1
|
Wu X, Yang Z, Zou J, Gao H, Shao Z, Li C, Lei P. Protein kinases in neurodegenerative diseases: current understandings and implications for drug discovery. Signal Transduct Target Ther 2025; 10:146. [PMID: 40328798 PMCID: PMC12056177 DOI: 10.1038/s41392-025-02179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025] Open
Abstract
Neurodegenerative diseases (e.g., Alzheimer's, Parkinson's, Huntington's disease, and Amyotrophic Lateral Sclerosis) are major health threats for the aging population and their prevalences continue to rise with the increasing of life expectancy. Although progress has been made, there is still a lack of effective cures to date, and an in-depth understanding of the molecular and cellular mechanisms of these neurodegenerative diseases is imperative for drug development. Protein phosphorylation, regulated by protein kinases and protein phosphatases, participates in most cellular events, whereas aberrant phosphorylation manifests as a main cause of diseases. As evidenced by pharmacological and pathological studies, protein kinases are proven to be promising therapeutic targets for various diseases, such as cancers, central nervous system disorders, and cardiovascular diseases. The mechanisms of protein phosphatases in pathophysiology have been extensively reviewed, but a systematic summary of the role of protein kinases in the nervous system is lacking. Here, we focus on the involvement of protein kinases in neurodegenerative diseases, by summarizing the current knowledge on the major kinases and related regulatory signal transduction pathways implicated in diseases. We further discuss the role and complexity of kinase-kinase networks in the pathogenesis of neurodegenerative diseases, illustrate the advances of clinical applications of protein kinase inhibitors or novel kinase-targeted therapeutic strategies (such as antisense oligonucleotides and gene therapy) for effective prevention and early intervention.
Collapse
Affiliation(s)
- Xiaolei Wu
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhangzhong Yang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinjun Zou
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Emili M, Stagni F, Russo C, Angelozzi L, Guidi S, Bartesaghi R. Reversal of neurodevelopmental impairment and cognitive enhancement by pharmacological intervention with the polyphenol polydatin in a Down syndrome model. Neuropharmacology 2024; 261:110170. [PMID: 39341334 DOI: 10.1016/j.neuropharm.2024.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Intellectual disability (ID) is the unavoidable hallmark of Down syndrome (DS), a genetic condition due to triplication of chromosome 21. ID in DS is largely attributable to neurogenesis and dendritogenesis alterations taking place in the prenatal/neonatal period, the most critical time window for brain development. There are currently no treatments for ID in DS. Considering the timeline of brain development, treatment aimed at improving the neurological phenotypes of DS should be initiated as early as possible and use safe agents. The goal of this study was to establish whether it is possible to improve DS-linked neurodevelopmental defects through early treatment with polydatin, a natural polyphenol. We used the Ts65Dn mouse model of DS and focused on the hippocampus, a brain region fundamental for long-term memory. We found that in Ts65Dn mice of both sexes treated with polydatin from postnatal (P) day 3 to P15 there was full restoration of neurogenesis, neuron number, and dendritic development. These effects were accompanied by normalization of Cyclin D1 and DSCAM levels, which may account for the rescue of neurogenesis and dendritogenesis, respectively. Importantly, in Ts65Dn mice treated with polydatin from P3 to adolescence (∼P50) there was full restoration of hippocampus-dependent memory, indicating a pro-cognitive outcome of treatment. No adverse effects were observed on the body and brain weight. The efficacy and safety of polydatin in a model of DS prospect the possibility of its use during early life stages for amelioration of DS-linked neurodevelopmental alterations.
Collapse
Affiliation(s)
- Marco Emili
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Carla Russo
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Laura Angelozzi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
3
|
Alldred MJ, Ibrahim KW, Pidikiti H, Chiosis G, Mufson EJ, Stutzmann GE, Ginsberg SD. Down syndrome frontal cortex layer III and layer V pyramidal neurons exhibit lamina specific degeneration in aged individuals. Acta Neuropathol Commun 2024; 12:182. [PMID: 39605035 PMCID: PMC11603868 DOI: 10.1186/s40478-024-01891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Selective vulnerability of neuronal populations occurs in both Down syndrome (DS) and Alzheimer's disease (AD), resulting in disproportional degeneration of pyramidal neurons (PNs) affecting memory and executive function. Elucidating the cellular mechanisms underlying the selective vulnerability of these populations will provide pivotal insights for disease progression in DS and AD. Single population RNA-sequencing analysis was performed on neurons critical for executive function, prefrontal cortex Brodmann area 9 (BA9) layer III (L3) and layer V (L5) excitatory PNs in postmortem human DS and age- and sex-matched control (CTR) brains. Data mining was performed on differentially expressed genes (DEGs) from PNs in each lamina with DEGs divergent between lamina identified and interrogated. Bioinformatic inquiry of L3 PNs revealed more unique/differentially expressed DEGs (uDEGs) than in L5 PNs in DS compared to CTR subjects, indicating gene dysregulation shows both spatial and cortical laminar projection neuron dependent dysregulation. DS triplicated human chromosome 21 (HSA21) comprised a subset of DEGs only dysregulated in L3 or L5 neurons, demonstrating partial cellular specificity in HSA21 expression. These HSA21 uDEGs had a disproportionally high number of noncoding RNAs, suggesting lamina specific dysfunctional gene regulation. L3 uDEGs revealed overall more dysregulation of cellular pathways and processes, many relevant to early AD pathogenesis, while L5 revealed processes suggestive of frank AD pathology. These findings indicate that trisomy differentially affects a subpopulation of uDEGs in L3 and L5 BA9 projection neurons in aged individuals with DS, which may inform circuit specific pathogenesis underlying DS and AD.
Collapse
Affiliation(s)
- Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, 845-398-2170, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Kyrillos W Ibrahim
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, 845-398-2170, USA
| | - Harshitha Pidikiti
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, 845-398-2170, USA
| | - Gabriela Chiosis
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, 845-398-2170, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Geiger M, Hurewitz SR, Pawlowski K, Baumer NT, Wilkinson CL. Alterations in aperiodic and periodic EEG activity in young children with Down syndrome. Neurobiol Dis 2024; 200:106643. [PMID: 39173846 PMCID: PMC11452906 DOI: 10.1016/j.nbd.2024.106643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Down syndrome (DS) is the most common cause of intellectual disability, yet little is known about the neurobiological pathways leading to cognitive impairments. Electroencephalographic (EEG) measures are commonly used to study neurodevelopmental disorders, but few studies have focused on young children with DS. Here we assess resting state EEG data collected from toddlers/preschoolers with DS (n = 29, age 13-48 months old) and compare their aperiodic and periodic EEG features with both age-matched (n = 29) and developmental-matched (n = 58) comparison groups. DS participants exhibited significantly reduced aperiodic slope, increased periodic theta power, and decreased alpha peak amplitude. A majority of DS participants displayed a prominent peak in the theta range, whereas a theta peak was not present in age-matched participants. Overall, similar findings were also observed when comparing DS and developmental-matched groups, suggesting that EEG differences are not explained by delayed cognitive ability.
Collapse
Affiliation(s)
- McKena Geiger
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Sophie R Hurewitz
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Katherine Pawlowski
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Nicole T Baumer
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Carol L Wilkinson
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Alldred MJ, Pidikiti H, Ibrahim KW, Lee SH, Heguy A, Hoffman GE, Roussos P, Wisniewski T, Wegiel J, Stutzmann GE, Mufson EJ, Ginsberg SD. Analysis of microisolated frontal cortex excitatory layer III and V pyramidal neurons reveals a neurodegenerative phenotype in individuals with Down syndrome. Acta Neuropathol 2024; 148:16. [PMID: 39105932 PMCID: PMC11578391 DOI: 10.1007/s00401-024-02768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 08/07/2024]
Abstract
We elucidated the molecular fingerprint of vulnerable excitatory neurons within select cortical lamina of individuals with Down syndrome (DS) for mechanistic understanding and therapeutic potential that also informs Alzheimer's disease (AD) pathophysiology. Frontal cortex (BA9) layer III (L3) and layer V (L5) pyramidal neurons were microisolated from postmortem human DS and age- and sex-matched controls (CTR) to interrogate differentially expressed genes (DEGs) and key biological pathways relevant to neurodegenerative programs. We identified > 2300 DEGs exhibiting convergent dysregulation of gene expression in both L3 and L5 pyramidal neurons in individuals with DS versus CTR subjects. DEGs included over 100 triplicated human chromosome 21 genes in L3 and L5 neurons, demonstrating a trisomic neuronal karyotype in both laminae. In addition, thousands of other DEGs were identified, indicating gene dysregulation is not limited to trisomic genes in the aged DS brain, which we postulate is relevant to AD pathobiology. Convergent L3 and L5 DEGs highlighted pertinent biological pathways and identified key pathway-associated targets likely underlying corticocortical neurodegeneration and related cognitive decline in individuals with DS. Select key DEGs were interrogated as potential hub genes driving dysregulation, namely the triplicated DEGs amyloid precursor protein (APP) and superoxide dismutase 1 (SOD1), along with key signaling DEGs including mitogen activated protein kinase 1 and 3 (MAPK1, MAPK3) and calcium calmodulin dependent protein kinase II alpha (CAMK2A), among others. Hub DEGs determined from multiple pathway analyses identified potential therapeutic candidates for amelioration of cortical neuron dysfunction and cognitive decline in DS with translational relevance to AD.
Collapse
Affiliation(s)
- Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Harshitha Pidikiti
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | - Kyrillos W Ibrahim
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Adriana Heguy
- Genome Technology Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Gabriel E Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and the Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and the Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Wisniewski
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Geiger M, Hurewitz SR, Pawlowski K, Baumer NT, Wilkinson CL. Alterations in aperiodic and periodic EEG activity in young children with Down syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306729. [PMID: 38746335 PMCID: PMC11092732 DOI: 10.1101/2024.05.01.24306729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Down syndrome is the most common cause of intellectual disability, yet little is known about the neurobiological pathways leading to cognitive impairments. Electroencephalographic (EEG) measures are commonly used to study neurodevelopmental disorders, but few studies have focused on young children with DS. Here we assess resting state EEG data collected from toddlers/preschoolers with DS (n=29, age 13-48 months old) and compare their aperiodic and periodic EEG features with both age-matched (n=29) and cognitive-matched (n=58) comparison groups. DS participants exhibited significantly reduced aperiodic slope, increased periodic theta power, and decreased alpha peak amplitude. A majority of DS participants displayed a prominent peak in the theta range, whereas a theta peak was not present in age-matched participants. Overall, similar findings were also observed when comparing DS and cognitive-matched groups, suggesting that EEG differences are not explained by delayed cognitive ability.
Collapse
|
7
|
Gautier MK, Kelley CM, Lee SH, Alldred MJ, McDaid J, Mufson EJ, Stutzmann GE, Ginsberg SD. Maternal choline supplementation protects against age-associated cholinergic and GABAergic basal forebrain neuron degeneration in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. Neurobiol Dis 2023; 188:106332. [PMID: 37890559 PMCID: PMC10752300 DOI: 10.1016/j.nbd.2023.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by triplication of human chromosome 21. In addition to intellectual disability, DS is defined by a premature aging phenotype and Alzheimer's disease (AD) neuropathology, including septohippocampal circuit vulnerability and degeneration of basal forebrain cholinergic neurons (BFCNs). The Ts65Dn mouse model recapitulates key aspects of DS/AD pathology, namely age-associated atrophy of BFCNs and cognitive decline in septohippocampal-dependent behavioral tasks. We investigated whether maternal choline supplementation (MCS), a well-tolerated treatment modality, protects vulnerable BFCNs from age- and genotype-associated degeneration in trisomic offspring. We also examined the effect of trisomy, and MCS, on GABAergic basal forebrain parvalbumin neurons (BFPNs), an unexplored neuronal population in this DS model. Unbiased stereological analyses of choline acetyltransferase (ChAT)-immunoreactive BFCNs and parvalbumin-immunoreactive BFPNs were conducted using confocal z-stacks of the medial septal nucleus and the vertical limb of the diagonal band (MSN/VDB) in Ts65Dn mice and disomic (2N) littermates at 3-4 and 10-12 months of age. MCS trisomic offspring displayed significant increases in ChAT-immunoreactive neuron number and density compared to unsupplemented counterparts, as well as increases in the area of the MSN/VDB occupied by ChAT-immunoreactive neuropil. MCS also rescued BFPN number and density in Ts65Dn offspring, a novel rescue of a non-cholinergic cell population. Furthermore, MCS prevented age-associated loss of BFCNs and MSN/VDB regional area in 2N offspring, indicating genotype-independent neuroprotective benefits. These findings demonstrate MCS provides neuroprotection of vulnerable BFCNs and non-cholinergic septohippocampal BFPNs, indicating this modality has translational value as an early life therapy for DS, as well as extending benefits to the aging population at large.
Collapse
Affiliation(s)
- Megan K Gautier
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Pathobiology and Translational Medicine Program, New York University Grossman School of Medicine, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Christy M Kelley
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, AZ, USA; Institute for Future Health, Scottsdale, AZ, USA
| | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - John McDaid
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Elliott J Mufson
- Departments of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Scott-McKean JJ, Jones R, Johnson MW, Mier J, Basten IA, Stasko MR, Costa ACS. Emergence of Treadmill Running Ability and Quantitative Assessment of Gait Dynamics in Young Ts65Dn Mice: A Mouse Model for Down Syndrome. Brain Sci 2023; 13:brainsci13050743. [PMID: 37239215 DOI: 10.3390/brainsci13050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Down syndrome (DS), which results from the complete or partial trisomy of chromosome 21 (trisomy-21), is the most common genetically defined cause of intellectual disability. Trisomy-21 also produces, or is associated with, many neurodevelopmental phenotypes and neurological comorbidities, including delays and deficits in fine and gross motor development. The Ts65Dn mouse is the most studied animal model for DS and displays the largest known subset of DS-like phenotypes. To date, however, only a small number of developmental phenotypes have been quantitatively defined in these animals. Here, we used a commercially available high-speed, video-based system to record and analyze the gait of Ts65Dn and euploid control mice. Longitudinal treadmill recordings were performed from p17 to p35. One of the main findings was the detection of genotype- and sex-dependent developmental delays in the emergence of consistent, progressive-intensity gait in Ts65Dn mice when compared to control mice. Gait dynamic analysis showed wider normalized front and hind stances in Ts65Dn mice compared to control mice, which may reflect deficits in dynamic postural balance. Ts65Dn mice also displayed statistically significant differences in the variability in several normalized gait measures, which were indicative of deficits in precise motor control in generating gait.
Collapse
Affiliation(s)
- Jonah J Scott-McKean
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-6090, USA
| | - Ryan Jones
- College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43606-3390, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106-6090, USA
| | - Mark W Johnson
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106-6090, USA
| | - Joyce Mier
- Physical Therapy Program, University of Wisconsin, Madison, WI 53706-1532, USA
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-6090, USA
| | - Ines A Basten
- Psychiatric Hospital Asster, 3800 Sint-Truiden, Belgium
| | - Melissa R Stasko
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106-6090, USA
| | - Alberto C S Costa
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-6090, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106-6090, USA
| |
Collapse
|
9
|
Siegel AE, Bianchi DW, Guedj F. Visual discrimination and inhibitory control deficits in mouse models of Down syndrome: A pilot study using rodent touchscreen technology. J Neurosci Res 2023; 101:492-507. [PMID: 36602162 PMCID: PMC10068543 DOI: 10.1002/jnr.25160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
Several non-verbal cognitive and behavioral tests have been developed to assess learning deficits in humans with Down syndrome (DS). Here we used rodent touchscreen paradigms in adult male mice to investigate visual discrimination (VD) learning and inhibitory control in the Dp(16)1/Yey (C57BL/6J genetic background), Ts65Dn (mixed B6 X C3H genetic background) and Ts1Cje (C57BL/6J genetic background) mouse models of DS. Dp(16)1/Yey and Ts1Cje models did not exhibit motivation or learning deficits during early pre-training, however, Ts1Cje mice showed a significant learning delay after the introduction of the incorrect stimulus (late pre-training), suggesting prefrontal cortex defects in this model. Dp(16)1/Yey and Ts1Cje mice display learning deficits in VD but these deficits were more pronounced in the Dp(16)1/Yey model. Both models also exhibited compulsive behavior and abnormal cortical inhibitory control during Extinction compared to WT littermates. Finally, Ts65Dn mice outperformed WT littermates in pre-training stages by initiating a significantly higher number of trials due to their hyperactive behavior. Both Ts65Dn and WT littermates showed poor performance during late pre-training and were not tested in VD. These studies demonstrate significant learning deficits and compulsive behavior in the Ts1Cje and Dp(16)1/Yey mouse models of DS. They also demonstrate that the mouse genetic background (C57BL/6J vs. mixed B6 X C3H) and the absence of hyperactive behavior are key determinants of successful learning in touchscreen behavioral testing. These data will be used to select the mouse model that best mimics cognitive deficits in humans with DS and evaluate the effects of future therapeutic interventions.
Collapse
Affiliation(s)
- Ashley Emily Siegel
- Prenatal Genomics and Therapy (PGT) Section, Center for Precision Health Research (CPHR), National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Mother Infant Research Institute (MIRI), Tufts Medical Center (TMC), Boston, Massachusetts, USA
| | - Diana W. Bianchi
- Prenatal Genomics and Therapy (PGT) Section, Center for Precision Health Research (CPHR), National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Mother Infant Research Institute (MIRI), Tufts Medical Center (TMC), Boston, Massachusetts, USA
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Faycal Guedj
- Prenatal Genomics and Therapy (PGT) Section, Center for Precision Health Research (CPHR), National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Mother Infant Research Institute (MIRI), Tufts Medical Center (TMC), Boston, Massachusetts, USA
| |
Collapse
|
10
|
Ishihara K, Kawashita E, Akiba S. Bio-Metal Dyshomeostasis-Associated Acceleration of Aging and Cognitive Decline in Down Syndrome. Biol Pharm Bull 2023; 46:1169-1175. [PMID: 37661395 DOI: 10.1248/bpb.b23-00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Down syndrome (DS), which is caused by triplication of human chromosome 21 (Hsa21), exhibits some physical signs of accelerated aging, such as graying hair, wrinkles and menopause at an unusually young age. Development of early-onset Alzheimer's disease, which is frequently observed in adults with DS, is also suggested to occur due to accelerated aging of the brain. Several Hsa21 genes are suggested to be responsible for the accelerated aging in DS. In this review, we summarize these candidate genes and possible molecular mechanisms, and discuss the related key factors. In particular, we focus on copper, an essential trace element, as a key factor in the accelerated aging in DS. In addition, the physiological significance of brain copper accumulation in cognitive impairment is discussed. We herein provide our hypothesis on the copper dyshomeostasis-based pathophysiology of DS.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry (Currently known as Laboratory of Pathological Biochemistry), Kyoto Pharmaceutical University
| | - Eri Kawashita
- Department of Pathological Biochemistry (Currently known as Laboratory of Pathological Biochemistry), Kyoto Pharmaceutical University
| | - Satoshi Akiba
- Department of Pathological Biochemistry (Currently known as Laboratory of Pathological Biochemistry), Kyoto Pharmaceutical University
| |
Collapse
|
11
|
Salah El-Din A, Yahia S, Zeid MS, El-Hadidy MA, Wahba Y. Effects of Cerebrolysin on the Neurodevelopmental Outcomes in Infants with Down Syndrome: A Randomized Controlled Pilot Trial. JOURNAL OF MENTAL HEALTH RESEARCH IN INTELLECTUAL DISABILITIES 2022; 15:306-321. [DOI: 10.1080/19315864.2022.2098433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Affiliation(s)
- Ahmed Salah El-Din
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sohier Yahia
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mayada Sabry Zeid
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Yahya Wahba
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
12
|
Fatty Acids: A Safe Tool for Improving Neurodevelopmental Alterations in Down Syndrome? Nutrients 2022; 14:nu14142880. [PMID: 35889838 PMCID: PMC9323400 DOI: 10.3390/nu14142880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The triplication of chromosome 21 causes Down syndrome (DS), a genetic disorder that is characterized by intellectual disability (ID). The causes of ID start in utero, leading to impairments in neurogenesis, and continue into infancy, leading to impairments in dendritogenesis, spinogenesis, and connectivity. These defects are associated with alterations in mitochondrial and metabolic functions and precocious aging, leading to the early development of Alzheimer’s disease. Intense efforts are currently underway, taking advantage of DS mouse models to discover pharmacotherapies for the neurodevelopmental and cognitive deficits of DS. Many treatments that proved effective in mouse models may raise safety concerns over human use, especially at early life stages. Accumulating evidence shows that fatty acids, which are nutrients present in normal diets, exert numerous positive effects on the brain. Here, we review (i) the knowledge obtained from animal models regarding the effects of fatty acids on the brain, by focusing on alterations that are particularly prominent in DS, and (ii) the progress recently made in a DS mouse model, suggesting that fatty acids may indeed represent a useful treatment for DS. This scenario should prompt the scientific community to further explore the potential benefit of fatty acids for people with DS.
Collapse
|
13
|
Stagni F, Bartesaghi R. The Challenging Pathway of Treatment for Neurogenesis Impairment in Down Syndrome: Achievements and Perspectives. Front Cell Neurosci 2022; 16:903729. [PMID: 35634470 PMCID: PMC9130961 DOI: 10.3389/fncel.2022.903729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS), also known as trisomy 21, is a genetic disorder caused by triplication of Chromosome 21. Gene triplication may compromise different body functions but invariably impairs intellectual abilities starting from infancy. Moreover, after the fourth decade of life people with DS are likely to develop Alzheimer’s disease. Neurogenesis impairment during fetal life stages and dendritic pathology emerging in early infancy are thought to be key determinants of alterations in brain functioning in DS. Although the progressive improvement in medical care has led to a notable increase in life expectancy for people with DS, there are currently no treatments for intellectual disability. Increasing evidence in mouse models of DS reveals that pharmacological interventions in the embryonic and neonatal periods may greatly benefit brain development and cognitive performance. The most striking results have been obtained with pharmacotherapies during embryonic life stages, indicating that it is possible to pharmacologically rescue the severe neurodevelopmental defects linked to the trisomic condition. These findings provide hope that similar benefits may be possible for people with DS. This review summarizes current knowledge regarding (i) the scope and timeline of neurogenesis (and dendritic) alterations in DS, in order to delineate suitable windows for treatment; (ii) the role of triplicated genes that are most likely to be the key determinants of these alterations, in order to highlight possible therapeutic targets; and (iii) prenatal and neonatal treatments that have proved to be effective in mouse models, in order to rationalize the choice of treatment for human application. Based on this body of evidence we will discuss prospects and challenges for fetal therapy in individuals with DS as a potential means of drastically counteracting the deleterious effects of gene triplication.
Collapse
Affiliation(s)
- Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- *Correspondence: Renata Bartesaghi,
| |
Collapse
|
14
|
Evidence of Energy Metabolism Alterations in Cultured Neonatal Astrocytes Derived from the Ts65Dn Mouse Model of Down Syndrome. Brain Sci 2022; 12:brainsci12010083. [PMID: 35053826 PMCID: PMC8773919 DOI: 10.3390/brainsci12010083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/10/2022] Open
Abstract
For many decades, neurons have been the central focus of studies on the mechanisms underlying the neurodevelopmental and neurodegenerative aspects of Down syndrome (DS). Astrocytes, which were once thought to have only a passive role, are now recognized as active participants of a variety of essential physiological processes in the brain. Alterations in their physiological function have, thus, been increasingly acknowledged as likely initiators of or contributors to the pathogenesis of many nervous system disorders and diseases. In this study, we carried out a series of real-time measurements of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in hippocampal astrocytes derived from neonatal Ts65Dn and euploid control mice using a Seahorse XFp Flux Analyzer. Our results revealed a significant basal OCR increase in neonatal Ts65Dn astrocytes compared with those from control mice, indicating increased oxidative phosphorylation. ECAR did not differ between the groups. Given the importance of astrocytes in brain metabolic function and the linkage between astrocytic and neuronal energy metabolism, these data provide evidence against a pure “neurocentric” vision of DS pathophysiology and support further investigations on the potential contribution of disturbances in astrocytic energy metabolism to cognitive deficits and neurodegeneration associated with DS.
Collapse
|
15
|
Bartesaghi R, Vicari S, Mobley WC. Prenatal and Postnatal Pharmacotherapy in Down Syndrome: The Search to Prevent or Ameliorate Neurodevelopmental and Neurodegenerative Disorders. Annu Rev Pharmacol Toxicol 2022; 62:211-233. [PMID: 34990205 PMCID: PMC9632639 DOI: 10.1146/annurev-pharmtox-041521-103641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Those with Down syndrome (DS)-trisomy for chromosome 21-are routinely impacted by cognitive dysfunction and behavioral challenges in children and adults and Alzheimer's disease in older adults. No proven treatments specifically address these cognitive or behavioral changes. However, advances in the establishment of rodent models and human cell models promise to support development of such treatments. A research agenda that emphasizes the identification of overexpressed genes that contribute demonstrably to abnormalities in cognition and behavior in model systems constitutes a rational next step. Normalizing expression of such genes may usher in an era of successful treatments applicable across the life span for those with DS.
Collapse
Affiliation(s)
- Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefano Vicari
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, 00168 Rome, Italy,Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165-00146 Rome, Italy
| | - William C. Mobley
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
16
|
Schworer EK, Voth K, Hoffman EK, Esbensen AJ. Short-term memory outcome measures: Psychometric evaluation and performance in youth with Down syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2022; 120:104147. [PMID: 34922089 PMCID: PMC8724458 DOI: 10.1016/j.ridd.2021.104147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Improving short-term memory (STM) performance for individuals with Down syndrome (DS) has been a target of recent clinical trials. Validation of STM outcome measures is essential for research rigor in trials among children and adolescents with DS. AIMS The current study investigated the psychometric properties of four direct STM assessments and one everyday memory parent form. METHODS AND PROCEDURES Measures were administered to a sample of 74 youth with DS at two visits, two weeks apart. Overall cognitive abilities were also assessed. OUTCOMES AND RESULTS The OMQ-PF had good feasibility and distribution of scores, but floor effects were prominent for direct measures. Test-retest reliability was poor to moderate for all measures and practice effects were problematic for the NEPSY-II List Memory and DAS-II Recall of Objects subtests. Commonalities in responses were observed, including primacy/recency effects, and some STM scores were correlated with overall cognitive abilities. CONCLUSIONS AND IMPLICATIONS The OMQ-PF met most study criteria, but no direct measure met sufficient criteria to be strongly recommended for future clinical trials. Because higher cognitive abilities were related to assessment completion, STM measures may require adaptation for use in broader samples of youth with DS across all levels of cognitive ability.
Collapse
Affiliation(s)
- Emily K Schworer
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Kellie Voth
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Emily K Hoffman
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna J Esbensen
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
17
|
Kleschevnikov A. GIRK2 Channels in Down Syndrome and Alzheimer's Disease. Curr Alzheimer Res 2022; 19:819-829. [PMID: 36567290 DOI: 10.2174/1567205020666221223122110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/27/2022]
Abstract
Cognitive impairment in Down syndrome (DS) results from the abnormal expression of hundreds of genes. However, the impact of KCNJ6, a gene located in the middle of the 'Down syndrome critical region' of chromosome 21, seems to stand out. KCNJ6 encodes GIRK2 (KIR3.2) subunits of G protein-gated inwardly rectifying potassium channels, which serve as effectors for GABAB, m2, 5HT1A, A1, and many other postsynaptic metabotropic receptors. GIRK2 subunits are heavily expressed in neocortex, cerebellum, and hippocampus. By controlling resting membrane potential and neuronal excitability, GIRK2 channels may thus affect both synaptic plasticity and stability of neural circuits in the brain regions important for learning and memory. Here, we discuss recent experimental data regarding the role of KCNJ6/GIRK2 in neuronal abnormalities and cognitive impairment in models of DS and Alzheimer's disease (AD). The results compellingly show that signaling through GIRK2 channels is abnormally enhanced in mouse genetic models of Down syndrome and that partial suppression of GIRK2 channels with pharmacological or genetic means can restore synaptic plasticity and improve impaired cognitive functions. On the other hand, signaling through GIRK2 channels is downregulated in AD models, such as models of early amyloidopathy. In these models, reduced GIRK2 channel signaling promotes neuronal hyperactivity, causing excitatory-inhibitory imbalance and neuronal death. Accordingly, activation of GABAB/GIRK2 signaling by GIRK channel activators or GABAB receptor agonists may reduce Aβ-induced hyperactivity and subsequent neuronal death, thereby exerting a neuroprotective effect in models of AD.
Collapse
|
18
|
Costa ACS, Brandão AC, Boada R, Barrionuevo VL, Taylor HG, Roth E, Stasko MR, Johnson MW, Assir FF, Roberto MP, Salmona P, Abreu-Silveira G, Bederman I, Prendergast E, Hüls A, Abrishamcar S, Mustacchi Z, Scheidemantel T, Roizen NJ, Ruedrich S. Safety, efficacy, and tolerability of memantine for cognitive and adaptive outcome measures in adolescents and young adults with Down syndrome: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 2021; 21:31-41. [PMID: 34942135 DOI: 10.1016/s1474-4422(21)00369-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Down syndrome is a chromosomal disorder with considerable neurodevelopmental impact and neurodegenerative morbidity. In a pilot trial in young adults with Down syndrome, memantine (a drug approved for Alzheimer's disease) showed a significant effect on a secondary measure of episodic memory. We aimed to test whether memantine would improve episodic memory in adolescents and young adults with Down syndrome. METHODS We did a randomised, double-blind, placebo-controlled phase 2 trial with a parallel design, stratified by age and sex. Participants (aged 15-32 years) with either trisomy 21 or complete unbalanced translocation of chromosome 21 and in general good health were recruited from the community at one site in Brazil and another in the USA. Participants were randomly assigned (1:1) to receive either memantine (20 mg/day orally) or placebo for 16 weeks. Computer-generated randomisation tables for both sites (allocating a placebo or drug label to each member of a unique pair of participants) were centrally produced by an independent statistician and were shared only with investigational pharmacists at participating sites until unblinding of the study. Participants and investigators were masked to treatment assignments. Neuropsychological assessments were done at baseline (T1) and week 16 (T2). The primary outcome measure was change from baseline to week 16 in the California Verbal Learning Test-second edition short-form (CVLT-II-sf) total free recall score, assessed in the per-protocol population (ie, participants who completed 16 weeks of treatment and had neuropsychological assessments at T1 and T2). Linear mixed effect models were fit to data from the per-protocol population. Safety and tolerability were monitored and analysed in all participants who started treatment. Steady-state concentrations in plasma of memantine were measured at the end of the trial. This study is registered at ClinicalTrials.gov, number NCT02304302. FINDINGS From May 13, 2015, to July 22, 2020, 185 participants with Down syndrome were assessed for eligibility and 160 (86%) were randomly assigned either memantine (n=81) or placebo (n=79). All participants received their allocated treatment. Linear mixed effect models were fit to data from 149 (81%) participants, 73 in the memantine group and 76 in the placebo group, after 11 people (eight in the memantine group and three in the placebo group) discontinued due to COVID-19 restrictions, illness of their caregiver, adverse events, or low compliance. The primary outcome measure did not differ between groups (CVLT-II-sf total free recall score, change from baseline 0·34 points [95% CI -0·98 to 1·67], p=0·61). Memantine was well tolerated, with infrequent mild-to-moderate adverse events, the most common being viral upper respiratory infection (nine [11%] participants in the memantine group and 12 [15%] in the placebo group) and transient dizziness (eight [10%] in the memantine group and six [8%] in the placebo group). No serious adverse events were observed. Amounts of memantine in plasma were substantially lower than those considered therapeutic for Alzheimer's disease. INTERPRETATION Memantine was well tolerated, but cognition-enhancing effects were not recorded with a 20 mg/day dose in adolescents and young adults with Down syndrome. Exploratory analyses point to a need for future work. FUNDING Alana Foundation. TRANSLATION For the Portuguese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Alberto C S Costa
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Ana C Brandão
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Richard Boada
- Department of Pediatrics, School of Medicine, University of Colorado Aurora, CO, USA
| | | | - Hudson G Taylor
- Center for Biobehavioral Health, Nationwide Children's Hospital Research Institute, Ohio State University, Columbus, OH, USA
| | - Elizabeth Roth
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Melissa R Stasko
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mark W Johnson
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Patrícia Salmona
- São Paulo Center for Clinical Studies and Research-CEPEC-SP, São Paulo, Brazil
| | | | - Ilya Bederman
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Erin Prendergast
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Sarina Abrishamcar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Zan Mustacchi
- São Paulo Center for Clinical Studies and Research-CEPEC-SP, São Paulo, Brazil
| | - Thomas Scheidemantel
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Nancy J Roizen
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Stephen Ruedrich
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
19
|
Xi JJ, Yang GH, Liu YN, Qiu JJ, Gong XL, Yan JB, Zeng F. Genome-wide hypermethylation is closely associated with abnormal expression of genes involved in neural development in induced pluripotent stem cells derived from a Down syndrome mouse model. Cell Biol Int 2021; 45:1383-1392. [PMID: 33527608 DOI: 10.1002/cbin.11560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/05/2020] [Accepted: 06/13/2020] [Indexed: 11/10/2022]
Abstract
Mental retardation is the main clinical manifestation of Down syndrome (DS), and neural abnormalities occur during the early embryonic period and continue throughout life. Tc1, a model mouse for DS, carries the majority part of the human chromosome 21 and has multiple neuropathy phenotypes similar to patients with DS. To explore the mechanism of early neural abnormalities of Tc1 mouse, induced pluripotent stem (iPS) cells from Tc1 mice were obtained, and genome-wide gene expression and methylation analysis were performed for Tc1 and wild-type iPS cells. Our results showed hypermethylation profiles for Tc1 iPS cells, and the abnormal genes were shown to be related to neurodevelopment and distributed on multiple chromosomes. In addition, important genes involved in neurogenesis and neurodevelopment were shown to be downregulated in Tc1 iPS cells. In short, our study indicated that genome-wide hypermethylation leads to the disordered expression of genes associated with neurodevelopment in Tc1 mice during early development. Overall, our work provided a useful reference for the study of the molecular mechanism of nervous system abnormalities in DS.
Collapse
Affiliation(s)
- Jiao-Jiao Xi
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guan-Heng Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Yan-Na Liu
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Jia-Jun Qiu
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiu-Li Gong
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Jing-Bin Yan
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Fanyi Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China.,Department of Histoembryology, Genetics and Development, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Roque AL, Johnson MW, Stasko MR, de Abreu LC, da Silva TD, Costa ACS. Noninvasive assessment of autonomic modulation of heart rate variability in the Ts65Dn mouse model of Down syndrome: A proof of principle study. Physiol Rep 2020; 8:e14486. [PMID: 32562388 PMCID: PMC7305244 DOI: 10.14814/phy2.14486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/25/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction The Ts65Dn mouse is the most widely used animal model of Down syndrome (DS). Differences in autonomic regulation of heart rate variability (HRV) in individuals with DS have been hypothesized. Pharmacological studies in animal models may help us understand mechanisms underlying observed changes in HRV in people with DS. Objective To investigate the use a new, noninvasive technique to assess cardiac autonomic modulation in Ts65Dn mice under the effect of adrenergic and cholinergic agonists. Method We recorded electrocardiograms (ECGs) from 12 Ts65Dn and 12 euploid control mice. A 30‐min baseline recording was followed by the injection of an adrenergic (isoproterenol [Iso]) or cholinergic (carbachol [CCh]) agonist. Heart rate and HRV were analyzed using a series of methods customized for mice. Results and Discussion The ECG apparatus described here allowed us to detect noninvasively long series of heartbeats in freely‐moving animals. During baseline conditions, the yield of detectable heartbeats was 3%–27% of the estimated total number of events, which increased to 35%–70% during the 15‐min period after either Iso or CCh injections. Ts65Dn mice displayed a robust enhanced Iso‐induced negative chronotropic rebound response compared with euploid control mice. We observed a significantly smaller CCh response in Ts65Dn versus control euploid mice in the 6‐ to 10‐min‐interval postcarbachol injection. Conclusion This work showed that the techniques described here are sufficient for this type of study. However, future studies involving the use of more selective pharmacological agents and/or genetic manipulations will be key to advance a mechanistic understanding of cardiac autonomic regulation in DS.
Collapse
Affiliation(s)
- Adriano L Roque
- Division of Pediatric Neurology, Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.,Postgraduate Program in Medicine, Cardiology, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Mark W Johnson
- Division of Pediatric Neurology, Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Melissa R Stasko
- Division of Pediatric Neurology, Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Luiz C de Abreu
- Design of Studies and Scientific Writing Laboratory in the ABC School of Medicine, Sao Paulo, Brazil
| | - Talita D da Silva
- Postgraduate Program in Medicine, Cardiology, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Alberto C S Costa
- Division of Pediatric Neurology, Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.,Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
21
|
Lee SE, Duran-Martinez M, Khantsis S, Bianchi DW, Guedj F. Challenges and Opportunities for Translation of Therapies to Improve Cognition in Down Syndrome. Trends Mol Med 2019; 26:150-169. [PMID: 31706840 DOI: 10.1016/j.molmed.2019.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
While preclinical studies have reported improvement of behavioral deficits in the Ts65Dn mouse model of Down syndrome (DS), translation to human clinical trials to improve cognition in individuals with DS has had a poor success record. Timing of the intervention, choice of animal models, strategy for drug selection, and lack of translational endpoints between animals and humans contributed to prior failures of human clinical trials. Here, we focus on in vitro cell models from humans with DS to identify the molecular mechanisms underlying the brain phenotype associated with DS. We emphasize the importance of using these cell models to screen for therapeutic molecules, followed by validating them in the most suitable animal models prior to initiating human clinical trials.
Collapse
Affiliation(s)
- Sarah E Lee
- Medical Genetics Branch (Prenatal Genomic and Therapy Section), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Monica Duran-Martinez
- Medical Genetics Branch (Prenatal Genomic and Therapy Section), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabina Khantsis
- Medical Genetics Branch (Prenatal Genomic and Therapy Section), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana W Bianchi
- Medical Genetics Branch (Prenatal Genomic and Therapy Section), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda 20892, MD, USA
| | - Faycal Guedj
- Medical Genetics Branch (Prenatal Genomic and Therapy Section), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Day SM, Yang W, Wang X, Stern JE, Zhou X, Macauley SL, Ma T. Glucagon-Like Peptide-1 Cleavage Product Improves Cognitive Function in a Mouse Model of Down Syndrome. eNeuro 2019; 6:ENEURO.0031-19.2019. [PMID: 31040160 PMCID: PMC6520642 DOI: 10.1523/eneuro.0031-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Currently there is no effective therapy available for cognitive impairments in Down syndrome (DS), one of the most prevalent forms of intellectual disability in humans associated with the chromosomes 21 trisomy. Glucagon-like peptide-1 (GLP-1) is an incretin hormone that maintains glucose homeostasis by stimulating insulin secretion. Its natural cleavage product GLP-1 (9-36) lacks insulinotropic effects and has a low binding affinity for GLP-1 receptors; thus, GLP-1 (9-36) has historically been identified as an inactive metabolite. Conversely, recent work has demonstrated interesting physiological properties of GLP-1 (9-36) such as cardioprotection and neuroprotection. We have previously shown that GLP-1 (9-36) administration enhances neuronal plasticity in young WT mice and ameliorates cognitive deficits in a mouse model of Alzheimer's disease. Here, we report that systemic administration of GLP-1 (9-36) in Ts65Dn DS model mice of either sex resulted in decreased mitochondrial oxidative stress in hippocampus and improved dendritic spine morphology, increase of mature spines and reduction of immature spines. Importantly, these molecular alterations translated into functional changes in that long-term potentiation failure and cognitive impairments in TsDn65 DS model mice were rescued with GLP-1 (9-36) treatment. We also show that chronic GLP-1 (9-36) treatment did not alter glucose tolerance in either WT or DS model mice. Our findings suggest that GLP-1 (9-36) treatment may have therapeutic potential for DS and other neurodegenerative diseases associated with increased neuronal oxidative stress.
Collapse
Affiliation(s)
- Stephen M Day
- Departments of Internal Medicine and Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
- Department of Integrative Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Wenzhong Yang
- Departments of Internal Medicine and Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Xin Wang
- Departments of Internal Medicine and Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Jennifer E Stern
- Departments of Internal Medicine and Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Xueyan Zhou
- Departments of Internal Medicine and Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Shannon L Macauley
- Departments of Internal Medicine and Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Tao Ma
- Departments of Internal Medicine and Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
- Department of Integrative Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| |
Collapse
|
23
|
On the Design of Broad-Based Neuropsychological Test Batteries to Assess the Cognitive Abilities of Individuals with Down Syndrome in the Context of Clinical Trials. Brain Sci 2018; 8:brainsci8120205. [PMID: 30486228 PMCID: PMC6315396 DOI: 10.3390/brainsci8120205] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 12/29/2022] Open
Abstract
Down syndrome (DS) is the most common genetically-defined cause of intellectual disability. Neurodevelopmental deficits displayed by individuals with DS are generally global, however, disproportionate deficits in cognitive processes that depend heavily on the hippocampus and prefrontal cortex are also well documented. Additionally, DS is associated with relative strengths in visual processing and visuospatial short-term memory, and weaknesses in the verbal domain. Although reports of pharmacological rescuing of learning and memory deficits in mouse models of DS abound in the literature, proving the principle that cognitive ability of persons with DS can be boosted through pharmacological means is still an elusive goal. The design of customized batteries of neuropsychological efficacy outcome measures is essential for the successful implementation of clinical trials of potential cognitive enhancing strategies. Here, we review the neurocognitive phenotype of individuals with DS and major broad-based test batteries designed to quantify specific cognitive domains in these individuals, including the one used in a pilot trial of the drug memantine. The main goal is to illustrate the essential considerations in planning trials to enhance cognitive functions in individuals with DS, which should also have implications for the design of similar studies in individuals with other forms of intellectual disability.
Collapse
|
24
|
The Benzodiazepine Binding Sites of GABAA Receptors. Trends Pharmacol Sci 2018; 39:659-671. [DOI: 10.1016/j.tips.2018.03.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 11/24/2022]
|
25
|
Kawaharada S, Nakanishi M, Nakanishi N, Hazama K, Higashino M, Yasuhiro T, Lewis A, Clark GS, Chambers MS, Maidment SA, Katsumata S, Kaneko S. ONO-8590580, a Novel GABA Aα5 Negative Allosteric Modulator Enhances Long-Term Potentiation and Improves Cognitive Deficits in Preclinical Models. J Pharmacol Exp Ther 2018; 366:58-65. [PMID: 29674331 DOI: 10.1124/jpet.117.247627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/17/2018] [Indexed: 03/08/2025] Open
Abstract
GABAA receptors containing α5 subunits (GABAAα5) are highly expressed in the hippocampus and negatively involved in memory processing, as shown by the fact that GABAAα5-deficient mice show higher hippocampus-dependent performance than wild-type mice. Accordingly, small-molecule GABAAα5 negative allosteric modulators (NAMs) are known to enhance spatial learning and memory in rodents. Here we introduce a new, orally available GABAAα5 NAM that improves hippocampal functions. ONO-8590580 [1-(cyclopropylmethyl)-5-fluoro-4-methyl-N-[5-(1-methyl-1H-imidazol-4-yl)-2-pyridinyl]-1H-benzimidazol-6-amine] binds to the benzodiazepine binding sites on recombinant human α5-containing GABAA receptors with a Ki of 7.9 nM, and showed functionally selective GABAAα5 NAM activity for GABA-induced Cl- channel activity with a maximum 44.4% inhibition and an EC50 of 1.1 nM. In rat hippocampal slices, tetanus-induced long-term potentiation of CA1 synapse response was significantly augmented in the presence of 300 nM ONO-8590580. Orally administered ONO-8590580 (1-20 mg/kg) dose-dependently occupied hippocampal GABAAα5 in a range of 40%-90% at 1 hour after intake. In the rat passive avoidance test, ONO-8590580 (3-20 mg/kg, by mouth) significantly prevented (+)-MK-801 hydrogen maleate (MK-801)-induced memory deficit. In addition, ONO-8590580 (20 mg/kg, p.o.) was also effective in improving the cognitive deficit induced by scopolamine and MK-801 in the rat eight-arm radial maze test with equal or greater activity than 0.5 mg/kg donepezil. No anxiogenic-like or proconvulsant effect was associated with ONO-8590580 at 20 mg/kg p.o. in the elevated plus maze test or pentylenetetrazole-induced seizure test, respectively. In sum, ONO-8590580 is a novel GABAAα5 NAM that enhances hippocampal memory function without an anxiogenic or proconvulsant risk.
Collapse
Affiliation(s)
- Soichi Kawaharada
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Miki Nakanishi
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Nobuto Nakanishi
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Keisuke Hazama
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Masato Higashino
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Tetsuya Yasuhiro
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Arwel Lewis
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Gary S Clark
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Mark S Chambers
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Scott A Maidment
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Seishi Katsumata
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Shuji Kaneko
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| |
Collapse
|
26
|
Giacomini A, Stagni F, Emili M, Guidi S, Salvalai ME, Grilli M, Vidal-Sanchez V, Martinez-Cué C, Bartesaghi R. Treatment with corn oil improves neurogenesis and cognitive performance in the Ts65Dn mouse model of Down syndrome. Brain Res Bull 2018; 140:378-391. [PMID: 29935232 DOI: 10.1016/j.brainresbull.2018.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
Individuals with Down syndrome (DS), a genetic condition due to triplication of Chromosome 21, are characterized by intellectual disability that worsens with age. Since impairment of neurogenesis and dendritic maturation are very likely key determinants of intellectual disability in DS, interventions targeted to these defects may translate into a behavioral benefit. While most of the neurogenesis enhancers tested so far in DS mouse models may pose some caveats due to possible side effects, substances naturally present in the human diet may be regarded as therapeutic tools with a high translational impact. Linoleic acid and oleic acid are major constituents of corn oil that positively affect neurogenesis and neuron maturation. Based on these premises, the goal of the current study was to establish whether treatment with corn oil improves hippocampal neurogenesis and hippocampus-dependent memory in the Ts65Dn model of DS. Four-month-old Ts65Dn and euploid mice were treated with saline or corn oil for 30 days. Evaluation of behavior at the end of treatment showed that Ts65Dn mice treated with corn oil underwent a large improvement in hippocampus-dependent learning and memory. Evaluation of neurogenesis and dendritogenesis showed that in treated Ts65Dn mice the number of new granule cells of the hippocampal dentate gyrus and their dendritic pattern became similar to those of euploid mice. In addition, treated Ts65Dn mice underwent an increase in body and brain weight. This study shows for the first time that fatty acids have a positive impact on the brain of the Ts65Dn mouse model of DS. These results suggest that a diet that is rich in fatty acids may exert beneficial effects on cognitive performance in individuals with DS without causing adverse effects.
Collapse
Affiliation(s)
- Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fiorenza Stagni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Elisa Salvalai
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Veronica Vidal-Sanchez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Carmen Martinez-Cué
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
27
|
Pharmacological Modulation of Three Modalities of CA1 Hippocampal Long-Term Potentiation in the Ts65Dn Mouse Model of Down Syndrome. Neural Plast 2018; 2018:9235796. [PMID: 29849573 PMCID: PMC5914153 DOI: 10.1155/2018/9235796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/15/2018] [Indexed: 02/02/2023] Open
Abstract
The Ts65Dn mouse is the most studied animal model of Down syndrome. Past research has shown a significant reduction in CA1 hippocampal long-term potentiation (LTP) induced by theta-burst stimulation (TBS), but not in LTP induced by high-frequency stimulation (HFS), in slices from Ts65Dn mice compared with euploid mouse-derived slices. Additionally, therapeutically relevant doses of the drug memantine were shown to rescue learning and memory deficits in Ts65Dn mice. Here, we observed that 1 μM memantine had no detectable effect on HFS-induced LTP in either Ts65Dn- or control-derived slices, but it rescued TBS-induced LTP in Ts65Dn-derived slices to control euploid levels. Then, we assessed LTP induced by four HFS (4xHFS) and found that this form of LTP was significantly depressed in Ts65Dn slices when compared with LTP in euploid control slices. Memantine, however, did not rescue this phenotype. Because 4xHFS-induced LTP had not yet been characterized in Ts65Dn mice, we also investigated the effects of picrotoxin, amyloid beta oligomers, and soluble recombinant human prion protein (rPrP) on this form of LTP. Whereas ≥10 μM picrotoxin increased LTP to control levels, it also caused seizure-like oscillations. Neither amyloid beta oligomers nor rPrP had any effect on 4xHFS-induced LTP in Ts65Dn-derived slices.
Collapse
|
28
|
Stagni F, Giacomini A, Guidi S, Emili M, Uguagliati B, Salvalai ME, Bortolotto V, Grilli M, Rimondini R, Bartesaghi R. A flavonoid agonist of the TrkB receptor for BDNF improves hippocampal neurogenesis and hippocampus-dependent memory in the Ts65Dn mouse model of DS. Exp Neurol 2017; 298:79-96. [DOI: 10.1016/j.expneurol.2017.08.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022]
|
29
|
Developmental excitatory-to-inhibitory GABA-polarity switch is disrupted in 22q11.2 deletion syndrome: a potential target for clinical therapeutics. Sci Rep 2017; 7:15752. [PMID: 29146941 PMCID: PMC5691208 DOI: 10.1038/s41598-017-15793-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022] Open
Abstract
Individuals with 22q11.2 microdeletion syndrome (22q11.2 DS) show cognitive and behavioral dysfunctions, developmental delays in childhood and risk of developing schizophrenia and autism. Despite extensive previous studies in adult animal models, a possible embryonic root of this syndrome has not been determined. Here, in neurons from a 22q11.2 DS mouse model (Lgdel+/−), we found embryonic-premature alterations in the neuronal chloride cotransporters indicated by dysregulated NKCC1 and KCC2 protein expression levels. We demonstrate with large-scale spiking activity recordings a concurrent deregulation of the spontaneous network activity and homeostatic network plasticity. Additionally, Lgdel+/− networks at early development show abnormal neuritogenesis and void of synchronized spontaneous activity. Furthermore, parallel experiments on Dgcr8+/− mouse cultures reveal a significant, yet not exclusive contribution of the dgcr8 gene to our phenotypes of Lgdel+/− networks. Finally, we show that application of bumetanide, an inhibitor of NKCC1, significantly decreases the hyper-excitable action of GABAA receptor signaling and restores network homeostatic plasticity in Lgdel+/− networks. Overall, by exploiting an on-a-chip 22q11.2 DS model, our results suggest a delayed GABA-switch in Lgdel+/− neurons, which may contribute to a delayed embryonic development. Prospectively, acting on the GABA-polarity switch offers a potential target for 22q11.2 DS therapeutic intervention.
Collapse
|
30
|
Van Riper M, Knafl GJ, Roscigno C, Knafl KA. Family management of childhood chronic conditions: Does it make a difference if the child has an intellectual disability? Am J Med Genet A 2017; 176:82-91. [PMID: 29140588 DOI: 10.1002/ajmg.a.38508] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/26/2017] [Indexed: 11/09/2022]
Abstract
The purpose of this analysis was to assess the applicability of the Family Management Measure (FaMM) to families in which there was a child with an intellectual disability versus a chronic condition. Drawing on data from 571 parents of children with a chronic physical condition and 539 parents of children with Down syndrome, we compared the two groups across the six FaMM scales. After accounting for the covariate effects of race, ethnicity, family income, and child age, we found significant differences in four of the six FaMM scales, with parents of children with Down syndrome reporting a significantly more positive view on the Condition Management Effort and View of Condition Impact scales and a significantly less positive view on the Child's Daily Life and Condition Management Ability scales than parents of children with a chronic physical condition. There were no significant differences between groups on the Family Life Difficulty and the Parental Mutuality scales. The analysis provided evidence of the applicability of the FaMM for studying families in which there is a child with Down syndrome and its utility in identifying the common and unique challenges of family management between the groups.
Collapse
Affiliation(s)
- Marcia Van Riper
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - George J Knafl
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Cecelia Roscigno
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen A Knafl
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
31
|
Hart SJ, Visootsak J, Tamburri P, Phuong P, Baumer N, Hernandez MC, Skotko BG, Ochoa-Lubinoff C, Liogier D'Ardhuy X, Kishnani PS, Spiridigliozzi GA. Pharmacological interventions to improve cognition and adaptive functioning in Down syndrome: Strides to date. Am J Med Genet A 2017; 173:3029-3041. [PMID: 28884975 DOI: 10.1002/ajmg.a.38465] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/02/2017] [Accepted: 08/10/2017] [Indexed: 12/21/2022]
Abstract
Although an increasing number of clinical trials have been developed for cognition in Down syndrome, there has been limited success to date in identifying effective interventions. This review describes the progression from pre-clinical studies with mouse models to human clinical trials research using pharmacological interventions to improve cognition and adaptive functioning in Down syndrome. We also provide considerations for investigators when conducting human clinical trials and describe strategies for the pharmaceutical industry to advance the field in drug discovery for Down syndrome. Future research focusing on earlier pharmaceutical interventions, development of appropriate outcome measures, and greater collaboration between industry, academia, advocacy, and regulatory groups will be important for addressing limitations from prior studies and developing potential effective interventions for cognition in Down syndrome.
Collapse
Affiliation(s)
- Sarah J Hart
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Jeannie Visootsak
- F. Hoffmann-La Roche, Roche Pharma Research and Early Development, Neuroscience, Roche Innovation Center New York, New York, New York
| | - Paul Tamburri
- F. Hoffmann-La Roche, Roche Pharma Research and Early Development, Neuroscience, Roche Innovation Center New York, New York, New York
| | - Patrick Phuong
- F. Hoffmann-La Roche, Roche Pharma Research and Early Development, Neuroscience, Roche Innovation Center New York, New York, New York
| | - Nicole Baumer
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Down Syndrome Program, Developmental Medicine Center, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Maria-Clemencia Hernandez
- F. Hoffmann-La Roche, Roche Pharma Research and Early Development, Neuroscience, Roche Innovation Center Basel, Basel, Switzerland
| | - Brian G Skotko
- Harvard Medical School, Boston, Massachusetts.,Down Syndrome Program, Division of Medical Genetics, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Cesar Ochoa-Lubinoff
- Section of Developmental-Behavioral Pediatrics, Department of Pediatrics, Rush University Medical Center, Chicago, Illinois
| | - Xavier Liogier D'Ardhuy
- F. Hoffmann-La Roche, Roche Pharma Research and Early Development, Neuroscience, Roche Innovation Center Basel, Basel, Switzerland
| | - Priya S Kishnani
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Gail A Spiridigliozzi
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
32
|
Stringer M, Abeysekera I, Thomas J, LaCombe J, Stancombe K, Stewart RJ, Dria KJ, Wallace JM, Goodlett CR, Roper RJ. Epigallocatechin-3-gallate (EGCG) consumption in the Ts65Dn model of Down syndrome fails to improve behavioral deficits and is detrimental to skeletal phenotypes. Physiol Behav 2017; 177:230-241. [PMID: 28478033 PMCID: PMC5525541 DOI: 10.1016/j.physbeh.2017.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 12/17/2022]
Abstract
Down syndrome (DS) is caused by three copies of human chromosome 21 (Hsa21) and results in phenotypes including intellectual disability and skeletal deficits. Ts65Dn mice have three copies of ~50% of the genes homologous to Hsa21 and display phenotypes associated with DS, including cognitive deficits and skeletal abnormalities. DYRK1A is found in three copies in humans with Trisomy 21 and in Ts65Dn mice, and is involved in a number of critical pathways including neurological development and osteoclastogenesis. Epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, inhibits Dyrk1a activity. We have previously shown that EGCG treatment (~10mg/kg/day) improves skeletal abnormalities in Ts65Dn mice, yet the same dose, as well as ~20mg/kg/day did not rescue deficits in the Morris water maze spatial learning task (MWM), novel object recognition (NOR) or balance beam task (BB). In contrast, a recent study reported that an EGCG-containing supplement with a dose of 2-3mg per day (~40-60mg/kg/day) improved hippocampal-dependent task deficits in Ts65Dn mice. The current study investigated if an EGCG dosage similar to that study would yield similar improvements in either cognitive or skeletal deficits. Ts65Dn mice and euploid littermates were given EGCG [0.4mg/mL] or a water control, with treatments yielding average daily intakes of ~50mg/kg/day EGCG, and tested on the multivariate concentric square field (MCSF)-which assesses activity, exploratory behavior, risk assessment, risk taking, and shelter seeking-and NOR, BB, and MWM. EGCG treatment failed to improve cognitive deficits; EGCG also produced several detrimental effects on skeleton in both genotypes. In a refined HPLC-based assay, its first application in Ts65Dn mice, EGCG treatment significantly reduced kinase activity in femora but not in the cerebral cortex, cerebellum, or hippocampus. Counter to expectation, 9-week-old Ts65Dn mice exhibited a decrease in Dyrk1a protein levels in Western blot analysis in the cerebellum. The lack of beneficial therapeutic behavioral effects and potentially detrimental skeletal effects of EGCG found in Ts65Dn mice emphasize the importance of identifying dosages of EGCG that reliably improve DS phenotypes and linking those effects to actions of EGCG (or EGCG-containing supplements) in specific targets in brain and bone.
Collapse
Affiliation(s)
- Megan Stringer
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Irushi Abeysekera
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States
| | - Jared Thomas
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States
| | - Jonathan LaCombe
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States
| | - Kailey Stancombe
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Robert J Stewart
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Karl J Dria
- IUPUI, Department of Chemistry and Chemical Biology, 402 North Blackford Street, LD 326, Indianapolis, IN 46202-3275, United States
| | - Joseph M Wallace
- IUPUI, Department of Biomedical Engineering, 723 West Michigan Street, SL 220B, Indianapolis, IN 46202-3275, United States
| | - Charles R Goodlett
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Randall J Roper
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States.
| |
Collapse
|
33
|
Wu S, Xu R, Duan B, Jiang P. Three-Dimensional Hyaluronic Acid Hydrogel-Based Models for In Vitro Human iPSC-Derived NPC Culture and Differentiation. J Mater Chem B 2017; 5:3870-3878. [PMID: 28775848 PMCID: PMC5536346 DOI: 10.1039/c7tb00721c] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human induced pluripotent stem cell-derived neural progenitor cells (hiPSC-NPCs) are considered as a promising cell source for transplantation and have been used for organoid fabrication to recapitulate central nervous system (CNS) diseases in vitro. The establishment of three-dimensional (3D) in vitro model with hiPSC-NPCs and control of their differentiation is significantly critical for understanding biological processes and CNS disease and regeneration. Here we implemented 3D methacrylated hyaluronic acid (Me-HA) hydrogels with encapsulation of hiPSC-NPCs as in vitro culture models and further investigated the role of the hydrogel rigidity on the cell behavior of hiPSC-NPCs. We first encapsulated single dispersive hiPSC-NPCs within both soft and stiff Me-HA hydrogel and found that hiPSC-NPCs gradually self-assembled and aggregated to form 3D spheroids. Then, the hiPSC-NPCs were laden into Me-HA hydrogels in the form of spheroids to evaluate their spontaneous differentiation in response to hydrogel rigidity. The soft Me-HA hydrogel-encapsulated hiPSC-NPCs displayed robust neurite outgrowth and showed high levels of spontaneous neural differentiation. We further encapsulated Down Syndrome (DS) patient-specific hiPSC-derived NPCs (DS-NPCs) spheroids within our hydrogels. DS-NPCs remained excellent cell viability in both soft and stiff Me-HA hydrogels. Similarly, soft hydrogels promoted neural differentiation of DS-NPCs by significantly upregulating neural maturation markers. This study demonstrates that soft matrix promotes neural differentiation of hiPSC-NPCs and HA-based hydrogels with hiPSC-NPCs or DS-NPCs are effective 3D models for CNS disease study.
Collapse
Affiliation(s)
- Shaohua Wu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ranjie Xu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peng Jiang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
34
|
M Lee Y, Zampieri BL, Scott-McKean JJ, Johnson MW, Costa ACS. Generation of Integration-Free Induced Pluripotent Stem Cells from Urine-Derived Cells Isolated from Individuals with Down Syndrome. Stem Cells Transl Med 2017; 6:1465-1476. [PMID: 28371411 PMCID: PMC5689751 DOI: 10.1002/sctm.16-0128] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 02/20/2017] [Indexed: 01/19/2023] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by trisomy 21 (T21). Over the past two decades, the use of mouse models has led to significant advances in the understanding of mechanisms underlying various phenotypic features and comorbidities secondary to T21 and even informed the design of clinical trials aimed at enhancing the cognitive abilities of persons with DS. In spite of its success, this approach has been plagued by all the typical limitations of rodent modeling of human disorders and diseases. Recently, several laboratories have succeeded in producing T21 human induced pluripotent stem cells (T21-iPSCs) from individuals with DS, which is emerging as a promising complementary tool for the study of DS. Here, we describe the method by which we generated 10 T21-iPSC lines from epithelial cells in urine samples, presumably from kidney epithelial origin, using nonintegrating episomal vectors. We also show that these iPSCs maintain chromosomal stability for well over 20 passages and are more sensitive to proteotoxic stress than euploid iPSCs. Furthermore, these iPSC lines can be differentiated into glutamatergic neurons and cardiomyocytes. By culturing urine-derived cells and maximizing the efficiency of episomal vector transfection, we have been able to generate iPSCs noninvasively and effectively from participants with DS in an ongoing clinical trial, and thus address most shortcomings of previously generated T21-iPSC lines. These techniques should extend the application of iPSCs in modeling DS and other neurodevelopmental and neurodegenerative disorders, and may lead to future human cell-based platforms for high-throughput drug screening. Stem Cells Translational Medicine 2017;6:1465-1476.
Collapse
Affiliation(s)
- Young M Lee
- Division of Pediatric Neurology, Department of Pediatrics
| | | | | | - Mark W Johnson
- Division of Pediatric Neurology, Department of Pediatrics
| | - Alberto C S Costa
- Division of Pediatric Neurology, Department of Pediatrics.,Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
35
|
Long-term effect of neonatal inhibition of APP gamma-secretase on hippocampal development in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 2017; 103:11-23. [PMID: 28359846 PMCID: PMC5439029 DOI: 10.1016/j.nbd.2017.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/09/2017] [Accepted: 03/26/2017] [Indexed: 11/21/2022] Open
Abstract
Neurogenesis impairment is considered a major determinant of the intellectual disability that characterizes Down syndrome (DS), a genetic condition caused by triplication of chromosome 21. Previous evidence obtained in the Ts65Dn mouse model of DS showed that the triplicated gene APP (amyloid precursor protein) is critically involved in neurogenesis alterations. In particular, excessive levels of AICD (amyloid precursor protein intracellular domain) resulting from APP cleavage by gamma-secretase increase the transcription of Ptch1, a Sonic Hedgehog (Shh) receptor that keeps the mitogenic Shh pathway repressed. Previous evidence showed that neonatal treatment with ELND006, an inhibitor of gamma-secretase, reinstates the Shh pathway and fully restores neurogenesis in Ts65Dn pups. In the framework of potential therapies for DS, it is extremely important to establish whether the positive effects of early intervention are retained after treatment cessation. Therefore, the goal of the current study was to establish whether early treatment with ELND006 leaves an enduring trace in the brain of Ts65Dn mice. Ts65Dn and euploid pups were treated with ELND006 in the postnatal period P3-P15 and the outcome of treatment was examined at ~ one month after treatment cessation. We found that in treated Ts65Dn mice the pool of proliferating cells in the hippocampal dentate gyrus (DG) and total number of granule neurons were still restored as was the number of pre- and postsynaptic terminals in the stratum lucidum of CA3, the site of termination of the mossy fibers from the DG. Accordingly, patch-clamp recording from field CA3 showed functional normalization of the input to CA3. Unlike in field CA3, the number of pre- and postsynaptic terminals in the DG of treated Ts65Dn mice was no longer fully restored. The finding that many of the positive effects of neonatal treatment were retained after treatment cessation provides proof of principle demonstration of the efficacy of early inhibition of gamma-secretase for the improvement of brain development in DS. Neonatal inhibition of gamma-secretase has long-term effects in a Down syndrome model. Treatment induces long-term restoration of hippocampal neurogenesis and cellularity. Treatment induces long-term restoration of functional connectivity. Treatments with gamma-secretase inhibitors may be exploited for Down syndrome.
Collapse
|
36
|
Stagni F, Giacomini A, Emili M, Guidi S, Ciani E, Bartesaghi R. Epigallocatechin gallate: A useful therapy for cognitive disability in Down syndrome? NEUROGENESIS 2017; 4:e1270383. [PMID: 28203607 DOI: 10.1080/23262133.2016.1270383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/14/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
Neurodevelopmental alterations and cognitive disability are constant features of Down syndrome (DS), a genetic condition due to triplication of chromosome 21. DYRK1A is one of the triplicated genes that is thought to be strongly involved in brain alterations. Treatment of Dyrk1A transgenic mice with epigallocatechin gallate (EGCG), an inhibitor of DYRK1A, improves cognitive performance, suggesting that EGCG may represent a suitable treatment of DS. Evidence in the Ts65Dn mouse model of DS shows that EGCG restores hippocampal development, although this effect is ephemeral. Other studies, however, show no effects of treatment on hippocampus-dependent memory. On the other hand, a pilot study in young adults with DS shows that EGCG transiently improves some aspects of memory. Interestingly, EGCG plus cognitive training engenders effects that are more prolonged. Studies in various rodent models show a positive impact of EGCG on brain and behavior, but other studies show no effect. In spite of these discrepancies, possibly due to heterogeneity of protocols/timing/species, EGCG seems to exert some beneficial effects on the brain. It is possible that protocols of periodic EGCG administration to individuals with DS (alone or in conjunction with other treatments) may prevent the disappearance of its effects.
Collapse
Affiliation(s)
- Fiorenza Stagni
- Department of Biomedical and Neuromotor Sciences, University of Bologna , Bologna, Italy
| | - Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna , Bologna, Italy
| | - Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna , Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna , Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna , Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna , Bologna, Italy
| |
Collapse
|
37
|
Golub MS, Hogrefe CE, Bulleri AM. Regulation of emotional response in juvenile monkeys treated with fluoxetine: MAOA interactions. Eur Neuropsychopharmacol 2016; 26:1920-1929. [PMID: 27852517 PMCID: PMC5154301 DOI: 10.1016/j.euroneuro.2016.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 10/10/2016] [Accepted: 10/29/2016] [Indexed: 01/23/2023]
Abstract
Juvenile male rhesus macaques received therapeutic doses of fluoxetine daily from one to three years of age and were compared to vehicle-treated controls (N=16/group). Genotyping for monoamine oxidase A (MAOA) polymorphisms was used to form subgroups (N=8) with high and low expression of the gene. Behavioral responses were scored during 30-second exposures to pictures differing in affective content. As expected from its therapeutic effect, fluoxetine decreased the behavioral response to emotionally evocative pictures. A 44% reduction in number of expressive behaviors was seen, but only in subjects with low expression MAOA polymorphisms. In general, this effect occurred for pictures of varying affective content and was not due to altered occurrence of one specific behavior or type of behavior. The drug*genotype interaction was seen after one and two years of treatment and did not reverse one year after discontinuation of dosing. Two potential translational implications are suggested: (1) MAOA genetic polymorphisms may be the source of some of the variability in response to fluoxetine treatment in children; (2) extended fluoxetine treatment during juvenile brain development may result in persistent effects on emotional regulation.
Collapse
Affiliation(s)
- M S Golub
- University of California Davis, Department of Environmental Toxicology, Davis, California, USA.
| | - C E Hogrefe
- University of California Davis, California National Primate Research Center, Davis, California, USA
| | - A M Bulleri
- University of California Davis, California National Primate Research Center, Davis, California, USA
| |
Collapse
|
38
|
Short- and long-term effects of neonatal pharmacotherapy with epigallocatechin-3-gallate on hippocampal development in the Ts65Dn mouse model of Down syndrome. Neuroscience 2016; 333:277-301. [DOI: 10.1016/j.neuroscience.2016.07.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 01/01/2023]
|
39
|
Joshi K, Shen L, Michaeli A, Salter M, Thibault-Messier G, Hashmi S, Eubanks JH, Cortez MA, Snead OC. Infantile spasms in down syndrome: Rescue by knockdown of the GIRK2 channel. Ann Neurol 2016; 80:511-521. [PMID: 27462820 DOI: 10.1002/ana.24749] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The Ts65Dn (Ts) mouse model of Down syndrome (DS) is exquisitely sensitive to an infantile spasms phenotype induced by γ-aminobutyric acidB receptor (GABAB R) agonists. The Ts mouse contains the core genomic triplication of the DS critical region, which includes 3 copies of the Kcnj6 gene that encodes the GABAB R-coupled G protein-coupled inward rectifying potassium channel subunit 2 (GIRK2) channel. We test the hypothesis that GIRK2 is necessary for the GABAB R agonist-induced infantile spasms phenotype in Ts. METHODS We assessed the result of either genetic or pharmacological knockdown of the GIRK2 channel in Ts brain upon the GABAB R agonist-induced infantile spasms phenotype in the Ts mouse model of DS. As well, we examined GABAB R currents in hippocampal neurons prepared from GIRK2-trisomic Ts control mice and GIRK2-disomic Ts mice in which Kcnj6 had been genetically knocked down from 3 to 2 copies. RESULTS The reduction of the copy number of Kcnj6 in Ts mice rescued the GABAB R agonist-induced infantile spasms phenotype. There was an increase in GABAB R-mediated GIRK2 currents in GIRK2-trisomic Ts mouse hippocampal neurons, which were normalized in the GIRK2-disomic Ts mice. Similarly, pharmacological knockdown of the GIRK2 channel in Ts brain using the GIRK antagonist tertiapin-Q also rescued the GABAB R agonist-induced infantile spasms phenotype in Ts mutants. INTERPRETATION The GABAB R-coupled GIRK2 channel is necessary for the GABAB R agonist-induced infantile spasms phenotype in the Ts mouse and may represent a novel therapeutic target for the treatment of infantile spasms in DS. Ann Neurol 2016;80:511-521.
Collapse
Affiliation(s)
- Krutika Joshi
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Lily Shen
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Avner Michaeli
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Salter
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Sumaiya Hashmi
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James H Eubanks
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- University Health Network, Toronto Western Research Institute, Toronto, Ontario, Canada
| | - Miguel A Cortez
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - O Carter Snead
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Isolation of proflavine as a blocker of G protein-gated inward rectifier potassium channels by a cell growth-based screening system. Neuropharmacology 2016; 109:18-28. [PMID: 27236080 DOI: 10.1016/j.neuropharm.2016.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/11/2016] [Accepted: 05/24/2016] [Indexed: 01/29/2023]
Abstract
The overexpression of Kir3.2, a subunit of the G protein-gated inwardly rectifying K(+) channel, is implicated in some of the neurological phenotypes of Down syndrome (DS). Chemical compounds that block Kir3.2 are expected to improve the symptoms of DS. The purpose of this study is to develop a cell-based screening system to identify Kir3.2 blockers and then investigate the mode of action of the blocker. Chemical screening was carried out using a K(+) transporter-deficient yeast strain that expressed a constitutively active Kir3.2 mutant. The mode of action of an effective blocker was electrophysiologically analyzed using Kir channels expressed in Xenopus oocytes. Proflavine was identified to inhibit the growth of Kir3.2-transformant cells and Kir3.2 activity in a concentration-dependent manner. The current inhibition was strong when membrane potentials (Vm) was above equilibrium potential of K(+) (EK). When Vm was below EK, the blockage apparently depended on the difference between Vm and [K(+)]. Furthermore, the inhibition became stronger by lowering extracellular [K(+)]. These results indicated that the yeast strain serves as a screening system to isolate Kir3.2 blockers and proflavine is a prototype of a pore blocker of Kir3.2.
Collapse
|
41
|
Golub MS, Hogrefe CE. Sleep disturbance as detected by actigraphy in pre-pubertal juvenile monkeys receiving therapeutic doses of fluoxetine. Neurotoxicol Teratol 2016; 55:1-7. [PMID: 26956991 PMCID: PMC4884518 DOI: 10.1016/j.ntt.2016.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/19/2022]
Abstract
Sleep disturbance is a reported side effect of antidepressant drugs in children. Using a nonhuman primate model of childhood selective serotonin reuptake inhibitor (SSRI) therapy, sleep was studied quantitatively with actigraphy. Two 48-h sessions were recorded in the home cage environment of juvenile male rhesus monkeys at two and three years of age, after one and two years of treatment with a therapeutic dose of the SSRI fluoxetine, and compared to vehicle treated controls. A third session was conducted one year after discontinuation of treatment at four years of age. During treatment, the fluoxetine group demonstrated sleep fragmentation as indexed by a greater number of rest-activity transitions compared to controls. In addition fluoxetine led to more inactivity during the day as indexed by longer duration of rest periods and the reduced activity during these periods. The fluoxetine effect on sleep fragmentation, but not on daytime rest, was modified by the monkey's genotype for polymorphisms of monoamine oxidase A (MAOA), an enzyme that metabolizes serotonin. After treatment, the fluoxetine effect on nighttime rest-activity transitions persisted, but daytime activity was not affected. The demonstration in this nonhuman primate model of sleep disturbance in connection with fluoxetine treatment and specific genetic polymorphisms, and in the absence of diagnosed psychopathology, can help inform use of this drug in children.
Collapse
Affiliation(s)
- Mari S Golub
- Department of Environmental Toxicology, University of California Davis, One Shields Ave, Davis, CA 95616, USA.
| | - Casey E Hogrefe
- California National Primate Research Center, University of California Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
42
|
Lee NC, Chien YH, Hwu WL. Integrated care for Down syndrome. Congenit Anom (Kyoto) 2016; 56:104-6. [PMID: 26866291 DOI: 10.1111/cga.12159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/01/2022]
Abstract
Down syndrome (DS), caused by an extra copy of chromosome 21 (trisomy 21), is the most intensively studied human aneuploidy condition. It is the leading cause of intellectual disability and birth defects. Although most prenatally diagnosed DS fetuses are aborted in Taiwan, there are still some infants with DS who are diagnosed after birth. In addition to intellectual disability, people with DS face systemic problems that include short stature, dysmorphism, congenital heart disease, congenital anomalies of gastrointestinal and genitourinary tracts, abnormal endocrine function, leukemia and leukemoid reactions. To provide better care for people with DS in Taiwan, we began the DS multi-disciplinary clinic that has opened once per month since November 2013. The multi-disciplinary clinic consists of several subspecialists who provide care for DS people. To date, approximately 200 patients have used the clinic. The average number of patients who use the clinic per month is 27±6 with a mean patient age of 16±12 years old (range 0.3-53 years). The average number of patients per specialist on each clinic day is 5.2±4.9 (range 0.5-20.9 patients). We focus on early detection and prevention of medical and developmental issues associated with DS. This coordinated approach allows DS patients and family to have more comprehensive care.
Collapse
Affiliation(s)
- Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
43
|
Ballard C, Mobley W, Hardy J, Williams G, Corbett A. Dementia in Down's syndrome. Lancet Neurol 2016; 15:622-36. [PMID: 27302127 DOI: 10.1016/s1474-4422(16)00063-6] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/22/2016] [Accepted: 02/08/2016] [Indexed: 12/14/2022]
Abstract
Down's syndrome is the most common genetic cause of learning difficulties, and individuals with this condition represent the largest group of people with dementia under the age of 50 years. Genetic drivers result in a high frequency of Alzheimer's pathology in these individuals, evident from neuroimaging, biomarker, and neuropathological findings, and a high incidence of cognitive decline and dementia. However, cognitive assessment is challenging, and diagnostic methods have not been fully validated for use in these patients; hence, early diagnosis remains difficult. Evidence regarding the benefits of cholinesterase inhibitors and other therapeutic options to treat or delay progressive cognitive decline or dementia is very scarce. Despite close similarities with late-onset Alzheimer's disease, individuals with Down's syndrome respond differently to treatment, and a targeted approach to drug development is thus necessary. Genetic and preclinical studies offer opportunities for treatment development, and potential therapies have been identified using these approaches.
Collapse
Affiliation(s)
- Clive Ballard
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK.
| | - William Mobley
- Center for Neural Circuits and Behavior, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - John Hardy
- Department of Molecular Neuroscience, University College London, London, UK
| | - Gareth Williams
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Anne Corbett
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| |
Collapse
|
44
|
The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1093-104. [PMID: 26964795 DOI: 10.1016/j.bbadis.2016.03.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/25/2022]
Abstract
Mitochondrial dysfunctions critically impair nervous system development and are potentially involved in the pathogenesis of various neurodevelopmental disorders, including Down syndrome (DS), the most common genetic cause of intellectual disability. Previous studies from our group demonstrated impaired mitochondrial activity in peripheral cells from DS subjects and the efficacy of epigallocatechin-3-gallate (EGCG) - a natural polyphenol major component of green tea - to counteract the mitochondrial energy deficit. In this study, to gain insight into the possible role of mitochondria in DS intellectual disability, mitochondrial functions were analyzed in neural progenitor cells (NPCs) isolated from the hippocampus of Ts65Dn mice, a widely used model of DS which recapitulates many major brain structural and functional phenotypes of the syndrome, including impaired hippocampal neurogenesis. We found that, during NPC proliferation, mitochondrial bioenergetics and mitochondrial biogenic program were strongly compromised in Ts65Dn cells, but not associated with free radical accumulation. These data point to a central role of mitochondrial dysfunction as an inherent feature of DS and not as a consequence of cell oxidative stress. Further, we disclose that, besides EGCG, also the natural polyphenol resveratrol, which displays a neuroprotective action in various human diseases but never tested in DS, restores oxidative phosphorylation efficiency and mitochondrial biogenesis, and improves proliferation of NPCs. These effects were associated with the activation of PGC-1α/Sirt1/AMPK axis by both polyphenols. This research paves the way for using nutraceuticals as a potential therapeutic tool in preventing or managing some energy deficit-associated DS clinical manifestations.
Collapse
|
45
|
Peprah EK, Parisi MA, Kaeser L, Bardhan S, Oster-Granite M, Maddox YT. DS-Connect: A Promising Tool to Improve Lives and Engage Down Syndrome Communities Worldwide. Glob Heart 2015; 10:337-40. [PMID: 26271554 PMCID: PMC4691406 DOI: 10.1016/j.gheart.2015.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022] Open
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual and developmental disabilities in the United States with an estimated birth prevalence of 1:691 births; however, worldwide estimates of the number of individuals with intellectual and developmental disabilities, including DS, remain speculative. Little is known about the global health impact of DS, such as heart defects, gastrointestinal malformations, and other medical and behavioral issues. Further research is needed to develop the next generation of novel therapies and compounds aimed at improving cognition, reducing dementia, and mitigating other manifestations of DS. To address these challenges, the National Institutes of Health has created the first web-based, voluntary registry and data resource called DS-Connect: The Down Syndrome Registry to collect demographic and health information about individuals with DS.
Collapse
Affiliation(s)
- Emmanuel K Peprah
- Center for Translation Research and Implementation Science, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Melissa A Parisi
- Intellectual and Developmental Disabilities Branch, Eunice Shriver Kennedy National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Kaeser
- Office of Legislation and Public Policy, Eunice Shriver Kennedy National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sujata Bardhan
- Intellectual and Developmental Disabilities Branch, Eunice Shriver Kennedy National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - MaryLou Oster-Granite
- Intellectual and Developmental Disabilities Branch, Eunice Shriver Kennedy National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yvonne T Maddox
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
46
|
Stagni F, Giacomini A, Guidi S, Ciani E, Bartesaghi R. Timing of therapies for Down syndrome: the sooner, the better. Front Behav Neurosci 2015; 9:265. [PMID: 26500515 PMCID: PMC4594009 DOI: 10.3389/fnbeh.2015.00265] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/15/2015] [Indexed: 11/13/2022] Open
Abstract
Intellectual disability (ID) is the unavoidable hallmark of Down syndrome (DS), with a heavy impact on public health. Accumulating evidence shows that DS is characterized by numerous neurodevelopmental alterations among which the reduction of neurogenesis, dendritic hypotrophy and connectivity alterations appear to play a particularly prominent role. Although the mechanisms whereby gene triplication impairs brain development in DS have not been fully clarified, it is theoretically possible to correct trisomy-dependent defects with targeted pharmacotherapies. This review summarizes what we know about the effects of pharmacotherapies during different life stages in mouse models of DS. Since brain alterations in DS start to be present prenatally, the prenatal period represents an optimum window of opportunity for therapeutic interventions. Importantly, recent studies clearly show that treatment during the prenatal period can rescue overall brain development and behavior and that this effect outlasts treatment cessation. Although late therapies are unlikely to exert drastic changes in the brain, they may have an impact on the hippocampus, a brain region where neurogenesis continues throughout life. Indeed, treatment at adult life stages improves or even rescues hippocampal neurogenesis and connectivity and hippocampal-dependent learning and memory, although the duration of these effects still remains, in the majority of cases, a matter of investigation. The exciting discovery that trisomy-linked brain abnormalities can be prevented with early interventions gives us reason to believe that treatments during pregnancy may rescue brain development in fetuses with DS. For this reason we deem it extremely important to expedite the discovery of additional therapies practicable in humans in order to identify the best treatment/s in terms of efficacy and paucity of side effects. Prompt achievement of this goal is the big challenge for the scientific community of researchers interested in DS.
Collapse
Affiliation(s)
| | | | | | | | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of BolognaBologna, Italy
| |
Collapse
|
47
|
Giacomini A, Stagni F, Trazzi S, Guidi S, Emili M, Brigham E, Ciani E, Bartesaghi R. Inhibition of APP gamma-secretase restores Sonic Hedgehog signaling and neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 2015; 82:385-396. [PMID: 26254735 PMCID: PMC4768084 DOI: 10.1016/j.nbd.2015.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/10/2015] [Accepted: 08/01/2015] [Indexed: 11/28/2022] Open
Abstract
Neurogenesis impairment starting from early developmental stages is a key determinant of intellectual disability in Down syndrome (DS). Previous evidence provided a causal relationship between neurogenesis impairment and malfunctioning of the mitogenic Sonic Hedgehog (Shh) pathway. In particular, excessive levels of AICD (amyloid precursor protein intracellular domain), a cleavage product of the trisomic gene APP (amyloid precursor protein) up-regulate transcription of Ptch1 (Patched1), the Shh receptor that keeps the pathway repressed. Since AICD results from APP cleavage by γ-secretase, the goal of the current study was to establish whether treatment with a γ-secretase inhibitor normalizes AICD levels and restores neurogenesis in trisomic neural precursor cells. We found that treatment with a selective γ-secretase inhibitor (ELND006; ELN) restores proliferation in neurospheres derived from the subventricular zone (SVZ) of the Ts65Dn mouse model of DS. This effect was accompanied by reduction of AICD and Ptch1 levels and was prevented by inhibition of the Shh pathway with cyclopamine. Treatment of Ts65Dn mice with ELN in the postnatal period P3–P15 restored neurogenesis in the SVZ and hippocampus, hippocampal granule cell number and synapse development, indicating a positive impact of treatment on brain development. In addition, in the hippocampus of treated Ts65Dn mice there was a reduction in the expression levels of various genes that are transcriptionally regulated by AICD, including APP, its origin substrate. Inhibitors of γ-secretase are currently envisaged as tools for the cure of Alzheimer's disease because they lower βamyloid levels. Current results provide novel evidence that γ-secretase inhibitors may represent a strategy for the rescue of neurogenesis defects in DS. Derangement of the mitogenic Shh pathway reduces neurogenesis in Down syndrome (DS). APP triplication causes excessive formation of its cleavage products AICD. AICD causes excessive transcription of Ptch1, the repressor of the Shh pathway. ELND006, a gamma secretase inhibitor, reduces AICD levels and Ptch1 expression. Treatment with ELND006 restores neurogenesis in the Ts65Dn mouse model of DS.
Collapse
Affiliation(s)
- Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fiorenza Stagni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
48
|
Sonamoto R, Kii I, Koike Y, Sumida Y, Kato-Sumida T, Okuno Y, Hosoya T, Hagiwara M. Identification of a DYRK1A Inhibitor that Induces Degradation of the Target Kinase using Co-chaperone CDC37 fused with Luciferase nanoKAZ. Sci Rep 2015; 5:12728. [PMID: 26234946 PMCID: PMC4522657 DOI: 10.1038/srep12728] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 07/07/2015] [Indexed: 12/22/2022] Open
Abstract
The protein kinase family includes attractive targets for drug development. Methods for screening of kinase inhibitors remain largely limited to in vitro catalytic assays. It has been shown that ATP-competitive inhibitors antagonize interaction between the target kinase and kinase-specific co-chaperone CDC37 in living cells. Here we show a cell-based method to screen kinase inhibitors using fusion protein of CDC37 with a mutated catalytic 19-kDa component of Oplophorus luciferase, nanoKAZ (CDC37-nanoKAZ). A dual-specificity kinase DYRK1A, an importance of which has been highlighted in Alzheimer's disease, was targeted in this study. We established 293T cells stably expressing CDC37-nanoKAZ, and analyzed interaction between CDC37-nanoKAZ and DYRK1A. We revealed that DYRK1A interacted with CDC37-nanoKAZ. Importantly, point mutations that affect autophosphorylation strengthened the interaction, thus improving signal/noise ratio of the interaction relative to non-specific binding of CDC37-nanoKAZ. This high signal/noise ratio enabled screening of chemical library that resulted in identification of a potent inhibitor of DYRK1A, named CaNDY. CaNDY induced selective degradation of DYRK1A, and inhibited catalytic activity of recombinant DYRK1A with IC50 value of 7.9 nM by competing with ATP. This method based on a mutant target kinase and a bioluminescence-eliciting co-chaperone CDC37 could be applicable to evaluation and development of inhibitors targeting other kinases.
Collapse
Affiliation(s)
- Rie Sonamoto
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Isao Kii
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuka Koike
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuto Sumida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tomoe Kato-Sumida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yukiko Okuno
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
49
|
Costa AC. Intracellular chloride accumulation: a possible mechanism for cognitive deficits in Down syndrome. Nat Med 2015; 21:312-3. [PMID: 25849271 DOI: 10.1038/nm.3836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alberto C Costa
- Department of Pediatrics, Division of Pediatric Neurology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
50
|
Deidda G, Parrini M, Naskar S, Bozarth IF, Contestabile A, Cancedda L. Reversing excitatory GABAAR signaling restores synaptic plasticity and memory in a mouse model of Down syndrome. Nat Med 2015; 21:318-26. [PMID: 25774849 DOI: 10.1038/nm.3827] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/19/2015] [Indexed: 12/12/2022]
Abstract
Down syndrome (DS) is the most frequent genetic cause of intellectual disability, and altered GABAergic transmission through Cl(-)-permeable GABAA receptors (GABAARs) contributes considerably to learning and memory deficits in DS mouse models. However, the efficacy of GABAergic transmission has never been directly assessed in DS. Here GABAAR signaling was found to be excitatory rather than inhibitory, and the reversal potential for GABAAR-driven Cl(-) currents (ECl) was shifted toward more positive potentials in the hippocampi of adult DS mice. Accordingly, hippocampal expression of the cation Cl(-) cotransporter NKCC1 was increased in both trisomic mice and individuals with DS. Notably, NKCC1 inhibition by the FDA-approved drug bumetanide restored ECl, synaptic plasticity and hippocampus-dependent memory in adult DS mice. Our findings demonstrate that GABA is excitatory in adult DS mice and identify a new therapeutic approach for the potential rescue of cognitive disabilities in individuals with DS.
Collapse
Affiliation(s)
- Gabriele Deidda
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Martina Parrini
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Shovan Naskar
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Ignacio F Bozarth
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Andrea Contestabile
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Laura Cancedda
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|