1
|
Zhou MM, Cole PA. Targeting lysine acetylation readers and writers. Nat Rev Drug Discov 2025; 24:112-133. [PMID: 39572658 PMCID: PMC11798720 DOI: 10.1038/s41573-024-01080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 02/06/2025]
Abstract
Lysine acetylation is a major post-translational modification in histones and other proteins that is catalysed by the 'writer' lysine acetyltransferases (KATs) and mediates interactions with bromodomains (BrDs) and other 'reader' proteins. KATs and BrDs play key roles in regulating gene expression, cell growth, chromatin structure, and epigenetics and are often dysregulated in disease states, including cancer. There have been accelerating efforts to identify potent and selective small molecules that can target individual KATs and BrDs with the goal of developing new therapeutics, and some of these agents are in clinical trials. Here, we summarize the different families of KATs and BrDs, discuss their functions and structures, and highlight key advances in the design and development of chemical agents that show promise in blocking the action of these chromatin proteins for disease treatment.
Collapse
Affiliation(s)
- Ming-Ming Zhou
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Bollmann LM, Lange F, Hamacher A, Biermann L, Schäker-Hübner L, Hansen FK, Kassack MU. Triple Combination of Entinostat, a Bromodomain Inhibitor, and Cisplatin Is a Promising Treatment Option for Bladder Cancer. Cancers (Basel) 2024; 16:3374. [PMID: 39409994 PMCID: PMC11476342 DOI: 10.3390/cancers16193374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cisplatin is part of the first-line treatment of advanced urothelial carcinoma. Cisplatin resistance is a major problem but may be overcome by combination treatments such as targeting epigenetic aberrances. Here, we investigated the effect of the class I HDACi entinostat and bromodomain inhibitors (BETis) on the potency of cisplatin in two pairs of sensitive and cisplatin-resistant bladder cancer cell lines. Cisplatin-resistant J82cisR and T24 LTT were 3.8- and 24-fold more resistant to cisplatin compared to the native cell lines J82 and T24. In addition, a hybrid compound (compound 20) comprising structural features of an HDACi and a BETi was investigated. RESULTS We found complete (J82cisR) or partial (T24 LTT) reversal of chemoresistance upon combination of entinostat, JQ1, and cisplatin. The same was found for the BETis JQ35 and OTX015, both in clinical trials, and for compound 20. The combinations were highly synergistic (Chou Talalay analysis) and increased caspase-mediated apoptosis accompanied by enhanced expression of p21, Bim, and FOXO1. Notably, the combinations were at least 4-fold less toxic in non-cancer cell lines HBLAK and HEK293. CONCLUSIONS The triple combination of entinostat, a BETi, and cisplatin is highly synergistic, reverses cisplatin resistance, and may thus serve as a novel therapeutic approach for bladder cancer.
Collapse
Affiliation(s)
- Lukas M. Bollmann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Friedrich Lange
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Lukas Biermann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (F.K.H.)
| | - Matthias U. Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| |
Collapse
|
3
|
Wei Q, Gan C, Sun M, Xie Y, Liu H, Xue T, Deng C, Mo C, Ye T. BRD4: an effective target for organ fibrosis. Biomark Res 2024; 12:92. [PMID: 39215370 PMCID: PMC11365212 DOI: 10.1186/s40364-024-00641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Fibrosis is an excessive wound-healing response induced by repeated or chronic external stimuli to tissues, significantly impacting quality of life and primarily contributing to organ failure. Organ fibrosis is reported to cause 45% of all-cause mortality worldwide. Despite extensive efforts to develop new antifibrotic drugs, drug discovery has not kept pace with the clinical demand. Currently, only pirfenidone and nintedanib are approved by the FDA to treat pulmonary fibrotic illness, whereas there are currently no available antifibrotic drugs for hepatic, cardiac or renal fibrosis. The development of fibrosis is closely related to epigenetic alterations. The field of epigenetics primarily studies biological processes, including chromatin modifications, epigenetic readers, DNA transcription and RNA translation. The bromodomain and extra-terminal structural domain (BET) family, a class of epigenetic readers, specifically recognizes acetylated histone lysine residues and promotes the formation of transcriptional complexes. Bromodomain-containing protein 4 (BRD4) is one of the most well-researched proteins in the BET family. BRD4 is implicated in the expression of genes related to inflammation and pro-fibrosis during fibrosis. Inhibition of BRD4 has shown promising anti-fibrotic effects in preclinical studies; however, no BRD4 inhibitor has been approved for clinical use. This review introduces the structure and function of BET proteins, the research progress on BRD4 in organ fibrosis, and the inhibitors of BRD4 utilized in fibrosis. We emphasize the feasibility of targeting BRD4 as an anti-fibrotic strategy and discuss the therapeutic potential and challenges associated with BRD4 inhibitors in treating fibrotic diseases.
Collapse
Affiliation(s)
- Qun Wei
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Sun
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Xie
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyao Liu
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Taixiong Xue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Conghui Deng
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Ningxia Medical University, Yin Chuan, 640100, China.
| |
Collapse
|
4
|
Jermakowicz AM, Kurimchak AM, Johnson KJ, Bourgain-Guglielmetti F, Kaeppeli S, Affer M, Pradhyumnan H, Suter RK, Walters W, Cepero M, Duncan JS, Ayad NG. RAPID resistance to BET inhibitors is mediated by FGFR1 in glioblastoma. Sci Rep 2024; 14:9284. [PMID: 38654040 PMCID: PMC11039727 DOI: 10.1038/s41598-024-60031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Bromodomain and extra-terminal domain (BET) proteins are therapeutic targets in several cancers including the most common malignant adult brain tumor glioblastoma (GBM). Multiple small molecule inhibitors of BET proteins have been utilized in preclinical and clinical studies. Unfortunately, BET inhibitors have not shown efficacy in clinical trials enrolling GBM patients. One possible reason for this may stem from resistance mechanisms that arise after prolonged treatment within a clinical setting. However, the mechanisms and timeframe of resistance to BET inhibitors in GBM is not known. To identify the temporal order of resistance mechanisms in GBM we performed quantitative proteomics using multiplex-inhibitor bead mass spectrometry and demonstrated that intrinsic resistance to BET inhibitors in GBM treatment occurs rapidly within hours and involves the fibroblast growth factor receptor 1 (FGFR1) protein. Additionally, small molecule inhibition of BET proteins and FGFR1 simultaneously induces synergy in reducing GBM tumor growth in vitro and in vivo. Further, FGFR1 knockdown synergizes with BET inhibitor mediated reduction of GBM cell proliferation. Collectively, our studies suggest that co-targeting BET and FGFR1 may dampen resistance mechanisms to yield a clinical response in GBM.
Collapse
Affiliation(s)
- Anna M Jermakowicz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Alison M Kurimchak
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Katherine J Johnson
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Florence Bourgain-Guglielmetti
- Department of Neurosurgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Fl, 33136, USA
| | - Simon Kaeppeli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Maurizio Affer
- Department of Neurosurgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Fl, 33136, USA
| | - Hari Pradhyumnan
- Department of Neurosurgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Fl, 33136, USA
| | - Robert K Suter
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Winston Walters
- Department of Neurosurgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Fl, 33136, USA
| | - Maria Cepero
- Department of Neurosurgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Fl, 33136, USA
| | - James S Duncan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Nagi G Ayad
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA.
| |
Collapse
|
5
|
Papadimitropoulou A, Makri M, Zoidis G. MYC the oncogene from hell: Novel opportunities for cancer therapy. Eur J Med Chem 2024; 267:116194. [PMID: 38340508 DOI: 10.1016/j.ejmech.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cancer comprises a heterogeneous disease, characterized by diverse features such as constitutive expression of oncogenes and/or downregulation of tumor suppressor genes. MYC constitutes a master transcriptional regulator, involved in many cellular functions and is aberrantly expressed in more than 70 % of human cancers. The Myc protein belongs to a family of transcription factors whose structural pattern is referred to as basic helix-loop-helix-leucine zipper. Myc binds to its partner, a smaller protein called Max, forming an Myc:Max heterodimeric complex that interacts with specific DNA recognition sequences (E-boxes) and regulates the expression of downstream target genes. Myc protein plays a fundamental role for the life of a cell, as it is involved in many physiological functions such as proliferation, growth and development since it controls the expression of a very large percentage of genes (∼15 %). However, despite the strict control of MYC expression in normal cells, MYC is often deregulated in cancer, exhibiting a key role in stimulating oncogenic process affecting features such as aberrant proliferation, differentiation, angiogenesis, genomic instability and oncogenic transformation. In this review we aim to meticulously describe the fundamental role of MYC in tumorigenesis and highlight its importance as an anticancer drug target. We focus mainly on the different categories of novel small molecules that act as inhibitors of Myc function in diverse ways hence offering great opportunities for an efficient cancer therapy. This knowledge will provide significant information for the development of novel Myc inhibitors and assist to the design of treatments that would effectively act against Myc-dependent cancers.
Collapse
Affiliation(s)
- Adriana Papadimitropoulou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Maria Makri
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece
| | - Grigoris Zoidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece.
| |
Collapse
|
6
|
Wang ZQ, Zhang ZC, Wu YY, Pi YN, Lou SH, Liu TB, Lou G, Yang C. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther 2023; 8:420. [PMID: 37926722 PMCID: PMC10625992 DOI: 10.1038/s41392-023-01647-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone. Therefore, given the limited monotherapeutic activity of BET inhibitors, their use in combination with other drugs warrants attention, including the meaningful variations in pharmacodynamic activity among chosen drug combinations. In this paper, we review the function of BET proteins, the preclinical justification for BET protein targeting in cancer, recent advances in small-molecule BET inhibitors, and preliminary clinical trial findings. We elucidate BET inhibitor resistance mechanisms, shed light on the associated adverse events, investigate the potential of combining these inhibitors with diverse therapeutic agents, present a comprehensive compilation of synergistic treatments involving BET inhibitors, and provide an outlook on their future prospects as potent antitumor agents. We conclude by suggesting that combining BET inhibitors with other anticancer drugs and innovative next-generation agents holds great potential for advancing the effective targeting of BET proteins as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yu-Yang Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Pi
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Sheng-Han Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Bo Liu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| |
Collapse
|
7
|
Wahi A, Manchanda N, Jain P, Jadhav HR. Targeting the epigenetic reader "BET" as a therapeutic strategy for cancer. Bioorg Chem 2023; 140:106833. [PMID: 37683545 DOI: 10.1016/j.bioorg.2023.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Bromodomain and extraterminal (BET) proteins have the ability to bind to acetylated lysine residues present in both histones and non-histone proteins. This binding is facilitated by the presence of tandem bromodomains. The regulatory role of BET proteins extends to chromatin dynamics, cellular processes, and disease progression. The BET family comprises of BRD 2, 3, 4 and BRDT. The BET proteins are a class of epigenetic readers that regulate the transcriptional activity of a multitude of genes that are involved in the pathogenesis of cancer. Thus, targeting BET proteins has been identified as a potentially efficacious approach for the treatment of cancer. BET inhibitors (BETis) are known to interfere with the binding of BET proteins to acetylated lysine residues of chromatin, thereby leading to the suppression of transcription of several genes, including oncogenic transcription factors. Here in this review, we focus on role of Bromodomain and extra C-terminal (BET) proteins in cancer progression. Furthermore, numerous small-molecule inhibitors with pan-BET activity have been documented, with certain compounds currently undergoing clinical assessment. However, it is apparent that the clinical effectiveness of the present BET inhibitors is restricted, prompting the exploration of novel technologies to enhance their clinical outcomes and mitigate undesired adverse effects. Thus, strategies like development of selective BET-BD1, & BD2 inhibitors, dual and acting BET are also presented in this review and attempts to cover the chemistry needed for proper establishment of designed molecules into BRD have been made. Moreover, the review attempts to summarize the details of research till date and proposes a space for future development of BET inhibitor with diminished side effects. It can be concluded that discovery of isoform selective BET inhibitors can be a way forward in order to develop BET inhibitors with negligible side effects.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Namish Manchanda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India.
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-Pilani Campus, Vidya Vihar Pilani, Rajasthan 333031, India
| |
Collapse
|
8
|
To KKW, Xing E, Larue RC, Li PK. BET Bromodomain Inhibitors: Novel Design Strategies and Therapeutic Applications. Molecules 2023; 28:molecules28073043. [PMID: 37049806 PMCID: PMC10096006 DOI: 10.3390/molecules28073043] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The mammalian bromodomain and extra-terminal domain (BET) family of proteins consists of four conserved members (Brd2, Brd3, Brd4, and Brdt) that regulate numerous cancer-related and immunity-associated genes. They are epigenetic readers of histone acetylation with broad specificity. BET proteins are linked to cancer progression due to their interaction with numerous cellular proteins including chromatin-modifying factors, transcription factors, and histone modification enzymes. The spectacular growth in the clinical development of small-molecule BET inhibitors underscores the interest and importance of this protein family as an anticancer target. Current approaches targeting BET proteins for cancer therapy rely on acetylation mimics to block the bromodomains from binding chromatin. However, bromodomain-targeted agents are suffering from dose-limiting toxicities because of their effects on other bromodomain-containing proteins. In this review, we provided an updated summary about the evolution of small-molecule BET inhibitors. The design of bivalent BET inhibitors, kinase and BET dual inhibitors, BET protein proteolysis-targeting chimeras (PROTACs), and Brd4-selective inhibitors are discussed. The novel strategy of targeting the unique C-terminal extra-terminal (ET) domain of BET proteins and its therapeutic significance will also be highlighted. Apart from single agent treatment alone, BET inhibitors have also been combined with other chemotherapeutic modalities for cancer treatment demonstrating favorable clinical outcomes. The investigation of specific biomarkers for predicting the efficacy and resistance of BET inhibitors is needed to fully realize their therapeutic potential in the clinical setting.
Collapse
|
9
|
Saini A, Ballesta A, Gallo JM. Cell state-directed therapy - epigenetic modulation of gene transcription demonstrated with a quantitative systems pharmacology model of temozolomide. CPT Pharmacometrics Syst Pharmacol 2023; 12:360-374. [PMID: 36642831 PMCID: PMC10014061 DOI: 10.1002/psp4.12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/04/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Cancer therapy continues to be plagued by modest therapeutic advances. This is particularly evident in glioblastoma multiforme (GBM) wherein treatment failures are attributed to intratumoral heterogeneity (ITH), a dynamic process of cell state transitions or plasticity. To address ITH, we introduce the concept of cell state-directed (CSD) therapy through a quantitative systems pharmacology model of temozolomide (TMZ), a cornerstone of GBM drug therapy. The model consisting of multiple modules incorporated an epigenetic-based gene transcription-translation module that enabled CSD therapy. Numerous model simulations were conducted to demonstrate the potential impact of CSD therapy on TMZ activity. The simulations included those based on global sensitivity analyses to identify fragile nodes - MDM2 and XIAP - in the network, and also how an epigenetic modifier (birabresib) could overcome a mechanism of TMZ resistance. The positive results of CSD therapy on TMZ activity supports continued efforts to develop CSD therapy as a new anticancer approach.
Collapse
Affiliation(s)
- Anshul Saini
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Annabelle Ballesta
- Inserm Unit 900, Institut Curie, MINES ParisTech CBIO - Centre for Computational Biology, PSL Research University, Saint-Cloud, France
| | - James M Gallo
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
10
|
Chin DH, Osman I, Porch J, Kim H, Buck KK, Rodriguez J, Carapia B, Yan D, Moura SB, Sperry J, Nakashima J, Altman K, Altman D, Gryder BE. BET Bromodomain Degradation Disrupts Function but Not 3D Formation of RNA Pol2 Clusters. Pharmaceuticals (Basel) 2023; 16:199. [PMID: 37259348 PMCID: PMC9966215 DOI: 10.3390/ph16020199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/26/2023] [Indexed: 12/20/2023] Open
Abstract
Fusion-positive rhabdomyosarcoma (FP-RMS) is driven by a translocation that creates the chimeric transcription factor PAX3-FOXO1 (P3F), which assembles de novo super enhancers to drive high levels of transcription of other core regulatory transcription factors (CRTFs). P3F recruits co-regulatory factors to super enhancers such as BRD4, which recognizes acetylated lysines via BET bromodomains. In this study, we demonstrate that inhibition or degradation of BRD4 leads to global decreases in transcription, and selective downregulation of CRTFs. We also show that the BRD4 degrader ARV-771 halts transcription while preserving RNA Polymerase II (Pol2) loops between super enhancers and their target genes, and causes the removal of Pol2 only past the transcriptional end site of CRTF genes, suggesting a novel effect of BRD4 on Pol2 looping. We finally test the most potent molecule, inhibitor BMS-986158, in an orthotopic PDX mouse model of FP-RMS with additional high-risk mutations, and find that it is well tolerated in vivo and leads to an average decrease in tumor size. This effort represents a partnership with an FP-RMS patient and family advocates to make preclinical data rapidly accessible to the family, and to generate data to inform future patients who develop this disease.
Collapse
Affiliation(s)
- Diana H. Chin
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Issra Osman
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jadon Porch
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hyunmin Kim
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | - Deborah Yan
- Certis Oncology Solutions, San Diego, CA 92121, USA
| | | | | | | | - Kasey Altman
- Kasey Altman Research Fund, Rein in Sarcoma, Fridley, MN 55432, USA
| | - Delsee Altman
- Kasey Altman Research Fund, Rein in Sarcoma, Fridley, MN 55432, USA
| | - Berkley E. Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Graziani V, Garcia AR, Alcolado LS, Le Guennec A, Henriksson MA, Conte MR. Metabolic rewiring in MYC-driven medulloblastoma by BET-bromodomain inhibition. Sci Rep 2023; 13:1273. [PMID: 36690651 PMCID: PMC9870962 DOI: 10.1038/s41598-023-27375-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumour in children. High-risk MB patients harbouring MYC amplification or overexpression exhibit a very poor prognosis. Aberrant activation of MYC markedly reprograms cell metabolism to sustain tumorigenesis, yet how metabolism is dysregulated in MYC-driven MB is not well understood. Growing evidence unveiled the potential of BET-bromodomain inhibitors (BETis) as next generation agents for treating MYC-driven MB, but whether and how BETis may affect tumour cell metabolism to exert their anticancer activities remains unknown. In this study, we explore the metabolic features characterising MYC-driven MB and examine how these are altered by BET-bromodomain inhibition. To this end, we employed an NMR-based metabolomics approach applied to the MYC-driven MB D283 and D458 cell lines before and after the treatment with the BETi OTX-015. We found that OTX-015 triggers a metabolic shift in both cell lines resulting in increased levels of myo-inositol, glycerophosphocholine, UDP-N-acetylglucosamine, glycine, serine, pantothenate and phosphocholine. Moreover, we show that OTX-015 alters ascorbate and aldarate metabolism, inositol phosphate metabolism, phosphatidylinositol signalling system, glycerophospholipid metabolism, ether lipid metabolism, aminoacyl-tRNA biosynthesis, and glycine, serine and threonine metabolism pathways in both cell lines. These insights provide a metabolic characterisation of MYC-driven childhood MB cell lines, which could pave the way for the discovery of novel druggable pathways. Importantly, these findings will also contribute to understand the downstream effects of BETis on MYC-driven MB, potentially aiding the development of new therapeutic strategies to combat medulloblastoma.
Collapse
Affiliation(s)
- Vittoria Graziani
- Department of Microbiology and Tumor Biology, Biomedicum B7, Karolinska Institutet, 171 65, Stockholm, Sweden
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Aida Rodriguez Garcia
- Department of Microbiology and Tumor Biology, Biomedicum B7, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Lourdes Sainero Alcolado
- Department of Microbiology and Tumor Biology, Biomedicum B7, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Adrien Le Guennec
- Centre for Biomolecular Spectroscopy, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Marie Arsenian Henriksson
- Department of Microbiology and Tumor Biology, Biomedicum B7, Karolinska Institutet, 171 65, Stockholm, Sweden.
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
12
|
Ding D, Zheng R, Tian Y, Jimenez R, Hou X, Weroha SJ, Wang L, Shi L, Huang H. Retinoblastoma protein as an intrinsic BRD4 inhibitor modulates small molecule BET inhibitor sensitivity in cancer. Nat Commun 2022; 13:6311. [PMID: 36274096 PMCID: PMC9588789 DOI: 10.1038/s41467-022-34024-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 10/07/2022] [Indexed: 12/25/2022] Open
Abstract
Bromodomain and extraterminal (BET) proteins including BRD4 play important roles in oncogenesis and immune inflammation. Here we demonstrate that cancer cells with loss of the retinoblastoma (RB) tumor suppressor became resistant to small molecule bromodomain inhibitors of BET proteins. We find that RB binds to bromodomain-1 (BD1) of BRD4, but binding is impeded by CDK4/6-mediated RB phosphorylation at serine-249/threonine-252 (S249/T252). ChIP-seq analysis shows RB knockdown increases BRD4 occupancy at genomic loci of genes enriched in cancer-related pathways including the GPCR-GNBIL-CREB axis. S249/T252-phosphorylated RB positively correlates with GNBIL protein level in prostate cancer patient samples. BET inhibitor resistance in RB-deficient cells is abolished by co-administration of CREB inhibitor. Our study identifies RB protein as a bona fide intrinsic inhibitor of BRD4 and demonstrates that RB inactivation confers resistance to small molecule BET inhibitors, thereby revealing a regulatory hub that converges RB upstream signaling onto BRD4 functions in diseases such as cancer.
Collapse
Affiliation(s)
- Donglin Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Rongbin Zheng
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Ye Tian
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Rafael Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Xiaonan Hou
- Divison of Oncology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Saravut J Weroha
- Divison of Oncology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Liguo Wang
- Divison of Medical Informatics and Statistics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310000, China.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| |
Collapse
|
13
|
Udden SN, Wang Q, Kumar S, Malladi VS, Wu SY, Wei S, Posner BA, Geboers S, Williams NS, Liu YL, Sharma JK, Mani RS, Malladi S, Parra K, Hofstad M, Raj GV, Larios JM, Jagsi R, Wicha MS, Park BH, Gupta GP, Chinnaiyan AM, Chiang CM, Alluri PG. Targeting ESR1 mutation-Induced transcriptional addiction in breast cancer with BET inhibition. JCI Insight 2022; 7:151851. [PMID: 35881485 PMCID: PMC9536271 DOI: 10.1172/jci.insight.151851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Acquired mutations in the ligand-binding domain (LBD) of the gene encoding Estrogen Receptor alpha (ESR1) are a common mechanism of endocrine therapy resistance in metastatic ER-positive breast cancer patients. ESR1 Y537S mutation, in particular, is associated with development of resistance to most endocrine therapies used to treat breast cancer. Employing a high-throughput screen of nearly 1200 Federal Drug Administration (FDA)-approved drugs, we show that OTX015, a bromodomain and extraterminal domain (BET) inhibitor, is one of the top suppressors of ESR1 mutant cell growth. OTX015 was more efficacious than fulvestrant, a selective ER degrader, in inhibiting ESR1 mutant xenograft growth. When combined with abemaciclib, a CDK4/6 inhibitor, OTX015 induced more potent tumor regression than current standard-of-care treatment of abemaciclib+fulvestrant. OTX015 has preferential activity against Y537S mutant breast cancer cells and blocks their clonal selection in competition studies with wild-type cells. Thus, BET inhibition has the potential to both prevent and overcome ESR1 mutant-induced endocrine therapy resistance in breast cancer.
Collapse
Affiliation(s)
- Sm N Udden
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Qian Wang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Sunil Kumar
- Genetics, Naveris, Inc., Natick, United States of America
| | - Venkat S Malladi
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Shwu-Yuan Wu
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Shuguang Wei
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Bruce A Posner
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Sophie Geboers
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Noelle S Williams
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Yu-Lun Liu
- Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Jayesh K Sharma
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Ram S Mani
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Srinivas Malladi
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Karla Parra
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Mia Hofstad
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Ganesh V Raj
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Jose M Larios
- Department of Internal Medicine, Ascension Providence Hospital, Southfield, United States of America
| | - Reshma Jagsi
- Department of Radiation Oncology, University of Michigan, Ann Arbor, United States of America
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Ben Ho Park
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, United States of America
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Arul M Chinnaiyan
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, United States of America
| | - Cheng-Ming Chiang
- The University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Prasanna G Alluri
- The University of Texas Southwestern Medical Center, Dallas, United States of America
| |
Collapse
|
14
|
Wang M, Guo H, Zhang X, Wang X, Tao H, Zhang T, Peng M, Zhang M, Huang Z. Small peptide targeting ANP32A as a novel strategy for acute myeloid leukemia therapy. Transl Oncol 2021; 15:101245. [PMID: 34678588 PMCID: PMC8529559 DOI: 10.1016/j.tranon.2021.101245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/26/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
H3BP targeted ANP32A against AML by competitively disrupting ANP32A and H3 interaction and decreasing H3 acetylation and the expression of lipid metabolism genes. Expressed H3BP-GFP and synthetic TAT-H3BP peptide impaired H3 acetylation on multiple locus of target genes that reduced proliferation and caused apoptosis of leukemia cells in vitro. TAT-H3BP exhibits potent efficacy against leukemia in vivo: Intra-tumor injection of TAT-H3BP peptide prominently diminished the volume of subcutaneous tumors in nude mice; AMKL mice engrafted with TAT-H3BP-pretreated 6133/MPL W515L cells displayed dramatically moderated disease burden and prolonged survival time. TAT-H3BP peptide possess a therapeutic potential in patients with AML for micromole concentration of TAT-H3BP peptide efficiently inhibited the proliferation and CFU of human primary leukemia cells from AML patients. High ANP32A levels in human primary AML cells correlate with the intervention effect of TAT-H3BP peptide.
Clinic therapy of acute myeloid leukemia (AML) remains unsatisfactory that urges for development of novel strategies. Recent studies identified ANP32A as a novel biomarker of unfavorable outcome of leukemia, which promoted leukemogenesis by increasing H3 acetylation and the expression of lipid metabolism genes. It is of great significance to investigate whether targeting ANP32A is a novel strategy for leukemia therapy. To target ANP32A, we identified a peptide that competed with ANP32A to bind to histone 3 (termed as H3-binding peptide, H3BP). Disrupting ANP32A and H3 interaction by the overexpression of H3BP-GFP fusion protein mimicked the effect of ANP32A knockdown, impaired H3 acetylation on multiple locus of target genes, reduced proliferation, and caused apoptosis in leukemia cells. Furthermore, a synthesized membrane-penetrating peptide TAT-H3BP effectively entered into leukemia cells and phenocopied such effect. In vivo, TAT-H3BP showed potent efficacy against leukemia: Intra-tumor injection of TAT-H3BP significantly reduced the volume of subcutaneous tumors in nude mice and recipient mice engrafted with TAT-H3BP-pretreated 6133/MPL W515L cells exhibited ameliorated leukemia burden and prolonged survival. Noticeably, TAT-H3BP efficiently suppressed proliferation and colony-forming unit of human primary AML cells without affecting normal cord blood cells. Our findings demonstrate that intervening the physical interaction of ANP32A with H3 impairs the oncogenicity of ANP32A and may be a promising therapeutic strategy against AML.
Collapse
Affiliation(s)
- Manman Wang
- School of Life Sciences, Key Laboratory of Cell Hemostasis of Hubei Province, Wuhan University, No. 299 Bayi Road, Wuhan, Hubei 430072, PR China
| | - Hao Guo
- Medical Research Institute, Wuhan University, Wuhan, Hubei, PR China
| | - Xuechun Zhang
- School of Life Sciences, Key Laboratory of Cell Hemostasis of Hubei Province, Wuhan University, No. 299 Bayi Road, Wuhan, Hubei 430072, PR China
| | - Xiyang Wang
- School of Life Sciences, Key Laboratory of Cell Hemostasis of Hubei Province, Wuhan University, No. 299 Bayi Road, Wuhan, Hubei 430072, PR China
| | - Hu Tao
- School of Life Sciences, Key Laboratory of Cell Hemostasis of Hubei Province, Wuhan University, No. 299 Bayi Road, Wuhan, Hubei 430072, PR China
| | - Tan Zhang
- School of Life Sciences, Key Laboratory of Cell Hemostasis of Hubei Province, Wuhan University, No. 299 Bayi Road, Wuhan, Hubei 430072, PR China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei PR China
| | - Min Zhang
- Department of Hematology, Union Hospital of Huazhong University of Science and Technology, Wuhan, Hubei PR China
| | - Zan Huang
- School of Life Sciences, Key Laboratory of Cell Hemostasis of Hubei Province, Wuhan University, No. 299 Bayi Road, Wuhan, Hubei 430072, PR China.
| |
Collapse
|
15
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S, Glass KC. Functional Roles of Bromodomain Proteins in Cancer. Cancers (Basel) 2021; 13:3606. [PMID: 34298819 PMCID: PMC8303718 DOI: 10.3390/cancers13143606] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Samuel P. Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Kathleen Quinn
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Joseph Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
17
|
Molenaar-Kuijsten L, Jacobs BAW, Kurk SA, May AM, Dorlo TPC, Beijnen JH, Steeghs N, Huitema ADR. Worse capecitabine treatment outcome in patients with a low skeletal muscle mass is not explained by altered pharmacokinetics. Cancer Med 2021; 10:4781-4789. [PMID: 34121365 PMCID: PMC8290233 DOI: 10.1002/cam4.4038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 12/26/2022] Open
Abstract
Background A low skeletal muscle mass (SMM) has been associated with increased toxicity and shorter survival in cancer patients treated with capecitabine, an oral prodrug of 5‐fluorouracil (5‐FU). Capecitabine and its metabolites are highly water‐soluble and, therefore, more likely to distribute to lean tissues. The pharmacokinetics (PK) in patients with a low SMM could be changed, for example, by reaching higher maximum plasma concentrations. In this study, we aimed to examine whether the association between a low SMM and increased toxicity and shorter survival could be explained by altered PK of capecitabine and its metabolites. Methods Previously, a population PK model of capecitabine and metabolites in patients with solid tumors was developed. In our analysis, we included patients from this previous analysis for which evaluable abdominal computed tomography (CT)‐scans were available. SMM was measured on CT‐scans, by single slice evaluation at the third lumbar vertebra, using the Slice‐o‐Matic software. The previously developed population PK model was extended with SMM as a covariate, to assess the association between SMM and capecitabine and metabolite PK. Results PK and SMM data were available from 151 cancer patients with solid tumors. From the included patients, 55% had a low SMM. No relevant relationships were found between SMM and the PK parameters of capecitabine and, the active and toxic metabolite, 5‐FU. SMM only correlated with the PK of the, most hydrophilic, but inactive and non‐toxic, metabolite α‐fluoro‐β‐alanine (FBAL). Patients with a low SMM had a smaller apparent volume of distribution and lower apparent clearance of FBAL. Conclusions No alterations in PK of capecitabine and the active and toxic metabolite 5‐FU were observed in patients with a low SMM. Therefore, the previously identified increased toxicity and shorter survival in patients with a low SMM, could not be explained by changes in pharmacokinetic characteristics of capecitabine and metabolites.
Collapse
Affiliation(s)
- Laura Molenaar-Kuijsten
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Bart Albertus Wilhelmus Jacobs
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Sophie Alberdine Kurk
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anne Maria May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Thomas Petrus Catharina Dorlo
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Jacob Hendrik Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology and Clinical Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Alwin Dagmar Redmar Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
18
|
Choi HI, An GY, Baek M, Yoo E, Chai JC, Lee YS, Jung KH, Chai YG. BET inhibitor suppresses migration of human hepatocellular carcinoma by inhibiting SMARCA4. Sci Rep 2021; 11:11799. [PMID: 34083693 PMCID: PMC8175750 DOI: 10.1038/s41598-021-91284-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and poorly responsive cancers worldwide. Bromodomain and extraterminal (BET) inhibitors, such as JQ1 and OTX-015, inhibit BET protein binding to acetylated residues in histones. However, the physiological mechanisms and regulatory processes of BET inhibition in HCC remain unclear. To explore BET inhibitors’ potential role in the molecular mechanisms underlying their anticancer effects in HCC, we analyzed BET inhibitor-treated HCC cells’ gene expression profiles with RNA-seq and bioinformatics analysis. BET inhibitor treatment significantly downregulated genes related to bromodomain-containing proteins 4 (BRD4), such as ACSL5, SLC38A5, and ICAM2. Importantly, some cell migration-related genes, including AOC3, CCR6, SSTR5, and SCL7A11, were significantly downregulated. Additionally, bioinformatics analysis using Ingenuity Knowledge Base Ingenuity Pathway Analysis (IPA) revealed that SMARCA4 regulated migration response molecules. Furthermore, knockdown of SMARCA4 gene expression by siRNA treatment significantly reduced cell migration and the expression of migration-related genes. In summary, our results indicated that BET inhibitor treatment in HCC cell lines reduces cell migration through the downregulation of SMARCA4.
Collapse
Affiliation(s)
- Hae In Choi
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Ga Yeong An
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Mina Baek
- Institute of Natural Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea.,Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea
| | - Eunyoung Yoo
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Jin Choul Chai
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Seek Lee
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Kyoung Hwa Jung
- Convergence Technology Campus of Korea Polytechnic II, Incheon, 21417, Republic of Korea. .,Department of Biopharmaceutical System, Gwangmyeong Convergence Technology Campus of Korea Polytechnic II, Gwangmyeong , 14222, Republic of Korea.
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea. .,Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
19
|
Quinlan RBA, Brennan PE. Chemogenomics for drug discovery: clinical molecules from open access chemical probes. RSC Chem Biol 2021; 2:759-795. [PMID: 34458810 PMCID: PMC8341094 DOI: 10.1039/d1cb00016k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years chemical probes have proved valuable tools for the validation of disease-modifying targets, facilitating investigation of target function, safety, and translation. Whilst probes and drugs often differ in their properties, there is a belief that chemical probes are useful for translational studies and can accelerate the drug discovery process by providing a starting point for small molecule drugs. This review seeks to describe clinical candidates that have been inspired by, or derived from, chemical probes, and the process behind their development. By focusing primarily on examples of probes developed by the Structural Genomics Consortium, we examine a variety of epigenetic modulators along with other classes of probe.
Collapse
Affiliation(s)
- Robert B A Quinlan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
| | - Paul E Brennan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
- Alzheimer's Research (UK) Oxford Drug Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford OX3 7FZ UK
| |
Collapse
|
20
|
Edwards DS, Maganti R, Tanksley JP, Luo J, Park JJH, Balkanska-Sinclair E, Ling J, Floyd SR. BRD4 Prevents R-Loop Formation and Transcription-Replication Conflicts by Ensuring Efficient Transcription Elongation. Cell Rep 2021; 32:108166. [PMID: 32966794 PMCID: PMC7507985 DOI: 10.1016/j.celrep.2020.108166] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/13/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022] Open
Abstract
Effective spatio-temporal control of transcription and replication during S-phase is paramount to maintaining genomic integrity and cell survival. Dysregulation of these systems can lead to conflicts between the transcription and replication machinery, causing DNA damage and cell death. BRD4 allows efficient transcriptional elongation by stimulating phosphorylation of RNA polymerase II (RNAPII). We report that bromodomain and extra-terminal domain (BET) protein loss of function (LOF) causes RNAPII pausing on the chromatin and DNA damage affecting cells in S-phase. This persistent RNAPII-dependent pausing leads to an accumulation of RNA:DNA hybrids (R-loops) at sites of BRD4 occupancy, leading to transcription-replication conflicts (TRCs), DNA damage, and cell death. Finally, our data show that the BRD4 C-terminal domain, which interacts with P-TEFb, is required to prevent R-loop formation and DNA damage caused by BET protein LOF.
Collapse
Affiliation(s)
- Drake S Edwards
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Jarred P Tanksley
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jie Luo
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - James J H Park
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | - Scott R Floyd
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
21
|
Shorstova T, Foulkes WD, Witcher M. Achieving clinical success with BET inhibitors as anti-cancer agents. Br J Cancer 2021; 124:1478-1490. [PMID: 33723398 PMCID: PMC8076232 DOI: 10.1038/s41416-021-01321-0] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
The transcriptional upregulation of oncogenes is a driving force behind the progression of many tumours. However, until a decade ago, the concept of 'switching off' these oncogenic pathways represented a formidable challenge. Research has revealed that members of the bromo- and extra-terminal domain (BET) motif family are key activators of oncogenic networks in a spectrum of cancers; their function depends on their recruitment to chromatin through two bromodomains (BD1 and BD2). The advent of potent inhibitors of BET proteins (BETi), which target either one or both bromodomains, represents an important step towards the goal of suppressing oncogenic networks within tumours. Here, we discuss the biology of BET proteins, advances in BETi design and highlight potential biomarkers predicting their activity. We also outline the logic of incorporating BETi into combination therapies to enhance its efficacy. We suggest that understanding mechanisms of activity, defining predictive biomarkers and identifying potent synergies represents a roadmap for clinical success using BETi.
Collapse
Affiliation(s)
- Tatiana Shorstova
- grid.414980.00000 0000 9401 2774Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, QC Canada
| | - William D. Foulkes
- grid.414980.00000 0000 9401 2774Departments of Oncology and Human Genetics, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, QC Canada
| | - Michael Witcher
- grid.414980.00000 0000 9401 2774Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, QC Canada
| |
Collapse
|
22
|
Nepali K, Liou JP. Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends. J Biomed Sci 2021; 28:27. [PMID: 33840388 PMCID: PMC8040241 DOI: 10.1186/s12929-021-00721-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic drug discovery field has evidenced significant advancement in the recent times. A plethora of small molecule inhibitors have progressed to clinical stage investigations and are being explored exhaustively to ascertain conclusive benefits in diverse malignancies. Literature precedents indicates that substantial amount of efforts were directed towards the use of epigenetic tools in monotherapy as well as in combination regimens at the clinical level, however, the preclinical/preliminary explorations were inclined towards the identification of prudent approaches that can leverage the anticancer potential of small molecule epigenetic inhibitors as single agents only. This review article presents an update of FDA approved epigenetic drugs along with the epigenetic inhibitors undergoing clinical stage investigations in different cancer types. A detailed discussion of the pragmatic strategies that are expected to steer the progress of the epigenetic therapy through the implementation of emerging approaches such as PROTACS and CRISPR/Cas9 along with logical ways for scaffold fabrication to selectively approach the enzyme isoforms in pursuit of garnering amplified antitumor effects has been covered. In addition, the compilation also presents the rational strategies for the construction of multi-targeting scaffold assemblages employing previously identified pharmacophores as potential alternatives to the combination therapy.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Biomedical Commercialization Center, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
23
|
Pearson AD, DuBois SG, Buenger V, Kieran M, Stegmaier K, Bandopadhayay P, Bennett K, Bourdeaut F, Brown PA, Chesler L, Clymer J, Fox E, French CA, Germovsek E, Giles FJ, Bender JG, Hattersley MM, Ludwinski D, Luptakova K, Maris J, McDonough J, Nikolova Z, Smith M, Tsiatis AC, Vibhakar R, Weiner S, Yi JS, Zheng F, Vassal G. Bromodomain and extra-terminal inhibitors-A consensus prioritisation after the Paediatric Strategy Forum for medicinal product development of epigenetic modifiers in children-ACCELERATE. Eur J Cancer 2021; 146:115-124. [PMID: 33601323 DOI: 10.1016/j.ejca.2021.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 01/28/2023]
Abstract
Based on biology and pre-clinical data, bromodomain and extra-terminal (BET) inhibitors have at least three potential roles in paediatric malignancies: NUT (nuclear protein in testis) carcinomas, MYC/MYCN-driven cancers and fusion-driven malignancies. However, there are now at least 10 BET inhibitors in development, with a limited relevant paediatric population in which to evaluate these medicinal products. Therefore, a meeting was convened with the specific aim to develop a consensus among relevant biopharmaceutical companies, academic researchers, as well as patient and family advocates, about the development of BET inhibitors, including prioritisation and their specific roles in children. Although BET inhibitors have been in clinical trials in adults since 2012, the first-in-child study (BMS-986158) only opened in 2019. In the future, when there is strong mechanistic rationale or pre-clinical activity of a class of medicinal product in paediatrics, early clinical evaluation with embedded correlative studies of a member of the class should be prioritised and rapidly executed in paediatric populations. There is a strong mechanistic and biological rationale to evaluate BET inhibitors in paediatrics, underpinned by substantial, but not universal, pre-clinical data. However, most pan-BET inhibitors have been challenging to administer in adults, since monotherapy results in only modest anti-tumour activity and provides a narrow therapeutic index due to thrombocytopenia. It was concluded that it is neither scientifically justified nor feasible to undertake simultaneously early clinical trials in paediatrics of all pan-BET inhibitors. However, there is a clinical need for global access to BET inhibitors for patients with NUT carcinoma, a very rare malignancy driven by bromodomain fusions, with proof of concept of clinical benefit in a subset of patients treated with BET inhibitors. Development and regulatory pathway in this indication should include children and adolescents as well as adults. Beyond NUT carcinoma, it was proposed that further clinical development of other pan-BET inhibitors in children should await the results of the first paediatric clinical trial of BMS-986158, unless there is compelling rationale based on the specific agent of interest. BDII-selective inhibitors, central nervous system-penetrant BET inhibitors (e.g. CC-90010), and those dual-targeting BET/p300 bromodomain are of particular interest and warrant further pre-clinical investigation. This meeting emphasised the value of a coordinated and integrated strategy to drug development in paediatric oncology. A multi-stakeholder approach with multiple companies developing a consensus with academic investigators early in the development of a class of compounds, and then engaging regulatory agencies would improve efficiency, productivity, conserve resources and maximise potential benefit for children with cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jessica Clymer
- Dana-Farber Cancer Institute/Harvard Medical School, USA
| | | | | | | | | | | | | | | | | | - John Maris
- Children's Hospital of Philadelphia, USA
| | | | - Zariana Nikolova
- Celgene International, a Bristol Myers Squibb Company, Switzerland
| | | | | | - Rajeev Vibhakar
- University of Colorado and Children's Hospital Colorado, USA
| | | | - Joanna S Yi
- Texas Children's Hospital/Baylor College of Medicine, USA
| | | | | |
Collapse
|
24
|
Servidei T, Meco D, Martini M, Battaglia A, Granitto A, Buzzonetti A, Babini G, Massimi L, Tamburrini G, Scambia G, Ruggiero A, Riccardi R. The BET Inhibitor OTX015 Exhibits In Vitro and In Vivo Antitumor Activity in Pediatric Ependymoma Stem Cell Models. Int J Mol Sci 2021; 22:1877. [PMID: 33668642 PMCID: PMC7918371 DOI: 10.3390/ijms22041877] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/28/2022] Open
Abstract
Childhood ependymomas are heterogenous chemoresistant neoplasms arising from aberrant stem-like cells. Epigenome deregulation plays a pivotal role in ependymoma pathogenesis, suggesting that epigenetic modifiers hold therapeutic promise against this disease. Bromodomain and extraterminal domain (BET) proteins are epigenome readers of acetylated signals in histones and coactivators for oncogenic and stemness-related transcriptional networks, including MYC/MYCN (Proto-Oncogene, BHLH Transcritpion Factor)-regulated genes. We explored BET inhibition as an anticancer strategy in a panel of pediatric patient-derived ependymoma stem cell models by OTX015-mediated suppression of BET/acetylated histone binding. We found that ependymoma tissues and lines express BET proteins and their targets MYC and MYCN. In vitro, OTX015 reduced cell proliferation by inducing G0/G1-phase accumulation and apoptosis at clinically tolerable doses. Mechanistically, inhibitory p21 and p27 increased in a p53-independent manner, whereas the proliferative driver, phospho-signal transducer and activator of transcription 3 (STAT3), decreased. Upregulation of apoptosis-related proteins and survivin downregulation were correlated with cell line drug sensitivity. Minor alterations of MYC/MYCN expression were reported. In vivo, OTX015 significantly improved survival in 2/3 orthotopic ependymoma models. BET proteins represent promising targets for pharmaceutical intervention with OTX015 against ependymoma. The identification of predictive determinants of sensitivity may help identify ependymoma molecular subsets more likely to benefit from BET inhibitor therapies.
Collapse
Affiliation(s)
- Tiziana Servidei
- UOC Pediatric Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.M.); (A.R.); (R.R.)
| | - Daniela Meco
- UOC Pediatric Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.M.); (A.R.); (R.R.)
| | - Maurizio Martini
- Department of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.M.); (A.G.)
| | - Alessandra Battaglia
- Department of Life Sciences and Public Health, Section of Gynecology and Obstetrics, Catholic University of Sacred Heart, 00168 Rome, Italy;
| | - Alessia Granitto
- Department of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.M.); (A.G.)
| | - Alexia Buzzonetti
- UOC Oncological Gynecology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.B.); (G.S.)
| | - Gabriele Babini
- UOC Oncological Gynecology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.B.); (G.S.)
| | - Luca Massimi
- UOC Neurochirurgia Infantile, Dipartimento di Scienze Dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.M.); (G.T.)
| | - Gianpiero Tamburrini
- UOC Neurochirurgia Infantile, Dipartimento di Scienze Dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.M.); (G.T.)
| | - Giovanni Scambia
- UOC Oncological Gynecology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.B.); (G.S.)
| | - Antonio Ruggiero
- UOC Pediatric Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.M.); (A.R.); (R.R.)
| | - Riccardo Riccardi
- UOC Pediatric Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.M.); (A.R.); (R.R.)
| |
Collapse
|
25
|
Novel pyrano 1,3 oxazine based ligand inhibits the epigenetic reader hBRD2 in glioblastoma. Biochem J 2020; 477:2263-2279. [PMID: 32484211 DOI: 10.1042/bcj20200339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is the most common primary brain malignancy, rarely amenable to treatment with a high recurrence rate. GBM are prone to develop resistance to the current repertoire of drugs, including the first-line chemotherapeutic agents with frequent recurrence, limiting therapeutic success. Recent clinical data has evidenced the BRD2 and BRD4 of the BET family proteins as the new druggable targets against GBM. In this relevance, we have discovered a compound (pyrano 1,3 oxazine derivative; NSC 328111; NS5) as an inhibitor of hBRD2 by the rational structure-based approach. The crystal structure of the complex, refined to 1.5 Å resolution, revealed that the NS5 ligand significantly binds to the N-terminal bromodomain (BD1) of BRD2 at the acetylated (Kac) histone binding site. The quantitative binding studies, by SPR and MST assay, indicate that NS5 binds to BD1 of BRD2 with a KD value of ∼1.3 µM. The cell-based assay, in the U87MG glioma cells, confirmed that the discovered compound NS5 significantly attenuated proliferation and migration. Furthermore, evaluation at the translational level established significant inhibition of BRD2 upon treatment with NS5. Hence, we propose that the novel lead compound NS5 has an inhibitory effect on BRD2 in glioblastoma.
Collapse
|
26
|
Chen NC, Borthakur G, Pemmaraju N. Bromodomain and extra-terminal (BET) inhibitors in treating myeloid neoplasms. Leuk Lymphoma 2020; 62:528-537. [DOI: 10.1080/10428194.2020.1842399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Natalie Cheng Chen
- Department of Internal Medicine, The University of Texas School of Health Sciences at Houston, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Yang Y, Chen P, Zhao L, Zhang B, Xu C, Zhang H, Zhou J. Design, synthesis and biological evaluation of imidazolopyridone derivatives as novel BRD4 inhibitors. Bioorg Med Chem 2020; 29:115857. [PMID: 33191086 DOI: 10.1016/j.bmc.2020.115857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 11/17/2022]
Abstract
Bromodomain containing protein 4 (BRD4) has been demonstrated to play critical roles in cellular proliferation and cell cycle progression. In this study, using the BRD4 inhibitor Fragment 9 as a lead compound, a series of imidazolopyridone derivatives were designed and tested for their inhibitory activity against BRD4 protein in vitro. Among them, HB100-A7 showed excellent BRD4(1) inhibitory activities with an IC50 value of 0.035 μM in amplified luminescent proximity homogeneous assay (Alphascreen). The result of MTT assay showed that HB100-A7 could suppress the proliferation of pancreatic cancer cells. In addition, flow cytometry further illustrated that HB100-A7 treatment resulted in G0/G1 phase arrest and promoted apoptosis of BxPc3 cells. Furthermore, the in vivo study found that HB100-A7 displayed significant tumor growth inhibition in a pancreatic mouse tumor model (Panc-02). Moreover, IHC staining suggested that HB100-A7 induce cell apoptosis in pancreatic cancer tumor tissue. Together, this study revealed, for the first time, HB100-A7 is a promising lead compound for further development as a new generation of small molecule inhibitors targeting the BRD4 protein.
Collapse
Affiliation(s)
- Yifei Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Pan Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Leilei Zhao
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bing Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China.
| | - Huibin Zhang
- Center of Drug Discovery, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
28
|
Spriano F, Stathis A, Bertoni F. Targeting BET bromodomain proteins in cancer: The example of lymphomas. Pharmacol Ther 2020; 215:107631. [PMID: 32693114 DOI: 10.1016/j.pharmthera.2020.107631] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
The Bromo- and Extra-Terminal domain (BET) family proteins act as "readers" of acetylated histones and they are important transcription regulators. BRD2, BRD3, BRD4 and BRDT, part of the BET family, are important in different tumors, where upregulation or translocation often occurs. The potential of targeting BET proteins as anti-cancer treatment originated with data obtained with a first series of compounds, and there are now several data supporting BET inhibition in both solid tumors and hematological malignancies. Despite very positive preclinical data in different tumor types, the clinical results have been so far moderate. Using lymphoma as an example to review the data produced in the laboratory and in the context of the early clinical trials, we discuss the modalities to make BET targeting more efficient both generating novel generation of compounds and by exploring the combination with small molecules affecting various signaling pathways, BCL2, or DNA damage response signaling, but also with additional epigenetic agents and with immunotherapy. We also discuss the mechanisms of resistance and the toxicity profiles so far reported.
Collapse
Affiliation(s)
- Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| |
Collapse
|
29
|
Bai P, Lu X, Lan Y, Chen Z, Patnaik D, Fiedler S, Striar R, Haggarty SJ, Wang C. Radiosynthesis and in vivo evaluation of a new positron emission tomography radiotracer targeting bromodomain and extra-terminal domain (BET) family proteins. Nucl Med Biol 2020; 84-85:96-101. [PMID: 32320910 DOI: 10.1016/j.nucmedbio.2020.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Bromodomain and extra-terminal domain (BET) family proteins play a vital role in the epigenetic regulation process by interacting with acetylated lysine (Ac-K) residues in histones. BET inhibitors have become promising candidates to treat various diseases through the inhibition of the interaction between BET bromodomains and Ac-K of histone tails. With a molecular imaging probe, noninvasive imaging such as positron emission tomography (PET) can visualize the distribution and roles of BET family proteins in vivo and enlighten our understanding of BET protein function in both healthy and diseased tissue. METHODS We radiolabeled the potent BET inhibitor INCB054329 by N-methylation to make [11C]PB003 as a BET PET radiotracer. The bioactivity evaluation of unlabeled PB003 in vitro was performed to confirm its binding affinity for BRDs, then the PET/CT imaging in rodents was performed to evaluate the bioactivity of [11C]PB003 in vivo. RESULTS In our in vitro evaluation, PB003 showed a high BET binding affinity for BRDs (Kd = 2 nM, 1.2 nM, and 1.2 nM for BRD2, BRD3, and BRD4, respectively). In vivo PET/CT imaging demonstrated that [11C]PB003 has favorable uptake with appropriate kinetics and distributions in main peripheral organs. Besides, the blockade of [11C]PB003 binding was found in our blocking study which indicated the specificity of [11C]PB003. However, the BBB penetration and brain uptake of [11C]PB003 was limited, with only a maximum 0.2% injected dose/g at ~2 min post-injection. CONCLUSION The imaging results in rodents in vivo demonstrate that [11C]PB003 binds to BET with high selectivity and specificity and has favorable uptake in peripheral organs. However, the low brain uptake of [11C]PB003 limits the visualization of brain regions indicating the efforts are still needed to discover the new BET imaging probes for brain visualization.
Collapse
Affiliation(s)
- Ping Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoxia Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yu Lan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Zude Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Stephanie Fiedler
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Robin Striar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
30
|
Moreno V, Sepulveda JM, Vieito M, Hernández-Guerrero T, Doger B, Saavedra O, Ferrero O, Sarmiento R, Arias M, De Alvaro J, Di Martino J, Zuraek M, Sanchez-Pérez T, Aronchik I, Filvaroff EH, Lamba M, Hanna B, Nikolova Z, Braña I. Phase I study of CC-90010, a reversible, oral BET inhibitor in patients with advanced solid tumors and relapsed/refractory non-Hodgkin's lymphoma. Ann Oncol 2020; 31:780-788. [PMID: 32240793 DOI: 10.1016/j.annonc.2020.03.294] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Bromodomain and extra-terminal (BET) proteins are epigenetic readers that regulate expression of genes involved in oncogenesis. CC-90010 is a novel, oral, reversible, small-molecule BET inhibitor. PATIENTS AND METHODS CC-90010-ST-001 (NCT03220347; 2015-004371-79) is a phase I dose-escalation and expansion study of CC-90010 in patients with advanced or unresectable solid tumors and relapsed/refractory (R/R) non-Hodgkin's lymphoma (NHL). We report results from the dose escalation phase, which explored 11 dose levels and four dosing schedules, two weekly (2 days on/5 days off; 3 days on/4 days off), one biweekly (3 days on/11 days off), and one monthly (4 days on/24 days off). The primary objectives were to determine the safety, maximum tolerated dose (MTD) and/or recommended phase II dose (RP2D) and schedule. Secondary objectives were to evaluate signals of early antitumor activity, pharmacokinetics, and pharmacodynamics. RESULTS This study enrolled 69 patients, 67 with solid tumors and two with diffuse large B-cell lymphoma (DLBCL). The median age was 57 years (range, 21-80) and the median number of prior regimens was four (range, 1-9). Treatment-related adverse events (TRAEs) were mostly mild and manageable; grade 3/4 TRAEs reported in more than two patients were thrombocytopenia (13%), anemia, and fatigue (4% each). Six patients had dose-limiting toxicities. MTDs were 15 mg (2 days on/5 days off), 30 mg (3 days on/11 days off), and 45 mg (4 days on/24 days off). The RP2D and schedule selected for expansion was 45 mg (4 days on/24 days off). As of 8 October 2019, one patient with grade 2 astrocytoma achieved a complete response, one patient with endometrial carcinoma had a partial response, and six patients had prolonged stable disease ≥11 months. CONCLUSIONS CC-90010 is well tolerated, with single-agent activity in patients with heavily pretreated, advanced solid tumors.
Collapse
Affiliation(s)
- V Moreno
- START Madrid-FJD, Hospital Fundación Jimenez Diaz, Madrid, Spain.
| | - J M Sepulveda
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - M Vieito
- Department of Gene Expression and Cancer, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - B Doger
- START Madrid-FJD, Hospital Fundación Jimenez Diaz, Madrid, Spain
| | - O Saavedra
- Department of Gene Expression and Cancer, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - O Ferrero
- START Madrid-FJD, Hospital Fundación Jimenez Diaz, Madrid, Spain
| | - R Sarmiento
- Celgene Institute for Translational Research Europe, a Bristol Myers Squibb Company, Seville, Spain
| | - M Arias
- Celgene Institute for Translational Research Europe, a Bristol Myers Squibb Company, Seville, Spain
| | - J De Alvaro
- Celgene Institute for Translational Research Europe, a Bristol Myers Squibb Company, Seville, Spain
| | | | - M Zuraek
- Bristol Myers Squibb, San Francisco, USA
| | - T Sanchez-Pérez
- Celgene Institute for Translational Research Europe, a Bristol Myers Squibb Company, Seville, Spain
| | - I Aronchik
- Bristol Myers Squibb, San Francisco, USA
| | | | - M Lamba
- Bristol Myers Squibb, Summit, USA
| | - B Hanna
- Bristol Myers Squibb, Summit, USA
| | - Z Nikolova
- Celgene Institute for Translational Research Europe, a Bristol Myers Squibb Company, Seville, Spain
| | - I Braña
- Department of Gene Expression and Cancer, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| |
Collapse
|
31
|
Timme N, Han Y, Liu S, Yosief HO, García HD, Bei Y, Klironomos F, MacArthur IC, Szymansky A, von Stebut J, Bardinet V, Dohna C, Künkele A, Rolff J, Hundsdörfer P, Lissat A, Seifert G, Eggert A, Schulte JH, Zhang W, Henssen AG. Small-Molecule Dual PLK1 and BRD4 Inhibitors are Active Against Preclinical Models of Pediatric Solid Tumors. Transl Oncol 2019; 13:221-232. [PMID: 31869746 PMCID: PMC6931204 DOI: 10.1016/j.tranon.2019.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023] Open
Abstract
Simultaneous inhibition of multiple molecular targets is an established strategy to improve the continuance of clinical response to therapy. Here, we screened 49 molecules with dual nanomolar inhibitory activity against BRD4 and PLK1, best classified as dual kinase-bromodomain inhibitors, in pediatric tumor cell lines for their antitumor activity. We identified two candidate dual kinase-bromodomain inhibitors with strong and tumor-specific activity against neuroblastoma, medulloblastoma, and rhabdomyosarcoma tumor cells. Dual PLK1 and BRD4 inhibitor treatment suppressed proliferation and induced apoptosis in pediatric tumor cell lines at low nanomolar concentrations. This was associated with reduced MYCN-driven gene expression as assessed by RNA sequencing. Treatment of patient-derived xenografts with dual inhibitor UMB103 led to significant tumor regression. We demonstrate that concurrent inhibition of two central regulators of MYC protein family of protooncogenes, BRD4, and PLK1, with single small molecules has strong and specific antitumor effects in preclinical pediatric cancer models.
Collapse
Affiliation(s)
- Natalie Timme
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Youjia Han
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Shuai Liu
- Department of Chemistry, UMass Boston, Boston, MA, USA
| | | | - Heathcliff Dorado García
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Yi Bei
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Filippos Klironomos
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ian C MacArthur
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Annabell Szymansky
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Institute of Biology, Freie Universität Berlin, Germany
| | - Jennifer von Stebut
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Victor Bardinet
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Constantin Dohna
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Deutsches Konsortium für Translationale Krebsforschung, Berlin, Germany
| | - Jana Rolff
- Experimental Pharmacology and Oncology Berlin-Buch GmbH (EPO), Berlin, Germany
| | - Patrick Hundsdörfer
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Helios Klinikum Berlin-Buch, Germany
| | - Andrej Lissat
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Seifert
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Deutsches Konsortium für Translationale Krebsforschung, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Wei Zhang
- Department of Chemistry, UMass Boston, Boston, MA, USA
| | - Anton G Henssen
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany; Deutsches Konsortium für Translationale Krebsforschung, Berlin, Germany; Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
32
|
Challenges and Opportunities for High-grade B-Cell Lymphoma With MYC and BCL2 and/or BCL6 Rearrangement (Double-hit Lymphoma). Am J Clin Oncol 2019; 42:304-316. [PMID: 29419530 DOI: 10.1097/coc.0000000000000427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The most common subtype of non-Hodgkin lymphoma, diffuse large B-cell lymphoma, is cured in approximately two thirds of patients after initial therapy. The remaining one-third of patients who suffer relapse or become refractory have very poor survival outcomes despite salvage chemotherapy with or without stem cell transplantation. A considerable proportion of relapsed or refractory large B cells belong to the WHO subtype known as high-grade B-cell lymphoma with rearrangement of MYC and BCL2 and/or BCL6, also known as double-hit lymphoma (DHL). Most DHL patients present with Ann Arbor's stage III/IV, a comparatively higher rate of extranodal involvement including bone marrow and central nervous system infiltration, high levels of lactate dehydrogenase, and an elevated Ki67 expression in the tumor cells. Newer therapeutic approaches, including targeted therapy against BCL2, MYC, or other associated pathways, are needed. In addition, recent therapies that harness the immune system, such as checkpoint inhibitors and chimeric antigen receptor T-cell therapy, are changing the paradigm of treatment for non-Hodgkin lymphoma and could impact the outcome of DHL.
Collapse
|
33
|
Alonso VL, Tavernelli LE, Pezza A, Cribb P, Ritagliati C, Serra E. Aim for the Readers! Bromodomains As New Targets Against Chagas’ Disease. Curr Med Chem 2019; 26:6544-6563. [DOI: 10.2174/0929867325666181031132007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Bromodomains recognize and bind acetyl-lysine residues present in histone and non-histone
proteins in a specific manner. In the last decade they have raised as attractive targets for drug discovery
because the miss-regulation of human bromodomains was discovered to be involved in the development
of a large spectrum of diseases. However, targeting eukaryotic pathogens bromodomains
continues to be almost unexplored. We and others have reported the essentiality of diverse bromodomain-
containing proteins in protozoa, offering a new opportunity for the development of antiparasitic
drugs, especially for Trypansoma cruzi, the causative agent of Chagas’ disease. Mammalian bromodomains
were classified in eight groups based on sequence similarity but parasitic bromodomains are very
divergent proteins and are hard to assign them to any of these groups, suggesting that selective inhibitors
can be obtained. In this review, we describe the importance of lysine acetylation and bromodomains
in T. cruzi as well as the current knowledge on mammalian bromodomains. Also, we summarize
the myriad of small-molecules under study to treat different pathologies and which of them have been
tested in trypanosomatids and other protozoa. All the information available led us to propose that
T. cruzi bromodomains should be considered as important potential targets and the search for smallmolecules
to inhibit them should be empowered.
Collapse
Affiliation(s)
- Victoria Lucia Alonso
- Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Alejandro Pezza
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Pamela Cribb
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Carla Ritagliati
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Esteban Serra
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| |
Collapse
|
34
|
Civenni G, Bosotti R, Timpanaro A, Vàzquez R, Merulla J, Pandit S, Rossi S, Albino D, Allegrini S, Mitra A, Mapelli SN, Vierling L, Giurdanella M, Marchetti M, Paganoni A, Rinaldi A, Losa M, Mira-Catò E, D'Antuono R, Morone D, Rezai K, D'Ambrosio G, Ouafik L, Mackenzie S, Riveiro ME, Cvitkovic E, Carbone GM, Catapano CV. Epigenetic Control of Mitochondrial Fission Enables Self-Renewal of Stem-like Tumor Cells in Human Prostate Cancer. Cell Metab 2019; 30:303-318.e6. [PMID: 31130467 DOI: 10.1016/j.cmet.2019.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/06/2018] [Accepted: 04/30/2019] [Indexed: 01/16/2023]
Abstract
Cancer stem cells (CSCs) contribute to disease progression and treatment failure in human cancers. The balance among self-renewal, differentiation, and senescence determines the expansion or progressive exhaustion of CSCs. Targeting these processes might lead to novel anticancer therapies. Here, we uncover a novel link between BRD4, mitochondrial dynamics, and self-renewal of prostate CSCs. Targeting BRD4 by genetic knockdown or chemical inhibitors blocked mitochondrial fission and caused CSC exhaustion and loss of tumorigenic capability. Depletion of CSCs occurred in multiple prostate cancer models, indicating a common vulnerability and dependency on mitochondrial dynamics. These effects depended on rewiring of the BRD4-driven transcription and repression of mitochondrial fission factor (Mff). Knockdown of Mff reproduced the effects of BRD4 inhibition, whereas ectopic Mff expression rescued prostate CSCs from exhaustion. This novel concept of targeting mitochondrial plasticity in CSCs through BRD4 inhibition provides a new paradigm for developing more effective treatment strategies for prostate cancer.
Collapse
Affiliation(s)
- Gianluca Civenni
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Roberto Bosotti
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Andrea Timpanaro
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Ramiro Vàzquez
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Jessica Merulla
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Shusil Pandit
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Simona Rossi
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Domenico Albino
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Sara Allegrini
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Abhishek Mitra
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Sarah N Mapelli
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland; Institute of Computational Science, Università della Svizzera Italiana (USI), Lugano 6900, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Luca Vierling
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Martina Giurdanella
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Martina Marchetti
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Alyssa Paganoni
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Marco Losa
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Enrica Mira-Catò
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Rocco D'Antuono
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Diego Morone
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Keyvan Rezai
- Institute Curie-Hospital René Huguenin, Saint Cloud 92210, France
| | | | | | - Sarah Mackenzie
- Oncology Therapeutic Development (OTD), Clichy 92110, France
| | - Maria E Riveiro
- Oncology Therapeutic Development (OTD), Clichy 92110, France
| | - Esteban Cvitkovic
- Oncology Therapeutic Development (OTD), Clichy 92110, France; Oncoethix GmbH, Merck Sharp and Dohme Corp., Lucerne 6006, Switzerland
| | - Giuseppina M Carbone
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland
| | - Carlo V Catapano
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona 6500, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland; Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland.
| |
Collapse
|
35
|
Abstract
Less than a decade ago, it was shown that bromodomains, acetyl lysine 'reader' modules found in proteins with varied functions, were highly tractable small-molecule targets. This is an unusual property for protein-protein or protein-peptide interaction domains, and it prompted a wave of chemical probe discovery to understand the biological potential of new agents that targeted bromodomains. The original examples, inhibitors of the bromodomain and extra-terminal (BET) class of bromodomains, showed enticing anti-inflammatory and anticancer activities, and several compounds have since advanced to human clinical trials. Here, we review the current state of BET inhibitor biology in relation to clinical development, and we discuss the next wave of bromodomain inhibitors with clinical potential in oncology and non-oncology indications. The lessons learned from BET inhibitor programmes should affect efforts to develop drugs that target non-BET bromodomains and other epigenetic readers.
Collapse
|
36
|
Damaneh MS, Hu JP, Huan XJ, Song SS, Tian CQ, Chen DQ, Meng T, Chen YL, Shen JK, Xiong B, Miao ZH, Wang YQ. A new BET inhibitor, 171, inhibits tumor growth through cell proliferation inhibition more than apoptosis induction. Invest New Drugs 2019; 38:700-713. [DOI: 10.1007/s10637-019-00818-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023]
|
37
|
Zhang S, Zhao Y, Heaster TM, Fischer MA, Stengel KR, Zhou X, Ramsey H, Zhou MM, Savona MR, Skala MC, Hiebert SW. BET inhibitors reduce cell size and induce reversible cell cycle arrest in AML. J Cell Biochem 2019; 120:7309-7322. [PMID: 30417424 PMCID: PMC6513713 DOI: 10.1002/jcb.28005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
Abstract
Inhibitors of the bromodomain and extraterminal domain family (BETi) offer a new approach to treat hematological malignancies, with leukemias containing mixed lineage leukemia rearrangements being especially sensitive due to a reliance on the regulation of transcription elongation. We explored the mechanism of action of BETi in cells expressing the t(8;21), and show that these compounds reduced the size of acute myeloid leukemia cells, triggered a rapid but reversible G0 /G1 arrest, and with time, cause cell death. Meta-analysis of PRO-seq data identified ribosomal genes, which are regulated by MYC, were downregulated within 3 hours of addition of the BETi. This reduction of MYC regulated metabolic genes coincided with the loss of mitochondrial respiration and large reductions in the glycolytic rate. In addition, gene expression analysis showed that transcription of BCL2 was rapidly affected by BETi but this did not cause dramatic increases in cell death. Cell cycle arrest, lowered metabolic activity, and reduced BCL2 levels suggested that a second compound was needed to push these cells over the apoptotic threshold. Indeed, low doses of the BCL2 inhibitor, venetoclax, in combination with the BETi was a potent combination in t(8;21) containing cells. Thus, BET inhibitors that affect MYC and BCL2 expression should be considered for combination therapy with venetoclax.
Collapse
Affiliation(s)
- Susu Zhang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Yue Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Tiffany M. Heaster
- Morgridge Institute for Research and the Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Melissa A. Fischer
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Kristy R. Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Haley Ramsey
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Michael R. Savona
- Morgridge Institute for Research and the Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706;,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37027
| | - Melissa C. Skala
- Morgridge Institute for Research and the Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Scott W. Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232;,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37027,To whom correspondence should be sent: Department of Biochemistry, 512 Preston Research Building, Vanderbilt University School of Medicine, 2220 Pierce Ave., Nashville Tennessee, 37232, Phone: (615) 936-3582; Fax: (615) 936-1790;
| |
Collapse
|
38
|
Abruzzese MP, Bilotta MT, Fionda C, Zingoni A, Soriani A, Petrucci MT, Ricciardi MR, Molfetta R, Paolini R, Santoni A, Cippitelli M. The homeobox transcription factor MEIS2 is a regulator of cancer cell survival and IMiDs activity in Multiple Myeloma: modulation by Bromodomain and Extra-Terminal (BET) protein inhibitors. Cell Death Dis 2019; 10:324. [PMID: 30975979 PMCID: PMC6459881 DOI: 10.1038/s41419-019-1562-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
The transcription factor Myeloid Ecotropic Insertion Site 2 (MEIS2) has been identified as a cellular substrate of the E3-ubiquitin ligase complex CRL4-cereblon (CRL4CRBN) in crystal structure and by biochemical screen. Emerging evidence suggests that IMiDs can block MEIS2 from binding to CRBN facilitating the subsequent activation of a CRL4CRBNIMiD-E3-ubiquitin ligase activity and proteasome-mediated degradation of critical substrates regulators of Multiple Myeloma (MM) cell survival and proliferation. Bromodomain and Extra-Terminal (BET) family of proteins are important epigenetic regulators involved in promoting gene expression of several oncogenes, and many studies have revealed important anticancer activities mediated by BET inhibitors (BETi) in hematologic malignancies including MM. Here, we investigated MEIS2 in MM, the role of this protein as a modulator of IMiDs activity and the ability of BETi to inhibit its expression. Our observations indicate that inhibition of MEIS2 in MM cells by RNA interference correlates with reduced growth, induction of apoptosis and enhanced efficacy of different anti-MM drugs. In addition, MEIS2 regulates the expression of Cyclin E/CCNE1 in MM and induction of apoptosis after treatment with the CDK inhibitor Seliciclib/Roscovitine. Interestingly, modulation of MEIS2 can regulate the expression of NKG2D and DNAM-1 NK cell-activating ligands and, importantly, the activity of IMiDs in MM cells. Finally, BETi have the ability to inhibit the expression of MEIS2 in MM, underscoring a novel anticancer activity mediated by these drugs. Our study provides evidence on the role of MEIS2 in MM cell survival and suggests therapeutic strategies targeting of MEIS2 to enhance IMiDs anti-myeloma activity.
Collapse
Affiliation(s)
| | | | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Petrucci
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Maria Rosaria Ricciardi
- Hematology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy. .,Istituto Pasteur-Fondazione Cenci Bolognetti, Roma, RM, Italy. .,IRCCS, Neuromed, Pozzilli, Italy.
| | - Marco Cippitelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
39
|
Echevarría-Vargas IM, Reyes-Uribe PI, Guterres AN, Yin X, Kossenkov AV, Liu Q, Zhang G, Krepler C, Cheng C, Wei Z, Somasundaram R, Karakousis G, Xu W, Morrissette JJ, Lu Y, Mills GB, Sullivan RJ, Benchun M, Frederick DT, Boland G, Flaherty KT, Weeraratna AT, Herlyn M, Amaravadi R, Schuchter LM, Burd CE, Aplin AE, Xu X, Villanueva J. Co-targeting BET and MEK as salvage therapy for MAPK and checkpoint inhibitor-resistant melanoma. EMBO Mol Med 2019; 10:emmm.201708446. [PMID: 29650805 PMCID: PMC5938620 DOI: 10.15252/emmm.201708446] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Despite novel therapies for melanoma, drug resistance remains a significant hurdle to achieving optimal responses. NRAS‐mutant melanoma is an archetype of therapeutic challenges in the field, which we used to test drug combinations to avert drug resistance. We show that BET proteins are overexpressed in NRAS‐mutant melanoma and that high levels of the BET family member BRD4 are associated with poor patient survival. Combining BET and MEK inhibitors synergistically curbed the growth of NRAS‐mutant melanoma and prolonged the survival of mice bearing tumors refractory to MAPK inhibitors and immunotherapy. Transcriptomic and proteomic analysis revealed that combining BET and MEK inhibitors mitigates a MAPK and checkpoint inhibitor resistance transcriptional signature, downregulates the transcription factor TCF19, and induces apoptosis. Our studies demonstrate that co‐targeting MEK and BET can offset therapy resistance, offering a salvage strategy for melanomas with no other therapeutic options, and possibly other treatment‐resistant tumor types.
Collapse
Affiliation(s)
| | | | - Adam N Guterres
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Xiangfan Yin
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Andrew V Kossenkov
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Qin Liu
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Gao Zhang
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Clemens Krepler
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Chaoran Cheng
- College of Computing Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | - Zhi Wei
- College of Computing Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | | | - Giorgos Karakousis
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Xu
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Jd Morrissette
- Center for Personalized Diagnostics, Hospital of the University of Pennsylvania University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Miao Benchun
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Dennie T Frederick
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Genevieve Boland
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ashani T Weeraratna
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA.,Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA.,Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Ravi Amaravadi
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Lynn M Schuchter
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Christin E Burd
- Departments of Molecular Genetics and Cancer Biology and Genetics, Ohio State University, Columbus, OH, USA
| | - Andrew E Aplin
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessie Villanueva
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA .,Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
40
|
Shorstova T, Marques M, Su J, Johnston J, Kleinman CL, Hamel N, Huang S, Alaoui-Jamali MA, Foulkes WD, Witcher M. SWI/SNF-Compromised Cancers Are Susceptible to Bromodomain Inhibitors. Cancer Res 2019; 79:2761-2774. [PMID: 30877105 DOI: 10.1158/0008-5472.can-18-1545] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/18/2018] [Accepted: 03/12/2019] [Indexed: 11/16/2022]
Abstract
The antitumor activity of bromodomain and extraterminal motif protein inhibitors (BETi) has been demonstrated across numerous types of cancer. As such, these inhibitors are currently undergoing widespread clinical evaluation. However, predictive biomarkers allowing the stratification of tumors into responders and nonresponders to BETi are lacking. Here, we showed significant antiproliferative effects of low dosage BETi in vitro and in vivo against aggressive ovarian and lung cancer models lacking SMARCA4 and SMARCA2, key components of SWI/SNF chromatin remodeling complexes. Restoration of SMARCA4 or SMARCA2 promoted resistance to BETi in these models and, conversely, knockdown of SMARCA4 sensitized resistant cells to BETi. Transcriptomic analysis revealed that exposure to BETi potently downregulated a network of genes involved in receptor tyrosine kinase (RTK) signaling in SMARCA4/A2-deficient cells, including the oncogenic RTK HER3. Repression of signaling downstream of HER3 was found to be an important determinant of response to BETi in SMARCA4/A2-deficient cells. Overall, we propose that BETi represent a rational therapeutic strategy in poor-prognosis, SMARCA4/A2-deficient cancers. SIGNIFICANCE: These findings address an unmet clinical need by identifying loss of SMARCA4/A2 as biomarkers of hypersensitivity to BETi.
Collapse
Affiliation(s)
- Tatiana Shorstova
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Maud Marques
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Jie Su
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Jake Johnston
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Nancy Hamel
- Departments of Oncology and Human Genetics, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Sidong Huang
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Moulay A Alaoui-Jamali
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - William D Foulkes
- Departments of Oncology and Human Genetics, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Michael Witcher
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
41
|
|
42
|
Predicting response to BET inhibitors using computational modeling: A BEAT AML project study. Leuk Res 2019; 77:42-50. [PMID: 30642575 PMCID: PMC6442457 DOI: 10.1016/j.leukres.2018.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/26/2018] [Accepted: 11/18/2018] [Indexed: 12/04/2022]
Abstract
Despite advances in understanding the molecular pathogenesis of acute myeloid leukaemia (AML), overall survival rates remain low. The ability to predict treatment response based on individual cancer genomics using computational modeling will aid in the development of novel therapeutics and personalize care. Here, we used a combination of genomics, computational biology modeling (CBM), ex vivo chemosensitivity assay, and clinical data from 100 randomly selected patients in the Beat AML project to characterize AML sensitivity to a bromodomain (BRD) and extra-terminal (BET) inhibitor. Computational biology modeling was used to generate patient-specific protein network maps of activated and inactivated protein pathways translated from each genomic profile. Digital drug simulations of a BET inhibitor (JQ1) were conducted by quantitatively measuring drug effect using a composite AML disease inhibition score. 93% of predicted disease inhibition scores matched the associated ex vivo IC50 value. Sensitivity and specificity of CBM predictions were 97.67%, and 64.29%, respectively. Genomic predictors of response were identified. Patient samples harbouring chromosomal aberrations del(7q) or −7, +8, or del(5q) and somatic mutations causing ERK pathway dysregulation, responded to JQ1 in both in silico and ex vivo assays. This study shows how a combination of genomics, computational modeling and chemosensitivity testing can identify network signatures associating with treatment response and can inform priority populations for future clinical trials of BET inhibitors.
Collapse
|
43
|
Bai P, Wey HY, Patnaik D, Lu X, Lan Y, Rokka J, Stephanie F, Haggarty SJ, Wang C. Positron emission tomography probes targeting bromodomain and extra-terminal (BET) domains to enable in vivo neuroepigenetic imaging. Chem Commun (Camb) 2019; 55:12932-12935. [DOI: 10.1039/c9cc06734e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel PET radiotracer of BET proteins enable in vivo neuroepigenetic imaging.
Collapse
Affiliation(s)
- Ping Bai
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
- Athinoula A. Martinos Center for Biomedical Imaging
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology
- Massachusetts General Hospital, Harvard Medical School
- Charlestown
- USA
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory
- Center for Genomic Medicine
- Department of Neurology
- Massachusetts General Hospital
- Harvard Medical School
| | - Xiaoxia Lu
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- P. R. China
| | - Yu Lan
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology
- Massachusetts General Hospital, Harvard Medical School
- Charlestown
- USA
| | - Johanna Rokka
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology
- Massachusetts General Hospital, Harvard Medical School
- Charlestown
- USA
| | - Fiedler Stephanie
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology
- Massachusetts General Hospital, Harvard Medical School
- Charlestown
- USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory
- Center for Genomic Medicine
- Department of Neurology
- Massachusetts General Hospital
- Harvard Medical School
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology
- Massachusetts General Hospital, Harvard Medical School
- Charlestown
- USA
| |
Collapse
|
44
|
Wheeler LJ, Watson ZL, Qamar L, Yamamoto TM, Post MD, Berning AA, Spillman MA, Behbakht K, Bitler BG. CBX2 identified as driver of anoikis escape and dissemination in high grade serous ovarian cancer. Oncogenesis 2018; 7:92. [PMID: 30478317 PMCID: PMC6255906 DOI: 10.1038/s41389-018-0103-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/15/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023] Open
Abstract
High grade serous ovarian carcinoma (HGSOC) is often diagnosed at an advanced stage. Chromobox 2 (CBX2), a polycomb repressor complex subunit, plays an oncogenic role in other cancers, but little is known about its role in HGSOC. We hypothesize that CBX2 upregulation promotes HGSOC via induction of a stem-like transcriptional profile and inhibition of anoikis. Examination of Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) established that increased CBX2 expression conveyed chemoresistance and worse disease-free and overall survival. In primary HGSOC tumors, we observed CBX2 expression was significantly elevated compared to benign counterparts. In HGSOC cell lines, forced suspension promoted CBX2 expression. Subsequently, CBX2 knockdown inhibited anchorage-independent proliferation and potentiated anoikis-dependent apoptosis. Furthermore, CBX2 knockdown re-sensitized cells to platinum-based chemotherapy. Forced suspension promoted increased ALDH activity and ALDH3A1 expression and CBX2 knockdown led to a decrease in both ALDH activity and ALDH3A1 expression. Investigation of CBX2 expression on a HGSOC tissue microarray revealed CBX2 expression was apparent in both primary and metastatic tissues. CBX2 is an important regulator of stem-ness, anoikis escape, HGSOC dissemination, and chemoresistance and potentially serves as a novel therapeutic target.
Collapse
Affiliation(s)
- Lindsay J Wheeler
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zachary L Watson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lubna Qamar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tomomi M Yamamoto
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Miriam D Post
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Amber A Berning
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Monique A Spillman
- Gynecologic Oncology, Texas A&M University Medical School, Baylor University Medical Center, Dallas, TX, USA
| | - Kian Behbakht
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
45
|
Drug-based perturbation screen uncovers synergistic drug combinations in Burkitt lymphoma. Sci Rep 2018; 8:12046. [PMID: 30104685 PMCID: PMC6089937 DOI: 10.1038/s41598-018-30509-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023] Open
Abstract
Burkitt lymphoma (BL) is a highly aggressive B-cell lymphoma associated with MYC translocation. Here, we describe drug response profiling of 42 blood cancer cell lines including 17 BL to 32 drugs targeting key cancer pathways and provide a systematic study of drug combinations in BL cell lines. Based on drug response, we identified cell line specific sensitivities, i.e. to venetoclax driven by BCL2 overexpression and partitioned subsets of BL driven by response to kinase inhibitors. In the combination screen, including BET, BTK and PI3K inhibitors, we identified synergistic combinations of PI3K and BTK inhibition with drugs targeting Akt, mTOR, BET and doxorubicin. A detailed comparison of PI3K and BTKi combinations identified subtle differences, in line with convergent pathway activity. Most synergistic combinations were identified for the BET inhibitor OTX015, which showed synergistic effects for 41% of combinations including inhibitors of PI3K/AKT/mTOR signalling. The strongest synergy was observed for the combination of the CDK 2/7/9 inhibitor SNS032 and OTX015. Our data provide a landscape of drug combination effects in BL and suggest that targeting CDK and BET could provide a novel vulnerability of BL.
Collapse
|
46
|
Fidanze SD, Liu D, Mantei RA, Hasvold LA, Pratt JK, Sheppard GS, Wang L, Holms JH, Dai Y, Aguirre A, Bogdan A, Dietrich JD, Marjanovic J, Park CH, Hutchins CW, Lin X, Bui MH, Huang X, Wilcox D, Li L, Wang R, Kovar P, Magoc TJ, Rajaraman G, Albert DH, Shen Y, Kati WM, McDaniel KF. Discovery and optimization of novel constrained pyrrolopyridone BET family inhibitors. Bioorg Med Chem Lett 2018; 28:1804-1810. [DOI: 10.1016/j.bmcl.2018.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
|
47
|
Lewin J, Soria JC, Stathis A, Delord JP, Peters S, Awada A, Aftimos PG, Bekradda M, Rezai K, Zeng Z, Hussain A, Perez S, Siu LL, Massard C. Phase Ib Trial With Birabresib, a Small-Molecule Inhibitor of Bromodomain and Extraterminal Proteins, in Patients With Selected Advanced Solid Tumors. J Clin Oncol 2018; 36:3007-3014. [PMID: 29733771 DOI: 10.1200/jco.2018.78.2292] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Birabresib (MK-8628/OTX015) is a first-in-class bromodomain inhibitor with activity in select hematologic tumors. Safety, efficacy, and pharmacokinetics of birabresib were evaluated in patients with castrate-resistant prostate cancer, nuclear protein in testis midline carcinoma (NMC), and non-small-cell lung cancer in this phase Ib study. PATIENTS AND METHODS Forty-seven patients were enrolled to receive birabresib once daily at starting doses of 80 mg continuously (cohort A) or 100 mg for 7 consecutive days (cohort B) in 21-day cycles using a parallel dose escalation 3 + 3 design. The primary objective was occurrence of dose-limiting toxicities (DLTs) and determination of the recommended phase II dose. RESULTS Of 46 treated patients, 26 had castrate-resistant prostate cancer, 10 NMC, and 10 non-small-cell lung cancer. For cohort A, four of 19 (21%) evaluable patients had DLTs at 80 mg once daily (grade 3 thrombocytopenia [n = 3], ALT/hyperbilirubinemia [n = 1]) and two of three had DLTs at 100 mg once daily (grade 2 anorexia and nausea with treatment delay > 7 days [n = 1], grade 4 thrombocytopenia [n = 1]). No DLTs occurred in cohort B. Of 46 patients, 38 (83%) had treatment-related adverse events (diarrhea, 17 [37%]; nausea, 17 [37%]; anorexia, 14 [30%]; vomiting, 12 [26%]; thrombocytopenia 10 [22%]). Three patients with NMC (80 mg once daily) had a partial response (Response Evaluation Criteria in Solid Tumors [RECIST] version 1.1) with duration of 1.4 to 8.4 months. Pharmacokinetic analysis indicated a dose-proportional increase in birabresib exposure and rapid absorption. CONCLUSION The recommended phase II dose of birabresib in patients with select solid tumors is 80 mg once daily with continuous dosing. Birabresib has dose-proportional exposure and a favorable safety profile, with clinical activity observed in NMC. Future studies of birabresib must consider intermittent scheduling to possibly mitigate the toxicities of chronic dosing.
Collapse
Affiliation(s)
- Jeremy Lewin
- Jeremy Lewin and Lillian L. Siu, Princess Margaret Cancer Center, Toronto, Ontario, Canada; Jean-Charles Soria and Christophe Massard, Institut Gustave Roussy and University Paris-Sud, Villejuif; Jean-Pierre Delord, Institut Claudius Regaud Oncopole, Toulouse; Mohamed Bekradda, Oncology Therapeutic Development, Clichy; Keyvan Rezai, Hôpital René Huguenin, Saint-Cloud, France; Anastasios Stathis, Oncology Institute of Southern Switzerland, Bellinzona; Solange Peters, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Ahmad Awada and Philippe G. Aftimos, Université Libre de Bruxelles, Brussels, Belgium; and Zhen Zeng, Azher Hussain, and Susan Perez, Merck & Co, Kenilworth, NJ
| | - Jean-Charles Soria
- Jeremy Lewin and Lillian L. Siu, Princess Margaret Cancer Center, Toronto, Ontario, Canada; Jean-Charles Soria and Christophe Massard, Institut Gustave Roussy and University Paris-Sud, Villejuif; Jean-Pierre Delord, Institut Claudius Regaud Oncopole, Toulouse; Mohamed Bekradda, Oncology Therapeutic Development, Clichy; Keyvan Rezai, Hôpital René Huguenin, Saint-Cloud, France; Anastasios Stathis, Oncology Institute of Southern Switzerland, Bellinzona; Solange Peters, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Ahmad Awada and Philippe G. Aftimos, Université Libre de Bruxelles, Brussels, Belgium; and Zhen Zeng, Azher Hussain, and Susan Perez, Merck & Co, Kenilworth, NJ
| | - Anastasios Stathis
- Jeremy Lewin and Lillian L. Siu, Princess Margaret Cancer Center, Toronto, Ontario, Canada; Jean-Charles Soria and Christophe Massard, Institut Gustave Roussy and University Paris-Sud, Villejuif; Jean-Pierre Delord, Institut Claudius Regaud Oncopole, Toulouse; Mohamed Bekradda, Oncology Therapeutic Development, Clichy; Keyvan Rezai, Hôpital René Huguenin, Saint-Cloud, France; Anastasios Stathis, Oncology Institute of Southern Switzerland, Bellinzona; Solange Peters, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Ahmad Awada and Philippe G. Aftimos, Université Libre de Bruxelles, Brussels, Belgium; and Zhen Zeng, Azher Hussain, and Susan Perez, Merck & Co, Kenilworth, NJ
| | - Jean-Pierre Delord
- Jeremy Lewin and Lillian L. Siu, Princess Margaret Cancer Center, Toronto, Ontario, Canada; Jean-Charles Soria and Christophe Massard, Institut Gustave Roussy and University Paris-Sud, Villejuif; Jean-Pierre Delord, Institut Claudius Regaud Oncopole, Toulouse; Mohamed Bekradda, Oncology Therapeutic Development, Clichy; Keyvan Rezai, Hôpital René Huguenin, Saint-Cloud, France; Anastasios Stathis, Oncology Institute of Southern Switzerland, Bellinzona; Solange Peters, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Ahmad Awada and Philippe G. Aftimos, Université Libre de Bruxelles, Brussels, Belgium; and Zhen Zeng, Azher Hussain, and Susan Perez, Merck & Co, Kenilworth, NJ
| | - Solange Peters
- Jeremy Lewin and Lillian L. Siu, Princess Margaret Cancer Center, Toronto, Ontario, Canada; Jean-Charles Soria and Christophe Massard, Institut Gustave Roussy and University Paris-Sud, Villejuif; Jean-Pierre Delord, Institut Claudius Regaud Oncopole, Toulouse; Mohamed Bekradda, Oncology Therapeutic Development, Clichy; Keyvan Rezai, Hôpital René Huguenin, Saint-Cloud, France; Anastasios Stathis, Oncology Institute of Southern Switzerland, Bellinzona; Solange Peters, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Ahmad Awada and Philippe G. Aftimos, Université Libre de Bruxelles, Brussels, Belgium; and Zhen Zeng, Azher Hussain, and Susan Perez, Merck & Co, Kenilworth, NJ
| | - Ahmad Awada
- Jeremy Lewin and Lillian L. Siu, Princess Margaret Cancer Center, Toronto, Ontario, Canada; Jean-Charles Soria and Christophe Massard, Institut Gustave Roussy and University Paris-Sud, Villejuif; Jean-Pierre Delord, Institut Claudius Regaud Oncopole, Toulouse; Mohamed Bekradda, Oncology Therapeutic Development, Clichy; Keyvan Rezai, Hôpital René Huguenin, Saint-Cloud, France; Anastasios Stathis, Oncology Institute of Southern Switzerland, Bellinzona; Solange Peters, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Ahmad Awada and Philippe G. Aftimos, Université Libre de Bruxelles, Brussels, Belgium; and Zhen Zeng, Azher Hussain, and Susan Perez, Merck & Co, Kenilworth, NJ
| | - Philippe G Aftimos
- Jeremy Lewin and Lillian L. Siu, Princess Margaret Cancer Center, Toronto, Ontario, Canada; Jean-Charles Soria and Christophe Massard, Institut Gustave Roussy and University Paris-Sud, Villejuif; Jean-Pierre Delord, Institut Claudius Regaud Oncopole, Toulouse; Mohamed Bekradda, Oncology Therapeutic Development, Clichy; Keyvan Rezai, Hôpital René Huguenin, Saint-Cloud, France; Anastasios Stathis, Oncology Institute of Southern Switzerland, Bellinzona; Solange Peters, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Ahmad Awada and Philippe G. Aftimos, Université Libre de Bruxelles, Brussels, Belgium; and Zhen Zeng, Azher Hussain, and Susan Perez, Merck & Co, Kenilworth, NJ
| | - Mohamed Bekradda
- Jeremy Lewin and Lillian L. Siu, Princess Margaret Cancer Center, Toronto, Ontario, Canada; Jean-Charles Soria and Christophe Massard, Institut Gustave Roussy and University Paris-Sud, Villejuif; Jean-Pierre Delord, Institut Claudius Regaud Oncopole, Toulouse; Mohamed Bekradda, Oncology Therapeutic Development, Clichy; Keyvan Rezai, Hôpital René Huguenin, Saint-Cloud, France; Anastasios Stathis, Oncology Institute of Southern Switzerland, Bellinzona; Solange Peters, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Ahmad Awada and Philippe G. Aftimos, Université Libre de Bruxelles, Brussels, Belgium; and Zhen Zeng, Azher Hussain, and Susan Perez, Merck & Co, Kenilworth, NJ
| | - Keyvan Rezai
- Jeremy Lewin and Lillian L. Siu, Princess Margaret Cancer Center, Toronto, Ontario, Canada; Jean-Charles Soria and Christophe Massard, Institut Gustave Roussy and University Paris-Sud, Villejuif; Jean-Pierre Delord, Institut Claudius Regaud Oncopole, Toulouse; Mohamed Bekradda, Oncology Therapeutic Development, Clichy; Keyvan Rezai, Hôpital René Huguenin, Saint-Cloud, France; Anastasios Stathis, Oncology Institute of Southern Switzerland, Bellinzona; Solange Peters, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Ahmad Awada and Philippe G. Aftimos, Université Libre de Bruxelles, Brussels, Belgium; and Zhen Zeng, Azher Hussain, and Susan Perez, Merck & Co, Kenilworth, NJ
| | - Zhen Zeng
- Jeremy Lewin and Lillian L. Siu, Princess Margaret Cancer Center, Toronto, Ontario, Canada; Jean-Charles Soria and Christophe Massard, Institut Gustave Roussy and University Paris-Sud, Villejuif; Jean-Pierre Delord, Institut Claudius Regaud Oncopole, Toulouse; Mohamed Bekradda, Oncology Therapeutic Development, Clichy; Keyvan Rezai, Hôpital René Huguenin, Saint-Cloud, France; Anastasios Stathis, Oncology Institute of Southern Switzerland, Bellinzona; Solange Peters, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Ahmad Awada and Philippe G. Aftimos, Université Libre de Bruxelles, Brussels, Belgium; and Zhen Zeng, Azher Hussain, and Susan Perez, Merck & Co, Kenilworth, NJ
| | - Azher Hussain
- Jeremy Lewin and Lillian L. Siu, Princess Margaret Cancer Center, Toronto, Ontario, Canada; Jean-Charles Soria and Christophe Massard, Institut Gustave Roussy and University Paris-Sud, Villejuif; Jean-Pierre Delord, Institut Claudius Regaud Oncopole, Toulouse; Mohamed Bekradda, Oncology Therapeutic Development, Clichy; Keyvan Rezai, Hôpital René Huguenin, Saint-Cloud, France; Anastasios Stathis, Oncology Institute of Southern Switzerland, Bellinzona; Solange Peters, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Ahmad Awada and Philippe G. Aftimos, Université Libre de Bruxelles, Brussels, Belgium; and Zhen Zeng, Azher Hussain, and Susan Perez, Merck & Co, Kenilworth, NJ
| | - Susan Perez
- Jeremy Lewin and Lillian L. Siu, Princess Margaret Cancer Center, Toronto, Ontario, Canada; Jean-Charles Soria and Christophe Massard, Institut Gustave Roussy and University Paris-Sud, Villejuif; Jean-Pierre Delord, Institut Claudius Regaud Oncopole, Toulouse; Mohamed Bekradda, Oncology Therapeutic Development, Clichy; Keyvan Rezai, Hôpital René Huguenin, Saint-Cloud, France; Anastasios Stathis, Oncology Institute of Southern Switzerland, Bellinzona; Solange Peters, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Ahmad Awada and Philippe G. Aftimos, Université Libre de Bruxelles, Brussels, Belgium; and Zhen Zeng, Azher Hussain, and Susan Perez, Merck & Co, Kenilworth, NJ
| | - Lillian L Siu
- Jeremy Lewin and Lillian L. Siu, Princess Margaret Cancer Center, Toronto, Ontario, Canada; Jean-Charles Soria and Christophe Massard, Institut Gustave Roussy and University Paris-Sud, Villejuif; Jean-Pierre Delord, Institut Claudius Regaud Oncopole, Toulouse; Mohamed Bekradda, Oncology Therapeutic Development, Clichy; Keyvan Rezai, Hôpital René Huguenin, Saint-Cloud, France; Anastasios Stathis, Oncology Institute of Southern Switzerland, Bellinzona; Solange Peters, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Ahmad Awada and Philippe G. Aftimos, Université Libre de Bruxelles, Brussels, Belgium; and Zhen Zeng, Azher Hussain, and Susan Perez, Merck & Co, Kenilworth, NJ
| | - Christophe Massard
- Jeremy Lewin and Lillian L. Siu, Princess Margaret Cancer Center, Toronto, Ontario, Canada; Jean-Charles Soria and Christophe Massard, Institut Gustave Roussy and University Paris-Sud, Villejuif; Jean-Pierre Delord, Institut Claudius Regaud Oncopole, Toulouse; Mohamed Bekradda, Oncology Therapeutic Development, Clichy; Keyvan Rezai, Hôpital René Huguenin, Saint-Cloud, France; Anastasios Stathis, Oncology Institute of Southern Switzerland, Bellinzona; Solange Peters, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Ahmad Awada and Philippe G. Aftimos, Université Libre de Bruxelles, Brussels, Belgium; and Zhen Zeng, Azher Hussain, and Susan Perez, Merck & Co, Kenilworth, NJ
| |
Collapse
|
48
|
Xue X, Zhang Y, Wang C, Zhang M, Xiang Q, Wang J, Wang A, Li C, Zhang C, Zou L, Wang R, Wu S, Lu Y, Chen H, Ding K, Li G, Xu Y. Benzoxazinone-containing 3,5-dimethylisoxazole derivatives as BET bromodomain inhibitors for treatment of castration-resistant prostate cancer. Eur J Med Chem 2018; 152:542-559. [PMID: 29758518 DOI: 10.1016/j.ejmech.2018.04.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
The bromodomain and extra-terminal proteins (BET) have emerged as promising therapeutic targets for the treatment of castration-resistant prostate cancer (CRPC). We report the design, synthesis and evaluation of a new series of benzoxazinone-containing 3,5-dimethylisoxazole derivatives as selective BET inhibitors. One of the new compounds, (R)-12 (Y02234), binds to BRD4(1) with a Kd value of 110 nM and blocks bromodomain and acetyl lysine interactions with an IC50 value of 100 nM. It also exhibits selectivity for BET over non-BET bromodomain proteins and demonstrates reasonable anti-proliferation and colony formation inhibition effect in prostate cancer cell lines such as 22Rv1 and C4-2B. The BRD4 inhibitor (R)-12 also significantly suppresses the expression of ERG, Myc and AR target gene PSA at the mRNA level in prostate cancer cells. Treatment with (R)-12 significantly suppresses the tumor growth of prostate cancer (TGI = 70%) in a 22Rv1-derived xenograft model. These data suggest that compound (R)-12 is a promising lead compound for the development of a new class of therapeutics for the treatment of CRPC.
Collapse
Affiliation(s)
- Xiaoqian Xue
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China
| | - Maofeng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Qiuping Xiang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Junjian Wang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Anhui Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116023, China; Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chenchang Li
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Lingjiao Zou
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Rui Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China
| | - Shuang Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Yongzhi Lu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China
| | - Hongwu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China.
| |
Collapse
|
49
|
OTX015 (MK-8628), a novel BET inhibitor, exhibits antitumor activity in non-small cell and small cell lung cancer models harboring different oncogenic mutations. Oncotarget 2018; 7:84675-84687. [PMID: 27835869 PMCID: PMC5354535 DOI: 10.18632/oncotarget.13181] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022] Open
Abstract
Inhibitors targeting epigenetic control points of oncogenes offer a potential mean of blocking tumor progression in small cell and non-small cell lung carcinomas (SCLC, NSCLC). OTX015 (MK-8628) is a BET inhibitor selectively blocking BRD2/3/4. OTX015 was evaluated in a panel of NSCLC or SCLC models harboring different oncogenic mutations. Cell proliferation inhibition and cell cycle arrest were seen in sensitive NSCLC cells. MYC and MYCN were downregulated at both the mRNA and protein levels. In addition, OTX015-treatment significantly downregulated various stemness cell markers, including NANOG, Musashi-1, CD113 and EpCAM in H3122-tumors in vivo. Conversely, in SCLC models, weak antitumor activity was observed with OTX015, both in vitro and in vivo. No predictive biomarkers of OTX015 activity were identified in a large panel of candidate genes known to be affected by BET inhibition. In NSCLC models, OTX015 was equally active in both EML4-ALK positive and negative cell lines, whereas in SCLC models the presence of functional RB1 protein, which controls cell progression at G1, may be related to the final biological outcome of OTX015. Gene expression profiling in NSCLC and SCLC cell lines showed that OTX015 affects important genes and pathways with a very high overlapping between both sensitive and resistant cell lines. These data support the rationale for the OTX015 Phase Ib (NCT02259114) in solid tumors, where NSCLC patients with rearranged ALK gene or KRAS-positive mutations are currently being treated.
Collapse
|
50
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|