1
|
Lou YR, Xu YL, Xiong Y, Deng C, Wang Q. Population Pharmacokinetics of Efsubaglutide Alfa in Healthy Subjects and Subjects with Type 2 Diabetes. Clin Pharmacokinet 2025; 64:533-552. [PMID: 39961992 DOI: 10.1007/s40262-025-01475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2024] [Indexed: 04/30/2025]
Abstract
BACKGROUND AND OBJECTIVES Efsubaglutide alfa is a novel long-acting human glucagon-like peptide-1 receptor agonist. Clinical studies in patients with type 2 diabetes (T2D) have shown excellent glucose-lowering effects. This study aims to develop a population pharmacokinetic (popPK) model for efsubaglutide alfa to characterize its pharmacokinetic (PK) profile and assess the impact of intrinsic and extrinsic factors. METHODS A popPK model was developed using a nonlinear mixed-effects model (NONMEM) based on 4173 plasma concentration measurements of efsubaglutide alfa from 911 participants, including 36 healthy subjects and 875 patients with T2D, across four clinical trials. These trials involved once-weekly subcutaneous injections of efsubaglutide alfa at doses ranging from 0.375 mg to 9.0 mg, with treatment durations spanning from 1 to 24 weeks. Diagnostic plots, visual predictive checks, nonparametric bootstrap methods, and simulations were employed to validate the model's robustness and performance. Covariates were identified using stepwise covariate modeling. RESULTS A two-compartment model with first-order absorption and first-order elimination adequately described the PK characteristics of efsubaglutide alfa. Efsubaglutide alfa exhibited favorable absorption (Ka = 0.0255 per hour) and a relatively large apparent volume of distribution (V2/F of 14.5 L with relative standard error [RSE] of 3%; V3/F of 3.01 L). It showed moderate clearance (CL/F of 0.0680 L/h, RSE of 1%, inter-individual variability of 16.6%) and an extended half-life. In subjects with T2D, the geometric mean half-life was estimated between 182 and 215 h across the 1-3 mg dose range, supporting once-weekly or once-every-two-week dosing. Efsubaglutide alfa exposure increased proportionally with dose and remained consistent across studies. Baseline body weight (WT), baseline estimated glomerular filtration rate (eGFR), neutralizing antidrug antibody (Nab), STUDY, and planned dose (ARM) were identified as significant covariates for CL/F, while baseline WT and STUDY influenced V2/F. Although baseline WT and eGFR affected exposure parameters (AUCss, Cmax,ss, and Cmin,ss), these effects were not clinically significant, suggesting no need for dose adjustment. CONCLUSIONS The final popPK model, incorporating significant covariates (baseline WT, baseline eGFR, Nab, STUDY, and ARM), provided robust and precise PK parameter estimates, confirming its applicability in both healthy subjects and those with T2D. The minimal and clinically insignificant impact of baseline WT and eGFR on drug exposure supports the conclusion that no dose adjustment is necessary based on these factors. Moreover, the higher absorption rate constant suggests a rapid onset of action, and the extended half-life supports less frequent dosing, potentially improving patient adherence. TRIAL REGISTRATION The trials were registered at Clinicaltrials.gov (identifiers: NCT03745885, NCT04314622, NCT04994288, and NCT04998032).
Collapse
Affiliation(s)
- Yan-Ru Lou
- Shanghai Innogen Pharmaceutical Technology Co., Ltd., Shanghai, China.
| | - Yu-Long Xu
- Shanghai Innogen Pharmaceutical Technology Co., Ltd., Shanghai, China
| | - Yifeng Xiong
- Linking Truth Technology Co., Ltd., Beijing, China
| | - Chenhui Deng
- Linking Truth Technology Co., Ltd., Beijing, China
| | - Qinghua Wang
- Shanghai Innogen Pharmaceutical Technology Co., Ltd., Shanghai, China
| |
Collapse
|
2
|
Sun R, Ronxhi J, Yang X, Qian MG, Zhang X. Feasibility of a direct binding electrochemiluminescence assay to detect anti-drug antibodies against therapeutic peptides. J Pharm Biomed Anal 2025; 254:116582. [PMID: 39615123 DOI: 10.1016/j.jpba.2024.116582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/10/2024]
Abstract
The emergence of anti-drug antibodies (ADAs) poses significant impacts on the bioactivity and toxicity of biotherapeutics including proteins and peptides. Developing reliable assays to monitor the magnitudes of ADAs in blood samples is therefore considered a crucial task in animal and human studies throughout the development of biotherapeutics. Peptides represent a significant and fast-growing category of biotherapeutics for the management of a variety of indications. While peptides generally exhibit lower immunogenicity risks compared to biologics of larger sizes, drug developers are still required to conduct the risk-based immunogenicity assessment as mandated by the regulatory authorities. To address the need for efficient detection of ADAs against therapeutic peptides, we established a straightforward electrochemiluminescence immunoassay (ECLIA) based on direct binding strategy. Our assay demonstrates its applicability across various peptide therapeutics including marketed drugs and internal investigational compounds. Through stepwise tuning of the assay procedure, we identified several key factors such as buffer, detection reagent, plate type, and conjugation strategy that collectively contribute to the assay performance. Depending on the drug molecule and positive control antibody, the assay can achieve low single-digit to two-digit ng/ml sensitivity and ideal drug tolerance. In conclusion, this ECLIA platform presents a valuable and generic tool to expedite the development and validation of ADA assays for peptide-based therapeutics.
Collapse
Affiliation(s)
- Ruoxuan Sun
- Global Drug Metabolism, Pharmacokinetics & Modeling, Preclinical & Translational Sciences, Takeda Development Center Americas, Inc., Cambridge, MA 02139, USA.
| | - Janey Ronxhi
- Global Drug Metabolism, Pharmacokinetics & Modeling, Preclinical & Translational Sciences, Takeda Development Center Americas, Inc., Cambridge, MA 02139, USA
| | - Xuemei Yang
- Global Drug Metabolism, Pharmacokinetics & Modeling, Preclinical & Translational Sciences, Takeda Development Center Americas, Inc., Cambridge, MA 02139, USA
| | - Mark G Qian
- Global Drug Metabolism, Pharmacokinetics & Modeling, Preclinical & Translational Sciences, Takeda Development Center Americas, Inc., Cambridge, MA 02139, USA
| | - Xiaobin Zhang
- Global Drug Metabolism, Pharmacokinetics & Modeling, Preclinical & Translational Sciences, Takeda Development Center Americas, Inc., Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Yu H, Ueckert S, Zhou L, Cheng J, Robertson D, Hansen L, Flor A, Parker V, Hamrén B, Khan AA. Exposure-response modeling for nausea incidence for cotadutide using a Markov modeling approach. CPT Pharmacometrics Syst Pharmacol 2024; 13:1582-1594. [PMID: 39044369 PMCID: PMC11533102 DOI: 10.1002/psp4.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Cotadutide is a dual glucagon-like peptide-1 (GLP-1)/glucagon receptor agonist. Gastrointestinal adverse effects are known to be associated with GLP-1 receptor agonism and can be mitigated through tolerance development via a gradual up-titration. This analysis aimed to characterize the relationship between exposure and nausea incidence and to optimize titration schemes. The model was developed with pooled data from cotadutide-administrated studies. Three different modeling approaches, proportional odds (PO), discrete-time Markov, and two-stage discrete-time Markov models, were employed to characterize the exposure-nausea relationship. The severity of nausea was modeled as different states (non-nausea, mild, and moderate/severe). The most appropriate model was selected to perform the covariate analysis, and the final covariate model was used to simulate the nausea event rates for various titration scenarios. The two Markov models demonstrated comparable performance and were better than the PO model. The covariate analysis was conducted with the standard Markov model for operational simplification and identified disease indications (NASH, obesity) and sex as covariates on Markov parameters. The simulations indicated that the biweekly titration with twofold dose escalation is superior to other titration schemes with a relatively low predicted nausea event rate at 600 μg (25%) and a shorter titration interval (8 weeks) to reach the therapeutic dose. The model can be utilized to optimize starting dose and titration schemes for other therapeutics in clinical trials to achieve an optimal risk-benefit balance and reach the therapeutic dose with minimal titration steps.
Collapse
Affiliation(s)
- Hongtao Yu
- Clinical Pharmacology and Quantitative PharmacologyClinical Pharmacology and Safety Sciences, R&D, AstraZenecaGaithersburgMarylandUSA
| | - Sebastian Ueckert
- Clinical Pharmacology and Quantitative PharmacologyClinical Pharmacology and Safety Sciences, R&D, AstraZenecaGothenburgSweden
| | - Lina Zhou
- Clinical Pharmacology and Quantitative PharmacologyClinical Pharmacology and Safety Sciences, R&D, AstraZenecaGaithersburgMarylandUSA
- Department of Pharmaceutical Sciences, College of PharmacyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Jenny Cheng
- Clinical Pharmacology and Quantitative PharmacologyClinical Pharmacology and Safety Sciences, R&D, AstraZenecaGaithersburgMarylandUSA
| | - Darren Robertson
- Early Clinical Development, Cardio‐Vascular, Renal and MetabolismR&D, AstraZenecaCambridgeUK
| | - Lars Hansen
- Early Clinical Development, Cardio‐Vascular, Renal and MetabolismR&D, AstraZenecaGaithersburgUSA
| | - Armando Flor
- Early Clinical Development, Cardio‐Vascular, Renal and MetabolismR&D, AstraZenecaGaithersburgUSA
| | - Victoria Parker
- Early Clinical Development, Cardio‐Vascular, Renal and MetabolismR&D, AstraZenecaCambridgeUK
| | - Bengt Hamrén
- Clinical Pharmacology and Quantitative PharmacologyClinical Pharmacology and Safety Sciences, R&D, AstraZenecaGothenburgSweden
| | - Anis A. Khan
- Clinical Pharmacology and Quantitative PharmacologyClinical Pharmacology and Safety Sciences, R&D, AstraZenecaGaithersburgMarylandUSA
| |
Collapse
|
4
|
Bosch R, Petrone M, Arends R, Vicini P, Sijbrands EJG, Hoefman S, Snelder N. Characterisation of cotadutide's dual GLP-1/glucagon receptor agonistic effects on glycaemic control using an in vivo human glucose regulation quantitative systems pharmacology model. Br J Pharmacol 2024; 181:1874-1885. [PMID: 38403793 DOI: 10.1111/bph.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/06/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND AND PURPOSE Cotadutide is a dual GLP-1 and glucagon receptor agonist with balanced agonistic activity at each receptor designed to harness the advantages on promoting liver health, weight loss and glycaemic control. We characterised the effects of cotadutide on glucose, insulin, GLP-1, GIP, and glucagon over time in a quantitative manner using our glucose dynamics systems model (4GI systems model), in combination with clinical data from a multiple ascending dose/Phase 2a (MAD/Ph2a) study in overweight and obese subjects with a history of Type 2 diabetes mellitus (NCT02548585). EXPERIMENTAL APPROACH The cotadutide PK-4GI systems model was calibrated to clinical data by re-estimating only food related parameters. In vivo cotadutide efficacy was scaled based on in vitro potency. The model was used to explore the effect of weight loss on insulin sensitivity and predict the relative contribution of the GLP-1 and glucagon receptor agonistic effects on glucose. KEY RESULTS Cotadutide MAD/Ph2a clinical endpoints were successfully predicted. The 4GI model captured a positive effect of weight loss on insulin sensitivity and showed that the stimulating effect of glucagon on glucose production counteracts the GLP-1 receptor-mediated decrease in glucose, resulting in a plateau for glucose decrease around a 200-μg cotadutide dose. CONCLUSION AND IMPLICATIONS The 4GI quantitative systems pharmacology model was able to predict the clinical effects of cotadutide on glucose, insulin, GLP-1, glucagon and GIP given known in vitro potency. The analyses demonstrated that the quantitative systems pharmacology model, and its successive refinements, will be a valuable tool to support the clinical development of cotadutide and related compounds.
Collapse
Affiliation(s)
| | - Marcella Petrone
- Clinical Pharmacology, Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Rosalin Arends
- Clinical Pharmacology, Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Paolo Vicini
- Clinical Pharmacology, Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Eric J G Sijbrands
- Department of Internal Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | | | | |
Collapse
|
5
|
Gong B, Yao Z, Zhou C, Wang W, Sun L, Han J. Glucagon-like peptide-1 analogs: Miracle drugs are blooming? Eur J Med Chem 2024; 269:116342. [PMID: 38531211 DOI: 10.1016/j.ejmech.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Glucagon-like peptide-1 (GLP-1), secreted by L cells in the small intestine, assumes a central role in managing type 2 diabetes mellitus (T2DM) and obesity. Its influence on insulin secretion and gastric emptying positions it as a therapeutic linchpin. However, the limited applicability of native GLP-1 stems from its short half-life, primarily due to glomerular filtration and the inactivating effect of dipeptidyl peptidase-IV (DPP-IV). To address this, various structural modification strategies have been developed to extend GLP-1's half-life. Despite the commendable efficacy displayed by current GLP-1 receptor agonists, inherent limitations persist. A paradigm shift emerges with the advent of unimolecular multi-agonists, such as the recently introduced tirzepatide, wherein GLP-1 is ingeniously combined with other gastrointestinal hormones. This novel approach has captured the spotlight within the diabetes and obesity research community. This review summarizes the physiological functions of GLP-1, systematically explores diverse structural modifications, delves into the realm of unimolecular multi-agonists, and provides a nuanced portrayal of the developmental prospects that lie ahead for GLP-1 analogs.
Collapse
Affiliation(s)
- Binbin Gong
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Zhihong Yao
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Chenxu Zhou
- College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Wenxi Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Lidan Sun
- College of Medicine, Jiaxing University, Jiaxing, 314001, China.
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
6
|
Yu H, Åstrand M, Cheng J, Nitin K, Hamrén B, Khan AA. Population Pharmacokinetic Modeling of Cotadutide: A Dual Agonist Peptide of Glucagon-Like Peptide and Glucagon Receptors Administered to Participants with Type II Diabetes Mellitus, Chronic Kidney Disease, Obesity and Non-Alcoholic Steatohepatitis. Clin Pharmacokinet 2024; 63:255-267. [PMID: 38236561 DOI: 10.1007/s40262-023-01337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Cotadutide is a dual glucagon-like peptide-1 (GLP-1) and glucagon (GCG) receptor agonist peptide. The objective of this analysis was to develop a population pharmacokinetic (popPK) model of cotadutide, and to identify any potential effect on the PK from intrinsic and extrinsic covariates. METHODS The popPK analysis utilized a non-linear mixed-effects modeling approach using the data from 10 clinical studies in different participant categories following once-daily subcutaneous dose administration ranging from 20 to 600 μg. Additionally, the covariates affecting cotadutide exposure were quantified, and the model performance was evaluated through the prediction-corrected visual predictive checks. RESULTS A one-compartment model with first-order absorption and elimination adequately described the data as confirmed via visual predictive check plots and parameter plausibility. The mean values for cotadutide apparent clearance (CL/F), apparent volume of distribution (V/F), absorption rate constant (Ka), and half-life were 1.05 L/h, 20.0 L, 0.38 h-1, and 13.3 hours, respectively. Covariate modeling identified body weight, alanine transaminase, albumin, anti-drug antibody (ADA) titer values, formulation strength and injection device, and participant categories as significant covariates on PK parameters, where ADAs have been identified to decrease cotadutide clearance. The model demonstrated that a 150-kg participant was estimated to have 30% lower for both AUC and Cmax and a 66 kg participant was estimated to have 35% higher for both AUC and Cmax relative to a reference individual with a median weight of 96 kg. CONCLUSIONS A popPK model was developed for cotadutide with cotadutide clinical data, and the impact of the statistically significant covariates identified was not considered clinically meaningful. The popPK model will be used to evaluate exposure-response relationships for cotadutide clinical data.
Collapse
Affiliation(s)
- Hongtao Yu
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA.
| | - Magnus Åstrand
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Jenny Cheng
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Kaila Nitin
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Bengt Hamrén
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Anis A Khan
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
7
|
Amatya R, Lee D, Min KA, Shin MC. Pharmaceutical Strategies to Improve Druggability of Potential Drug Candidates in Nonalcoholic Fatty Liver Disease Therapy. Pharmaceutics 2023; 15:1963. [PMID: 37514148 PMCID: PMC10386216 DOI: 10.3390/pharmaceutics15071963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become globally prevalent and is the leading cause of chronic liver disease. Although NAFLD is reversible without medical intervention in the early stage, the condition could be sequentially worsened to nonalcoholic steatohepatitis (NASH) and, eventually, cirrhosis and hepatic cancer. The progression of NAFLD is related to various factors such as genetics, pre-disposed metabolic disorders, and immunologic factors. Thankfully, to date, there have been accumulating research efforts and, as a result, different classes of potent drug candidates have been discovered. In addition, there have also been various attempts to explore pharmaceutical strategies to improve the druggability of drug candidates. In this review, we provided a brief overview of the drug candidates that have undergone clinical trials. In the latter part, strategies for developing better drugs are discussed.
Collapse
Affiliation(s)
- Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Republic of Korea
| | - Donghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Republic of Korea
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae 50834, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Republic of Korea
| |
Collapse
|
8
|
Spezani R, Marinho TS, Macedo Cardoso LE, Aguila MB, Mandarim-de-Lacerda CA. Pancreatic islet remodeling in cotadutide-treated obese mice. Life Sci 2023; 327:121858. [PMID: 37315839 DOI: 10.1016/j.lfs.2023.121858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) cause morphofunctional alterations in pancreatic islet alpha and beta cells. Therefore, we hypothesize that the new GLP-1/Glucagon receptor dual agonist cotadutide may benefit islet cell arrangement and function. Twelve-week-old C57BL/6 male mice were fed a control diet (C, 10 % kJ fat) or a high-fat diet (HF, 50 % kJ fat) for ten weeks. Then, the animals were divided into four groups for an additional 30 days and daily treated with subcutaneous cotadutide (30 nmol/kg) or vehicle: C, CC (control+cotadutide), HF, and HFC (high-fat+cotadutide). Cotadutide led to weight loss and reduced insulin resistance in the HFC group, increasing insulin receptor substrate 1 and solute carrier family 2 gene expressions in isolated islets. Also, cotadutide enhanced transcriptional factors related to islet cell transdifferentiation, decreasing aristaless-related homeobox and increasing the paired box 4 and 6, pancreatic and duodenal homeobox 1, v-maf musculoaponeurotic fibrosarcoma oncogene family protein A, neurogenin 3, and neurogenic differentiation 1. In addition, cotadutide improved the proliferating cell nuclear antigen, NK6 homeobox 1, B cell leukemia/lymphoma 2, but lessening caspase 3. Furthermore, cotadutide mitigated the endoplasmic reticulum (ER) stress-responsive genes, reducing transcription factor 4, DNA-damage-inducible transcript 3, and growth arrest and DNA-damage-inducible 45. In conclusion, our data demonstrated significant beneficial actions of cotadutide in DIO mice, such as weight loss, glycemic control, and insulin resistance improvement. In addition, cotadutide counteracted the pathological adaptive cellular arrangement of the pancreatic islet in obese mice, improving the markers of the transdifferentiating pathway, proliferation, apoptosis, and ER stress.
Collapse
Affiliation(s)
- Renata Spezani
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thatiany Souza Marinho
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz E Macedo Cardoso
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Klein G, Petrone M, Yang Y, Hoang T, Hazlett S, Hansen L, Flor A. Pharmacokinetics and Safety of Cotadutide, a GLP-1 and Glucagon Receptor Dual Agonist, in Individuals with Renal Impairment: A Single-Dose, Phase I, Bridging Study. Clin Pharmacokinet 2023; 62:881-890. [PMID: 37140727 PMCID: PMC10256642 DOI: 10.1007/s40262-023-01239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Cotadutide is a balanced glucagon-like peptide-1 and glucagon receptor dual agonist under development for the treatment of non-alcoholic steatohepatitis and type 2 diabetes with chronic kidney disease. We evaluated the pharmacokinetics (PK), safety and immunogenicity of a single dose of cotadutide in individuals with varying degrees of renal impairment. METHODS In this phase I bridging study, individuals 18-85 years of age, with a body mass index of 17-40 kg/m2 and varying degrees of renal function {end-stage renal disease (ESRD; creatinine clearance [CrCl] < 20 mL/min); severe renal impairment (CrCl ≥ 20 to < 30 mL/min); lower moderate renal impairment (CrCl ≥ 30 to < 44 mL/min); upper moderate renal impairment (CrCl ≥ 45 to < 60 mL/min); normal renal function (CrCl ≥ 90 mL/min)} were treated with a single dose of subcutaneous cotadutide 100 µg under fasted conditions in the lower abdomen. The co-primary endpoints were area under the plasma concentration-time curve from time zero to 48 h (AUC48) and the maximum observed plasma concentration (Cmax) for cotadutide. Safety and immunogenicity were secondary endpoints. This trial is registered with ClinicalTrials.gov (NCT03235375). RESULTS A total of 37 individuals were enrolled in the study (only three enrolled in the ESRD group, therefore this group was excluded from the primary PK analysis). AUC48 and Cmax values for cotadutide were similar across all renal function groups {severe renal impairment vs. normal renal function: AUC48 geometric mean ratio (GMR) 0.99 (90% confidence interval [CI] 0.76-1.29); lower moderate renal impairment versus normal renal function: AUC48 GMR 1.01 (90% CI 0.79-1.30); upper moderate renal impairment versus normal renal function: AUC48 GMR 1.09 (90% CI 0.82-1.43)}. A sensitivity analysis that combined the ESRD and severe renal impairment groups did not show notable changes in the AUC48 and Cmax GMRs. The incidences of treatment-emergent adverse events (TEAE) ranged from 42.9 to 72.7% across all groups and were mostly mild to moderate in severity. Only one patient had a grade III or worse TEAE during the study period. No positive antidrug antibody results were observed. CONCLUSIONS These results suggest that the PK and tolerability of cotadutide are unaffected by renal function and that dose adjustments may not be required in individuals with renal impairment.
Collapse
Affiliation(s)
| | - Marcella Petrone
- Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| | - Ye Yang
- Early Biometrics and Statistical Innovation, Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Sheila Hazlett
- Late-Stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Lars Hansen
- Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Armando Flor
- Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA.
| |
Collapse
|
10
|
Zhihong Y, Chen W, Qianqian Z, Lidan S, Qiang Z, Jing H, Wenxi W, Bhawal R. Emerging roles of oxyntomodulin-based glucagon-like peptide-1/glucagon co-agonist analogs in diabetes and obesity. Peptides 2023; 162:170955. [PMID: 36669563 DOI: 10.1016/j.peptides.2023.170955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Oxyntomodulin (OXM) is an endogenous peptide hormone secreted from the intestines following nutrient ingestion that activates both glucagon-like peptide-1 (GLP-1) and glucagon receptors. OXM is known to exert various effects, including improvement in glucose tolerance, promotion of energy expenditure, acceleration of liver lipolysis, inhibition of food intake, delay of gastric emptying, neuroprotection, and pain relief. The antidiabetic and antiobesity properties have led to the development of biologically active and enzymatically stable OXM-based analogs with proposed therapeutic promise for metabolic diseases. Structural modification of OXM was ongoing to enhance its potency and prolong half-life, and several GLP-1/glucagon dual receptor agonist-based therapies are being explored in clinical trials for the treatment of type 2 diabetes mellitus and its complications. In the present article, we provide a brief overview of the physiology of OXM, focusing on its structural-activity relationship and ongoing clinical development.
Collapse
Affiliation(s)
- Yao Zhihong
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Wang Chen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Zhu Qianqian
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Sun Lidan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China.
| | - Zhou Qiang
- The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Han Jing
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Wang Wenxi
- The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| |
Collapse
|