple tools and testing different combinations can significantly enhance the validation of somatic alterations.
Collapse
Affiliation(s)
- Safa Kerem Aydin
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupınar Bulvarı 1, 06800, Çankaya, Ankara, Turkey
| | - Kubra Celikbas Yilmaz
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupınar Bulvarı 1, 06800, Çankaya, Ankara, Turkey
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupınar Bulvarı 1, 06800, Çankaya, Ankara, Turkey.
| |
Collapse
|
2
|
Murat P, Guilbaud G, Sale JE. DNA replication initiation drives focal mutagenesis and rearrangements in human cancers. Nat Commun 2024; 15:10850. [PMID: 39738026 PMCID: PMC11685606 DOI: 10.1038/s41467-024-55148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
The rate and pattern of mutagenesis in cancer genomes is significantly influenced by DNA accessibility and active biological processes. Here we show that efficient sites of replication initiation drive and modulate specific mutational processes in cancer. Sites of replication initiation impede nucleotide excision repair in melanoma and are off-targets for activation-induced deaminase (AICDA) activity in lymphomas. Using ductal pancreatic adenocarcinoma as a cancer model, we demonstrate that the initiation of DNA synthesis is error-prone at G-quadruplex-forming sequences in tumours displaying markers of replication stress, resulting in a previously recognised but uncharacterised mutational signature. Finally, we demonstrate that replication origins serve as hotspots for genomic rearrangements, including structural and copy number variations. These findings reveal replication origins as functional determinants of tumour biology and demonstrate that replication initiation both passively and actively drives focal mutagenesis in cancer genomes.
Collapse
Affiliation(s)
- Pierre Murat
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
- Wellcome Sanger Institute, Hinxton, CB10 1RQ, UK.
| | - Guillaume Guilbaud
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
3
|
Pei Y, Tanguy M, Giess A, Dixit A, Wilson LC, Gibbons RJ, Twigg SRF, Elgar G, Wilkie AOM. A Comparison of Structural Variant Calling from Short-Read and Nanopore-Based Whole-Genome Sequencing Using Optical Genome Mapping as a Benchmark. Genes (Basel) 2024; 15:925. [PMID: 39062704 PMCID: PMC11276380 DOI: 10.3390/genes15070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The identification of structural variants (SVs) in genomic data represents an ongoing challenge because of difficulties in reliable SV calling leading to reduced sensitivity and specificity. We prepared high-quality DNA from 9 parent-child trios, who had previously undergone short-read whole-genome sequencing (Illumina platform) as part of the Genomics England 100,000 Genomes Project. We reanalysed the genomes using both Bionano optical genome mapping (OGM; 8 probands and one trio) and Nanopore long-read sequencing (Oxford Nanopore Technologies [ONT] platform; all samples). To establish a "truth" dataset, we asked whether rare proband SV calls (n = 234) made by the Bionano Access (version 1.6.1)/Solve software (version 3.6.1_11162020) could be verified by individual visualisation using the Integrative Genomics Viewer with either or both of the Illumina and ONT raw sequence. Of these, 222 calls were verified, indicating that Bionano OGM calls have high precision (positive predictive value 95%). We then asked what proportion of the 222 true Bionano SVs had been identified by SV callers in the other two datasets. In the Illumina dataset, sensitivity varied according to variant type, being high for deletions (115/134; 86%) but poor for insertions (13/58; 22%). In the ONT dataset, sensitivity was generally poor using the original Sniffles variant caller (48% overall) but improved substantially with use of Sniffles2 (36/40; 90% and 17/23; 74% for deletions and insertions, respectively). In summary, we show that the precision of OGM is very high. In addition, when applying the Sniffles2 caller, the sensitivity of SV calling using ONT long-read sequence data outperforms Illumina sequencing for most SV types.
Collapse
Affiliation(s)
- Yang Pei
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; (Y.P.); (S.R.F.T.)
| | - Melanie Tanguy
- Genomics England Limited, One Canada Square, London E14 5AB, UK
| | - Adam Giess
- Genomics England Limited, One Canada Square, London E14 5AB, UK
| | - Abhijit Dixit
- Clinical Genetics Service, Nottingham University Hospitals NHS Foundation Trust, City Hospital, Nottingham NG5 1PB, UK
| | - Louise C. Wilson
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Richard J. Gibbons
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Stephen R. F. Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; (Y.P.); (S.R.F.T.)
| | - Greg Elgar
- Genomics England Limited, One Canada Square, London E14 5AB, UK
| | - Andrew O. M. Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; (Y.P.); (S.R.F.T.)
| |
Collapse
|
4
|
Della Chiara G, Jiménez C, Virdi M, Crosetto N, Bienko M. Enhancers dysfunction in the 3D genome of cancer cells. Front Cell Dev Biol 2023; 11:1303862. [PMID: 38020908 PMCID: PMC10657884 DOI: 10.3389/fcell.2023.1303862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Eukaryotic genomes are spatially organized inside the cell nucleus, forming a threedimensional (3D) architecture that allows for spatial separation of nuclear processes and for controlled expression of genes required for cell identity specification and tissue homeostasis. Hence, it is of no surprise that mis-regulation of genome architecture through rearrangements of the linear genome sequence or epigenetic perturbations are often linked to aberrant gene expression programs in tumor cells. Increasing research efforts have shed light into the causes and consequences of alterations of 3D genome organization. In this review, we summarize the current knowledge on how 3D genome architecture is dysregulated in cancer, with a focus on enhancer highjacking events and their contribution to tumorigenesis. Studying the functional effects of genome architecture perturbations on gene expression in cancer offers a unique opportunity for a deeper understanding of tumor biology and sets the basis for the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Nicola Crosetto
- Human Technopole, Milan, Italy
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- Science for Life Laboratory, Solna, Sweden
| | - Magda Bienko
- Human Technopole, Milan, Italy
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
5
|
Rodriguez-Fos E, Planas-Fèlix M, Burkert M, Puiggròs M, Toedling J, Thiessen N, Blanc E, Szymansky A, Hertwig F, Ishaque N, Beule D, Torrents D, Eggert A, Koche RP, Schwarz RF, Haase K, Schulte JH, Henssen AG. Mutational topography reflects clinical neuroblastoma heterogeneity. CELL GENOMICS 2023; 3:100402. [PMID: 37868040 PMCID: PMC10589636 DOI: 10.1016/j.xgen.2023.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 08/11/2023] [Indexed: 10/24/2023]
Abstract
Neuroblastoma is a pediatric solid tumor characterized by strong clinical heterogeneity. Although clinical risk-defining genomic alterations exist in neuroblastomas, the mutational processes involved in their generation remain largely unclear. By examining the topography and mutational signatures derived from all variant classes, we identified co-occurring mutational footprints, which we termed mutational scenarios. We demonstrate that clinical neuroblastoma heterogeneity is associated with differences in the mutational processes driving these scenarios, linking risk-defining pathognomonic variants to distinct molecular processes. Whereas high-risk MYCN-amplified neuroblastomas were characterized by signs of replication slippage and stress, homologous recombination-associated signatures defined high-risk non-MYCN-amplified patients. Non-high-risk neuroblastomas were marked by footprints of chromosome mis-segregation and TOP1 mutational activity. Furthermore, analysis of subclonal mutations uncovered differential activity of these processes through neuroblastoma evolution. Thus, clinical heterogeneity of neuroblastoma patients can be linked to differences in the mutational processes that are active in their tumors.
Collapse
Affiliation(s)
- Elias Rodriguez-Fos
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mercè Planas-Fèlix
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Burkert
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Montserrat Puiggròs
- Barcelona Supercomputing Center, Joint Barcelona Supercomputing Center – Center for Genomic Regulation – Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona, Spain
| | - Joern Toedling
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nina Thiessen
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Eric Blanc
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Annabell Szymansky
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Hertwig
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Naveed Ishaque
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - David Torrents
- Barcelona Supercomputing Center, Joint Barcelona Supercomputing Center – Center for Genomic Regulation – Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Angelika Eggert
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roland F. Schwarz
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- BIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - Kerstin Haase
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anton G. Henssen
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Abondio P, Cilli E, Luiselli D. Human Pangenomics: Promises and Challenges of a Distributed Genomic Reference. Life (Basel) 2023; 13:1360. [PMID: 37374141 DOI: 10.3390/life13061360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
A pangenome is a collection of the common and unique genomes that are present in a given species. It combines the genetic information of all the genomes sampled, resulting in a large and diverse range of genetic material. Pangenomic analysis offers several advantages compared to traditional genomic research. For example, a pangenome is not bound by the physical constraints of a single genome, so it can capture more genetic variability. Thanks to the introduction of the concept of pangenome, it is possible to use exceedingly detailed sequence data to study the evolutionary history of two different species, or how populations within a species differ genetically. In the wake of the Human Pangenome Project, this review aims at discussing the advantages of the pangenome around human genetic variation, which are then framed around how pangenomic data can inform population genetics, phylogenetics, and public health policy by providing insights into the genetic basis of diseases or determining personalized treatments, targeting the specific genetic profile of an individual. Moreover, technical limitations, ethical concerns, and legal considerations are discussed.
Collapse
Affiliation(s)
- Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| | - Elisabetta Cilli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| |
Collapse
|
7
|
Hamdan A, Ewing A. Unravelling the tumour genome: The evolutionary and clinical impacts of structural variants in tumourigenesis. J Pathol 2022; 257:479-493. [PMID: 35355264 PMCID: PMC9321913 DOI: 10.1002/path.5901] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
Structural variants (SVs) represent a major source of aberration in tumour genomes. Given the diversity in the size and type of SVs present in tumours, the accurate detection and interpretation of SVs in tumours is challenging. New classes of complex structural events in tumours are discovered frequently, and the definitions of the genomic consequences of complex events are constantly being refined. Detailed analyses of short-read whole-genome sequencing (WGS) data from large tumour cohorts facilitate the interrogation of SVs at orders of magnitude greater scale and depth. However, the inherent technical limitations of short-read WGS prevent us from accurately detecting and investigating the impact of all the SVs present in tumours. The expanded use of long-read WGS will be critical for improving the accuracy of SV detection, and in fully resolving complex SV events, both of which are crucial for determining the impact of SVs on tumour progression and clinical outcome. Despite the present limitations, we demonstrate that SVs play an important role in tumourigenesis. In particular, SVs contribute significantly to late-stage tumour development and to intratumoural heterogeneity. The evolutionary trajectories of SVs represent a window into the clonal dynamics in tumours, a comprehensive understanding of which will be vital for influencing patient outcomes in the future. Recent findings have highlighted many clinical applications of SVs in cancer, from early detection to biomarkers for treatment response and prognosis. As the methods to detect and interpret SVs improve, elucidating the full breadth of the complex SV landscape and determining how these events modulate tumour evolution will improve our understanding of cancer biology and our ability to capitalise on the utility of SVs in the clinical management of cancer patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Alhafidz Hamdan
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Ailith Ewing
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
8
|
Development of an efficient single-cell cloning and expansion strategy for genome edited induced pluripotent stem cells. Mol Biol Rep 2022; 49:7887-7898. [PMID: 35637316 DOI: 10.1007/s11033-022-07621-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/19/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Disease-specific human induced pluripotent stem cells (hiPSCs) can be generated directly from individuals with known disease characteristics or alternatively be modified using genome editing approaches to introduce disease causing genetic mutations to study the biological response of those mutations. The genome editing procedure in hiPSCs is still inefficient, particularly when it comes to homology directed repair (HDR) of genetic mutations or targeted transgene insertion in the genome and single cell cloning of edited cells. In addition, genome editing processes also involve additional cellular stresses such as poor cell viability and genetic stability of hiPSCs. Therefore, efficient workflows are desired to increase genome editing application to hiPSC disease models and therapeutic applications. METHODS AND RESULTS To this end, we demonstrate an efficient workflow for feeder-free single cell clone generation and expansion in both CRISPR-mediated knock-out (KO) and knock-in (KI) hiPSC lines. Using StemFlex medium and CloneR supplement in conjunction with Matrigel cell culture matrix, we show that cell viability and expansion during single-cell cloning in edited and unedited cells is significantly enhanced. Keeping all factors into account, we have successfully achieved hiPSC single-cell survival and cloning in both edited and unedited cells with rates as maximum as 70% in less than 2 weeks. CONCLUSION This simplified and efficient workflow will allow for a new level of sophistication in generating hiPSC-based disease models to promote rapid advancement in basic research and also the development of novel cellular therapeutics.
Collapse
|
9
|
Jakobsdottir GM, Brewer DS, Cooper C, Green C, Wedge DC. APOBEC3 mutational signatures are associated with extensive and diverse genomic instability across multiple tumour types. BMC Biol 2022; 20:117. [PMID: 35597990 PMCID: PMC9124393 DOI: 10.1186/s12915-022-01316-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypeptide 3) family of cytidine deaminases is responsible for two mutational signatures (SBS2 and SBS13) found in cancer genomes. APOBEC3 enzymes are activated in response to viral infection, and have been associated with increased mutation burden and TP53 mutation. In addition to this, it has been suggested that APOBEC3 activity may be responsible for mutations that do not fall into the classical APOBEC3 signatures (SBS2 and SBS13), through generation of double strand breaks.Previous work has mainly focused on the effects of APOBEC3 within individual tumour types using exome sequencing data. Here, we use whole genome sequencing data from 2451 primary tumours from 39 different tumour types in the Pan-Cancer Analysis of Whole Genomes (PCAWG) data set to investigate the relationship between APOBEC3 and genomic instability (GI). RESULTS AND CONCLUSIONS We found that the number of classical APOBEC3 signature mutations correlates with increased mutation burden across different tumour types. In addition, the number of APOBEC3 mutations is a significant predictor for six different measures of GI. Two GI measures (INDELs attributed to INDEL signatures ID6 and ID8) strongly suggest the occurrence and error prone repair of double strand breaks, and the relationship between APOBEC3 mutations and GI remains when SNVs attributed to kataegis are excluded.We provide evidence that supports a model of cancer genome evolution in which APOBEC3 acts as a causative factor in the development of diverse and widespread genomic instability through the generation of double strand breaks. This has important implications for treatment approaches for cancers that carry APOBEC3 mutations, and challenges the view that APOBECs only act opportunistically at sites of single stranded DNA.
Collapse
Affiliation(s)
- G Maria Jakobsdottir
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
- Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, M20 4GJ, UK
| | - Daniel S Brewer
- University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Colin Cooper
- University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Catherine Green
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - David C Wedge
- Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK.
- Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, M20 4GJ, UK.
- Oxford NIHR Biomedical Research Centre, Oxford, OX4 2PG, UK.
| |
Collapse
|
10
|
Jeon S, Kim S, Oh MH, Liang P, Tang W, Han K. A comprehensive analysis of gorilla-specific LINE-1 retrotransposons. Genes Genomics 2021; 43:1133-1141. [PMID: 34406591 DOI: 10.1007/s13258-021-01146-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Long interspersed element-1 (LINE-1 or L1) is the most abundant retrotransposons in the primate genome. They have approximately 520,000 copies and make up ~ 17% of the primate genome. Full-length L1s can mobilize to a new genomic location using their enzymatic machinery. Gorilla is the second closest species to humans after the chimpanzee, and human-gorilla split 7-12 million years ago. The gorilla genome provides an opportunity to explore primate origins and evolution. OBJECTIVE L1s have contributed to genome diversity and variations during primate evolution. This study aimed to identify gorilla-specific L1s using a more recent version of the gorilla reference genome (Mar. 2016 GSMRT3/gorGor5). METHODS We collected gorilla-specific L1 candidates through computational analysis and manual inspection. L1Xplorer was used to identify whether full-length gorilla-specific L1s were intact. In addition, to determine the level of sequence conservation between intact fulllength gorilla-specific L1s, two ORFs of intact L1s were aligned with the L1PA2 consensus sequence. RESULTS 2002 gorilla-specific L1 candidates were identified through computational analysis. Among them, we manually inspected 1,883 gorilla-specific L1s, among which most of them belong to the L1PA2 subfamily and 12 were intact L1s that could influence genomic variations in the gorilla genome. Interestingly, the 12 intact full-length gorilla-specific L1s have 14 highly conserved nonsynonymous mutations, including 6 mutations and 8 mutations in ORF1 and ORF2, respectively. In comparison to the intact full-length chimpanzee-specific L1s and human-specific hot-L1s, two of these in ORF1 (L256F and E293G) were shown as gorilla-specific nonsynonymous mutations. CONCLUSION The gorilla-specific L1s may have had significantly affected the gorilla genome to compose a genome different form that of other primates during primate evolution.
Collapse
Affiliation(s)
- Soyeon Jeon
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Songmi Kim
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea.,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Man Hwan Oh
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre of Biotechnologies, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Wanxiangfu Tang
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Kyudong Han
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea. .,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
11
|
USP24 stabilizes bromodomain containing proteins to promote lung cancer malignancy. Sci Rep 2020; 10:20870. [PMID: 33257797 PMCID: PMC7705756 DOI: 10.1038/s41598-020-78000-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023] Open
Abstract
Bromodomain (BRD)-containing proteins are important for chromatin remodeling to regulate gene expression. In this study, we found that the deubiquitinase USP24 interacted with BRD through its C-terminus increased the levels of most BRD-containing proteins through increasing their protein stability by the removal of ubiquitin from Lys391/Lys400 of the BRD. In addition, we found that USP24 and BRG1 could regulate each other through regulating the protein stability and the transcriptional activity, respectively, of the other, suggesting that the levels of USP24 and BRG1 are regulated to form a positive feedback loop in cancer progression. Loss of the interaction motif of USP24 eliminated the ability of USP24 to stabilize BRD-containing proteins and abolished the effect of USP24 on cancer progression, including its inhibition of cancer cell proliferation and promotion of cancer cell migration, suggesting that the interaction between USP24 and the BRD is important for USP24-mediated effects on cancer progression. The targeting of BRD-containing proteins has been developed as a strategy for cancer therapy. Based on our study, targeting USP24 to inhibit the levels of BRD-containing proteins may inhibit cancer progression.
Collapse
|
12
|
Wang WJ, Li LY, Cui JW. Chromosome structural variation in tumorigenesis: mechanisms of formation and carcinogenesis. Epigenetics Chromatin 2020; 13:49. [PMID: 33168103 PMCID: PMC7654176 DOI: 10.1186/s13072-020-00371-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
With the rapid development of next-generation sequencing technology, chromosome structural variation has gradually gained increased clinical significance in tumorigenesis. However, the molecular mechanism(s) underlying this structural variation remain poorly understood. A search of the literature shows that a three-dimensional chromatin state plays a vital role in inducing structural variation and in the gene expression profiles in tumorigenesis. Structural variants may result in changes in copy number or deletions of coding sequences, as well as the perturbation of structural chromatin features, especially topological domains, and disruption of interactions between genes and their regulatory elements. This review focuses recent work aiming at elucidating how structural variations develop and misregulate oncogenes and tumor suppressors, to provide general insights into tumor formation mechanisms and to provide potential targets for future anticancer therapies.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| | - Ling-Yu Li
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| | - Jiu-Wei Cui
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| |
Collapse
|
13
|
An Evolutionary Perspective on the Impact of Genomic Copy Number Variation on Human Health. J Mol Evol 2019; 88:104-119. [PMID: 31522275 DOI: 10.1007/s00239-019-09911-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Copy number variants (CNVs), deletions and duplications of segments of DNA, account for at least five times more variable base pairs in humans than single-nucleotide variants. Several common CNVs were shown to change coding and regulatory sequences and thus dramatically affect adaptive phenotypes involving immunity, perception, metabolism, skin structure, among others. Some of these CNVs were also associated with susceptibility to cancer, infection, and metabolic disorders. These observations raise the possibility that CNVs are a primary contributor to human phenotypic variation and consequently evolve under selective pressures. Indeed, locus-specific haplotype-level analyses revealed signatures of natural selection on several CNVs. However, more traditional tests of selection which are often applied to single-nucleotide variation often have diminished statistical power when applied to CNVs because they often do not show strong linkage disequilibrium with nearby variants. Recombination-based formation mechanisms of CNVs lead to frequent recurrence and gene conversion events, breaking the linkage disequilibrium involving CNVs. Similar methodological challenges also prevent routine genome-wide association studies to adequately investigate the impact of CNVs on heritable human disease. Thus, we argue that the full relevance of CNVs to human health and evolution is yet to be elucidated. We further argue that a holistic investigation of formation mechanisms within an evolutionary framework would provide a powerful framework to understand the functional and biomedical impact of CNVs. In this paper, we review several cases where studies reveal diverse evolutionary histories and unexpected functional consequences of CNVs. We hope that this review will encourage further work on CNVs by both evolutionary and medical geneticists.
Collapse
|
14
|
Tusso S, Nieuwenhuis BPS, Sedlazeck FJ, Davey JW, Jeffares DC, Wolf JBW. Ancestral Admixture Is the Main Determinant of Global Biodiversity in Fission Yeast. Mol Biol Evol 2019; 36:1975-1989. [PMID: 31225876 PMCID: PMC6736153 DOI: 10.1093/molbev/msz126] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutation and recombination are key evolutionary processes governing phenotypic variation and reproductive isolation. We here demonstrate that biodiversity within all globally known strains of Schizosaccharomyces pombe arose through admixture between two divergent ancestral lineages. Initial hybridization was inferred to have occurred ∼20-60 sexual outcrossing generations ago consistent with recent, human-induced migration at the onset of intensified transcontinental trade. Species-wide heritable phenotypic variation was explained near-exclusively by strain-specific arrangements of alternating ancestry components with evidence for transgressive segregation. Reproductive compatibility between strains was likewise predicted by the degree of shared ancestry. To assess the genetic determinants of ancestry block distribution across the genome, we characterized the type, frequency, and position of structural genomic variation using nanopore and single-molecule real-time sequencing. Despite being associated with double-strand break initiation points, over 800 segregating structural variants exerted overall little influence on the introgression landscape or on reproductive compatibility between strains. In contrast, we found strong ancestry disequilibrium consistent with negative epistatic selection shaping genomic ancestry combinations during the course of hybridization. This study provides a detailed, experimentally tractable example that genomes of natural populations are mosaics reflecting different evolutionary histories. Exploiting genome-wide heterogeneity in the history of ancestral recombination and lineage-specific mutations sheds new light on the population history of S. pombe and highlights the importance of hybridization as a creative force in generating biodiversity.
Collapse
Affiliation(s)
- Sergio Tusso
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
- Department of Evolutionary Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Bart P S Nieuwenhuis
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - John W Davey
- Bioscience Technology Facility, Department of Biology, University of York, York, United Kingdom
| | - Daniel C Jeffares
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute (YBRI), University of York, York, United Kingdom
| | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
- Department of Evolutionary Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Dornelles-Wawruk H, Soledad Heredia R, de Paula-Junior MR, Cardoso MTO, Bonadio RS, Dos Reis BF, Pic-Taylor A, de Oliveira SF, Mazzeu JF. A Balanced Reciprocal Translocation t(2;9)(p25;q13) Disrupting the LINC00299 Gene in a Patient with Intellectual Disability. Mol Syndromol 2019; 10:234-238. [PMID: 31602198 DOI: 10.1159/000500397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Long intergenic noncoding RNAs (lincRNAs) are a class of noncoding RNAs implicated in several biological processes. LincRNA 299 (LINC00299) maps to 2p25.1 and its function is still unknown. However, this gene has been proposed as a candidate for intellectual disability (ID) in a patient with a balanced translocation where the breakpoint disrupted its ORF. Here, we describe a new case of LINC00299 disruption associated with ID. The individual, a 42-year-old woman, was referred to the clinical geneticist because of her son who had severe syndromic ID. G-banding and chromosomal microarray analysis were performed. Karyotyping of the boy revealed an extranumerary derivative chromosome identified as an unbalanced translocation between chromosomes 2 and 9 of maternal origin. The mother's karyotype showed a balanced translocation 46,XX,t(2;9)(p25;q13). Chromosomal microarray indicated a disruption of LINC00299. These data corroborate the role of LINC00299 as a causative gene for ID and broadens the spectrum of LINC00299-related phenotypes.
Collapse
Affiliation(s)
| | - Romina Soledad Heredia
- Hospital de Apoio de Brasília, Secretaria de Estado de Saúde do Distrito Federal, Brasilia, Brazil.,Programa de Pós-graduação em Ciências Médicas, Universidade de Brasília, Brasilia, Brazil
| | | | | | - Raphael S Bonadio
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| | - Bianca F Dos Reis
- Hospital de Apoio de Brasília, Secretaria de Estado de Saúde do Distrito Federal, Brasilia, Brazil
| | - Aline Pic-Taylor
- Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasilia, Brazil.,Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| | - Silviene F de Oliveira
- Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasilia, Brazil.,Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| | - Juliana F Mazzeu
- Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasilia, Brazil.,Programa de Pós-graduação em Ciências Médicas, Universidade de Brasília, Brasilia, Brazil.,Faculdade de Medicina, Universidade de Brasília, Brasilia, Brazil
| |
Collapse
|
16
|
Barbour JA, Wong JWH. Dysregulation of Cis-Regulatory Elements in Cancer. Clin Epigenetics 2019. [DOI: 10.1007/978-981-13-8958-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
17
|
Abstract
Somatic structural variants undoubtedly play important roles in driving tumourigenesis. This is evident despite the substantial technical challenges that remain in accurately detecting structural variants and their breakpoints in tumours and in spite of our incomplete understanding of the impact of structural variants on cellular function. Developments in these areas of research contribute to the ongoing discovery of structural variation with a clear impact on the evolution of the tumour and on the clinical importance to the patient. Recent large whole genome sequencing studies have reinforced our impression of each tumour as a unique combination of mutations but paradoxically have also discovered similar genome-wide patterns of single-nucleotide and structural variation between tumours. Statistical methods have been developed to deconvolute mutation patterns, or signatures, that recur across samples, providing information about the mutagens and repair processes that may be active in a given tumour. These signatures can guide treatment by, for example, highlighting vulnerabilities in a particular tumour to a particular chemotherapy. Thus, although the complete reconstruction of the full evolutionary trajectory of a tumour genome remains currently out of reach, valuable data are already emerging to improve the treatment of cancer.
Collapse
Affiliation(s)
- Ailith Ewing
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH42XU, UK
| | - Colin Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH42XU, UK
| |
Collapse
|
18
|
Liu D, Chen Z, Zhang Z, Sun H, Ma P, Zhu K, Liu G, Wang Q, Pan Y. Detection of genome-wide structural variations in the Shanghai Holstein cattle population using next-generation sequencing. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:320-333. [PMID: 30056674 PMCID: PMC6409473 DOI: 10.5713/ajas.18.0204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/22/2018] [Indexed: 12/30/2022]
Abstract
Objective The Shanghai Holstein cattle breed is susceptible to severe mastitis and other diseases due to the hot weather and long-term humidity in Shanghai, which is the main distribution centre for providing Holstein semen to various farms throughout China. Our objective was to determine the genetic mechanisms influencing economically important traits, especially diseases that have huge impact on the yield and quality of milk as well as reproduction. Methods In our study, we detected the structural variations of 1,092 Shanghai Holstein cows by using next-generation sequencing. We used the DELLY software to identify deletions and insertions, cn.MOPS to identify copy-number variants (CNVs). Furthermore, we annotated these structural variations using different bioinformatics tools, such as gene ontology, cattle quantitative trait locus (QTL) database and ingenuity pathway analysis (IPA). Results The average number of high-quality reads was 3,046,279. After filtering, a total of 16,831 deletions, 12,735 insertions and 490 CNVs were identified. The annotation results showed that these mapped genes were significantly enriched for specific biological functions, such as disease and reproduction. In addition, the enrichment results based on the cattle QTL database showed that the number of variants related to milk and reproduction was higher than the number of variants related to other traits. IPA core analysis found that the structural variations were related to reproduction, lipid metabolism, and inflammation. According to the functional analysis, structural variations were important factors affecting the variation of different traits in Shanghai Holstein cattle. Our results provide meaningful information about structural variations, which may be useful in future assessments of the associations between variations and important phenotypes in Shanghai Holstein cattle. Conclusion Structural variations identified in this study were extremely different from those of previous studies. Many structural variations were found to be associated with mastitis and reproductive system diseases; these results are in accordance with the characteristics of the environment that Shanghai Holstein cattle experience.
Collapse
Affiliation(s)
- Dengying Liu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Zhenliang Chen
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Zhe Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Hao Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Peipei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Kai Zhu
- Shanghai Dairy Cattle Breeding Centre Co., Ltd, Shanghai 201901, China
| | - Guanglei Liu
- Shanghai Dairy Cattle Breeding Centre Co., Ltd, Shanghai 201901, China
| | - Qishan Wang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Yuchun Pan
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| |
Collapse
|
19
|
Yang R, Fang S, Wang J, Zhang C, Zhang R, Liu D, Zhao Y, Hu X, Li N. Genome-wide analysis of structural variants reveals genetic differences in Chinese pigs. PLoS One 2017; 12:e0186721. [PMID: 29065176 PMCID: PMC5655481 DOI: 10.1371/journal.pone.0186721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/08/2017] [Indexed: 11/19/2022] Open
Abstract
Pigs have experienced long-term selections, resulting in dramatic phenotypic changes. Structural variants (SVs) are reported to exert extensive impacts on phenotypic changes. We built a high resolution and informative SV map based on high-depth sequencing data from 66 Chinese domestic and wild pigs. We inferred the SV formation mechanisms in the pig genome and used SVs as materials to perform a population-level analysis. We detected the selection signals on chromosome X for northern Chinese domestic pigs, as well as the differentiated loci across the whole genome. Analysis showed that these loci differ between southern and northern Chinese domestic pigs. Our results based on SVs provide new insights into genetic differences in Chinese pigs.
Collapse
Affiliation(s)
- Ruifei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, P. R. China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Suyun Fang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, P. R. China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Chunyuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, P. R. China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Ran Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Di Liu
- Institute of Animal Industry, Heilongjiang Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yiqiang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, P. R. China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- * E-mail: (XH); (YZ)
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
- * E-mail: (XH); (YZ)
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
20
|
Dutta UR, Bahal A, Vineeth V, Sarvade V, Ranganath P, Dalal A. A novel mosaic complex supernumerary marker chromosome in a girl with seizures: systematic characterization of the complex marker. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Xia Y, Liu Y, Deng M, Xi R. Pysim-sv: a package for simulating structural variation data with GC-biases. BMC Bioinformatics 2017; 18:53. [PMID: 28361688 PMCID: PMC5374556 DOI: 10.1186/s12859-017-1464-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Structural variations (SVs) are wide-spread in human genomes and may have important implications in disease-related and evolutionary studies. High-throughput sequencing (HTS) has become a major platform for SV detection and simulation serves as a powerful and cost-effective approach for benchmarking SV detection algorithms. Accurate performance assessment by simulation requires the simulator capable of generating simulation data with all important features of real data, such GC biases in HTS data and various complexities in tumor data. However, no available package has systematically addressed all issues in data simulation for SV benchmarking. Results Pysim-sv is a package for simulating HTS data to evaluate performance of SV detection algorithms. Pysim-sv can introduce a wide spectrum of germline and somatic genomic variations. The package contains functionalities to simulate tumor data with aneuploidy and heterogeneous subclones, which is very useful in assessing algorithm performance in tumor studies. Furthermore, Pysim-sv can introduce GC-bias, the most important and prevalent bias in HTS data, in the simulated HTS data. Conclusions Pysim-sv provides an unbiased toolkit for evaluating HTS-based SV detection algorithms.
Collapse
Affiliation(s)
- Yuchao Xia
- School of Mathematics Science and Center for Statistical Science, Peking University, Yiheyuan Road 5, Beijing, 100871, China
| | - Yun Liu
- School of Mathematics Science and Center for Statistical Science, Peking University, Yiheyuan Road 5, Beijing, 100871, China
| | - Minghua Deng
- School of Mathematics Science and Center for Statistical Science, Peking University, Yiheyuan Road 5, Beijing, 100871, China.
| | - Ruibin Xi
- School of Mathematics Science and Center for Statistical Science, Peking University, Yiheyuan Road 5, Beijing, 100871, China.
| |
Collapse
|
22
|
Obermeier K, Sachsenweger J, Friedl TWP, Pospiech H, Winqvist R, Wiesmüller L. Heterozygous PALB2 c.1592delT mutation channels DNA double-strand break repair into error-prone pathways in breast cancer patients. Oncogene 2015; 35:3796-806. [PMID: 26640152 PMCID: PMC4962030 DOI: 10.1038/onc.2015.448] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
Hereditary heterozygous mutations in a variety of DNA double-strand break (DSB) repair genes have been associated with increased breast cancer risk. In the Finnish population, PALB2 (partner and localizer of BRCA2) represents a major susceptibility gene for female breast cancer, and so far, only one mutation has been described, c.1592delT, which leads to a sixfold increased disease risk. PALB2 is thought to participate in homologous recombination (HR). However, the effect of the Finnish founder mutation on DSB repair has not been investigated. In the current study, we used a panel of lymphoblastoid cell lines (LCLs) derived from seven heterozygous female PALB2 c.1592delT mutation carriers with variable health status and six wild-type matched controls. The results of our DSB repair analysis showed that the PALB2 mutation causes specific changes in pathway usage, namely increases in error-prone single-strand annealing (SSA) and microhomology-mediated end-joining (MMEJ) compared with wild-type LCLs. These data indicated haploinsufficiency regarding the suppression of error-prone DSB repair in PALB2 mutation carriers. To the contrary, neither reduced HR activities, nor impaired RAD51 filament assembly, nor sensitization to PARP inhibition were consistently observed. Expression of truncated mutant versus wild-type PALB2 verified a causal role of PALB2 c.1592delT in the shift to error-prone repair. Discrimination between healthy and malignancy-presenting PALB2 mutation carriers revealed a pathway shift particularly in the breast cancer patients, suggesting interaction of PALB2 c.1592delT with additional genomic lesions. Interestingly, the studied PALB2 mutation was associated with 53BP1 accumulation in the healthy mutation carriers but not the patients, and 53BP1 was limiting for error-prone MMEJ in patients but not in healthy carriers. Our study identified a rise in error-prone DSB repair as a potential threat to genomic integrity in heterozygous PALB2 mutation carriers. The used phenotypic marker system has the capacity to capture dysfunction caused by polygenic mechanisms and therefore offers new strategies of cancer risk prediction.
Collapse
Affiliation(s)
- K Obermeier
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - J Sachsenweger
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - T W P Friedl
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - H Pospiech
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Research Group Biochemistry, Leibniz Institute for Age Research-Fritz Lipmann Institute, Jena, Germany
| | - R Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medical Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland.,Northern Finland Laboratory Centre NordLab, Oulu, Finland
| | - L Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| |
Collapse
|
23
|
Christofolini DM, Piazzon FB, Evo C, Mafra FA, Cosenza SR, Dias AT, Barbosa CP, Bianco B, Kulikowski LD. Complex small supernumerary marker chromosome with a 15q/16p duplication: clinical implications. Mol Cytogenet 2014; 7:29. [PMID: 24839463 PMCID: PMC4023550 DOI: 10.1186/1755-8166-7-29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/21/2014] [Indexed: 11/27/2022] Open
Abstract
Background Complex small supernumerary marker chromosomes (sSMCs) consist of chromosomal material derived from more than one chromosome and have been implicated in reproductive problems such as recurrent pregnancy loss. They may also be associated with congenital abnormalities in the offspring of carriers. Due to its genomic architecture, chromosome 15 is frequently associated with rearrangements and the formation of sSMCs. Recently, several different CNVs have been described at 16p11.2, suggesting that this region is prone to rearrangements. Results We detected the concomitant occurrence of partial trisomy 15q and 16p, due to a complex sSMC, in a 6-year-old girl with clinical phenotypic. The karyotype was analyzed by G and C banding, NOR staining, FISH and SNP array and defined as 47,XX,+der(15)t(15;16)(q13;p13.2)mat. The array assay revealed an unexpected complex sSMC containing material from chromosomes 15 and 16, due to an inherited maternal translocation (passed along over several generations). The patient’s phenotype included microsomia, intellectual disability, speech delay, hearing impairment, dysphagia and other minor alterations. Discussion This is the first report on the concomitant occurrence of partial trisomy 15q and 16p. The wide range of phenotypes associated with complex sSMCs represents a challenge for genotype-phenotype correlation studies, accurate clinical assessment of patients and genetic counseling.
Collapse
Affiliation(s)
- Denise M Christofolini
- Department of Gynecology and Obstetrics, Genetics Division, Faculdade de Medicina do ABC - FMABC, São Paulo, Brazil
| | - Flavia B Piazzon
- Department of Pathology, Cytogenomics Laboratory, LIM 03, HC-FMUSP, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar 255, São Paulo 05403-000, Brazil
| | - Carolina Evo
- Department of Gynecology and Obstetrics, Genetics Division, Faculdade de Medicina do ABC - FMABC, São Paulo, Brazil
| | - Fernanda A Mafra
- Department of Gynecology and Obstetrics, Genetics Division, Faculdade de Medicina do ABC - FMABC, São Paulo, Brazil
| | - Stella R Cosenza
- Department of Gynecology and Obstetrics, Genetics Division, Faculdade de Medicina do ABC - FMABC, São Paulo, Brazil
| | - Alexandre T Dias
- Department of Pathology, Cytogenomics Laboratory, LIM 03, HC-FMUSP, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar 255, São Paulo 05403-000, Brazil
| | - Caio P Barbosa
- Department of Gynecology and Obstetrics, Genetics Division, Faculdade de Medicina do ABC - FMABC, São Paulo, Brazil
| | - Bianca Bianco
- Department of Gynecology and Obstetrics, Genetics Division, Faculdade de Medicina do ABC - FMABC, São Paulo, Brazil
| | - Leslie D Kulikowski
- Department of Pathology, Cytogenomics Laboratory, LIM 03, HC-FMUSP, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar 255, São Paulo 05403-000, Brazil
| |
Collapse
|
24
|
Blake J, Riddell A, Theiss S, Gonzalez AP, Haase B, Jauch A, Janssen JWG, Ibberson D, Pavlinic D, Moog U, Benes V, Runz H. Sequencing of a patient with balanced chromosome abnormalities and neurodevelopmental disease identifies disruption of multiple high risk loci by structural variation. PLoS One 2014; 9:e90894. [PMID: 24625750 PMCID: PMC3953210 DOI: 10.1371/journal.pone.0090894] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/06/2014] [Indexed: 01/31/2023] Open
Abstract
Balanced chromosome abnormalities (BCAs) occur at a high frequency in healthy and diseased individuals, but cost-efficient strategies to identify BCAs and evaluate whether they contribute to a phenotype have not yet become widespread. Here we apply genome-wide mate-pair library sequencing to characterize structural variation in a patient with unclear neurodevelopmental disease (NDD) and complex de novo BCAs at the karyotype level. Nucleotide-level characterization of the clinically described BCA breakpoints revealed disruption of at least three NDD candidate genes (LINC00299, NUP205, PSMD14) that gave rise to abnormal mRNAs and could be assumed as disease-causing. However, unbiased genome-wide analysis of the sequencing data for cryptic structural variation was key to reveal an additional submicroscopic inversion that truncates the schizophrenia- and bipolar disorder-associated brain transcription factor ZNF804A as an equally likely NDD-driving gene. Deep sequencing of fluorescent-sorted wild-type and derivative chromosomes confirmed the clinically undetected BCA. Moreover, deep sequencing further validated a high accuracy of mate-pair library sequencing to detect structural variants larger than 10 kB, proposing that this approach is powerful for clinical-grade genome-wide structural variant detection. Our study supports previous evidence for a role of ZNF804A in NDD and highlights the need for a more comprehensive assessment of structural variation in karyotypically abnormal individuals and patients with neurocognitive disease to avoid diagnostic deception.
Collapse
Affiliation(s)
- Jonathon Blake
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Andrew Riddell
- Flow Cytometry Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Susanne Theiss
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | | | - Bettina Haase
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | | | - David Ibberson
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
- CellNetworks Sequencing Core Facility, University of Heidelberg, Heidelberg, Germany
| | - Dinko Pavlinic
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Ute Moog
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Heiko Runz
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg/EMBL, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
25
|
Abstract
The field of cytogenetics has focused on studying the number, structure, function and origin of chromosomal abnormalities and the evolution of chromosomes. The development of fluorescent molecules that either directly or via an intermediate molecule bind to DNA has led to the development of fluorescent in situ hybridization (FISH), a technology linking cytogenetics to molecular genetics. This technique has a wide range of applications that increased the dimension of chromosome analysis. The field of cytogenetics is particularly important for medical diagnostics and research as well as for gene ordering and mapping. Furthermore, the increased application of molecular biology techniques, such as array-based technologies, has led to improved resolution, extending the recognized range of microdeletion/microduplication syndromes and genomic disorders. In adopting these newly expanded methods, cytogeneticists have used a range of technologies to study the association between visible chromosome rearrangements and defects at the single nucleotide level. Overall, molecular cytogenetic techniques offer a remarkable number of potential applications, ranging from physical mapping to clinical and evolutionary studies, making a powerful and informative complement to other molecular and genomic approaches. This manuscript does not present a detailed history of the development of molecular cytogenetics; however, references to historical reviews and experiments have been provided whenever possible. Herein, the basic principles of molecular cytogenetics, the technologies used to identify chromosomal rearrangements and copy number changes, and the applications for cytogenetics in biomedical diagnosis and research are presented and discussed.
Collapse
Affiliation(s)
- Mariluce Riegel
- Serviço de Genética Médica, Hospital de Clínicas, Porto Alegre, RS, Brazil . ; Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
26
|
Zhang CZ, Leibowitz ML, Pellman D. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev 2013; 27:2513-30. [PMID: 24298051 PMCID: PMC3861665 DOI: 10.1101/gad.229559.113] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent genome sequencing studies have identified several classes of complex genomic rearrangements that appear to be derived from a single catastrophic event. These discoveries identify ways that genomes can be altered in single large jumps rather than by many incremental steps. Here we compare and contrast these phenomena and examine the evidence that they arise "all at once." We consider the impact of massive chromosomal change for the development of diseases such as cancer and for evolution more generally. Finally, we summarize current models for underlying mechanisms and discuss strategies for testing these models.
Collapse
Affiliation(s)
- Cheng-Zhong Zhang
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Mitchell L. Leibowitz
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David Pellman
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|