1
|
Uthaiah NM, Venkataramareddy SR, Mudhol S, Sheikh AY. EPA-rich Nannochloropsis oceanica biomass regulates gut microbiota, alleviates inflammation and ameliorates liver fibrosis in rats. Food Res Int 2025; 202:115733. [PMID: 39967180 DOI: 10.1016/j.foodres.2025.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/14/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025]
Abstract
Omega-3 fatty acids are believed to show anti-fibrotic effects by lowering inflammation and regulating the gut microflora. Marine microalgae are an alternative, sustainable source of omega-3 fatty acids to the conventionally used fish oil. Microalgae N. oceanica is a promising source of EPA, one of the essential omega-3 PUFAs. Current study investigates the inhibitory effects of EPA rich N. oceanica biomass against CCl4 induced liver fibrosis in rats. Here, we studied the anti-fibrotic effects in N. oceanica biomass fed groups: T1 - Low dose (4.16 mg/kg EPA), T2 - Medium dose (8.33 mg/kg EPA) and T3 - High dose (16.66 mg/kg EPA), when compared to fish oil fed group (FO - 16.66 mg/kg EPA) as a positive control. The elevated levels of serum liver biomarker enzymes and cholesterol induced by CCl4 showed a significant reduction in T3. Histopathological analysis showed the protective effects of biomass feeding on inflammation and hepatocyte degeneration. In addition, the abundance of the SCFA producing bacteria like Blautia argi, Romboutsia ilealis, Romboutsia timonensis, Stomatobaculum longum and Limosilactobacillus reuteri markedly increased in the PUFA fed groups. The cholesterol metabolising bacteria Eubacterium coprostanoligenes showed a noteworthy increase upon PUFA administration. Overall results indicate that the ameliorative effects observed upon administration of N. oceanica biomass were comparable to FO in a dose dependent manner. Therefore, we can conclude that N. oceanica biomass supplementation is associated with the alleviation of liver fibrosis in rats.
Collapse
Affiliation(s)
- Nethravathy Malachira Uthaiah
- Plant Cell Biotechnology Department, CSIR - Central Food Technological Research Institute, Mysuru 570020 Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sreedhar Reddampalli Venkataramareddy
- Plant Cell Biotechnology Department, CSIR - Central Food Technological Research Institute, Mysuru 570020 Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Seema Mudhol
- Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysuru 570020 Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Azam Yakub Sheikh
- Plant Cell Biotechnology Department, CSIR - Central Food Technological Research Institute, Mysuru 570020 Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Tejero Pérez A, Kapravelou G, Porres Foulquie JM, López Jurado Romero de la Cruz M, Martínez Martínez R. Potential benefits of microalgae intake against metabolic diseases: beyond spirulina-a systematic review of animal studies. Nutr Rev 2024; 82:872-891. [PMID: 37643736 DOI: 10.1093/nutrit/nuad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
CONTEXT Microalgae are a diverse source of bioactive molecules, such as polyphenols, carotenoids, and omega-3 fatty acids, with beneficial properties in biomarkers of metabolic diseases. Unlike the rest of the microalgae genera, Arthrospira sp., commonly called spirulina, has been widely studied. OBJECTIVE This review aims to describe the current knowledge about microalgae, besides spirulina, focusing on their beneficial properties against metabolic diseases. DATA SOURCES A systematic research of MEDLINE (via PubMed), Cochrane, and Scopus databases was conducted to identify relevant studies published after January 2012. In vivo animal studies including microalgae consumption, except for spirulina, that significantly improved altered biomarkers related to metabolic diseases were included. These biomarkers included body weight/composition, glucose metabolism, lipid metabolism, oxidative damage, inflammation markers, and gut microbiota. DATA EXTRACTION After the literature search and the implementation of inclusion and exclusion criteria, 37 studies were included in the revision out of the 132 results originally obtained after the application of the equation on the different databases. DATA ANALYSIS Data containing 15 microalgae genera were included reporting on a wide range of beneficial results at different levels, including a decrease in body weight and changes in plasma levels of glucose and lipoproteins due to molecular alterations such as those related to gene expression regulation. The most reported beneficial effects were related to gut microbiota and inflammation followed by lipid and glucose metabolism and body weight/composition. CONCLUSIONS Microalgae intake improved different altered biomarkers due to metabolic diseases and seem to have potential in the design of enriched foodstuffs or novel nutraceuticals. Nevertheless, to advance to clinical trials, more thorough/detailed studies should be performed on some of the microalgae genera included in this review to collect more information on their molecular mechanisms of action.
Collapse
Affiliation(s)
- Adrian Tejero Pérez
- Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Faculty of Medicine, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - Garyfallia Kapravelou
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - Jesús María Porres Foulquie
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - María López Jurado Romero de la Cruz
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| | - Rosario Martínez Martínez
- Department of Physiology, Biomedical Research Center (CIBM), Instituto Mixto Universitario Deporte y Salud (IMUDS), Universidad de Granada, Granada, Spain
| |
Collapse
|
3
|
Abdel Haleem MI, Khater HF, Edris SN, Taie HAA, Abdel Gawad SM, Hassan NA, El-Far AH, Magdy Y, Elbasuni SS. Bioefficacy of dietary inclusion of Nannochloropsis oculata on Eimeria spp. challenged chicks: clinical approaches, meat quality, and molecular docking. Avian Pathol 2024; 53:199-217. [PMID: 38285881 DOI: 10.1080/03079457.2024.2312133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
Although anticoccidial drugs have been used to treat avian coccidiosis for nearly a century, resistance, bird harm, and food residues have caused health concerns. Thus, Nannochloropsis oculata was investigated as a possible coccidiosis treatment for broilers. A total of 150 1-day-old male Cobb broiler chicks were treated as follows: G1-Ng: fed a basal diet; G2-Ps: challenged with Eimeria spp. oocysts and fed basal diet; G3-Clo: challenged and fed basal diet with clopidol; G4-NOa: challenged and fed 0.1% N. oculata in diet, and G5-NOb: challenged and fed 0.2% N. oculata. Compared to G2-Ps, N. oculata in the diet significantly (P < 0.05) decreased dropping scores, lesion scores, and oocyst shedding. Without affecting breast meat colour metrics, N. oculata improved meat quality characters. At 28 days of age, birds received 0.2% N. oculata had significantly (P < 0.05) higher serum levels of MDA, T-SOD, HDL, and LDL cholesterol compared to G2-Ps. Serum AST, ALT, and urea levels were all decreased when N. oculata (0.2%) was used as opposed to G2-Ps. Histopathological alterations and the number of developmental and degenerative stages of Eimeria spp. in the intestinal epithelium were dramatically reduced by 0.2% N. oculata compared to G2-Ps. Molecular docking revealed a higher binding affinity of N. oculata for E. tenella aldolase, EtAMA1, and EtMIC3, which hindered glucose metabolism, host cell adhesion, and invasion of Eimeria. Finally, N. oculata (0.2%) can be used in broiler diets to mitigate the deleterious effects of coccidiosis.
Collapse
Affiliation(s)
- Marwa I Abdel Haleem
- Department of Avian and Rabbit Diseases, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Hanem F Khater
- Department of Parasitology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Shimaa N Edris
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Hanan A A Taie
- Plant Biochemistry Department, National Research Centre, Dokki, Egypt
| | - Samah M Abdel Gawad
- Department of Parasitology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Nibal A Hassan
- Department of Biology, Animal Reproduction Research Institute, Pathology Department, Giza, Egypt
- College of Science, Taif University, Taif, Saudi Arabia
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Yasmeen Magdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Sawsan S Elbasuni
- Department of Avian and Rabbit Diseases, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| |
Collapse
|
4
|
Tamel Selvan K, Goon JA, Makpol S, Tan JK. Therapeutic Potentials of Microalgae and Their Bioactive Compounds on Diabetes Mellitus. Mar Drugs 2023; 21:462. [PMID: 37755075 PMCID: PMC10532649 DOI: 10.3390/md21090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023] Open
Abstract
Diabetes mellitus is a metabolic disorder characterized by hyperglycemia due to impaired insulin secretion, insulin resistance, or both. Oxidative stress and chronic low-grade inflammation play crucial roles in the pathophysiology of diabetes mellitus. There has been a growing interest in applying natural products to improve metabolic derangements without the side effects of anti-diabetic drugs. Microalgae biomass or extract and their bioactive compounds have been applied as nutraceuticals or additives in food products and health supplements. Several studies have demonstrated the therapeutic effects of microalgae and their bioactive compounds in improving insulin sensitivity attributed to their antioxidant, anti-inflammatory, and pancreatic β-cell protective properties. However, a review summarizing the progression in this topic is lacking despite the increasing number of studies reporting their anti-diabetic potential. In this review, we gathered the findings from in vitro, in vivo, and human studies to discuss the effects of microalgae and their bioactive compounds on diabetes mellitus and the mechanisms involved. Additionally, we discuss the limitations and future perspectives of developing microalgae-based compounds as a health supplement for diabetes mellitus. In conclusion, microalgae-based supplementation has the potential to improve diabetes mellitus and be applied in more clinical studies in the future.
Collapse
Affiliation(s)
| | | | | | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Ya’acob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Li S, Xie P, Chang H, Ho SH. Simultaneously enhancement in the assimilation of microalgal nitrogen and the accumulation of carbohydrate by Debaryomyces hansenii. CHEMOSPHERE 2023:139183. [PMID: 37302499 DOI: 10.1016/j.chemosphere.2023.139183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Microalgae-based techniques are considered an alternative to traditional activated sludge processes for removing nitrogen from wastewater. Bacteria consortia have been broadly conducted as one of the most important partners. However, fungal effects on the removal of nutrients and changes in physiological properties of microalgae, and their impact mechanisms remain unclear. The current work demonstrates that, adding fungi increased the nitrogen assimilation of microalgae and the generation of carbohydrates compared to pure microalgal cultivation. The NH4+-N removal efficiency was 95.0% within 48 h using the microalgae-fungi system. At 48 h, total sugars (glucose, xylose, and arabinose) accounted for 24.2 ± 4.2% per dry weight in the microalgae-fungi group. Gene ontology (GO) enrichment analysis revealed that, among various processes, phosphorylation and carbohydrate metabolic processes were more prominent. Gene encoding the key enzymes of glycolysis, pyruvate kinase, and phosphofructokinase were significantly up-regulated. Overall, for the first time, this study provides new insights into the art of microalgae-fungi consortia for producing value-added metabolites.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
6
|
Hassan MA, Mahmoud YK, Elnabtiti AAS, El-Hawy AS, El-Bassiony MF, Abdelrazek HMA. Evaluation of Cadmium or Lead Exposure with Nannochloropsis oculata Mitigation on Productive Performance, Biochemical, and Oxidative Stress Biomarkers in Barki Rams. Biol Trace Elem Res 2023; 201:2341-2354. [PMID: 35705889 PMCID: PMC10020321 DOI: 10.1007/s12011-022-03318-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022]
Abstract
This study was designed to determine the lead or cadmium exposure of Barki rams and the beneficial role of Nannochlorposis oculata (N. oculata) 4% as a feed supplement, as well as its mitigating role against these elements' impacts concerning performance, biochemical markers of liver enzymes and kidney function, thyroid hormone activity, and oxidative stress markers. Six groups of 36 Barki rams (33.63 ± 1.29 kg) were divided into G1: which served as control; G2: was given 4% dietary N. oculata; G3: was given oral 1 mg/kg cadmium chloride; G4: was given 5 mg/kg/day lead acetate; G5: was given oral 1 mg/kg cadmium chloride and 4% dietary N. oculata, and G6: was given oral 5 mg/kg/day lead acetate and 4% dietary N. oculata; and treatments were continued for 60 days. Cadmium and lead-exposed groups exhibited lower and weaker weight gain as well as feed conversion ratio, respectively, than the control and other groups. Additionally, levels of T3, T4, total proteins, albumin, and glutathione (GSH) were significantly reduced in both G3 and G4 compared to control. However, urea, creatinine, ALT, AST, total cholesterol, triglycerides, protein carbonyl content (PCC), and malondialdehyde (MDA) were significantly increased (P ≤ 0.05) in cadmium and lead-exposed groups. Dietary N. oculata (4%) improves serum proteins, creatinine, urea, T4, and oxidative stress indicators as compared to the control group. Finally, 4% dietary N. oculata greatly enhances the investigated parameters in terms of performance, thyroid hormones, serum biochemical, and antioxidant activity and may assist in reducing the endocrine disrupting effects of Pb and Cd.
Collapse
Affiliation(s)
- Marwa A Hassan
- Department of Animal Hygiene, Zoonoses and Behavior, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Yasmina K Mahmoud
- Biochemistry Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - A A S Elnabtiti
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - A S El-Hawy
- Animal and Poultry Production Division, Desert Research Center, Cairo, Egypt
| | | | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
7
|
Bioactivity and Digestibility of Microalgae Tetraselmis sp. and Nannochloropsis sp. as Basis of Their Potential as Novel Functional Foods. Nutrients 2023; 15:nu15020477. [PMID: 36678348 PMCID: PMC9861193 DOI: 10.3390/nu15020477] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
It is estimated that by 2050, the world's population will exceed 10 billion people, which will lead to a deterioration in global food security. To avoid aggravating this problem, FAO and WHO have recommended dietary changes to reduce the intake of animal calories and increase the consumption of sustainable, nutrient-rich, and calorie-efficient products. Moreover, due to the worldwide rising incidence of non-communicable diseases and the demonstrated impact of diet on the risk of these disorders, the current established food pattern is focused on the consumption of foods that have functionality for health. Among promising sources of functional foods, microalgae are gaining worldwide attention because of their richness in high-value compounds with potential health benefits. However, despite the great opportunities to exploit microalgae in functional food industry, their use remains limited by challenges related to species diversity and variations in cultivation factors, changes in functional composition during extraction procedures, and limited evidence on the safety and bioavailability of microalgae bioactives. The aim of this review is to provide an updated and comprehensive discussion on the nutritional value, biological effects, and digestibility of two microalgae genera, Tetraselmis and Nannochloropsis, as basis of their potential as ingredients for the development of functional foods.
Collapse
|
8
|
Hayes M, Mora L, Lucakova S. Identification of Bioactive Peptides from Nannochloropsis oculata Using a Combination of Enzymatic Treatment, in Silico Analysis and Chemical Synthesis. Biomolecules 2022; 12:biom12121806. [PMID: 36551234 PMCID: PMC9775090 DOI: 10.3390/biom12121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
In vitro ACE-1 inhibitory peptides were characterised previously from a number of microalgal species including Spirulina platensis (peptide IAPG), Chlorella vulgaris (peptides FDL, AFL, VVPPA), Isochrysis galbana (peptide YMGLDLK), Chlorella sorokiniana (peptides IW and LW) and indeed Nannochloropsis oculata (peptides GMNNLTP and LEQ). The isolation of protein from Nannochloropsis oculata using a combination of ammonium salt precipitation and xylanase treatment of resulting biomass combined with molecular weight cut off filtration to produce a permeate and characterisation of bioactive peptides is described. The Angiotensin-1-converting enzyme (ACE-1) IC50 value for the generated permeate fraction was 370 µg/mL. Ninety-five peptide sequences within the permeate fraction were determined using mass spectrometry and eight peptides were selected for chemical synthesis based on in silico analysis. Synthesized peptides were novel based on a search of the literature and relevant databases. In silico, simulated gastrointestinal digestion identified further peptides with bioactivities including ACE-1 inhibitory peptides and peptides with antithrombotic and calcium/calmodulin-dependent kinase II (CAMKII) inhibition. This work highlights the potential of Nannochloropsis oculata biomass as both a protein and bioactive peptide resource, which could be harnessed for use in the development of functional foods and feeds.
Collapse
Affiliation(s)
- Maria Hayes
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, D15 Dublin, Ireland
- Correspondence: ; Tel.: +353-1-8059957
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos, Burjassot CSIC, 46980 Valencia, Spain
| | - Simona Lucakova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojova 135/1, 165 02 Prague, Czech Republic
| |
Collapse
|
9
|
Can Growth of Nannochloropsis oculata under Modulated Stress Enhance Its Lipid-Associated Biological Properties? Mar Drugs 2022; 20:md20120737. [PMID: 36547884 PMCID: PMC9782458 DOI: 10.3390/md20120737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Nannochloropsis oculata is well-recognized as a potential microalgal source of valuable compounds such as polyunsaturated fatty acids, particularly, eicosapentaenoic acid (EPA). The content and profile of these lipids is highly dependent on the growth conditions and can, therefore, be tailored through modulation of the growth parameters, specifically, temperature. Moreover, biological activities are composition dependent. In the present work, lipid extracts obtained from N. oculata, grown under constant temperature and under modulated temperature stress (to increase EPA content; Str) were characterized by GC-FID and several bioactivities were evaluated, namely, antioxidant (L-ORACFL), cytotoxic (MTT), adipolytic, anti-hepatic lipid accumulation (steatosis), and anti-inflammatory properties. Both extracts exhibited antioxidant activity (c.a. 49 µmol Troloxequivalent/mgextract) and the absence of toxicity (up to 800 µg/mL) toward colon and hepatic cells, adipocytes, and macrophages. They also induced adipolysis and the inhibition of triglycerides hepatic accumulation, with a higher impact from Str. In addition, anti-inflammatory activity was observed in the lipopolysaccharide-induced inflammation of macrophages in the presence of either extract, since lower levels of pro-inflammatory interleukin-6 and interferon-β were obtained, specifically by Str. The results presented herein revealed that modulated temperature stress may enhance the health effects of N. oculata lipid extracts, which may be safely utilized to formulate novel food products.
Collapse
|
10
|
TetraSOD®, a Unique Marine Microalgae Ingredient, Promotes an Antioxidant and Anti-Inflammatory Status in a Metabolic Syndrome-Induced Model in Rats. Nutrients 2022; 14:nu14194028. [PMID: 36235679 PMCID: PMC9571776 DOI: 10.3390/nu14194028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Increased oxidative stress has been linked to the pathogenic process of obesity and can trigger inflammation, which is often linked with the risk factors that make up metabolic syndrome (MetS), including obesity, insulin resistance, dyslipidaemia and hypertension. TetraSOD®, a natural marine vegan ingredient derived from the microalgae Tetraselmis chuii that is high in the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) has recently demonstrated in vitro increased activity of these key antioxidant enzymes. In the present study, the potential bioactive effects of three dietary dosages of TetraSOD® in enhancing antioxidant and anti-inflammatory mechanisms to combat the metabolic disturbances that compose MetS were assessed in rats given a cafeteria (CAF) diet. Chronic supplementation with 0.17, 1.7, and 17 mg kg−1 day−1 of TetraSOD® for 8 weeks ameliorated the abnormalities associated with MetS, including oxidative stress and inflammation, promoting endogenous antioxidant defence mechanisms in the liver (GPx and GSH), modulating oxidative stress and inflammatory markers in plasma (NOx, oxLDL and IL-10), and regulating genes involved in antioxidant, anti-inflammatory and immunomodulatory pathways in the liver, mesenteric white adipose tissue (MWAT), thymus, and spleen. Overall, TetraSOD® appears to be a potential therapeutic option for the management of MetS.
Collapse
|
11
|
Yu Z, Hong Y, Xie K, Fan Q. Research Progresses on the Physiological and Pharmacological Benefits of Microalgae-Derived Biomolecules. Foods 2022; 11:2806. [PMID: 36140934 PMCID: PMC9498144 DOI: 10.3390/foods11182806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Microalgae are a kind of photoautotrophic microorganism, which are small, fast in their growth rate, and widely distributed in seawater and freshwater. They have strong adaptability to diverse environmental conditions and contain various nutrients. Many scholars have suggested that microalgae can be considered as a new food source, which should be developed extensively. More importantly, in addition to containing nutrients, microalgae are able to produce a great number of active compounds such as long-chain unsaturated fatty acids, pigments, alkaloids, astaxanthin, fucoidan, etc. Many of these compounds have been proven to possess very important physiological functions such as anti-oxidation, anti-inflammation, anti-tumor functions, regulation of the metabolism, etc. This article aimed to review the physiological functions and benefits of the main microalgae-derived bioactive molecules with their physiological effects.
Collapse
Affiliation(s)
- Zhou Yu
- Functional Food Research Center, Sino German Joint Research Institute, Nanchang University, Nanchang 330006, China
| | - Yan Hong
- Pharmacological Research Laboratory, Jiangxi Institution for Drug Control, Nanchang 330006, China
| | - Kun Xie
- Medical College, Nanchang Institution of Technology, Nanchang 330006, China
| | - Qingsheng Fan
- Functional Food Research Center, Sino German Joint Research Institute, Nanchang University, Nanchang 330006, China
| |
Collapse
|
12
|
El-Hawy AS, Abdel-Rahman HG, El-Bassiony MF, Anwar A, Hassan MA, Elnabtiti AAS, Abdelrazek HMA, Kamel S. Immunostimulatory effects of Nannochloropsis oculata supplementation on Barki rams growth performance, antioxidant assay, and immunological status. BMC Vet Res 2022; 18:314. [PMID: 35971171 PMCID: PMC9377079 DOI: 10.1186/s12917-022-03417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Natural feed supplements are gaining popularity in the animal production sector due to their safety and potential immunostimulatory properties, as well as the ban of some antibiotics and their negative residual effects. This study was carried out for 1 month to investigate the effect of Nannochloropsis oculata supplementation on growth performance and cell-mediated immunological status of rams assessed by leukogram assessment, lipid oxidation product malondialdehyde (MDA), total antioxidant capacity (TAC), interleukin assay after lymphocyte transformation test (LTT) including interleukin 6 (IL6), tumor necrosis factor-alpha (TNF-α), interleukin 12 (IL12), and gamma interferon (γ-IF), as well as Comet assay (% of DNA damage, tail length (px), % DNA in tail, tail moment and Olive tail moment). METHODS Eighteen Barki rams (26.21 ± 0.64 kg) were divided into 3 equal treatment groups (6 sheep/each), G1: animals served as the control group that was fed the basal diet only, while the other treated groups (G2 and G3 (Nan 1.5% and Nan 3%) were fed the basal diet supplemented with 1.5% and 3% N. oculata (dry matter basis), respectively. RESULTS The obtained results revealed that G3 showed a significant (P < 0.05) improvement in performance (body weight and body weight gain), the highest significant count (P < 0.05) in lymphocytes, and the lowest significant (P < 0.05) levels of neutrophils and neutrophils and lymphocytes ratio (N/L) ratio. Meanwhile, both levels of N. oculata significantly (P < 0.05) decreased MDA and increased TAC than control which seemed to be directly correlated with supplemented dose. There was a significant (P < 0.05) enhancement in the lymphocyte transformation assay produced significant (P < 0.05) high cytokines (IL6, γ-IF, IL12, and TNF-α) and the lowest significant (P <0.05) percent of DNA damage. The conducted principal component analysis estimated the inter-relationship between parameters and revealed that microalgae correlated strongly with cytokine assay and TAC, and negatively with Comet assay parameters; MDA, and neutrophils. CONCLUSIONS It can be noted that dietary addition of N. oculata 3% increased sheep's performance while also producing significant-high cytokines. It also enhanced sheep immunology by considerably enhancing lymphocyte transformation ability. The antioxidant activity of Nannochloropsis appears to influence these findings. It was proposed that the Barki rams' basal diet be supplemented with 3% N. oculata.
Collapse
Affiliation(s)
- A S El-Hawy
- Animal and Poultry Production Division, Desert Research Center, Cairo, Egypt
| | - Haidy G Abdel-Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - M F El-Bassiony
- Animal and Poultry Production Division, Desert Research Center, Cairo, Egypt
| | - Abeer Anwar
- Immunology and Immunopharmacology Unit, Animal Reproduction Research Institute Cairo, Cairo, Egypt
| | - Marwa A Hassan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - A A S Elnabtiti
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Samar Kamel
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
13
|
Microalgae as Potential Sources of Bioactive Compounds for Functional Foods and Pharmaceuticals. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125877] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microalgae are an untapped source of bioactive compounds with various biotechnological applications. Several species are industrially produced and commercialized for the feed or cosmetic industries, however, other applications in the functional food and pharmaceutical markets can be foreseen. In this study, nine industrial/commercial species were evaluated for in vitro antioxidant, calcium-chelating, anti-tumoral, and anti-inflammatory activities. The most promising extracts were fractionated yielding several promising fractions namely, of Tetraselmis striata CTP4 with anti-inflammatory activity (99.0 ± 0.8% reduction in TNF-α production in LPS stimulated human macrophages at 50 µg/mL), of Phaeodactylum Tricornutum with cytotoxicity towards cancerous cell lines (IC50 = 22.3 ± 1.8 μg/mL and 27.5 ± 1.6 μg/mL for THP-1 and HepG2, respectively) and of Porphyridium sp. and Skeletonema sp. with good chelating activity for iron, copper and calcium (IC50 = 0.047, 0.272, 0.0663 mg/mL and IC50 = 0.055, 0.240, 0.0850 mg/mL, respectively). These fractions were chemically characterized by GC–MS after derivatization and in all, fatty acids at various degrees of unsaturation were the most abundant compounds. Some of the species under study proved to be potentially valuable sources of antioxidant, metal chelators, anti-tumoral and anti-inflammatory compounds with possible application in the functional food and pharmaceutical industries.
Collapse
|
14
|
Vladkova T, Georgieva N, Staneva A, Gospodinova D. Recent Progress in Antioxidant Active Substances from Marine Biota. Antioxidants (Basel) 2022; 11:439. [PMID: 35326090 PMCID: PMC8944465 DOI: 10.3390/antiox11030439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The well-recognized but not fully explored antioxidant activity of marine-biota-derived, biologically active substances has led to interest in their study as substitutes of antibiotics, antiaging agents, anticancer and antiviral drugs, and others. The aim of this review is to present the current state of the art of marine-biota-derived antioxidants to give some ideas for potential industrial applications. METHODS This review is an update for the last 5 years on the marine sources of natural antioxidants, different classes antioxidant compounds, and current derivation biotechnologies. RESULTS New marine sources of antioxidants, including byproducts and wastes, are presented, along with new antioxidant substances and derivation approaches. CONCLUSIONS The interest in high-value antioxidants from marine biota continues. Natural substances combining antioxidant and antimicrobial action are of particular interest because of the increasing microbial resistance to antibiotic treatments. New antioxidant substances are discovered, along with those extracted from marine biota collected in other locations. Byproducts and wastes provide a valuable source of antioxidant substances. The application of optimized non-conventional derivation approaches is expected to allow the intensification of the production and improvement in the quality of the derived substances. The ability to obtain safe, high-value products is of key importance for potential industrialization.
Collapse
Affiliation(s)
- Todorka Vladkova
- Laboratory for Advanced Materials Research, University of Chemical Technology and Metallurgy (UCTM), 8 “St. Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Nelly Georgieva
- Department of Biotechnology, University of Chemical Technology and Metallurgy (UCTM), 1756 Sofia, Bulgaria;
| | - Anna Staneva
- Laboratory for Advanced Materials Research, University of Chemical Technology and Metallurgy (UCTM), 8 “St. Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Dilyana Gospodinova
- Department of Electrical Apparatus, Technical University of Sofia, 1756 Sofia, Bulgaria;
| |
Collapse
|
15
|
Fereidouni A, Khaleghian A, Mousavi-Niri N, Moradikor N. The effects of supplementation of Nannochloropsis oculata microalgae on biochemical, inflammatory and antioxidant responses in diabetic rats. Biomol Concepts 2022; 13:314-321. [PMID: 36315027 DOI: 10.1515/bmc-2022-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023] Open
Abstract
Diabetes is accompanied by inflammation and oxidation. Supplementation of anti-inflammatory and antioxidant compounds can prevent the progression of diabetes. This study aimed to investigate the effects of supplementation of Nannochloropsis oculata microalgae (NOM) on the inflammatory and antioxidant responses in diabetic rats. Sixty male rats were divided into six groups as diabetic and non-diabetic rats receiving 0, 10 and 20 mg/kg of body weight of NOM daily for 21 days. Body weight, the serum concentrations of insulin and glucose and the tissue concentrations of interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B (NF-κB), interleukin-6 (IL-6), malondialdehyde (MDA), ferric reducing antioxidant power (FRAP), superoxide dismutase (SOD), glutathione peroxidase (GPx) were assessed. The results showed that induction of diabetes significantly reduced the body weight, the serum concentrations of insulin and the tissue concentrations of SOD, FRAP and GPx while increasing the concentrations of glucose, MDA, IL-1β, IL-6, NF-κB and TNF-α. Daily oral administration of NOM (10 and 20 mg/kg) significantly maintained the body weight, the serum concentrations of insulin and the tissue concentrations of SOD, FRAP and GPx while preventing the increase in the concentrations of glucose, MDA, IL-1β and TNF-α. In conclusion, diabetes caused inflammation and oxidation while NOM worked as a natural anti-inflammatory and antioxidant compound.
Collapse
Affiliation(s)
- Ali Fereidouni
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Khaleghian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nasrollah Moradikor
- Department of Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia
| |
Collapse
|
16
|
du Preez R, Majzoub ME, Thomas T, Panchal SK, Brown L. Nannochloropsis oceanica as a Microalgal Food Intervention in Diet-Induced Metabolic Syndrome in Rats. Nutrients 2021; 13:3991. [PMID: 34836248 PMCID: PMC8624018 DOI: 10.3390/nu13113991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023] Open
Abstract
The microalgal genus Nannochloropsis has broad applicability to produce biofuels, animal feed supplements and other value-added products including proteins, carotenoids and lipids. This study investigated a potential role of N. oceanica in the reversal of metabolic syndrome. Male Wistar rats (n = 48) were divided into four groups in a 16-week protocol. Two groups were fed either corn starch or high-carbohydrate, high-fat diets (C and H, respectively) for the full 16 weeks. The other two groups received C and H diets for eight weeks and then received 5% freeze-dried N. oceanica in these diets for the final eight weeks (CN and HN, respectively) of the protocol. The H diet was high in fructose and sucrose, together with increased saturated and trans fats. H rats developed obesity, hypertension, dyslipidaemia, fatty liver disease and left ventricular fibrosis. N. oceanica increased lean mass in CN and HN rats, possibly due to the increased protein intake, and decreased fat mass in HN rats. Intervention with N. oceanica did not change cardiovascular, liver and metabolic parameters or gut structure. The relative abundance of Oxyphotobacteria in the gut microbiota was increased. N. oceanica may be an effective functional food against metabolic syndrome as a sustainable protein source.
Collapse
Affiliation(s)
- Ryan du Preez
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
| |
Collapse
|
17
|
Coulombier N, Jauffrais T, Lebouvier N. Antioxidant Compounds from Microalgae: A Review. Mar Drugs 2021; 19:549. [PMID: 34677448 PMCID: PMC8537667 DOI: 10.3390/md19100549] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
The demand for natural products isolated from microalgae has increased over the last decade and has drawn the attention from the food, cosmetic and nutraceutical industries. Among these natural products, the demand for natural antioxidants as an alternative to synthetic antioxidants has increased. In addition, microalgae combine several advantages for the development of biotechnological applications: high biodiversity, photosynthetic yield, growth, productivity and a metabolic plasticity that can be orientated using culture conditions. Regarding the wide diversity of antioxidant compounds and mode of action combined with the diversity of reactive oxygen species (ROS), this review covers a brief presentation of antioxidant molecules with their role and mode of action, to summarize and evaluate common and recent assays used to assess antioxidant activity of microalgae. The aim is to improve our ability to choose the right assay to assess microalgae antioxidant activity regarding the antioxidant molecules studied.
Collapse
Affiliation(s)
- Noémie Coulombier
- ADECAL Technopole, 1 Bis Rue Berthelot, 98846 Nouméa, New Caledonia, France
| | - Thierry Jauffrais
- Ifremer, UMR 9220 ENTROPIE, RBE/LEAD, 101 Promenade Roger Laroque, 98897 Nouméa, New Caledonia, France;
| | - Nicolas Lebouvier
- ISEA, EA7484, Campus de Nouville, Université de Nouvelle Calédonie, 98851 Nouméa, New Caledonia, France;
| |
Collapse
|
18
|
Ramos-Romero S, Torrella JR, Pagès T, Viscor G, Torres JL. Edible Microalgae and Their Bioactive Compounds in the Prevention and Treatment of Metabolic Alterations. Nutrients 2021; 13:nu13020563. [PMID: 33572056 PMCID: PMC7916042 DOI: 10.3390/nu13020563] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Marine and freshwater algae and their products are in growing demand worldwide because of their nutritional and functional properties. Microalgae (unicellular algae) will constitute one of the major foods of the future for nutritional and environmental reasons. They are sources of high-quality protein and bioactive molecules with potential application in the modern epidemics of obesity and diabetes. They may also contribute decisively to sustainability through carbon dioxide fixation and minimization of agricultural land use. This paper reviews current knowledge of the effects of consuming edible microalgae on the metabolic alterations known as metabolic syndrome (MS). These microalgae include Chlorella, Spirulina (Arthrospira) and Tetraselmis as well as Isochrysis and Nannochloropsis as candidates for human consumption. Chlorella biomass has shown antioxidant, antidiabetic, immunomodulatory, antihypertensive, and antihyperlipidemic effects in humans and other mammals. The components of microalgae reviewed suggest that they may be effective against MS at two levels: in the early stages, to work against the development of insulin resistance (IR), and later, when pancreatic -cell function is already compromised. The active components at both stages are antioxidant scavengers and anti-inflammatory lipid mediators such as carotenoids and -3 PUFAs (eicosapentaenoic acid/docosahexaenoic acid; EPA/DHA), prebiotic polysaccharides, phenolics, antihypertensive peptides, several pigments such as phycobilins and phycocyanin, and some vitamins, such as folate. As a source of high-quality protein, including an array of bioactive molecules with potential activity against the modern epidemics of obesity and diabetes, microalgae are proposed as excellent foods for the future. Moreover, their incorporation into the human diet would decisively contribute to a more sustainable world because of their roles in carbon dioxide fixation and reducing the use of land for agricultural purposes.
Collapse
Affiliation(s)
- Sara Ramos-Romero
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain; (J.R.T.); (T.P.); (G.V.)
- Correspondence: ; Tel.: +34-934-021-556
| | - Joan Ramon Torrella
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain; (J.R.T.); (T.P.); (G.V.)
| | - Teresa Pagès
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain; (J.R.T.); (T.P.); (G.V.)
| | - Ginés Viscor
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain; (J.R.T.); (T.P.); (G.V.)
| | - Josep Lluís Torres
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain;
| |
Collapse
|