1
|
Sampedro-Viana D, Cañete T, Ancil-Gascón P, Cisci S, Tobeña A, Fernández-Teruel A. Contrasting Effects of Oxytocin on MK801-Induced Social and Non-Social Behavior Impairment and Hyperactivity in a Genetic Rat Model of Schizophrenia-Linked Features. Brain Sci 2024; 14:920. [PMID: 39335415 PMCID: PMC11430565 DOI: 10.3390/brainsci14090920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Social withdrawal in rodents is a measure of asociality, an important negative symptom of schizophrenia. The Roman high- (RHA) and low-avoidance (RLA) rat strains have been reported to exhibit differential profiles in schizophrenia-relevant behavioral phenotypes. This investigation was focused on the study of social and non-social behavior of these two rat strains following acute administration of dizocilpine (MK801, an NMDA receptor antagonist), a pharmacological model of schizophrenia-like features used to produce asociality and hyperactivity. Also, since oxytocin (OXT) has been proposed as a natural antipsychotic and a potential adjunctive therapy for social deficits in schizophrenia, we have evaluated the effects of OXT administration and its ability to reverse the MK801-impairing effects on social and non-social behavior and MK801-induced hyperactivity. MK801 administration produced hyperlocomotion and a decrease in social and non-social behavior in both rat strains, but these drug effects were clearly more marked in RHA rats. OXT (0.04 mg/kg and 0.2 mg/kg) attenuated MK801-induced hyperlocomotion in both rat strains, although this effect was more marked in RHA rats. The MK801-decreasing effect on exploration of the "social hole" was moderately but significantly attenuated only in RLA rats. This study is the first to demonstrate the differential effects of OXT on MK801-induced impairments in the two Roman rat strains, providing some support for the potential therapeutic effects of OXT against schizophrenia-like symptoms, including both a positive-like symptom (i.e., MK801-induced hyperlocomotion) and a negative-like symptom (i.e., MK801 decrease in social behavior), while highlighting the importance of the genetic background (i.e., the rat strain) in influencing the effects of both MK801 and oxytocin.
Collapse
Affiliation(s)
- Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain; (D.S.-V.); (T.C.); (P.A.-G.); (A.T.)
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain; (D.S.-V.); (T.C.); (P.A.-G.); (A.T.)
| | - Paula Ancil-Gascón
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain; (D.S.-V.); (T.C.); (P.A.-G.); (A.T.)
| | - Sonia Cisci
- Department of Life and Environmental Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, 09042 Cagliari, Italy;
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain; (D.S.-V.); (T.C.); (P.A.-G.); (A.T.)
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain; (D.S.-V.); (T.C.); (P.A.-G.); (A.T.)
| |
Collapse
|
2
|
Davies C, Martins D, Dipasquale O, McCutcheon RA, De Micheli A, Ramella-Cravaro V, Provenzani U, Rutigliano G, Cappucciati M, Oliver D, Williams S, Zelaya F, Allen P, Murguia S, Taylor D, Shergill S, Morrison P, McGuire P, Paloyelis Y, Fusar-Poli P. Connectome dysfunction in patients at clinical high risk for psychosis and modulation by oxytocin. Mol Psychiatry 2024; 29:1241-1252. [PMID: 38243074 PMCID: PMC11189815 DOI: 10.1038/s41380-024-02406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Abnormalities in functional brain networks (functional connectome) are increasingly implicated in people at Clinical High Risk for Psychosis (CHR-P). Intranasal oxytocin, a potential novel treatment for the CHR-P state, modulates network topology in healthy individuals. However, its connectomic effects in people at CHR-P remain unknown. Forty-seven men (30 CHR-P and 17 healthy controls) received acute challenges of both intranasal oxytocin 40 IU and placebo in two parallel randomised, double-blind, placebo-controlled cross-over studies which had similar but not identical designs. Multi-echo resting-state fMRI data was acquired at approximately 1 h post-dosing. Using a graph theoretical approach, the effects of group (CHR-P vs healthy control), treatment (oxytocin vs placebo) and respective interactions were tested on graph metrics describing the topology of the functional connectome. Group effects were observed in 12 regions (all pFDR < 0.05) most localised to the frontoparietal network. Treatment effects were found in 7 regions (all pFDR < 0.05) predominantly within the ventral attention network. Our major finding was that many effects of oxytocin on network topology differ across CHR-P and healthy individuals, with significant interaction effects observed in numerous subcortical regions strongly implicated in psychosis onset, such as the thalamus, pallidum and nucleus accumbens, and cortical regions which localised primarily to the default mode network (12 regions, all pFDR < 0.05). Collectively, our findings provide new insights on aberrant functional brain network organisation associated with psychosis risk and demonstrate, for the first time, that oxytocin modulates network topology in brain regions implicated in the pathophysiology of psychosis in a clinical status (CHR-P vs healthy control) specific manner.
Collapse
Affiliation(s)
- Cathy Davies
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychiatry, University Hospitals of Genève, Geneva, Switzerland
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Andrea De Micheli
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Outreach And Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - Valentina Ramella-Cravaro
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Umberto Provenzani
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Grazia Rutigliano
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marco Cappucciati
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dominic Oliver
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Steve Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paul Allen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Silvia Murguia
- Tower Hamlets Early Detection Service, East London NHS Foundation Trust, London, UK
| | - David Taylor
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Kent and Medway Medical School, Canterbury, UK
| | - Paul Morrison
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
- Outreach And Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Ruggeri A, Nerland S, Mørch-Johnsen L, Jørgensen KN, Barth C, Wortinger LA, Andreou D, Andreassen OA, Agartz I. Hypothalamic Subunit Volumes in Schizophrenia and Bipolar Spectrum Disorders. Schizophr Bull 2024; 50:533-544. [PMID: 38206841 PMCID: PMC11059784 DOI: 10.1093/schbul/sbad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
BACKGROUND The hypothalamus is central to many hormonal and autonomous nervous system pathways. Emerging evidence indicates that these pathways may be disrupted in schizophrenia and bipolar disorder. Yet, few studies have examined the volumes of hypothalamic subunits in these patient groups. We compared hypothalamic subunit volumes in individuals with psychotic disorders to healthy controls. STUDY DESIGN We included 344 patients with schizophrenia spectrum disorders (SCZ), 340 patients with bipolar disorders (BPD), and 684 age- and-sex-matched healthy controls (CTR). Total hypothalamus and five hypothalamic subunit volumes were extracted from T1-weighted magnetic resonance imaging (MRI) using an automated Bayesian segmentation method. Regression models, corrected for age, age2, sex, and segmentation-based intracranial volume (sbTIV), were used to examine diagnostic group differences, interactions with sex, and associations with clinical symptoms, antipsychotic medication, antidepressants and mood stabilizers. STUDY RESULTS SCZ had larger volumes in the left inferior tubular subunit and smaller right anterior-inferior, right anterior-superior, and right posterior hypothalamic subunits compared to CTR. BPD did not differ significantly from CTR for any hypothalamic subunit volume, however, there was a significant sex-by-diagnosis interaction. Analyses stratified by sex showed smaller right hypothalamus and right posterior subunit volumes in male patients, but not female patients, relative to same-sex controls. There was a significant association between BPD currently taking antipsychotic medication and the left inferior tubular subunits volumes. CONCLUSIONS Our results show regional-specific alterations in hypothalamus subunit volumes in individuals with SCZ, with relevance to HPA-axis dysregulation, circadian rhythm disruption, and cognition impairment.
Collapse
Affiliation(s)
- Aurora Ruggeri
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lynn Mørch-Johnsen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Østfold Hospital, Grålum, Norway
- Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | - Kjetil Nordbø Jørgensen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Laura Anne Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dimitrios Andreou
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
4
|
Zierhut M, Bergmann N, Hahne I, Wohlthan J, Kraft J, Braun A, Tam Ta TM, Hellmann-Regen J, Ripke S, Bajbouj M, Hahn E, Böge K. The combination of oxytocin and mindfulness-based group therapy for empathy and negative symptoms in schizophrenia spectrum disorders - A double-blinded, randomized, placebo-controlled pilot study. J Psychiatr Res 2024; 171:222-229. [PMID: 38309212 DOI: 10.1016/j.jpsychires.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/16/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
Treatment options for social cognition and negative symptoms in schizophrenia spectrum disorders (SSD) remain limited. Oxytocin could be a promising augmentation approach, but the social context influences the effect in humans. This pilot study hypothesized that oxytocin in a positive social setting through mindfulness-based group therapy (MBGT) would positively affect empathy and negative symptoms as well as affect and stress in an exploratory approach in SSD. An experimental, randomized, double-blinded (participants, psychotherapists), placebo-controlled pilot study with 41 individuals with SSD was conducted at the Charité - Universitätsmedizin Berlin. Oxytocin or placebo (24 I.U.) was administered intranasally 45 min before two sessions of MBGT each. A 2 × 2 mixed model ANCOVA design was calculated to assess empathy by the Interpersonal Reactivity Index and the Multifaceted Empathy Test and negative symptoms by the Self-Evaluation of Negative Symptoms. No benefit of oxytocin compared to placebo on empathy was observed, but significant between-group differences favoring oxytocin were found regarding the negative symptoms Diminished emotional range and Avolition. Negative affect and stress were significantly reduced compared to baseline. Mindfulness increased in both groups. Results indicated protocol adherence and retention rate of 91.1%, a drop-out rate of 8.9 % and a completion of 96 % of all sessions by the participants. No severe adverse events or side effects were reported. Our findings indicate proof-of-concept and suggest a potential role of oxytocin on negative symptoms and related variables in SSD in combination with MBGT. Future research should examine the stability of these effects with larger sample sizes.
Collapse
Affiliation(s)
- Marco Zierhut
- Charité - Universitätsmedizin Berlin, Department of Psychiatry and Neuroscience, Campus Benjamin Franklin, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin, Germany; German Center for Mental Health (DZPG), Partner Site, Berlin, Germany.
| | - Niklas Bergmann
- Charité - Universitätsmedizin Berlin, Department of Psychiatry and Neuroscience, Campus Benjamin Franklin, Berlin, Germany
| | - Inge Hahne
- Charité - Universitätsmedizin Berlin, Department of Psychiatry and Neuroscience, Campus Benjamin Franklin, Berlin, Germany
| | - Josefa Wohlthan
- Charité - Universitätsmedizin Berlin, Department of Psychiatry and Neuroscience, Campus Benjamin Franklin, Berlin, Germany
| | - Julia Kraft
- Charité - Universitätsmedizin Berlin, Department of Psychiatry and Neuroscience, Campus Mitte, Berlin, Germany
| | - Alice Braun
- Charité - Universitätsmedizin Berlin, Department of Psychiatry and Neuroscience, Campus Mitte, Berlin, Germany
| | - Thi Minh Tam Ta
- Charité - Universitätsmedizin Berlin, Department of Psychiatry and Neuroscience, Campus Benjamin Franklin, Berlin, Germany
| | - Julian Hellmann-Regen
- Charité - Universitätsmedizin Berlin, Department of Psychiatry and Neuroscience, Campus Benjamin Franklin, Berlin, Germany; German Center for Mental Health (DZPG), Partner Site, Berlin, Germany
| | - Stephan Ripke
- German Center for Mental Health (DZPG), Partner Site, Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Psychiatry and Neuroscience, Campus Mitte, Berlin, Germany
| | - Malek Bajbouj
- Charité - Universitätsmedizin Berlin, Department of Psychiatry and Neuroscience, Campus Benjamin Franklin, Berlin, Germany; German Center for Mental Health (DZPG), Partner Site, Berlin, Germany
| | - Eric Hahn
- Charité - Universitätsmedizin Berlin, Department of Psychiatry and Neuroscience, Campus Benjamin Franklin, Berlin, Germany
| | - Kerem Böge
- Charité - Universitätsmedizin Berlin, Department of Psychiatry and Neuroscience, Campus Benjamin Franklin, Berlin, Germany; German Center for Mental Health (DZPG), Partner Site, Berlin, Germany
| |
Collapse
|
5
|
Piotrowska D, Potasiewicz A, Popik P, Nikiforuk A. Pro-social and pro-cognitive effects of LIT-001, a novel oxytocin receptor agonist in a neurodevelopmental model of schizophrenia. Eur Neuropsychopharmacol 2024; 78:30-42. [PMID: 37866191 DOI: 10.1016/j.euroneuro.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/17/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
Social and cognitive dysfunctions are the most persistent symptoms of schizophrenia. Since oxytocin (OXT) is known to play a role in social functions and modulates cognitive processes, we investigated the effects of a novel, nonpeptide, selective OXT receptor agonist, LIT-001, in a neurodevelopmental model of schizophrenia. Administration of methylazoxymethanol acetate (MAM; 22 mg/kg) on the 17th day of rat pregnancy is known to cause developmental disturbances of the brain, which lead to schizophrenia-like symptomatology in the offspring. Here, we examined the effects of acutely administered LIT-001 (1, 3, and 10 mg/kg) in MAM-exposed males and females on social behaviour, communication and cognition. We report that MAM-treated adult male and female rats displayed reduced social behaviour, ultrasonic communication and novel object recognition test performance. LIT-001 partially reversed these deficits, increasing the total social interaction time and the number of 'positive', highly-modulated 50 kHz ultrasonic calls in male rats. The compound ameliorated MAM-induced deficits in object discrimination in both sexes. Present results confirm the pro-social activity of LIT-001 and demonstrate its pro-cognitive effects following acute administration.
Collapse
Affiliation(s)
- Diana Piotrowska
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Agnieszka Potasiewicz
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Piotr Popik
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agnieszka Nikiforuk
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
6
|
Michalczyk J, Miłosz A, Soroka E. Postpartum Psychosis: A Review of Risk Factors, Clinical Picture, Management, Prevention, and Psychosocial Determinants. Med Sci Monit 2023; 29:e942520. [PMID: 38155489 PMCID: PMC10759251 DOI: 10.12659/msm.942520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 12/30/2023] Open
Abstract
Postpartum psychosis is rare, but is a serious clinical and social problem. On its own, it is not included in DSM-5 (Diagnostic and Statistical Manual of Mental Disorders) or ICD-10 (International Statistical Classification of Diseases and Related Health Problems) as a disease entity, and current diagnostic criteria equate it with other psychoses. This poses a serious legal problem and makes it difficult to classify. The disorder is caused by a complex combination of biological, environmental, and cultural factors. The exact pathophysiological mechanisms of postpartum psychosis remain very poorly understood. There is a need for further research and increased knowledge of the medical sector in the prevention and early detection of psychosis to prevent stigmatization of female patients during a psychiatric episode. It is necessary to regulate its position in the DSM5 and ICD-10. Attention should be paid to the social education of expectant mothers and their families. This article aims to review the current status of risk factors, prevention, and management of postpartum psychosis.
Collapse
Affiliation(s)
- Justyna Michalczyk
- II Department of Psychiatry and Psychiatric Rehabilitation, Student Scientific Association, Faculty of Medicine, Medical University of Lublin, Lublin, Poland
| | - Agata Miłosz
- II Department of Psychiatry and Psychiatric Rehabilitation, Student Scientific Association, Faculty of Medicine, Medical University of Lublin, Lublin, Poland
| | - Ewelina Soroka
- II Department of Psychiatry and Psychiatric Rehabilitation, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
7
|
Hidalgo-Figueroa M, Salazar A, Romero-López-Alberca C, MacDowell KS, García-Bueno B, Bioque M, Bernardo M, Parellada M, González-Pinto A, García-Portilla MP, Lobo A, Rodriguez-Jimenez R, Berrocoso E, Leza JC, FLAMM-PEPs study, CIBERSAM. Association of Prolactin, Oxytocin, and Homocysteine With the Clinical and Cognitive Features of a First Episode of Psychosis Over a 1-Year Follow-Up. Int J Neuropsychopharmacol 2023; 26:796-807. [PMID: 37603404 PMCID: PMC10674080 DOI: 10.1093/ijnp/pyad051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/20/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND The clinical debut of schizophrenia is frequently a first episode of psychosis (FEP). As such, there is considerable interest in identifying associations between biological markers and clinical or cognitive characteristics that help predict the progression and outcome of FEP patients. Previous studies showed that high prolactin, low oxytocin, and high homocysteine are factors associated with FEP 6 months after diagnosis, at which point plasma levels were correlated with some clinical and cognitive characteristics. METHODS We reexamined 75 patients at 12 months after diagnosis to measure the evolution of these molecules and assess their association with clinical features. RESULTS At follow-up, FEP patients had lower prolactin levels than at baseline, and patients treated with risperidone or paliperidone had higher prolactin levels than patients who received other antipsychotic agents. By contrast, no changes in oxytocin and homocysteine plasma levels were observed between the baseline and follow-up. In terms of clinical features, we found that plasma prolactin and homocysteine levels were correlated with the severity of the psychotic symptoms in male FEP patients, suggesting that they might be factors associated with psychotic symptomatology but only in men. Together with oxytocin, these molecules may also be related to sustained attention, verbal ability, and working memory cognitive domains in FEP patients. CONCLUSION This study suggests that focusing on prolactin, oxytocin, and homocysteine at a FEP may help select adequate pharmacological treatments and develop new tools to improve the outcome of these patients, where sex should also be borne in mind.
Collapse
Affiliation(s)
- Maria Hidalgo-Figueroa
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain
| | - Alejandro Salazar
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Department of Statistics and Operational Research, University of Cádiz, Puerto Real (Cádiz), Spain
- The Observatory of Pain, University of Cádiz, Cádiz, Spain
| | - Cristina Romero-López-Alberca
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Personality, Evaluation and Psychological Treatment Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain
| | - Karina S MacDowell
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Univ. Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), IUINQ, Madrid, Spain
| | - Borja García-Bueno
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Univ. Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), IUINQ, Madrid, Spain
| | - Miquel Bioque
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Miquel Bernardo
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Mara Parellada
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Ana González-Pinto
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Department of Psychiatry, Hospital Universitario de Alava, BIOARABA, EHU, Vitoria-Gasteiz, Spain
| | - M Paz García-Portilla
- Department of Psychiatry, Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Neurociencias del Principado de Asturias (INEUROPA), Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain
| | - Antonio Lobo
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Department of Medicine and Psychiatry, Universidad de Zaragoza, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Roberto Rodriguez-Jimenez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Department of Psychiatry, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)/Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Esther Berrocoso
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain
| | - Juan C Leza
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Univ. Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), IUINQ, Madrid, Spain
| | | | | |
Collapse
|
8
|
Jiang J, Zou Y, Xie C, Yang M, Tong Q, Yuan M, Pei X, Deng S, Tian M, Xiao L, Gong Y. Oxytocin alleviates cognitive and memory impairments by decreasing hippocampal microglial activation and synaptic defects via OXTR/ERK/STAT3 pathway in a mouse model of sepsis-associated encephalopathy. Brain Behav Immun 2023; 114:195-213. [PMID: 37648002 DOI: 10.1016/j.bbi.2023.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction, characterized by cognitive and memory impairments closely linked to hippocampal dysfunction. Though it is well-known that SAE is a diffuse brain dysfunction with microglial activation, the pathological mechanisms of SAE are not well established and effective clinical interventions are lacking. Oxytocin (OXT) is reported to have anti-inflammatory and neuroprotective roles. However, the effects of OXT on SAE and the underlying mechanisms are not clear. METHODS SAE was induced in adult C57BL/6J male mice by cecal ligation and perforation (CLP) surgery. Exogenous OXT was intranasally applied after surgery. Clinical score, survivor rate, cognitive and memory behaviors, and hippocampal neuronal and non-neuronal functions were evaluated. Cultured microglia challenged with lipopolysaccharide (LPS) were used to investigate the effects of OXT on microglial functions, including inflammatory cytokines release and phagocytosis. The possible intracellular signal pathways involved in the OXT-induced neuroprotection were explored with RNA sequencing. RESULTS Hippocampal OXT level decreases, while the expression of OXT receptor (OXTR) increases around 24 h after CLP surgery. Intranasal OXT application at a proper dose increases mouse survival rate, alleviates cognitive and memory dysfunction, and restores hippocampal synaptic function and neuronal activity via OXTR in the SAE model. Intraperitoneal or local administration of the OXTR antagonist L-368,899 in hippocampal CA1 region inhibited the protective effects of OXT. Moreover, during the early stages of sepsis, hippocampal microglia are activated, while OXT application reduces microglial phagocytosis and the release of inflammatory cytokines, thereby exerting a neuroprotective effect. OXT may improve the SAE outcomes via the OXTR-ERK-STAT3 signaling pathway. CONCLUSION Our study uncovers the dysfunction of the OXT signal in SAE and shows that intranasal OXT application at a proper dose can alleviate SAE outcomes by reducing microglial overactivation, suggests that OXT may be a promising therapeutic approach in managing SAE patients.
Collapse
Affiliation(s)
- Junliang Jiang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China; Department of Orthopedics & Traumatology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Yue Zou
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Chuantong Xie
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Miaoxian Yang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiuping Tong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mimi Yuan
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xu Pei
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuixiang Deng
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lei Xiao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Cuesta-Marti C, Uhlig F, Muguerza B, Hyland N, Clarke G, Schellekens H. Microbes, oxytocin and stress: Converging players regulating eating behavior. J Neuroendocrinol 2023; 35:e13243. [PMID: 36872624 DOI: 10.1111/jne.13243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Oxytocin is a peptide-hormone extensively studied for its multifaceted biological functions and has recently gained attention for its role in eating behavior, through its action as an anorexigenic neuropeptide. Moreover, the gut microbiota is involved in oxytocinergic signaling through the brain-gut axis, specifically in the regulation of social behavior. The gut microbiota is also implicated in appetite regulation and is postulated to play a role in central regulation of hedonic eating. In this review, we provide an overview on oxytocin and its individual links with the microbiome, the homeostatic and non-homeostatic regulation of eating behavior as well as social behavior and stress.
Collapse
Affiliation(s)
- Cristina Cuesta-Marti
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Begoña Muguerza
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
- Universitat Rovira i Virgili, Department of Biochemistry & Biotechnology, Nutrigenomics Research Group, Tarragona, Spain
| | - Niall Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
10
|
Ortega MA, García-Montero C, Fraile-Martinez Ó, De Leon-Oliva D, Boaru DL, Bravo C, De Leon-Luis JA, Saez MA, Asúnsolo A, Romero-Gerechter I, Sanz-Giancola A, Diaz-Pedrero R, Lopez-Gonzalez L, Guijarro LG, Barrena-Blázquez S, Bujan J, García-Honduvilla N, Alvarez-Mon M, Alvarez-Mon MÁ, Lahera G. Assessment of Tissue Expression of the Oxytocin-Vasopressin Pathway in the Placenta of Women with a First-Episode Psychosis during Pregnancy. Int J Mol Sci 2023; 24:10254. [PMID: 37373400 DOI: 10.3390/ijms241210254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Psychosis refers to a mental health condition characterized by a loss of touch with reality, comprising delusions, hallucinations, disorganized thought, disorganized behavior, catatonia, and negative symptoms. A first-episode psychosis (FEP) is a rare condition that can trigger adverse outcomes both for the mother and newborn. Previously, we demonstrated the existence of histopathological changes in the placenta of pregnant women who suffer an FEP in pregnancy. Altered levels of oxytocin (OXT) and vasopressin (AVP) have been detected in patients who manifested an FEP, whereas abnormal placental expression of these hormones and their receptors (OXTR and AVPR1A) has been proven in different obstetric complications. However, the precise role and expression of these components in the placenta of women after an FEP have not been studied yet. Thus, the purpose of the present study was to analyze the gene and protein expression, using RT-qPCR and immunohistochemistry (IHC), of OXT, OXTR, AVP, and AVPR1a in the placental tissue of pregnant women after an FEP in comparison to pregnant women without any health complication (HC-PW). Our results showed increased gene and protein expression of OXT, AVP, OXTR, and AVPR1A in the placental tissue of pregnant women who suffer an FEP. Therefore, our study suggests that an FEP during pregnancy may be associated with an abnormal paracrine/endocrine activity of the placenta, which can negatively affect the maternofetal wellbeing. Nevertheless, additional research is required to validate our findings and ascertain any potential implications of the observed alterations.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Óscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28007 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Juan A De Leon-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28007 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcalá de Henares, Spain
| | - Angel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Ignacio Romero-Gerechter
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28801 Alcalá de Henares, Spain
| | - Alejandro Sanz-Giancola
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28801 Alcalá de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806 Alcalá de Henares, Spain
| | - Miguel Ángel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| |
Collapse
|
11
|
Cosme G, Arriaga P, Rosa PJ, Mehta MA, Prata D. Temporal profile of intranasal oxytocin in the human autonomic nervous system at rest: An electrocardiography and pupillometry study. J Psychopharmacol 2023:2698811231158233. [PMID: 36891949 DOI: 10.1177/02698811231158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
BACKGROUND Human social behavior is modulated by oxytocin (OT). Intranasal administration of OT (IN-OT) is a noninvasive route shown to elicit changes in the autonomic nervous system (ANS) activity; however, IN-OT's effect on the temporal profile of ANS activity at rest is yet to be described. AIMS We aimed to describe the temporal profile of IN-OT at six 10-min time windows from 15- to 100-min post-administration in 20 male participants at rest while continuously recording their pupillary in an eyes-open condition and cardiac activity in eyes-open and eyes-closed conditions. METHODS We used a double-blind, placebo-controlled, within-subjects design study where we extracted two proxies of parasympathetic nervous system (PNS) activity: high-frequency heart rate variability (HF-HRV) and pupillary unrest index (PUI); and a proxy of sympathetic nervous system activity: sample entropy of the pupillary unrest. RESULTS In the eyes-open condition, we found an effect of IN-OT on the proxies of PNS activity: decreased PUI in the three-time windows post-administration spanning 65-100 min, and as an exploratory finding, an increased HF-HRV in the 80-85 min time window. CONCLUSIONS We suggest there is a role of OT in PNS regulation that may be consistent with OT's currently theorized role in the facilitation of alertness and approach behavior.
Collapse
Affiliation(s)
- Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Patrícia Arriaga
- Instituto Universitário de Lisboa (ISCTE-IUL), CIS-IUL, Lisboa, Portugal
| | - Pedro J Rosa
- HEI-LAB: Human-Environment Interaction Lab/Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal.,ISMAT, Transdisciplinary Research Center (ISHIP), Portimão, Portugal
| | - Mitul A Mehta
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
12
|
Exploring a Possible Interplay between Schizophrenia, Oxytocin, and Estrogens: A Narrative Review. Brain Sci 2023; 13:brainsci13030461. [PMID: 36979271 PMCID: PMC10046503 DOI: 10.3390/brainsci13030461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Schizophrenia is characterized by symptoms of psychosis and sociocognitive deficits. Considering oxytocin’s antipsychotic and prosocial properties, numerous clinical, and preclinical studies have explored the neuropeptide’s therapeutic efficacy. Sex differences in the clinical course of schizophrenia, as well as in oxytocin-mediated behaviors, indicate the involvement of gonadal steroid hormones. The current narrative review aimed to explore empirical evidence on the interplay between schizophrenia psychopathology and oxytocin’s therapeutic potential in consideration of female gonadal steroid interactions, with a focus on estrogens. The review was conducted using the PubMed and PsychINFO databases and conforms to the Scale for the Assessment of Narrative Review Articles (SANRA) guidelines. The results suggest a potential synergistic effect of the combined antipsychotic effect of oxytocin and neuroprotective effect of estrogen on schizophrenia. Consideration of typical menstrual cycle-related hormonal changes is warranted and further research is needed to confirm this assumption.
Collapse
|
13
|
Neuroimaging genetics of oxytocin: A transcriptomics-informed systematic review. Neurosci Biobehav Rev 2022; 142:104912. [DOI: 10.1016/j.neubiorev.2022.104912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/10/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022]
|
14
|
Eghtedarian R, Akbari M, Badrlou E, Mahmud Hussen B, Eslami S, Akhavan-Bahabadi M, Taheri M, Ghafouri-Fard S, Neishabouri SM. Assessment of expression of oxytocin-related lncRNAs in schizophrenia. Eur J Pharmacol 2022; 932:175205. [PMID: 35987251 DOI: 10.1016/j.ejphar.2022.175205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Schizophrenia is a neuropsychiatric disorder characterized by a variety of clinical manifestations. This disorder has a complex inheritance. Oxytocinegic system has been shown to be implicated in the pathophysiology of schizophrenia. This system can alter social cognition through direct interaction with dopaminergic signaling, facilitating brain-stimulation reward, reduction of defense mechanism and stress reactivity, and modulation of social information processing through enhancing the greatness of social incentives. Long non-coding RNAs (lncRNAs) can affect activity of oxytocinegic system, thus contributing in the etiology of this disorder. METHODS We designed the current study to appraise dysregulation of nine oxytocin-associated mRNAs and lncRNAs in the venous blood of patients with schizophrenia. RESULTS Expression of FOS was up-regulated in total patients compared with total control group (Expression ratio (95% CI)= 13.64 (5.46-34.05), adjusted P value<0.0001) and in female patients compared with female control group (Expression ratio (95% CI)=32.13 (5.81-176), adjusted P value<0.0001). Such pattern was also seen for Lnc-FOXF1 (Expression ratio (95% CI)= 6.41 (2.84-14.3), adjusted P value<0.0001 and Expression ratio (95% CI)= 14.41 (3.2-64.44), adjusted P value<0.0001, respectively). ITPR1 was down-regulated in total patients compared with total controls (Expression ratio (95% CI)= 0.22 (0.076-0.67), adjusted P value=0.0079). ROC curve analyses demonstrated that FOS had the best AUC value among other genes in differentiation between patients and controls (AUC=0.78). CONCLUSION The above-mentioned results imply dysregulation of oxytocin-related genes in the circulatory blood of patients with schizophrenia.
Collapse
Affiliation(s)
- Reyhane Eghtedarian
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadarian Akbari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Badrlou
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
15
|
Hazani R, Lavidor M, Weller A. Treatments for Social Interaction Impairment in Animal Models of Schizophrenia: A Critical Review and Meta-analysis. Schizophr Bull 2022; 48:1179-1193. [PMID: 35925025 PMCID: PMC9673263 DOI: 10.1093/schbul/sbac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND While pharmacological treatments for positive symptoms of schizophrenia are widely used, their beneficial effect on negative symptoms, particularly social impairment, is insufficiently studied. Therefore, there is an increasing interest in preclinical research of potentially beneficial treatments, with mixed results. The current review aims to evaluate the efficacy of available treatments for social deficits in different animal models of schizophrenia. STUDY DESIGN A systematic literature search generated 145 outcomes for the measures "total time" and "number" of social interactions. Standardized mean differences (SMD) and 95% confidence interval (CI) were calculated, and heterogeneity was tested using Q statistics in a random-effect meta-analytic model. Given the vast heterogeneity in effect sizes, the animal model, treatment group, and sample size were all examined as potential moderators. STUDY RESULTS The results showed that in almost all models, treatment significantly improved social deficit (total time: SMD = 1.24; number: SMD = 1.1). The moderator analyses discovered significant subgroup differences across models and treatment subgroups. Perinatal and adult pharmacological models showed the most substantial influence of treatments on social deficits, reflecting relative pharmacological validity. Furthermore, atypical antipsychotic drugs had the highest SMD within each model subgroup. CONCLUSIONS Our findings indicate that the improvement in social interaction behaviors is dependent on the animal model and treatment family used. Implications for the preclinical and clinical fields are discussed.
Collapse
Affiliation(s)
- Reut Hazani
- To whom correspondence should be addressed; Department of Psychology, Bar-Ilan University, Ramat-Gan 5290002, Israel; tel: 972-3-531-8548, fax: 972-3-738-4173, e-mail:
| | - Michal Lavidor
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Aron Weller
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
16
|
Zelenina M, Kosilo M, da Cruz J, Antunes M, Figueiredo P, Mehta MA, Prata D. Temporal Dynamics of Intranasal Oxytocin in Human Brain Electrophysiology. Cereb Cortex 2022; 32:3110-3126. [PMID: 34979544 PMCID: PMC9290557 DOI: 10.1093/cercor/bhab404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 11/18/2022] Open
Abstract
Oxytocin (OT) is a key modulator of human social cognition, popular in behavioral neuroscience. To adequately design and interpret intranasal OT (IN-OT) research, it is crucial to know for how long it affects human brain function once administered. However, this has been mostly deduced from peripheral body fluids studies, or uncommonly used dosages. We aimed to characterize IN-OT's effects on human brain function using resting-state EEG microstates across a typical experimental session duration. Nineteen healthy males participated in a double-blind, placebo-controlled, within-subject, cross-over design of 24 IU of IN-OT in 12-min windows 15 min-to-1 h 42min after administration. We observed IN-OT effects on all microstates, across the observation span. During eyes-closed, IN-OT increased duration and contribution of A and contribution and occurrence of D, decreased duration and contribution of B and C; and increased transition probability C-to-B and C-to-D. In eyes-open, it increased A-to-C and A-to-D. As microstates A and D have been related to phonological auditory and attentional networks, respectively, we posit IN-OT may tune the brain for reception of external stimuli, particularly of social nature-tentatively supporting current neurocognitive hypotheses of OT. Moreover, we contrast our overall results against a comprehensive literature review of IN-OT time-course effects in the brain, highlighting comparability issues.
Collapse
Affiliation(s)
- Marie Zelenina
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- Section on Clinical and Computational Psychiatry, NIMH, NIH, MD 20814, USA
| | - Maciej Kosilo
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Janir da Cruz
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015 , Switzerland
- Institute for Systems and Robotics–Lisbon (LARSyS) and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001 , Portugal
| | - Marília Antunes
- Centro de Estatística e Aplicações e Departamento de Estatística e Investigação Operacional, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Patrícia Figueiredo
- Institute for Systems and Robotics–Lisbon (LARSyS) and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001 , Portugal
- INESC-ID, Instituto Superior Técnico, 1749-016 Lisboa, Portugal
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- Instituto Universitário de Lisboa (ISCTE-IUL), CIS-IUL, Lisboa 1649-026, Portugal
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK
| |
Collapse
|
17
|
Szafoni S, Piegza M. Progress in Personalized Psychiatric Therapy with the Example of Using Intranasal Oxytocin in PTSD Treatment. J Pers Med 2022; 12:1067. [PMID: 35887564 PMCID: PMC9317706 DOI: 10.3390/jpm12071067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a severe mental disorder that results in the frequent coexistence of other diseases, lowers patients' quality of life, and has a high annual cost of treatment. However, despite the variety of therapeutic approaches that exist, some patients still do not achieve the desired results. In addition, we may soon face an increase in the number of new PTSD cases because of the current global situation-both the COVID-19 pandemic and the ongoing armed conflicts. Hence, in recent years, many publications have sought a new, more personalized treatment approach. One such approach is the administration of intranasal oxytocin (INOXT), which, due to its pleiotropic effects, seems to be a promising therapeutic option. However, the current findings suggest that it might only be helpful for a limited, strictly selected group of patients.
Collapse
Affiliation(s)
- Sandra Szafoni
- Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 42-612 Tarnowskie Góry, Poland;
| | | |
Collapse
|
18
|
Hidalgo-Figueroa M, Salazar A, Romero-López-Alberca C, MacDowell KS, García-Bueno B, Bioque M, Bernardo M, Parellada M, González-Pinto A, García Portilla MP, Lobo A, Rodriguez-Jimenez R, Berrocoso E, Leza JC, FLAMM-PEPs study, CIBERSAM. The Influence of Oxytocin and Prolactin During a First Episode of Psychosis: The Implication of Sex Differences, Clinical Features, and Cognitive Performance. Int J Neuropsychopharmacol 2022; 25:666-677. [PMID: 35353882 PMCID: PMC9380712 DOI: 10.1093/ijnp/pyac023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Approximately 3% of the population suffers a first episode of psychosis (FEP), and a high percentage of these patients subsequently relapse. Because the clinical course following a FEP is hard to predict, it is of interest to identify cognitive and biological markers that will help improve the diagnosis, treatment, and outcome of such events and to define new therapeutic targets. Here we analyzed the plasma oxytocin and prolactin levels during an FEP, assessing their correlation with clinical and cognitive features. METHODS The oxytocin and prolactin in plasma was measured in 120 FEP patients and 106 healthy controls, all of whom were subjected to a clinical and neuropsychological assessment. Most patients were under antipsychotics. Statistical analyses aimed to identify factors associated with the FEP and to search for associations between the variables. This study is preliminary and exploratory because the P-values were not corrected for multiple comparisons. RESULTS FEP patients had less oxytocin, more prolactin, and a poor premorbid IQ, and they performed worse in sustained attention. Male patients with higher prolactin levels experienced more severe psychotic symptoms and required higher doses of antipsychotics. Low oxytocin was associated with poor sustained attention in women, whereas low oxytocin and high prolactin in men correlated with better performance in sustained attention. CONCLUSION Low oxytocin, high prolactin, and poor premorbid IQ and sustained attention are factors associated with an FEP, representing potential therapeutic targets in these patients. These biological factors and cognitive domains might play an important role during a FEP, which could help us to develop new strategies that improve the outcomes of this disorder and that should perhaps be gender specific.
Collapse
Affiliation(s)
| | | | - Cristina Romero-López-Alberca
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain,Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cádiz, Spain,Personality, Evaluation and Psychological Treatment Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain
| | - Karina S MacDowell
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain,Departamento de Farmacología y Toxicología, Facultad de Medicina, Univ. Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), IUINQ, Madrid, Spain
| | - Borja García-Bueno
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain,Departamento de Farmacología y Toxicología, Facultad de Medicina, Univ. Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), IUINQ, Madrid, Spain
| | - Miquel Bioque
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain,Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Miquel Bernardo
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain,Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona Clínic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clínic de Barcelona, Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Mara Parellada
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Ana González-Pinto
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain,Department of Psychiatry, Hospital Universitario de Alava, BIOARABA, EHU, Vitoria-Gasteiz, Spain
| | - María Paz García Portilla
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain,Department of Psychiatry, Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Neurociencias del Principado de Asturias (INEUROPA), Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain
| | - Antonio Lobo
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain,Department of Medicine and Psychiatry, Universidad de Zaragoza, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Roberto Rodriguez-Jimenez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain,Department of Psychiatry, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)/Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Esther Berrocoso
- Correspondence: Esther Berrocoso, PhD, Neuropsychopharmacology Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, 11510 Cádiz, Spain ()
| | - Juan C Leza
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain,Departamento de Farmacología y Toxicología, Facultad de Medicina, Univ. Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), IUINQ, Madrid, Spain
| | | | - CIBERSAM
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
19
|
Van der Donck S, Moerkerke M, Dlhosova T, Vettori S, Dzhelyova M, Alaerts K, Boets B. Monitoring the effect of oxytocin on the neural sensitivity to emotional faces via frequency-tagging EEG: A double-blind, cross-over study. Psychophysiology 2022; 59:e14026. [PMID: 35150446 DOI: 10.1111/psyp.14026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/05/2021] [Accepted: 01/16/2022] [Indexed: 01/23/2023]
Abstract
The neuropeptide oxytocin (OXT) is suggested to exert an important role in human social behaviors by modulating the salience of social cues. To date, however, there is mixed evidence whether a single dose of OXT can improve the behavioral and neural sensitivity for emotional face processing. To overcome difficulties encountered with classic event-related potential studies assessing stimulus-saliency, we applied frequency-tagging EEG to implicitly assess the effect of a single dose of OXT (24 IU) on the neural sensitivity for positive and negative facial emotions. Neutral faces with different identities were presented at 6 Hz, periodically interleaved with an expressive face (angry, fearful, and happy, in separate sequences) every fifth image (i.e., 1.2 Hz oddball frequency). These distinctive frequency tags for neutral and expressive stimuli allowed direct and objective quantification of the neural expression-categorization responses. The study involved a double-blind, placebo-controlled, cross-over trial with 31 healthy adult men. Contrary to our expectations, we did not find an effect of OXT on facial emotion processing, neither at the neural, nor at the behavioral level. A single dose of OXT did not evoke social enhancement in general, nor did it affect social approach-avoidance tendencies. Possibly ceiling performances in facial emotion processing might have hampered further improvement.
Collapse
Affiliation(s)
- Stephanie Van der Donck
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Matthijs Moerkerke
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Tereza Dlhosova
- Department of Psychology, Faculty of Arts, Masaryk University, Brno, Czech Republic
| | - Sofie Vettori
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Milena Dzhelyova
- Institute of Research in Psychological Sciences, Université de Louvain, Louvain-La-Neuve, Belgium.,Institute of Neuroscience, Université de Louvain, Louvain-La-Neuve, Belgium
| | - Kaat Alaerts
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium.,Department of Rehabilitation Sciences, Neurorehabilitation Research Group, KU Leuven, Leuven, Belgium
| | - Bart Boets
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Martins D, Brodmann K, Veronese M, Dipasquale O, Mazibuko N, Schuschnig U, Zelaya F, Fotopoulou A, Paloyelis Y. "Less is more": a dose-response account of intranasal oxytocin pharmacodynamics in the human brain. Prog Neurobiol 2022; 211:102239. [PMID: 35122880 DOI: 10.1016/j.pneurobio.2022.102239] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 12/27/2022]
Abstract
Intranasal oxytocin is attracting attention as a potential treatment for several brain disorders due to promising preclinical results. However, translating findings to humans has been hampered by remaining uncertainties about its pharmacodynamics and the methods used to probe its effects in the human brain. Using a dose-response design (9, 18 and 36 IU), we demonstrate that intranasal oxytocin-induced changes in local regional cerebral blood flow (rCBF) in the amygdala at rest, and in the covariance between rCBF in the amygdala and other key hubs of the brain oxytocin system, follow a dose-response curve with maximal effects for lower doses. Yet, the effects on local rCBF might vary by amygdala subdivision, highlighting the need to qualify dose-response curves within subregion. We further link physiological changes with the density of the oxytocin receptor gene mRNA across brain regions, strengthening our confidence in intranasal oxytocin as a valid approach to engage central targets. Finally, we demonstrate that intranasal oxytocin does not disrupt cerebrovascular reactivity, which corroborates the validity of haemodynamic neuroimaging to probe the effects of intranasal oxytocin in the human brain. DATA AVAILABILITY: Participants did not consent for open sharing of the data. Therefore, data can only be accessed from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Katja Brodmann
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Ndaba Mazibuko
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | | | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Aikaterini Fotopoulou
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
21
|
Ghazy AA, Soliman OA, Elbahnasi AI, Alawy AY, Mansour AM, Gowayed MA. Role of Oxytocin in Different Neuropsychiatric, Neurodegenerative, and Neurodevelopmental Disorders. Rev Physiol Biochem Pharmacol 2022; 186:95-134. [PMID: 36416982 DOI: 10.1007/112_2022_72] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oxytocin has recently gained significant attention because of its role in the pathophysiology and management of dominant neuropsychiatric disorders. Oxytocin, a peptide hormone synthesized in the hypothalamus, is released into different brain regions, acting as a neurotransmitter. Receptors for oxytocin are present in many areas of the brain, including the hypothalamus, amygdala, and nucleus accumbens, which have been involved in the pathophysiology of depression, anxiety, schizophrenia, autism, Alzheimer's disease, Parkinson's disease, and attention deficit hyperactivity disorder. Animal studies have spotlighted the role of oxytocin in social, behavioral, pair bonding, and mother-infant bonding. Furthermore, oxytocin protects fetal neurons against injury during childbirth and affects various behaviors, assuming its possible neuroprotective characteristics. In this review, we discuss some of the concepts and mechanisms related to the role of oxytocin in the pathophysiology and management of some neuropsychiatric, neurodegenerative, and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Aya A Ghazy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Omar A Soliman
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Aya I Elbahnasi
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Aya Y Alawy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Amira Ma Mansour
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| |
Collapse
|
22
|
Hernández-Díaz Y, González-Castro TB, Tovilla-Zárate CA, López-Narváez ML, Genis-Mendoza AD, Castillo-Avila RG, Ramos-Méndez MÁ, Juárez-Rojop IE. Oxytocin levels in individuals with schizophrenia are high in cerebrospinal fluid but low in serum: A systematic review and meta-analysis : Oxytocin and Schizophrenia. Metab Brain Dis 2021; 36:2415-2424. [PMID: 34495462 DOI: 10.1007/s11011-021-00836-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/28/2021] [Indexed: 12/23/2022]
Abstract
Schizophrenia is a debilitating mental illness. Levels of oxytocin have been proposed as a biomarker of schizophrenia; however, the observed levels of oxytocin in individuals with schizophrenia have been inconsistent across studies. We performed a meta-analysis to evaluate oxytocin levels in plasma, serum and cerebrospinal fluid to see if there are statistically different concentrations between individuals with schizophrenia and the comparison group. The meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Following the inclusion and exclusion criteria, 14 studies were included in the meta-analysis. The quality of the study was evaluated by the Newcastle-Ottawa Scale (NOS). A random-effects model was performed using the Comprehensive Meta-analysis software with the standardized mean difference (SMD) and 95% confidence intervals (CIs). Serum oxytocin levels in individuals with schizophrenia were significantly lower than that in comparison group (SMD = - 1.74, 95% CI = - 3.22 to - 0.26, p = 0.02) but cerebrospinal fluid oxytocin levels in individuals with schizophrenia were significantly higher than those in the comparison group (SMD = 0.55, 95% CI = 0.05 to 1.04, p = 0.03). Our results suggest that oxytocin levels in cerebrospinal fluid are increased in individuals with schizophrenia but decreased in serum. Therefore, the oxytocin system dysregulation may play a role in the pathophysiology of schizophrenia and it should be measured in more populations for a possible implementation as a biomarker of schizophrenia.
Collapse
Affiliation(s)
- Yazmín Hernández-Díaz
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México
| | - Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México
| | - Carlos Alfonso Tovilla-Zárate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco, Tabasco, México.
| | | | - Alma Delia Genis-Mendoza
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Rosa Giannina Castillo-Avila
- División Académica de Ciencias de La Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Miguel Ángel Ramos-Méndez
- División Académica de Ciencias de La Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de La Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| |
Collapse
|
23
|
Winterton A, Bettella F, de Lange AMG, Haram M, Steen NE, Westlye LT, Andreassen OA, Quintana DS. Oxytocin-pathway polygenic scores for severe mental disorders and metabolic phenotypes in the UK Biobank. Transl Psychiatry 2021; 11:599. [PMID: 34824196 PMCID: PMC8616952 DOI: 10.1038/s41398-021-01725-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/26/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Oxytocin is a neuromodulator and hormone that is typically associated with social cognition and behavior. In light of its purported effects on social cognition and behavior, research has investigated its potential as a treatment for psychiatric illnesses characterized by social dysfunction, such as schizophrenia and bipolar disorder. While the results of these trials have been mixed, more recent evidence suggests that the oxytocin system is also linked with cardiometabolic conditions for which individuals with severe mental disorders are at a higher risk for developing. To investigate whether the oxytocin system has a pleiotropic effect on the etiology of severe mental illness and cardiometabolic conditions, we explored oxytocin's role in the shared genetic liability of schizophrenia, bipolar disorder, type-2 diabetes, and several phenotypes linked with cardiovascular disease and type 2 diabetes risk using a polygenic pathway-specific approach. Analysis of a large sample with about 480,000 individuals (UK Biobank) revealed statistically significant associations across the range of phenotypes analyzed. By comparing these effects to those of polygenic scores calculated from 100 random gene sets, we also demonstrated the specificity of many of these significant results. Altogether, our results suggest that the shared effect of oxytocin-system dysfunction could help partially explain the co-occurrence of social and cardiometabolic dysfunction in severe mental illnesses.
Collapse
Affiliation(s)
- Adriano Winterton
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Francesco Bettella
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ann-Marie G de Lange
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Marit Haram
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Daniel S Quintana
- Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo and Oslo University Hospital, Oslo, Norway.
- Department of Psychology, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
- NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
24
|
Gomaa Y, Kolluru C, Milewski M, Lee D, Zhang J, Saklatvala R, Prausnitz MR. Development of a thermostable oxytocin microneedle patch. J Control Release 2021; 337:81-89. [PMID: 34265331 DOI: 10.1016/j.jconrel.2021.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022]
Abstract
Oxytocin is a nonapeptide hormone used in labor to initiate uterine contractions and to prevent and treat postpartum hemorrhage. Oxytocin is currently administered by injection and requires refrigerated transport and storage, which limits access, especially during home birth in developing countries. Here, we propose a thermostable, simple-to-administer microneedle (MN) patch for rapid delivery of oxytocin suitable for use by healthcare workers with limited training, like traditional birth attendants. Oxytocin (10 IU, 16.8 μg) coated onto stainless steel MN arrays was released into skin within 1-5 min after manual insertion. Among tested excipients, polyacrylic acid was best at stabilizing oxytocin stored at 75% relative humidity, with no significant loss for up to 2 months at 40 °C. Under desiccated conditions, MNs coated with formulations containing trehalose in a mixture of citrate buffer and ethanol retained 75% oxytocin potency at 40 °C for 12 months; the commercial oxytocin product Pitocin® was reduced to 35% potency under these conditions. These findings support development of MN patches for oxytocin administration with improved ease of use, extended thermostability and simplified logistics to enable greater access to this life-saving medicine.
Collapse
Affiliation(s)
- Yasmine Gomaa
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Chandana Kolluru
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Dinah Lee
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Robert Saklatvala
- Merck & Co., Inc., Kenilworth, NJ, USA; Currently at Kallyope, Inc., New York, NY, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
25
|
Medved S, Bajs JanoviĆ M, Štimac Z, MihaljeviĆ-Peleš A. Add-on Oxytocin in the Treatment of Postpartum Acute Schizophrenia: A Case Report. J Psychiatr Pract 2021; 27:326-332. [PMID: 34398584 DOI: 10.1097/pra.0000000000000557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An increasing body of research has been published concerning the potential impact of oxytocin (OT) in the pathophysiology of neuropsychiatric disorders that affect social functioning, such as schizophrenia. The possible therapeutic effect of OT in promoting mother-child bonding could be valuable in the management of postpartum psychosis. Studies on the efficacy of OT as an add-on therapy in the treatment of schizophrenia have found reductions in both positive and negative symptoms. The patient in the case reported here developed her second psychotic episode at the age of 22, a month after delivering her first child. Four weeks after treatment with aripiprazole was initiated, the patient's negative symptoms persisted, causing problems in the mother-child interaction. Intranasal OT (40 IU/d) was then added to the aripiprazole. Assessment scales [the Positive and Negative Syndrome Scale (PANSS), the Disability Assessment Schedule (WHODAS 2.0), and the Barkin Index of Maternal Functioning (BIMF)] and qualitative data from her caregiver were obtained at baseline and in the third and eighth weeks after the end of the OT therapy. Improvement was observed on almost all of the domains of the WHODAS 2.0 and the BIMF, as well as on the PANSS negative and general psychopathology scales. Data from the patient's caregiver indicated an overall improvement in mother-child interaction. These results, especially the improvement in results on the PANSS scale, are similar to findings from previous studies in patients with schizophrenia. OT seems to boost the antipsychotic effect on positive symptoms through the OT dopamine pathway, while the effect on negative symptoms probably involves a more general mechanism. Because the postpartum period is of immense significance for child development and mental well-being, future research to investigate the therapeutic efficacy of OT in the management of postpartum psychosis is warranted.
Collapse
|
26
|
Riccardi C, Montemagni C, Del Favero E, Bellino S, Brasso C, Rocca P. Pharmacological Treatment for Social Cognition: Current Evidence. Int J Mol Sci 2021; 22:7457. [PMID: 34299076 PMCID: PMC8307511 DOI: 10.3390/ijms22147457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022] Open
Abstract
Cognitive impairment is currently considered a core feature of schizophrenia (SZ) and is gaining attention as a fundamental therapeutic target. Standard treatment for SZ involves the use of antipsychotics that are successfully used to control positive symptoms and disorganized behaviour. However, it is still unclear whether they are effective on social cognition (SC) impairment. Furthermore, different medications are currently being studied to improve SC in patients with SZ. A literature search on this topic was conducted using the PubMed database. All kinds of publications (i.e., reviews, original contributions and case reports) written in English and published in the last 15 years were included. The aim of our literature review is to draw a picture of the current state of the pharmacological treatment of SC impairment in SZ.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Rocca
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10100 Turin, Italy; (C.R.); (C.M.); (E.D.F.); (S.B.); (C.B.)
| |
Collapse
|
27
|
Houghton B, Kouimtsidis C, Duka T, Paloyelis Y, Bailey A. Can intranasal oxytocin reduce craving in automated addictive behaviours? A systematic review. Br J Pharmacol 2021; 178:4316-4334. [PMID: 34235724 DOI: 10.1111/bph.15617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Existing pharmacotherapies for managing craving, a strong predictor of relapse to automated addictive behaviours, are limited in efficacy and characterised by increased health risks associated with their pharmacological profile. Preclinical studies have identified oxytocin as a promising pharmacotherapy with anticraving properties for addictive behaviours. Here, we provide the first systematic review of 17 human studies (n = 722; 30% female) investigating the efficacy of intranasal oxytocin to reduce craving or consumption in addictive behaviours. We identify intranasal oxytocin as a method that warrants further investigation regarding its capacity to decrease cue-induced, acute stress-induced or withdrawal-related craving and relapse related to alcohol, cannabis, opioids, cocaine or nicotine, including a potential role as ad hoc medication following exposure to drug-related cues. Future studies should investigate the role of factors such as treatment regimens and sample characteristics, including the role of the amygdala, which we propose as a distinct mechanism mediating oxytocin's anticraving properties.
Collapse
Affiliation(s)
- Ben Houghton
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK
| | | | - Theodora Duka
- Behavioural and Clinical Neuroscience, School of Psychology, University of Sussex, Brighton, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK
| |
Collapse
|
28
|
Martins D, Dipasquale O, Paloyelis Y. Oxytocin modulates local topography of human functional connectome in healthy men at rest. Commun Biol 2021; 4:68. [PMID: 33452496 PMCID: PMC7811009 DOI: 10.1038/s42003-020-01610-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
Oxytocin has recently received remarkable attention for its role as a modulator of human behaviour. Here, we aimed to expand our knowledge of the neural circuits engaged by oxytocin by investigating the effects of intranasal and intravenous oxytocin on the functional connectome at rest in 16 healthy men. Oxytocin modulates the functional connectome within discrete neural systems, but does not affect the global capacity for information transfer. These local effects encompass key hubs of the oxytocin system (e.g. amygdala) but also regions overlooked in previous hypothesis-driven research (i.e. the visual circuits, temporal lobe and cerebellum). Increases in levels of oxytocin in systemic circulation induce broad effects on the functional connectome, yet we provide indirect evidence supporting the involvement of nose-to-brain pathways in at least some of the observed changes after intranasal oxytocin. Together, our results suggest that oxytocin effects on human behaviour entail modulation of multiple levels of brain processing distributed across different systems.
Collapse
Affiliation(s)
- Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
29
|
Horta M, Pehlivanoglu D, Ebner NC. The Role of Intranasal Oxytocin on Social Cognition: An Integrative Human Lifespan Approach. Curr Behav Neurosci Rep 2020; 7:175-192. [PMID: 33717829 PMCID: PMC7951958 DOI: 10.1007/s40473-020-00214-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW This narrative review synthesizes research from the last two decades on the modulatory role of intranasal OT administration (IN-OT) on social cognition in early life, young/middle adulthood, and older adulthood. Advances and knowledge gaps are identified, and future research directions are discussed within an integrative human lifespan framework to guide novel research on IN-OT and social cognition. RECENT FINDINGS Current evidence regarding IN-OT modulation of social-cognitive processes, behavior, and related neurocircuitry is mixed, with some studies suggesting benefits (e.g., improved social perception/interactions, emotion processing) depending on contextual (e.g., social stimuli) and interindividual factors (e.g., age, sex, clinical status). Current research, however, is limited by a focus on isolated life phases, males, and select clinical populations as well as a lack of standardized protocols. SUMMARY This literature-based reflection proposes that greater generalizability of findings and scientific advancement on social-cognitive modulation via IN-OT require standardized, multi-method, longitudinal, and cross-sequential assessments in well-powered, well-controlled, and representative samples in line with an integrative lifespan approach, which considers development as a lifelong dynamic process involving both change and stability characterized by the interplay between genetic, neurobiological, and socio-behavioral factors.
Collapse
Affiliation(s)
- Marilyn Horta
- Department of Psychology, University of Florida, Gainesville, FL, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | | | - Natalie C. Ebner
- Department of Psychology, University of Florida, Gainesville, FL, USA
- Institute on Aging, Department of Aging & Geriatric Research, University of Florida, Gainesville, FL, USA
| |
Collapse
|
30
|
Kraeuter AK, Phillips R, Sarnyai Z. The Gut Microbiome in Psychosis From Mice to Men: A Systematic Review of Preclinical and Clinical Studies. Front Psychiatry 2020; 11:799. [PMID: 32903683 PMCID: PMC7438757 DOI: 10.3389/fpsyt.2020.00799] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
The gut microbiome is rapidly becoming the focus of interest as a possible factor involved in the pathophysiology of neuropsychiatric disorders. Recent understanding of the pathophysiology of schizophrenia emphasizes the role of systemic components, including immune/inflammatory and metabolic processes, which are influenced by and interacting with the gut microbiome. Here we systematically review the current literature on the gut microbiome in schizophrenia-spectrum disorders and in their animal models. We found that the gut microbiome is altered in psychosis compared to healthy controls. Furthermore, we identified potential factors related to psychosis, which may contribute to the gut microbiome alterations. However, further research is needed to establish the disease-specificity and potential causal relationships between changes of the microbiome and disease pathophysiology. This can open up the possibility of. manipulating the gut microbiome for improved symptom control and for the development of novel therapeutic approaches in schizophrenia and related psychotic disorders.
Collapse
Affiliation(s)
- Ann-Katrin Kraeuter
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- Faculty of Health and Life Sciences, Psychology, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Riana Phillips
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Zoltán Sarnyai
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
31
|
Oxytocin modulates the effective connectivity between the precuneus and the dorsolateral prefrontal cortex. Eur Arch Psychiatry Clin Neurosci 2020; 270:567-576. [PMID: 30734090 DOI: 10.1007/s00406-019-00989-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/31/2019] [Indexed: 12/17/2022]
Abstract
Our social activity is heavily influenced by the process of introspection, with emerging research suggesting a role for the Default Mode Network (DMN) in social cognition. We hypothesize that oxytocin, a neuropeptide with an important role in social behaviour, can effectively alter the connectivity of the DMN. We test this hypothesis using a randomized, double-blind, crossover, placebo-controlled trial where 15 healthy male participants received 24 IU oxytocin or placebo prior to a resting-state functional MRI scan. We used Granger Causality Analysis for the first time to probe the role of oxytocin on brain networks and found that oxytocin reverses the pattern of effective connectivity between the bilateral precuneus and the left dorsolateral prefrontal cortex (dlPFC), a key central executive network (CEN) region. Under placebo, the bilateral precuneus exerted a significant negative causal influence on the left dlPFC and the left dlPFC exerted a significant positive causal influence on the bilateral precuneus. However, under oxytocin, these patterns were reversed, i.e. positive causal influence from the bilateral precuneus to the left dlPFC and negative causal influence from the left dlPFC to the bilateral precuneus (with statistically significant effects for the right precuneus). We propose that these oxytocin-induced effects could be a mechanistic process by which it modulates social cognition. These results provide a measurable target for the physiological effects of oxytocin in the brain and offer oxytocin as a potential agent to enhance the cooperative role of the predominantly 'task-inactive' 'default mode' brain regions in both healthy and patient populations.
Collapse
|
32
|
Potasiewicz A, Holuj M, Litwa E, Gzielo K, Socha L, Popik P, Nikiforuk A. Social dysfunction in the neurodevelopmental model of schizophrenia in male and female rats: Behavioural and biochemical studies. Neuropharmacology 2020; 170:108040. [DOI: 10.1016/j.neuropharm.2020.108040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/17/2020] [Accepted: 03/04/2020] [Indexed: 01/10/2023]
|
33
|
Abstract
BACKGROUND Patients in every stage of the psychosis continuum can present with negative symptoms. While no treatment is currently available to address these symptoms, a more refined characterization of their course over the lifetime could help in elaborating interventions. Previous reports have separately investigated the prevalence of negative symptoms within each stage of the psychosis continuum. Our aim in this review is to compare those prevalences across stages, thereby disclosing the course of negative symptoms. METHODS We searched several databases for studies reporting prevalences of negative symptoms in each one of our predetermined stages of the psychosis continuum: clinical or ultra-high risk (UHR), first-episode of psychosis (FEP), and younger and older patients who have experienced multiple episodes of psychosis (MEP). We combined results using the definitions of negative symptoms detailed in the Brief Negative Symptom Scale, a recently developed tool. For each negative symptom, we averaged and weighted by the combined sample size the prevalences of each negative symptom at each stage. RESULTS We selected 47 studies totaling 1872 UHR, 2947 FEP, 5039 younger MEP, and 669 older MEP patients. For each negative symptom, the prevalences showed a comparable course. Each negative symptom decreased from the UHR to FEP stages and then increased from the FEP to MEP stages. CONCLUSIONS Certain psychological, environmental, and treatment-related factors may influence the cumulative impact of negative symptoms, presenting the possibility for early intervention to improve the long-term course.
Collapse
|
34
|
Martins DA, Mazibuko N, Zelaya F, Vasilakopoulou S, Loveridge J, Oates A, Maltezos S, Mehta M, Wastling S, Howard M, McAlonan G, Murphy D, Williams SCR, Fotopoulou A, Schuschnig U, Paloyelis Y. Effects of route of administration on oxytocin-induced changes in regional cerebral blood flow in humans. Nat Commun 2020; 11:1160. [PMID: 32127545 PMCID: PMC7054359 DOI: 10.1038/s41467-020-14845-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
Could nose-to-brain pathways mediate the effects of peptides such as oxytocin (OT) on brain physiology when delivered intranasally? We address this question by contrasting two methods of intranasal administration (a standard nasal spray, and a nebulizer expected to improve OT deposition in nasal areas putatively involved in direct nose-to-brain transport) to intravenous administration in terms of effects on regional cerebral blood flow during two hours post-dosing. We demonstrate that OT-induced decreases in amygdala perfusion, a key hub of the OT central circuitry, are explained entirely by OT increases in systemic circulation following both intranasal and intravenous OT administration. Yet we also provide robust evidence confirming the validity of the intranasal route to target specific brain regions. Our work has important translational implications and demonstrates the need to carefully consider the method of administration in our efforts to engage specific central oxytocinergic targets for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- D A Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - N Mazibuko
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - F Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - S Vasilakopoulou
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - J Loveridge
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - A Oates
- South London and Maudsley NHS Foundation Trust, London, UK
| | - S Maltezos
- Adult Autism and ADHD Service, South London and Maudsley NHS Foundation Trust, London, UK
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - S Wastling
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - M Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - G McAlonan
- Department of Forensic and Neurodevelopmental Science (SM), Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - D Murphy
- Department of Forensic and Neurodevelopmental Science (SM), Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - S C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - A Fotopoulou
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | | | - Y Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
35
|
Banki L, Büki A, Horvath G, Kekesi G, Kis G, Somogyvári F, Jancsó G, Vécsei L, Varga E, Tuboly G. Distinct changes in chronic pain sensitivity and oxytocin receptor expression in a new rat model (Wisket) of schizophrenia. Neurosci Lett 2020; 714:134561. [DOI: 10.1016/j.neulet.2019.134561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/24/2022]
|
36
|
Influence of the Type of Delivery, Use of Oxytocin, and Maternal Age on POU5F1 Gene Expression in Stem Cells Derived from Wharton's Jelly within the Umbilical Cord. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1027106. [PMID: 31915501 PMCID: PMC6931016 DOI: 10.1155/2019/1027106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/25/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022]
Abstract
The paper presents an evaluation of the POU5F1 gene expression in mesenchymal stem cells derived from Wharton's jelly within the umbilical cord, collected from 36 patients during labor. The study is the first one to show that the expression of POU5F1 in mesenchymal stem cells has been dependent on maternal age, birth order, route of delivery, and use of oxytocin. Our research proves that the POU5F1 gene expression in mesenchymal stem cells decreases with each subsequent pregnancy and delivery. Wharton's jelly stem cells obtained from younger women and during their first delivery, as well as patients treated with oxytocin, show higher POU5F1 gene expression when compared with the subsequent deliveries. This leads to a conclusion that they are characterized by a lower level of differentiation, which in turn results in their greater plasticity and greater proliferative potential. Probably, they are also clinically more useful.
Collapse
|
37
|
Bartz JA, Nitschke JP, Krol SA, Tellier PP. Oxytocin Selectively Improves Empathic Accuracy: A Replication in Men and Novel Insights in Women. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:1042-1048. [DOI: 10.1016/j.bpsc.2019.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 01/10/2023]
|
38
|
Davies C, Bhattacharyya S. Cannabidiol as a potential treatment for psychosis. Ther Adv Psychopharmacol 2019; 9:2045125319881916. [PMID: 31741731 PMCID: PMC6843725 DOI: 10.1177/2045125319881916] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022] Open
Abstract
Psychotic disorders such as schizophrenia are heterogeneous and often debilitating conditions that contribute substantially to the global burden of disease. The introduction of dopamine D2 receptor antagonists in the 1950s revolutionised the treatment of psychotic disorders and they remain the mainstay of our treatment arsenal for psychosis. However, traditional antipsychotics are associated with a number of side effects and a significant proportion of patients do not achieve an adequate remission of symptoms. There is therefore a need for novel interventions, particularly those with a non-D2 antagonist mechanism of action. Cannabidiol (CBD), a non-intoxicating constituent of the cannabis plant, has emerged as a potential novel class of antipsychotic with a unique mechanism of action. In this review, we set out the prospects of CBD as a potential novel treatment for psychotic disorders. We first review the evidence from the perspective of preclinical work and human experimental and neuroimaging studies. We then synthesise the current evidence regarding the clinical efficacy of CBD in terms of positive, negative and cognitive symptoms, safety and tolerability, and potential mechanisms by which CBD may have antipsychotic effects.
Collapse
Affiliation(s)
- Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, 6th Floor, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|
39
|
Weingarten MFJ, Scholz M, Wohland T, Horn K, Stumvoll M, Kovacs P, Tönjes A. Circulating Oxytocin Is Genetically Determined and Associated With Obesity and Impaired Glucose Tolerance. J Clin Endocrinol Metab 2019; 104:5621-5632. [PMID: 31361301 DOI: 10.1210/jc.2019-00643] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023]
Abstract
CONTEXT Despite the emerging evidence on the role of oxytocin (OXT) in metabolic diseases, there is a lack of well-powered studies addressing the relationship of circulating OXT with obesity and diabetes. OBJECTIVES AND DESIGN Here, we measured OXT in a study cohort (n = 721; 396 women, 325 men; mean age ± SD, 47.7 ± 15.2 years) with subphenotypes related to obesity, including anthropometric traits such as body mass index [BMI (mean ± SD), 26.8 ± 4.6 kg/m2], waist-to-hip ratio (WHR; 0.88 ± 0.09), blood parameters (glucose, 5.32 ± 0.50 mmol/L; insulin, 5.3 ± 3.3 µU/mL), and oral glucose tolerance test to clarify the association with OXT. We also tested in a genome-wide association study (GWAS) whether the interindividual variation in OXT serum levels might be explained by genetic variation. RESULTS The OXT concentration was increased in subjects with elevated BMI and positively correlated with WHR, waist circumference, and triglyceride levels. The OXT concentration in subjects with BMI <25 kg/m2 was significantly lower (n = 256; 78.6 pg/mL) than in subjects with a BMI between 25 and 30 kg/m2 (n = 314; 98.5 pg/mL, P = 6 × 10-6) and with BMI >30 kg/m2 (n = 137; 106.4 pg/mL, P = 8 × 10-6). OXT levels were also positively correlated with plasma glucose and insulin and were elevated in subjects with impaired glucose tolerance (P = 4.6 × 10-3). Heritability of OXT was estimated at 12.8%. In a GWAS, two hits in linkage disequilibrium close (19 kb) to the OXT reached genome-wide significant association (top-hit rs12625893, P = 3.1 × 10-8, explained variance 3%). CONCLUSIONS Our data show that OXT is genetically affected by a variant near OXT and is associated with obesity and impaired glucose tolerance.
Collapse
Affiliation(s)
| | - Markus Scholz
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center, University of Leipzig, Leipzig, Germany
| | - Tobias Wohland
- IFB Adiposity Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Katrin Horn
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center, University of Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- IFB Adiposity Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Anke Tönjes
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
40
|
Horta M, Kaylor K, Feifel D, Ebner NC. Chronic oxytocin administration as a tool for investigation and treatment: A cross-disciplinary systematic review. Neurosci Biobehav Rev 2019; 108:1-23. [PMID: 31647964 DOI: 10.1016/j.neubiorev.2019.10.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 09/10/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022]
Abstract
Oxytocin (OT) subserves various physiological, behavioral, and cognitive processes. This paired with the ability to administer OT with minimal and inconsistent side effects has spurred research to explore its therapeutic potential. Findings from single-dose studies indicate that OT administration may be beneficial, at least under certain circumstances. The state of the field, however, is less clear regarding effects from chronic OT administration, which more closely resembles long-term treatment. To address this gap, this review synthesizes existing findings on the use of chronic OT administration in animal and human work. In addition to detailing the effects of chronic OT administration across different functional domains, this review highlights factors that have contributed to mixed findings. Based on this review, a basic framework of interrelated regulatory functions sensitive to chronic OT administration is offered. The paper also identifies future research directions across different contexts, populations, and outcomes, specifically calling for more systematic and standardized research on chronic OT administration in humans to supplement and expand what is currently known from preclinical work.
Collapse
Affiliation(s)
- Marilyn Horta
- Department of Psychology, University of Florida, Gainesville, FL, USA.
| | - Kathryn Kaylor
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - David Feifel
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Natalie C Ebner
- Department of Psychology, University of Florida, Gainesville, FL, USA; Institute on Aging, Department of Aging & Geriatric Research, University of Florida, Gainesville, FL, USA
| |
Collapse
|
41
|
Guercio GD, Thomas ME, Cisneros-Franco JM, Voss P, Panizzutti R, de Villers-Sidani E. Improving cognitive training for schizophrenia using neuroplasticity enhancers: Lessons from decades of basic and clinical research. Schizophr Res 2019; 207:80-92. [PMID: 29730045 DOI: 10.1016/j.schres.2018.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/29/2023]
Abstract
Mounting evidence indicates that schizophrenia is a disorder that stems from maladaptive plasticity within neural circuits and produces broad cognitive deficits leading to loss of autonomy. A large number of studies have identified abnormalities spanning many neurotransmitter systems in schizophrenia, and as a result, a variety of drugs have been developed to attempt to treat these abnormalities and enhance cognition. Unfortunately, positive results have been limited so far. This may be in part because the scope of abnormalities in the schizophrenic brain requires a treatment capable of engaging many different neurotransmitter systems. One approach to achieving this kind of treatment has been to use neuroplasticity-based computerized cognitive training programs to stimulate the formation of more adaptive circuits. Although the number of studies implementing this approach has increased exponentially in recent years, effect sizes for cognitive gains have been modest and adherence to treatment remains an important challenge in many studies, as patients are often required to train for 40 h or more. In the present paper, we argue that cognitive training protocols will benefit from the addition of cognitive enhancers to produce more robust and longer lasting targeted neuroplasticity. Indeed, recent data from animal studies have provided support for combining plasticity-enhancing drugs with tailored behavioral training paradigms to restore normal function within dysfunctioning neural circuits. The advantages and challenges of applying this approach to patients with schizophrenia will be discussed.
Collapse
Affiliation(s)
- G D Guercio
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, RJ, Brazil; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - M E Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - J M Cisneros-Franco
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - P Voss
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - R Panizzutti
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - E de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
42
|
Adjunctive intranasal oxytocin for schizophrenia: A meta-analysis of randomized, double-blind, placebo-controlled trials. Schizophr Res 2019; 206:13-20. [PMID: 30573406 DOI: 10.1016/j.schres.2018.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Findings on the efficacy of intranasal oxytocin (IN-OT) in schizophrenia have been inconsistent. This meta-analysis of double-blind randomized controlled trials (RCTs) examined the efficacy and tolerability of adjunctive IN-OT in the treatment of schizophrenia. METHODS Standardized mean differences or risk ratios (SMDs or RRs) with their 95% confidence intervals (CIs) were used to synthesize the results of studies included in the meta-analysis. RESULTS Ten RCTs (n = 344) with 172 schizophrenia subjects on adjunctive IN-OT [range = 40-80 International Units (IU)/day] and 172 schizophrenia subjects on adjunctive placebo over 2-16 weeks were included. No significant differences regarding total psychopathology measured with the total Positive and Negative Syndrome Scale (PANSS) or the Brief Psychiatric Rating Scale (BPRS) [8 RCTs, n = 203; SMD: -0.08 (95%CI: -0.53, 0.37), P = 0.74, I2 = 59%] and the positive, negative and general symptom scores [SMD: -0.20 to -0.04 (95%CI: -0.75, 0.36), P = 0.28 to 0.78; I2 = 0% to 72%] were found between the IN-OT and placebo groups. Similarly, subgroup analyses for total psychopathology found no group differences. Dose-response effect analyses showed that only 80 IU/day IN-OT had superiority over placebo in improving total psychopathology (P = 0.02) and positive symptom score (P = 0.01). No group differences between adjunctive IN-OT and placebo regarding discontinuation due to any reason [RR: 1.12 (95%CI: 0.67, 1.88), P = 0.67, I2 = 0%] and adverse drug reactions were found. CONCLUSIONS Although the meta-analysis did not show a positive effect in general, the higher dose of adjunctive IN-OT (80 IU/day) appears to be efficacious and safe in improving total psychopathology and positive symptoms in schizophrenia. REVIEW REGISTRATION CRD42017080856.
Collapse
|
43
|
Roberts BZ, Young JW, He YV, Cope ZA, Shilling PD, Feifel D. Oxytocin improves probabilistic reversal learning but not effortful motivation in Brown Norway rats. Neuropharmacology 2019; 150:15-26. [PMID: 30844406 DOI: 10.1016/j.neuropharm.2019.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 01/30/2023]
Abstract
Deficits in cognition and motivation are common and debilitating aspects of psychiatric disorders, yet still go largely untreated. The neuropeptide oxytocin (OT) is a potential novel therapeutic for deficits in social cognition and motivation in psychiatric patients. However, the effects of OT on clinically relevant domains of non-social cognition and motivation remain under studied. The present study investigated the effects of acute and chronic (21-day) administration of subcutaneous OT (0.04, 0.2, and 1 mg/kg) in cross-species translatable operant paradigms of reward learning and effortful motivation in male and female Brown Norway (BN) rats (n = 8-10/group). Reward learning was assessed using the probabilistic reversal learning task (PRLT) and effortful motivation was measured using the progressive ratio breakpoint task (PRBT). As predicted, BN rats exhibited baseline deficits in the detection of reversals of reward contingency in the PRLT relative to Long Evans (LE) rats. The two strains performed equally in the PRBT. Thirty minutes after a single OT injection (1 mg/kg), measures of both initial probabilistic learning (trials to first criterion) and subsequent reversal learning (contingency switches) were significantly improved to levels comparable with LE rats. The OT effect on switches persisted in male, but not female, BN rats 30 min, 24 h, and 6 days after long-term OT administration, suggesting the induction of neuroplastic changes. OT did not affect effortful motivation at any time-point. The beneficial effects of OT on reward learning in the absence of increased effortful motivation support the development of OT as a novel therapeutic to improve cognitive functioning.
Collapse
Affiliation(s)
- Benjamin Z Roberts
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA; VISN-22 Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Yinong V He
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Zackary A Cope
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Paul D Shilling
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - David Feifel
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA; Department of Psychiatry, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
44
|
Abstract
The neurohypophyseal hormone oxytocin (OT) and related modulators of the oxytocin receptor (OTR) have been the subject of intensive research for nearly seven decades. Despite having rather poor drug-like properties, OT is used as a treatment for labor induction, postpartum hemorrhage, and lactation support. The potential use of OT in the treatment of central nervous system (CNS)-related diseases has recently renewed interest in the pharmacology of OT. Oxytocin is one of the most extensively studied cyclic peptides and since the elucidation of its structure in 1953 thousands of peptidic OT analogs with antagonistic and agonistic properties have been synthesized and biologically evaluated. Among them are atosiban, a mixed oxytocin receptor (OTR)/vasopressin 1a receptor (V1aR) antagonist used as a tocolytic agent approved (in certain countries), and carbetocin, a longer acting OTR agonist on the market for the treatment of postpartum hemorrhage. Many other OT analogs with improved pharmacological properties (e.g., barusiban, Antag III) have been identified. These peptides have been tested in clinical trials and/or used as pharmacological tools. In this chapter, the modifications of the OT molecule that led to the discovery of these compounds are reviewed.
Collapse
|
45
|
Wolfe M, Wisniewska H, Tariga H, Ibanez G, Collins JC, Wisniewski K, Qi S, Srinivasan K, Hargrove D, Lindstrom BF. Selective and non-selective OT receptor agonists induce different locomotor behaviors in male rats via central OT receptors and peripheral V1a receptors. Neuropeptides 2018; 70:64-75. [PMID: 29807652 DOI: 10.1016/j.npep.2018.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 10/16/2022]
Abstract
Oxytocin (OT) continues to inspire much research due to its diverse physiological effects. While the best-understood actions of OT are uterine contraction and milk ejection, OT is also implicated in maternal and bonding behaviors, and potentially in CNS disorders such as autism, schizophrenia, and pain. The dissection of the mechanism of action of OT is complicated by the fact that this peptide activates not only its cognate receptor but also vasopressin type 1a (V1a) receptors. In this study, we evaluated OT and a selective OT receptor (OTR) agonist, FE 204409, in an automated assay that measures rat locomotor activity. The results showed: 1) Subcutaneous (sc) administration of OT decreased locomotor behavior (distance traveled, stereotypy, and rearing). This effect was reversed by a V1a receptor (V1aR) antagonist ([Pmp1,Tyr(ME)2]AVP, sc), suggesting that OT acts through peripheral V1aR to inhibit locomotor activity. 2) A selective OTR agonist (FE 204409, sc) increased stereotypy. This effect was reversed by an OTR antagonist dosed icv, suggesting a central OTR site of action. Our findings identify distinct behavioral effects for OT and the selective agonist FE 204409, adding to the growing body of evidence that the V1aR mediates many effects attributed to OT and that peptides administered systemically at supra-physiological doses may activate receptors in the brain. Our studies further emphasize the importance of utilizing selective agonists and antagonists to assess therapeutic indications.
Collapse
Affiliation(s)
- Monica Wolfe
- Ferring Research Institute, Inc, San Diego, CA, United States
| | | | - Hiroe Tariga
- Ferring Research Institute, Inc, San Diego, CA, United States
| | - Gerardo Ibanez
- Ferring Research Institute, Inc, San Diego, CA, United States
| | - James C Collins
- Ferring Research Institute, Inc, San Diego, CA, United States
| | | | - Steve Qi
- Ferring Research Institute, Inc, San Diego, CA, United States
| | | | - Diane Hargrove
- Ferring Research Institute, Inc, San Diego, CA, United States
| | | |
Collapse
|
46
|
Quintana DS, Westlye LT, Smerud KT, Mahmoud RA, Andreassen OA, Djupesland PG. Saliva oxytocin measures do not reflect peripheral plasma concentrations after intranasal oxytocin administration in men. Horm Behav 2018; 102:85-92. [PMID: 29750971 DOI: 10.1016/j.yhbeh.2018.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/06/2018] [Indexed: 02/01/2023]
Abstract
Oxytocin plays an important role in social behavior. Thus, there has been significant research interest for the role of the oxytocin system in several psychiatric disorders, and the potential of intranasal oxytocin administration to treat social dysfunction. Measurement of oxytocin concentrations in saliva are sometimes used to approximate peripheral levels of oxytocin; however, the validity of this approach is unclear. In this study, saliva and plasma oxytocin was assessed after two doses of Exhalation Delivery System delivered intranasal oxytocin (8 IU and 24 IU), intravenous oxytocin (1 IU) and placebo in a double-dummy, within-subjects design with men. We found that intranasal oxytocin (8 IU and 24 IU) administration increased saliva oxytocin concentrations in comparison to saliva oxytocin concentration levels after intravenous and placebo administration. Additionally, we found that saliva oxytocin concentrations were not significantly associated with plasma oxytocin concentrations after either intranasal or intravenous oxytocin administration. Altogether, we suggest that saliva oxytocin concentrations do not accurately index peripheral oxytocin after intranasal or intravenous oxytocin administration, at least in men. The data indicates that elevated oxytocin saliva levels after nasal delivery primarily reflect exogenous administered oxytocin that is cleared from the nasal cavity to the oropharynx, and is therefore a weak surrogate for peripheral blood measurements.
Collapse
Affiliation(s)
- Daniel S Quintana
- NORMENT KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Lars T Westlye
- NORMENT KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Knut T Smerud
- Smerud Medical Research International AS, Oslo, Norway
| | | | - Ole A Andreassen
- NORMENT KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
47
|
Seeman MV, González-Rodríguez A. Use of psychotropic medication in women with psychotic disorders at menopause and beyond. Curr Opin Psychiatry 2018; 31:183-192. [PMID: 29528895 DOI: 10.1097/yco.0000000000000410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Drugs have been extensively prescribed for the treatment of psychotic symptoms in schizophrenia and related disorders, as well as for the management of psychotic features in delirium, dementia and affective disorders. The aim of this narrative review is to focus on the recent literature on drug treatment in women with psychosis at the transition to menopause and subsequently. RECENT FINDINGS The recent literature emphasizes the following points: the efficacy of antipsychotic medication in psychosis is largely confined to the alleviation of delusions and hallucinations; menopause and ageing alter the kinetics and dynamics of drug action; drugs other than antipsychotics are currently being tested to address the cognitive, affective and negative symptoms of psychotic illnesses; menopausal symptoms add to comorbidities and require simultaneous treatment, raising the probability of deleterious drug interactions; antipsychotic drugs have many side effects and contribute to high mortality rates in the older psychosis population. SUMMARY A major implication for research is that antipsychotic drugs with a wider range of action and with fewer side effects are urgently needed. The clinical implications of the pharmacotherapy of psychotic illness are: older women's needs must be assessed through a comprehensive history and review of systems and physical and mental examination. To avoid adverse effects, drug dosages are best kept low and polypharmacy avoided wherever possible. It is important to frequently reassess older patients, as their pharmacotherapy requirements change with age and with comorbidity.
Collapse
Affiliation(s)
- Mary V Seeman
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
48
|
Mastinu A, Premoli M, Maccarinelli G, Grilli M, Memo M, Bonini SA. Melanocortin 4 receptor stimulation improves social deficits in mice through oxytocin pathway. Neuropharmacology 2018; 133:366-374. [DOI: 10.1016/j.neuropharm.2018.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 12/17/2022]
|
49
|
Bernstein HG, Müller S, Dobrowolny H, Wolke C, Lendeckel U, Bukowska A, Keilhoff G, Becker A, Trübner K, Steiner J, Bogerts B. Insulin-regulated aminopeptidase immunoreactivity is abundantly present in human hypothalamus and posterior pituitary gland, with reduced expression in paraventricular and suprachiasmatic neurons in chronic schizophrenia. Eur Arch Psychiatry Clin Neurosci 2017; 267:427-443. [PMID: 28035472 DOI: 10.1007/s00406-016-0757-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
The vasopressin- and oxytocin-degrading enzyme insulin-regulated aminopeptidase (IRAP) is expressed in various organs including the brain. However, knowledge about its presence in human hypothalamus is fragmentary. Functionally, for a number of reasons (genetic linkage, hydrolysis of oxytocin and vasopressin, its role as angiotensin IV receptor in learning and memory and others) IRAP might play a role in schizophrenia. We studied the regional and cellular localization of IRAP in normal human brain with special emphasis on the hypothalamus and determined numerical densities of IRAP-expressing cells in the paraventricular, supraoptic and suprachiasmatic nuclei in schizophrenia patients and controls. By using immunohistochemistry and Western blot analysis, IRAP was immunolocalized in postmortem human brains. Cell countings were performed to estimate numbers and numerical densities of IRAP immunoreactive hypothalamic neurons in schizophrenia patients and control cases. Shape, size and regional distribution of IRAP-expressing cells, as well the lack of co-localization with the glia marker glutamine synthetase, show that IRAP is expressed in neurons. IRAP immunoreactive cells were observed in the hippocampal formation, cerebral cortex, thalamus, amygdala and, abundantly, hypothalamus. Double labeling experiments (IRAP and oxytocin/neurophysin 1, IRAP with vasopressin/neurophysin 2) revealed that IRAP is present in oxytocinergic and in vasopressinergic neurons. In schizophrenia patients, the numerical density of IRAP-expressing neurons in the paraventricular and the suprachiasmatic nuclei is significantly reduced, which might be associated with the reduction in neurophysin-containing neurons in these nuclei in schizophrenia. The pathophysiological role of lowered hypothalamic IRAP expression in schizophrenia remains to be established.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Susan Müller
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Hendrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz-Arndt-University, 17475, Greifswald, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz-Arndt-University, 17475, Greifswald, Germany
| | - Alicja Bukowska
- EUTRAF Working Group, Molecular Electrophysiology, University Hospital Magdeburg, 39120, Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, 39120, Magdeburg, Germany
| | - Axel Becker
- Institute of Pharmacology and Toxicology, Medical Faculty, University of Magdeburg, 39120, Magdeburg, Germany
| | - Kurt Trübner
- Department for Legal Medicine, University of Duisburg-Essen, 45141, Essen, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| |
Collapse
|
50
|
Oxytocin effects in schizophrenia: Reconciling mixed findings and moving forward. Neurosci Biobehav Rev 2017; 80:36-56. [PMID: 28506922 DOI: 10.1016/j.neubiorev.2017.05.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 12/22/2022]
Abstract
Schizophrenia is a severe mental illness that causes major functional impairment. Current pharmacologic treatments are inadequate, particularly for addressing negative and cognitive symptoms of the disorder. Oxytocin, a neuropeptide known to moderate social behaviors, has been investigated as a potential therapeutic for schizophrenia in recent years. Results have been decidedly mixed, leading to controversy regarding oxytocin's utility. In this review, we outline several considerations for interpreting the extant literature and propose a focused agenda for future work that builds on the most compelling findings regarding oxytocin effects in schizophrenia to date. Specifically, we examine underlying causes of heterogeneity in randomized clinical trials (RCTs) conducted thus far and highlight the complexity of the human oxytocin system. We then review evidence of oxytocin's effects on specific deficits in schizophrenia, arguing for further study using objective, precise outcome measures in order to determine whether oxytocin has the potential to improve functional impairment in schizophrenia.
Collapse
|