1
|
Kawaguchi Y, Hodai Y, Naito S, Kondo Y, Tsumura T, Miyata T, Kobayashi T, Sugiyama M, Onoue T, Iwama S, Suga H, Banno R, Arima H, Hagiwara D. Reticulon 4 reflects endoplasmic reticulum stress in arginine vasopressin neurons. Neuroreport 2025:00001756-990000000-00359. [PMID: 40377961 DOI: 10.1097/wnr.0000000000002174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Arginine vasopressin (AVP) is synthesized in the magnocellular supraoptic nucleus and paraventricular nuclei of the hypothalamus, where AVP neurons function under a consistently high demand for AVP production. AVP neurons are subject to endoplasmic reticulum (ER) stress even under basal conditions, and this ER stress is further exacerbated when AVP production increases due to dehydration. Reticulon (RTN) is essential for ER formation and stabilization and plays a critical role in membrane morphogenesis within the ER. This study aimed to investigate the expression of RTN family members in hypothalamic AVP neurons. Fluorescence immunohistochemistry and in-situ hybridization were employed to examine the expression of RTN family members in hypothalamic AVP neurons of adult male mice. Water deprivation and treatment with a chemical chaperone 4-phenylbutyric acid were used to increase and decrease the ER stress of AVP neurons, respectively. Among the RTN family members, only RTN4 was found to be expressed in hypothalamic AVP neurons. RTN4 was colocalized with ER organelle markers, including immunoglobulin heavy chain binding protein and calnexin. Furthermore, RTN4 expression increased during ER stress induced by water deprivation. On the other hand, increased RTN4 expression by water deprivation was attenuated by 4-phenylbutyric acid treatment. Our results suggest that RTN4 expression in AVP neurons is closely associated with ER stress caused by increased protein production in neuroendocrine cells.
Collapse
Affiliation(s)
- Yohei Kawaguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine
| | - Yuichi Hodai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine
| | - Satoshi Naito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine
| | - Yuichi Kondo
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine
| | - Tetsuro Tsumura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine
| |
Collapse
|
2
|
Mostaghimi Y, Haddadi M, Hojjati Z. lncRNA PAN3-AS1 Modulates Cilium Assemble Signaling Pathway Through Regulation of RPGR as a Potential MS Diagnostic Biomarker: Integrated Systems Biology Investigation. J Mol Neurosci 2025; 75:49. [PMID: 40227518 DOI: 10.1007/s12031-025-02331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/07/2025] [Indexed: 04/15/2025]
Abstract
Multiple sclerosis (MS), an autoimmune condition of the central nervous system (CNS), can lead to demyelination and axonal degeneration in the brain and spinal cord, which can cause progressive neurologic disability. MS symptoms include dysautonomia and progressive decline in motor abilities. In this investigation, we performed an integrated bioinformatics and experimental approach to find the expression level and interaction of a novel long non-coding RNA (lncRNA), PAN3-AS1, in MS samples. Microarray analysis was performed by R Studio using GEOquery and limma packages. lncRNA-mRNA RNA interaction analysis was performed using the lncRRIsearch database. Pathway enrichment analysis was performed by KEGG and Reactome online software through the Enrichr database. Protein-protein interaction analysis was performed by STRING online software. Gene ontology (GO) analysis was performed by Enrichr database. Based on microarray analysis, lncRNA PAN3-AS1 has a significantly low expression in MS samples compared to the control (logFC - 1.2, adj. P. Val 0.03). qRT-PCR results approved bioinformatics analyses. ROC analysis revealed that PAN3-AS1 could be considered a potential diagnostic biomarker of MS. Based on lncRNA-mRNA interaction analysis, lncRNA PAN3-AS1 regulates the expression level of RPGR. RPGR and its protein interactome regulate the cilium assembly, chaperon-mediated autophagy, and microarray biogenesis. lncRNA PAN3-AS1, as a significant low-expressed lncRNA in MS samples, could be a potential diagnostic MS biomarker. PAN3-AS1 might regulate the expression level of cilium assembly and chaperon-mediated autophagy. Dysregulation of PAN3-AS1 might affect the expression of RPGR and its protein interactome.
Collapse
Affiliation(s)
- Yasaman Mostaghimi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Mohammad Haddadi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran.
| | - Zohreh Hojjati
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
3
|
Wurtz LI, Knyazhanskaya E, Sohaei D, Prassas I, Pittock S, Willrich MAV, Saadeh R, Gupta R, Atkinson HJ, Grill D, Stengelin M, Thebault S, Freedman MS, Diamandis EP, Scarisbrick IA. Identification of brain-enriched proteins in CSF as biomarkers of relapsing remitting multiple sclerosis. Clin Proteomics 2024; 21:42. [PMID: 38880880 PMCID: PMC11181608 DOI: 10.1186/s12014-024-09494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a clinically and biologically heterogenous disease with currently unpredictable progression and relapse. After the development and success of neurofilament as a cerebrospinal fluid (CSF) biomarker, there is reinvigorated interest in identifying other markers of or contributors to disease. The objective of this study is to probe the predictive potential of a panel of brain-enriched proteins on MS disease progression and subtype. METHODS This study includes 40 individuals with MS and 14 headache controls. The MS cohort consists of 20 relapsing remitting (RR) and 20 primary progressive (PP) patients. The CSF of all individuals was analyzed for 63 brain enriched proteins using a method of liquid-chromatography tandem mass spectrometry. Wilcoxon rank sum test, Kruskal-Wallis one-way ANOVA, logistic regression, and Pearson correlation were used to refine the list of candidates by comparing relative protein concentrations as well as relation to known imaging and molecular biomarkers. RESULTS We report 30 proteins with some relevance to disease, clinical subtype, or severity. Strikingly, we observed widespread protein depletion in the disease CSF as compared to control. We identified numerous markers of relapsing disease, including KLK6 (kallikrein 6, OR = 0.367, p < 0.05), which may be driven by active disease as defined by MRI enhancing lesions. Other oligodendrocyte-enriched proteins also appeared at reduced levels in relapsing disease, namely CNDP1 (carnosine dipeptidase 1), LINGO1 (leucine rich repeat and Immunoglobin-like domain-containing protein 1), MAG (myelin associated glycoprotein), and MOG (myelin oligodendrocyte glycoprotein). Finally, we identified three proteins-CNDP1, APLP1 (amyloid beta precursor like protein 1), and OLFM1 (olfactomedin 1)-that were statistically different in relapsing vs. progressive disease raising the potential for use as an early biomarker to discriminate clinical subtype. CONCLUSIONS We illustrate the utility of targeted mass spectrometry in generating potential targets for future biomarker studies and highlight reductions in brain-enriched proteins as markers of the relapsing remitting disease stage.
Collapse
Affiliation(s)
- Lincoln I Wurtz
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Dorsa Sohaei
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Ioannis Prassas
- Mount Sinai Hospital, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
| | - Sean Pittock
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Ruba Saadeh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ruchi Gupta
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Hunter J Atkinson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Diane Grill
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Simon Thebault
- Department of Medicine and The Ottawa Research Institute, Ottawa, Canada
- Division of Multiple Sclerosis, Department of Neurology, The University of Pennsylvania, Philadelphia, USA
| | - Mark S Freedman
- Department of Medicine and The Ottawa Research Institute, Ottawa, Canada
| | | | - Isobel A Scarisbrick
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Schwinghamer K, Siahaan TJ. Enhancing Antibody Exposure in the Central Nervous System: Mechanisms of Uptake, Clearance, and Strategies for Improved Brain Delivery. JOURNAL OF NANOTHERANOSTICS 2023; 4:463-479. [PMID: 39897432 PMCID: PMC11784990 DOI: 10.3390/jnt4040020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Antibodies (mAbs) are attractive molecules for their application as a diagnostic and therapeutic agent for diseases of the central nervous system (CNS). mAbs can be generated to have high affinity and specificity to target molecules in the CNS. Unfortunately, only a very small number of mAbs have been specifically developed and approved for neurological indications. This is primarily attributed to their low exposure within the CNS, hindering their ability to reach and effectively engage their potential targets in the brain. This review discusses aspects of various barriers such as the blood-brain barrier (BBB) and blood-cerebrospinal fluid (CSF) barrier (BCSFB) that regulate the entry and clearance of mAbs into and from the brain. The roles of the glymphatic system on brain exposure and clearance are being described. We also discuss the proposed mechanisms of the uptake of mAbs into the brain and for clearance. Finally, several methods of enhancing the exposure of mAbs in the CNS were discussed, including receptor-mediated transcytosis, osmotic BBB opening, focused ultrasound (FUS), BBB-modulating peptides, and enhancement of mAb brain retention.
Collapse
Affiliation(s)
- Kelly Schwinghamer
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66046, USA
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66046, USA
| |
Collapse
|
5
|
Dave BP, Shah KC, Shah MB, Chorawala MR, Patel VN, Shah PA, Shah GB, Dhameliya TM. Unveiling the modulation of Nogo receptor in neuroregeneration and plasticity: Novel aspects and future horizon in a new frontier. Biochem Pharmacol 2023; 210:115461. [PMID: 36828272 DOI: 10.1016/j.bcp.2023.115461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Multiple Sclerosis, Hereditary Spastic Paraplegia, and Amyotrophic Lateral Sclerosis have emerged as the most dreaded diseases due to a lack of precise diagnostic tools and efficient therapies. Despite the fact that the contributing factors of NDs are still unidentified, mounting evidence indicates the possibility that genetic and cellular changes may lead to the significant production of abnormally misfolded proteins. These misfolded proteins lead to damaging effects thereby causing neurodegeneration. The association between Neurite outgrowth factor (Nogo) with neurological diseases and other peripheral diseases is coming into play. Three isoforms of Nogo have been identified Nogo-A, Nogo-B and Nogo-C. Among these, Nogo-A is mainly responsible for neurological diseases as it is localized in the CNS (Central Nervous System), whereas Nogo-B and Nogo-C are responsible for other diseases such as colitis, lung, intestinal injury, etc. Nogo-A, a membrane protein, had first been described as a CNS-specific inhibitor of axonal regeneration. Several recent studies have revealed the role of Nogo-A proteins and their receptors in modulating neurite outgrowth, branching, and precursor migration during nervous system development. It may also modulate or affect the inhibition of growth during the developmental processes of the CNS. Information about the effects of other ligands of Nogo protein on the CNS are yet to be discovered however several pieces of evidence have suggested that it may also influence the neuronal maturation of CNS and targeting Nogo-A could prove to be beneficial in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Maitri B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Vishvas N Patel
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Palak A Shah
- Department of Pharmacology, K. B. Institute of Pharmaceutical Education and Research, Gandhinagar 380023, Gujarat, India
| | - Gaurang B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Tejas M Dhameliya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad-382481, Gujarat, India
| |
Collapse
|
6
|
Nogo-A and LINGO-1: Two Important Targets for Remyelination and Regeneration. Int J Mol Sci 2023; 24:ijms24054479. [PMID: 36901909 PMCID: PMC10003089 DOI: 10.3390/ijms24054479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) that causes progressive neurological disability in most patients due to neurodegeneration. Activated immune cells infiltrate the CNS, triggering an inflammatory cascade that leads to demyelination and axonal injury. Non-inflammatory mechanisms are also involved in axonal degeneration, although they are not fully elucidated yet. Current therapies focus on immunosuppression; however, no therapies to promote regeneration, myelin repair, or maintenance are currently available. Two different negative regulators of myelination have been proposed as promising targets to induce remyelination and regeneration, namely the Nogo-A and LINGO-1 proteins. Although Nogo-A was first discovered as a potent neurite outgrowth inhibitor in the CNS, it has emerged as a multifunctional protein. It is involved in numerous developmental processes and is necessary for shaping and later maintaining CNS structure and functionality. However, the growth-restricting properties of Nogo-A have negative effects on CNS injury or disease. LINGO-1 is also an inhibitor of neurite outgrowth, axonal regeneration, oligodendrocyte differentiation, and myelin production. Inhibiting the actions of Nogo-A or LINGO-1 promotes remyelination both in vitro and in vivo, while Nogo-A or LINGO-1 antagonists have been suggested as promising therapeutic approaches for demyelinating diseases. In this review, we focus on these two negative regulators of myelination while also providing an overview of the available data on the effects of Nogo-A and LINGO-1 inhibition on oligodendrocyte differentiation and remyelination.
Collapse
|
7
|
Espírito-Santo S, Coutinho V, Alcantara Gomes F. Synaptic pathology in multiple sclerosis: a role for Nogo-A signaling in astrocytes? Neural Regen Res 2023; 18:127-128. [PMID: 35799527 PMCID: PMC9241403 DOI: 10.4103/1673-5374.340407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
8
|
Comparative Analysis of Neurodegeneration and Axonal Dysfunction Biomarkers in the Cerebrospinal Fluid of Patients with Multiple Sclerosis. J Clin Med 2022; 11:jcm11144122. [PMID: 35887886 PMCID: PMC9324050 DOI: 10.3390/jcm11144122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Given the significant role of neurodegeneration in the progression of multiple sclerosis (MS) and insufficient therapies, there is an urgent need to better understand this pathology and to find new biomarkers that could provide important insight into the biological mechanisms of the disease. Thus, the present study aimed to compare different neurodegeneration and axonal dysfunction biomarkers in MS and verify their potential clinical usefulness. METHODS A total of 59 patients, who underwent CSF analysis during their diagnostics, were enrolled in the study. Quantitative analysis of neurodegeneration biomarkers was performed through immunological tests. Oligoclonal bands were detected by isoelectric focusing on agarose gel, whereas the concentrations of immunoglobulins and albumin were measured using nephelometry. RESULTS Our studies showed that NfL, RTN4, and tau protein enabled the differentiation of MS patients from the control group. Additionally, the baseline CSF NfL levels positively correlated with the tau and MRI results, whereas the RTN4 concentrations were associated with the immunoglobulin quotients. The AUC for NfL was the highest among the tested proteins, although the DeLong test of the ROC curves showed no significant difference between the AUCs for NfL and RTN4. CONCLUSION The CSF NfL, RTN-4, and tau levels at the time of diagnosis could be potential diagnostic markers of multiple sclerosis, although NfL seems to have the best clinical value.
Collapse
|
9
|
Allanach JR, Farrell JW, Mésidor M, Karimi-Abdolrezaee S. Current status of neuroprotective and neuroregenerative strategies in multiple sclerosis: A systematic review. Mult Scler 2022; 28:29-48. [PMID: 33870797 PMCID: PMC8688986 DOI: 10.1177/13524585211008760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/13/2021] [Accepted: 03/21/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Immune-mediated demyelination and consequent degeneration of oligodendrocytes and axons are hallmark features of multiple sclerosis (MS). Remyelination declines in progressive MS, causing permanent axonal loss and irreversible disabilities. Strategies aimed at enhancing remyelination are critical to attenuate disease progression. OBJECTIVE We systematically reviewed recent advances in neuroprotective and regenerative therapies for MS, covering preclinical and clinical studies. METHODS We searched three biomedical databases using defined keywords. Two authors independently reviewed articles for inclusion based on pre-specified criteria. The data were extracted from each study and assessed for risk of bias. RESULTS Our search identified 7351 studies from 2014 to 2020, of which 221 met the defined criteria. These studies reported 262 interventions, wherein 92% were evaluated in animal models. These interventions comprised protein, RNA, lipid and cellular biologics, small molecules, inorganic compounds, and dietary and physiological interventions. Small molecules were the most highly represented strategy, followed by antibody therapies and stem cell transplantation. CONCLUSION While significant strides have been made to develop regenerative treatments for MS, the current evidence illustrates a skewed representation of the types of strategies that advance to clinical trials. Further examination is thus required to address current barriers to implementing experimental treatments in clinical settings.
Collapse
Affiliation(s)
- Jessica R Allanach
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - John W. Farrell
- Department of Health and Human Performance, Texas State University, San Marcos, TX, USA
| | - Miceline Mésidor
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada/Department of Social and Preventive Medicine, Université de Montréal, Montréal, QC, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada/Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
10
|
Kulczyńska-Przybik A, Dulewicz M, Słowik A, Borawska R, Kułakowska A, Kochanowicz J, Mroczko B. The Clinical Significance of Cerebrospinal Fluid Reticulon 4 (RTN4) Levels in the Differential Diagnosis of Neurodegenerative Diseases. J Clin Med 2021; 10:jcm10225281. [PMID: 34830564 PMCID: PMC8622503 DOI: 10.3390/jcm10225281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases (NDs) belong to the top global causes of mortality. Diagnostic approaches to improve early diagnosis and differentiation of these diseases are constantly being sought. Therefore, we aimed to assess the cerebrospinal fluid (CSF) concentrations of Reticulon 4 (RTN4) in patients with neurodegenerative diseases and evaluate the potential clinical usefulness of this protein. RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. According to our best knowledge, this is the first investigation providing the data concerning the dynamic of CSF RTN4 protein levels in patients with different NDs. Methods: Overall, 77 newly diagnosed patients with neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS), as well as 21 controls, were enrolled in the study. The CSF concentrations of tested proteins were assessed using immunological assays. Results: We revealed significantly higher CSF RTN4A levels in patients with AD, PD, and MS in comparison to the controls. Moreover, the comparative analysis of RTN4 concentration between different neurodegenerative diseases revealed the highest concentration of RTN4A in AD patients and a statistically significant difference between AD vs. PD, and AD vs. MS groups. The increased CSF level of the protein correlated with Tau, and pTau181 proteins in AD as well as in PD patients. Conclusions: Our study presents a previously not identified clinical utility of RTN4 in the differential diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.D.); (R.B.); (B.M.)
- Correspondence:
| | - Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.D.); (R.B.); (B.M.)
| | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University, 30-688 Kraków, Poland;
| | - Renata Borawska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.D.); (R.B.); (B.M.)
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.); (J.K.)
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.); (J.K.)
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.D.); (R.B.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
11
|
Moradbeygi K, Parviz M, Rezaeizadeh H, Zargaran A, Sahraian MA, Mehrabadi S, Nikbakhtzadeh M, Zahedi E. Anti-LINGO-1 improved remyelination and neurobehavioral deficit in cuprizone-induced demyelination. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:900-907. [PMID: 34712419 PMCID: PMC8528247 DOI: 10.22038/ijbms.2021.53531.12043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/13/2021] [Indexed: 11/29/2022]
Abstract
Objective(s): Central nervous system demyelination is the main feature of multiple sclerosis (MS). The most important unmet need in MS is use of treatments that delay the progression of the disease. Leucine-rich repeat and Immunoglobulin-like domain containing NOGO receptor-interacting protein 1(LINGO-1) have been known as inhibitors of oligodendrocyte differentiation and myelination. Materials and Methods: We investigated LINGO-1 antibody effects on remyelination and neurobehavioral deficit using cuprizone-induced demyelination. Animals were randomly divided into three groups (n = 10): (1) Control group; received the regular diet, (2) CPZ group; normal saline was injected intraperitoneally, and (3) Treatment group; LINGO-1 antibody (10 mg/kg) was injected IP once every six days for 3 weeks. We assessed the level of myelin basic protein (MBP), neurofilament heavy chain (NF200), and Brain-derived neuroprotective factor (BDNF) in the corpus callosum (CC) by immunostaining against MBP, NF200, and BDNF. Results: We found decreased levels of MBP, NF200, and BDNF in demyelinated CC, and anti-LINGO-1 treatment improved demyelinated structures. Furthermore, motor impairment was measured by Open-field (OFT) and Balance beam tests. In the treatment group, motor impairment was significantly improved. Conclusion: These results provide evidence that LINGO-1 antibody can improve remyelination and neurobehavioral deficit.
Collapse
Affiliation(s)
- Khadijeh Moradbeygi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran, Department of Nursing, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Mohsen Parviz
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rezaeizadeh
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Zargaran
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Department of Neurology, Neuroscience Institute, MS Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Mehrabadi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Zahedi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
13
|
Pradhan LK, Das SK. The Regulatory Role of Reticulons in Neurodegeneration: Insights Underpinning Therapeutic Potential for Neurodegenerative Diseases. Cell Mol Neurobiol 2021; 41:1157-1174. [PMID: 32504327 PMCID: PMC11448699 DOI: 10.1007/s10571-020-00893-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
In the last few decades, cytoplasmic organellar dysfunction, such as that of the endoplasmic reticulum (ER), has created a new area of research interest towards the development of serious health maladies including neurodegenerative diseases. In this context, the extensively dispersed family of ER-localized proteins, i.e. reticulons (RTNs), is gaining interest because of its regulative control over neural regeneration. As most neurodegenerative diseases are pathologically manifested with the accretion of misfolded proteins with subsequent induction of ER stress, the regulatory role of RTNs in neural dysfunction cannot be ignored. With the limited information available in the literature, delineation of the functional connection between rising consequences of neurodegenerative diseases and RTNs need to be elucidated. In this review, we provide a broad overview on the recently revealed regulatory roles of reticulons in the pathophysiology of several health maladies, with special emphasis on neurodegeneration. Additionally, we have also recapitulated the decisive role of RTN4 in neurite regeneration and highlighted how neurodegeneration and proteinopathies are mechanistically linked with each other through specific RTN paralogues. With the recent findings advocating zebrafish Rtn4b (a mammalian Nogo-A homologue) downregulation following central nervous system (CNS) lesion, RTNs provides new insight into the CNS regeneration. However, there are controversies with respect to the role of Rtn4b in zebrafish CNS regeneration. Given these controversies, the connection between the unique regenerative capabilities of zebrafish CNS by distinct compensatory mechanisms and Rtn4b signalling pathway could shed light on the development of new therapeutic strategies against serious neurodegenerative diseases.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed To Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed To Be University), Kalinga Nagar, Bhubaneswar, 751003, India.
| |
Collapse
|
14
|
Stehle JH, Sheng Z, Hausmann L, Bechstein P, Weinmann O, Hernesniemi J, Neimat JS, Schwab ME, Zemmar A. Exercise-induced Nogo-A influences rodent motor learning in a time-dependent manner. PLoS One 2021; 16:e0250743. [PMID: 33951058 PMCID: PMC8099082 DOI: 10.1371/journal.pone.0250743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022] Open
Abstract
The adult, mature central nervous system (CNS) has limited plasticity. Physical exercising can counteract this limitation by inducing plasticity and fostering processes such as learning, memory consolidation and formation. Little is known about the molecular factors that govern these mechanisms, and how they are connected with exercise. In this study, we used immunohistochemical and behavioral analyses to investigate how running wheel exercise affects expression of the neuronal plasticity-inhibiting protein Nogo-A in the rat cortex, and how it influences motor learning in vivo. Following one week of exercise, rats exhibited a decrease in Nogo-A levels, selectively in motor cortex layer 2/3, but not in layer 5. Nogo-A protein levels returned to baseline after two weeks of running wheel exercise. In a skilled motor task (forelimb-reaching), administration of Nogo-A function-blocking antibodies over the course of the first training week led to improved motor learning. By contrast, Nogo-A antibody application over two weeks of training resulted in impaired learning. Our findings imply a bimodal, time-dependent function of Nogo-A in exercise-induced neuronal plasticity: While an activity-induced suppression of the plasticity-inhibiting protein Nogo-A appears initially beneficial for enhanced motor learning, presumably by allowing greater plasticity in establishing novel synaptic connections, this process is not sustained throughout continued exercise. Instead, upregulation of Nogo-A over the course of the second week of running wheel exercise in rats implies that Nogo-A is required for consolidation of acquired motor skills during the delayed memory consolidation process, possibly by inhibiting ongoing neuronal morphological reorganization to stabilize established synaptic pathways. Our findings suggest that Nogo-A downregulation allows leaning to occur, i.e. opens a 'learning window', while its later upregulation stabilizes the learnt engrams. These findings underline the importance of appropriately timing of application of Nogo-A antibodies in future clinical trials that aim to foster memory performance while avoiding adverse effects.
Collapse
Affiliation(s)
- Jörg H. Stehle
- Department of Neurosurgery, Henan Provincial People´s Hospital, Henan University People’s Hospital, Henan University School of Medicine, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Dr. Senckenbergische Anatomie, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Zhiyuan Sheng
- Department of Neurosurgery, Henan Provincial People´s Hospital, Henan University People’s Hospital, Henan University School of Medicine, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Laura Hausmann
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Philipp Bechstein
- Dr. Senckenbergische Anatomie, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Oliver Weinmann
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Department of Biology and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Juha Hernesniemi
- Department of Neurosurgery, Henan Provincial People´s Hospital, Henan University People’s Hospital, Henan University School of Medicine, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Joseph S. Neimat
- Department of Neurosurgery, University of Louisville, School of Medicine, Louisville, Kentucky, United States of America
| | - Martin E. Schwab
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Department of Biology and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ajmal Zemmar
- Department of Neurosurgery, Henan Provincial People´s Hospital, Henan University People’s Hospital, Henan University School of Medicine, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Department of Biology and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
The Implication of Reticulons (RTNs) in Neurodegenerative Diseases: From Molecular Mechanisms to Potential Diagnostic and Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22094630. [PMID: 33924890 PMCID: PMC8125174 DOI: 10.3390/ijms22094630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Reticulons (RTNs) are crucial regulatory factors in the central nervous system (CNS) as well as immune system and play pleiotropic functions. In CNS, RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. Moreover, RTNs, particularly RTN4 and RTN3, are involved in neurodegeneration and neuroinflammation processes. The crucial role of RTNs in the development of several neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or other neurological conditions such as brain injury or spinal cord injury, has attracted scientific interest. Reticulons, particularly RTN-4A (Nogo-A), could provide both an understanding of early pathogenesis of neurodegenerative disorders and be potential therapeutic targets which may offer effective treatment or inhibit disease progression. This review focuses on the molecular mechanisms and functions of RTNs and their potential usefulness in clinical practice as a diagnostic tool or therapeutic strategy.
Collapse
|
16
|
Espírito-Santo S, Coutinho VG, Dezonne RS, Stipursky J, Dos Santos-Rodrigues A, Batista C, Paes-de-Carvalho R, Fuss B, Gomes FCA. Astrocytes as a target for Nogo-A and implications for synapse formation in vitro and in a model of acute demyelination. Glia 2021; 69:1429-1443. [PMID: 33497496 DOI: 10.1002/glia.23971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022]
Abstract
Central nervous system (CNS) function depends on precise synaptogenesis, which is shaped by environmental cues and cellular interactions. Astrocytes are outstanding regulators of synapse development and plasticity through contact-dependent signals and through the release of pro- and antisynaptogenic factors. Conversely, myelin and its associated proteins, including Nogo-A, affect synapses in a inhibitory fashion and contribute to neural circuitry stabilization. However, the roles of Nogo-A-astrocyte interactions and their implications in synapse development and plasticity have not been characterized. Therefore, we aimed to investigate whether Nogo-A affects the capacity of astrocytes to induce synaptogenesis. Additionally, we assessed whether downregulation of Nogo-A signaling in an in vivo demyelination model impacts the synaptogenic potential of astrocytes. Our in vitro data show that cortical astrocytes respond to Nogo-A through RhoA pathway activation, exhibiting stress fiber formation and decreased ramified morphology. This phenotype was associated with reduced levels of GLAST protein and aspartate uptake, decreased mRNA levels of the synaptogenesis-associated genes Hevin, glypican-4, TGF-β1 and BDNF, and decreased and increased protein levels of Hevin and SPARC, respectively. Corroborating these findings, conditioned medium from Nogo-A-treated astrocytes suppressed the formation of structurally and functionally mature synapses in cortical neuronal cultures. After cuprizone-induced acute demyelination, we observed reduced immunostaining for Nogo-A in the visual cortex accompanied by higher levels of Hevin expression in astrocytes and an increase in excitatory synapse density. Hence, we suggest that interactions between Nogo-A and astrocytes might represent an important pathway of plasticity regulation and could be a target for therapeutic intervention in demyelinating diseases in the future.
Collapse
Affiliation(s)
- Sheila Espírito-Santo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, Minas Gerais, Brazil
| | - Vinícius G Coutinho
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rômulo S Dezonne
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joice Stipursky
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Carolina Batista
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Paes-de-Carvalho
- Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | |
Collapse
|
17
|
Liu H, Su D, Liu L, Chen L, Zhao Y, Chan SO, Zhang W, Wang Y, Wang J. Identification of a new functional domain of Nogo-A that promotes inflammatory pain and inhibits neurite growth through binding to NgR1. FASEB J 2020; 34:10948-10965. [PMID: 32598099 DOI: 10.1096/fj.202000377r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 01/10/2023]
Abstract
Nogo-A is a key inhibitory molecule to axon regeneration, and plays diverse roles in other pathological conditions, such as stroke, schizophrenia, and neurodegenerative diseases. Nogo-66 and Nogo-Δ20 fragments are two known functional domains of Nogo-A, which act through the Nogo-66 receptor (NgR1) and sphingosine-1-phosphate receptor 2 (S1PR2), respectively. Here, we reported a new functional domain of Nogo-A, Nogo-A aa 846-861, was identified in the Nogo-A-specific segment that promotes complete Freund's adjuvant (CFA)-induced inflammatory pain. Intrathecal injection of its antagonist peptide 846-861PE or the specific antibody attenuated the CFA-induced inflammatory heat hyperalgesia. The 846-861 PE reduced the content of transient receptor potential vanilloid subfamily member 1 (TRPV1) in dorsal root ganglia (DRG) and decreased the response of DRG neurons to capsaicin. These effects were accompanied by a reduction in LIMK/cofilin phosphorylation and actin polymerization. GST pull-down and fluorescence resonance energy transfer (FRET) assays both showed that Nogo-A aa 846-861 bound to NgR1. Moreover, we demonstrated that Nogo-A aa 846-861 inhibited neurite outgrowth from cortical neurons and DRG explants. We concluded that Nogo-A aa 846-861 is a novel ligand of NgR1, which activates the downstream signaling pathways that inhibit axon growth and promote inflammatory pain.
Collapse
Affiliation(s)
- Huaicun Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Dongqiang Su
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lei Liu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Ling Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yan Zhao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Sun-On Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weiguang Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yun Wang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jun Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
18
|
Blasco H, Pradat PF. [Monoclonal antibodies in neurology]. Med Sci (Paris) 2020; 35:1005-1007. [PMID: 31903908 DOI: 10.1051/medsci/2019199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Therapeutic antibodies have been successfully developed in neurology. However, their efficacy needs to overcome a main hurdle that is their limited access to the brain. Moreover, the multifactorial characteristics of many neurological diseases complicate the identification of a specific target. In this review, we present the neuroroprotective effect of some monoclonal antibodies and we summarize how they can interact with neurodegenerative and inflammatory processes. Monoclonal antibodies, such as natalizumab, that represent a major achievement in multiple sclerosis, have been approved in this indication and used in the routine practice. Also, they are still in a phase of development in degenerative diseases and mainly aim to counteract the aggregation of misfolded proteins such as amyloid beta or tau proteins. Another strategy in development of new monoclonal antibodies is to block physiological inhibitors of axonal growth and myelination such as Nogo-A or its co-transporter LINGO-1. Finally, the recent approbation by the FDA of monoclonal antibodies against CGRP for migraine treatment has been a major breakthrough that expanded the potential fields of application of antibodies in neurology. Thus, a lot of research efforts are now devoted to improve the galenic forms, the routes of administration and to extend these various approaches to other targets.
Collapse
Affiliation(s)
- Hélène Blasco
- Université de Tours, Inserm U1253, laboratoire de biochimie, CHRU de Tours, France
| | - Pierre-François Pradat
- Département des Maladies du Système Nerveux, Centre Référent Maladie Rare SLA, Hôpital de la Pitié-Salpétrière, Paris, France - Sorbonne Université, UPMC Univ Paris 6, CNRS, Inserm, laboratoire d'imagerie biomédicale, Paris, France
| |
Collapse
|
19
|
Kopec BM, Kiptoo P, Zhao L, Rosa-Molinar E, Siahaan TJ. Noninvasive Brain Delivery and Efficacy of BDNF to Stimulate Neuroregeneration and Suppression of Disease Relapse in EAE Mice. Mol Pharm 2019; 17:404-416. [PMID: 31846344 PMCID: PMC10088282 DOI: 10.1021/acs.molpharmaceut.9b00644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The number of FDA-approved protein drugs (biologics), such as antibodies, antibody-drug conjugates, hormones, and enzymes, continues to grow at a rapid rate; most of these drugs are used to treat diseases of the peripheral body. Unfortunately, most of these biologics cannot be used to treat brain diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), and brain tumors in a noninvasive manner due to their inability to permeate the blood-brain barrier (BBB). Therefore, there is a need to develop an effective method to deliver protein drugs into the brain. Here, we report a proof of concept to deliver a recombinant brain-derived neurotrophic factor (BDNF) to the brains of healthy and experimental autoimmune encephalomyelitis (EAE) mice via intravenous (iv) injections by co-administering BDNF with a BBB modulator (BBBM) peptide ADTC5. Western blot evaluations indicated that ADTC5 enhanced the brain delivery of BDNF in healthy SJL/elite mice compared to BDNF alone and triggered the phosphorylation of TrkB receptors in the brain. The EAE mice treated with BDNF + ADTC5 suppressed EAE relapse compared to those treated with BDNF alone, ADTC5 alone, or vehicle. We further demonstrated that brain delivery of BDNF induced neuroregeneration via visible activation of oligodendrocytes, remyelination, and ARC and EGR1 mRNA transcript upregulation. In summary, we have demonstrated that ADTC5 peptide modulates the BBB to permit noninvasive delivery of BDNF to exert its neuroregeneration activity in the brains of EAE mice.
Collapse
|
20
|
Ulapane KR, Kopec BM, Siahaan TJ. In Vivo Brain Delivery and Brain Deposition of Proteins with Various Sizes. Mol Pharm 2019; 16:4878-4889. [PMID: 31664837 PMCID: PMC8554818 DOI: 10.1021/acs.molpharmaceut.9b00763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is very challenging to develop protein drugs for the treatment of brain diseases; this is due to the difficulty in delivering them into the brain because of the blood-brain barrier (BBB). Thus, alternative delivery methods need further exploration for brain delivery of proteins to diagnose and treat brain diseases. Previously, ADTC5 and HAV6 peptides have been shown to enhance the in vivo brain delivery of small- and medium-size molecules across the BBB. This study was carried out to evaluate the ability of ADTC5 and HAV6 peptides to enhance delivery of proteins of various sizes, such as 15 kDa lysozyme, 65 kDa albumin, 150 kDa IgG mAb, and 220 kDa fibronectin, into the brains of C57BL/6 mice. Each protein was labeled with IRdye800CW, and a quantitative method using near IR fluorescence (NIRF) imaging was developed to determine the amount of protein delivered into the brain. ADTC5 peptide significantly enhanced brain delivery of lysozyme, albumin, and IgG mAb but not fibronectin compared to controls. In contrast, HAV6 peptide significantly enhanced the brain delivery of lysozyme but not albumin and IgG mAb. Thus, there is a cutoff size of proteins that can be delivered by each peptide. The distribution of delivered protein in other organs such as liver, spleen, lung, kidney, and heart could be influenced by HAV6 and ADTC5. In summary, ADTC5 is a better BBB modulator than HAV6 in delivering various sizes of proteins into the brain, and the size of the protein affects its brain delivery.
Collapse
Affiliation(s)
- Kavisha R Ulapane
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Brian M Kopec
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
21
|
Metformin-induced AMPK activation stimulates remyelination through induction of neurotrophic factors, downregulation of NogoA and recruitment of Olig2+ precursor cells in the cuprizone murine model of multiple sclerosis. ACTA ACUST UNITED AC 2019; 27:583-592. [PMID: 31620963 DOI: 10.1007/s40199-019-00286-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 06/30/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Oligodendrocytes (OLGs) damage and myelin distraction is considered as a critical step in many neurological disorders especially multiple sclerosis (MS). Cuprizone (cup) animal model of MS targets OLGs degeneration and frequently used to the mechanistic understanding of de- and remyelination. The aim of this study was exploring the effects of metformin on the OLGs regeneration, myelin repair and profile of neurotrophic factors in the mice brain after cup-induced acute demyelination. METHODS Mice (C57BL/6 J) were fed with chow containing 0.2% cup for 5 weeks to induce specific OLGs degeneration and acute demyelination. Next, the cup was withdrawn to allow one-week recovery (spontaneous remyelination). At the end of this period, mature OLGs markers, myelin-associated neurite outgrowth inhibitor protein A (NogoA), premature specific OLGs transcription factor (Olig2), anti-apoptosis marker (survivin), neurotrophic factors, and AMPK activation were monitored in the presence or absence of metformin (50 mg/kg body weight/day) in the corpus callosum (CC). RESULTS Our finding indicated that consumption of metformin during the recovery period potentially induced an active form of AMPK (p-AMPK) and promoted repopulation of mature OLGs (MOG+ cells, MBP+ cells) in CC through up-regulation of BDNF, CNTF, and NGF as well as down-regulation of NogoA and recruitment of Olig2+ precursor cells. CONCLUSIONS This study for the first time reveals that metformin-induced AMPK, a master regulator of energy homeostasis, activation following toxic demyelination could potentially accelerate regeneration and supports spontaneous demyelination. These findings suggest the development of new therapeutic strategies based on AMPK activation for MS in the near future. Graphical abstract An overview of the possible molecular mechanisms of action of metformin-mediated remyelinationa.
Collapse
|
22
|
Göttle P, Förster M, Weyers V, Küry P, Rejdak K, Hartung HP, Kremer D. An unmet clinical need: roads to remyelination in MS. Neurol Res Pract 2019; 1:21. [PMID: 33324887 PMCID: PMC7650135 DOI: 10.1186/s42466-019-0026-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022] Open
Abstract
Background In the central nervous system (CNS) myelin sheaths stabilize, protect, and electrically insulate axons. However, in demyelinating autoimmune CNS diseases such as multiple sclerosis (MS) these sheaths are destroyed which ultimately leads to neurodegeneration. The currently available immunomodulatory drugs for MS effectively control the (auto)inflammatory facets of the disease but are unable to regenerate myelin by stimulating remyelination via oligodendroglial precursor cells (OPCs). Accordingly, there is broad consensus that the implementation of new regenerative approaches constitutes the prime goal for future MS pharmacotherapy. Main text Of note, recent years have seen several promising clinical studies investigating the potential of substances and monoclonal antibodies such as, for instance, clemastine, opicinumab, biotin, simvastatin, quetiapin and anti-GNbAC1. However, beyond these agents which have often been re-purposed from other medical indications there is a multitude of further molecules influencing OPC homeostasis. Here, we therefore discuss these possibly beneficial regulators of OPC differentiation and assess their potential as new pharmacological targets for myelin repair in MS. Conclusion Remyelination remains the most important therapeutic treatment goal in MS in order to improve clinical deficits and to avert neurodegeneration. The promising molecules presented in this review have the potential to promote remyelination and therefore warrant further translational and clinical research.
Collapse
Affiliation(s)
- Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Moritz Förster
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Vivien Weyers
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| |
Collapse
|
23
|
Vaidya AD. Book Review. J Ayurveda Integr Med 2019. [DOI: 10.1016/j.jaim.2019.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
24
|
Remyelination promoting therapies in multiple sclerosis animal models: a systematic review and meta-analysis. Sci Rep 2019; 9:822. [PMID: 30696832 PMCID: PMC6351564 DOI: 10.1038/s41598-018-35734-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
An unmet but urgent medical need is the development of myelin repair promoting therapies for Multiple Sclerosis (MS). Many such therapies have been pre-clinically tested using different models of toxic demyelination such as cuprizone, ethidium bromide, or lysolecithin and some of the therapies already entered clinical trials. However, keeping track on all these possible new therapies and their efficacy has become difficult with the increasing number of studies. In this study, we aimed at summarizing the current evidence on such therapies through a systematic review and at providing an estimate of the effects of tested interventions by a meta-analysis. We show that 88 different therapies have been pre-clinically tested for remyelination. 25 of them (28%) entered clinical trials. Our meta-analysis also identifies 16 promising therapies which did not enter a clinical trial for MS so far, among them Pigment epithelium-derived factor, Plateled derived growth factor, and Tocopherol derivate TFA-12.We also show that failure in bench to bedside translation from certain therapies may in part be attributable to poor study quality. By addressing these problems, clinical translation might be smoother and possibly animal numbers could be reduced.
Collapse
|
25
|
Vidal-Jordana A. New Advances in Disease-Modifying Therapies for Relapsing and Progressive Forms of Multiple Sclerosis. Neurol Clin 2018; 36:173-183. [PMID: 29157398 DOI: 10.1016/j.ncl.2017.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system in which inflammation, demyelination, and axonal loss occurs from early stages of the disease. It mainly affects people between 20 and 40 years old, with a female predominance. Treatment options have been increasingly growing in the past years and newer drugs, some with novel mechanisms of action, are being developed for treating patients with MS. There is an increasing interest in developing new drugs that will promote neuroprotection and/or myelin repair through different mechanisms of action that may target the most degenerative component of the disease.
Collapse
Affiliation(s)
- Angela Vidal-Jordana
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Edifici Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, P. Vall d'Hebron 119-129, Barcelona 08035, Spain.
| |
Collapse
|
26
|
p75NTR and TROY: Uncharted Roles of Nogo Receptor Complex in Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2018; 55:6329-6336. [PMID: 29294247 DOI: 10.1007/s12035-017-0841-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), have been on the forefront of drug discovery for most of the myelin inhibitory molecules implicated in axonal regenerative process. Nogo-A along with its putative receptor NgR and co-receptor LINGO-1 has paved the way for the production of pharmaceutical agents such as monoclonal antibodies, which are already put into handful of clinical trials. On the other side, little progress has been made towards clarifying the role of neurotrophin receptor p75 (p75NTR) and TROY in disease progression, other key players of the Nogo receptor complex. Previous work of our lab has shown that their exact location and type of expression is harmonized in a phase-dependent manner. Here, in this review, we outline their façade in normal and diseased central nervous system (CNS) and suggest a role for p75NTR in chronic axonal regeneration whereas TROY in acute inflammation of EAE intercourse.
Collapse
|
27
|
Lei HW, Wang JY, Dang QJ, Yang F, Liu X, Zhang JH, Li Y. Neuropsychiatric involvement in lupus is associated with the Nogo-a/NgR1 pathway. J Neuroimmunol 2017; 311:22-28. [DOI: 10.1016/j.jneuroim.2017.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/24/2017] [Accepted: 06/18/2017] [Indexed: 12/11/2022]
|
28
|
Ineichen BV, Kapitza S, Bleul C, Good N, Plattner PS, Seyedsadr MS, Kaiser J, Schneider MP, Zörner B, Martin R, Linnebank M, Schwab ME. Nogo-A antibodies enhance axonal repair and remyelination in neuro-inflammatory and demyelinating pathology. Acta Neuropathol 2017. [PMID: 28646336 DOI: 10.1007/s00401-017-1745-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two hallmarks of chronic multiple sclerosis lesions are the absence of significant spontaneous remyelination and primary as well as secondary neurodegeneration. Both characteristics may be influenced by the presence of inhibitory factors preventing myelin and neuronal repair. We investigated the potential of antibodies against Nogo-A, a well-known inhibitory protein for neuronal growth and plasticity, to enhance neuronal regeneration and remyelination in two animal models of multiple sclerosis. We induced a targeted experimental autoimmune encephalomyelitis (EAE) lesion in the dorsal funiculus of the cervical spinal cord of adult rats resulting in a large drop of skilled forelimb motor functions. We subsequently observed improved recovery of forelimb function after anti-Nogo-A treatment. Anterograde tracing of the corticospinal tract revealed enhanced axonal sprouting and arborisation within the spinal cord gray matter preferentially targeting pre-motor and motor spinal cord laminae on lesion level and above in the anti-Nogo-A-treated animals. An important additional effect of Nogo-A-neutralization was enhanced remyelination observed after lysolecithin-induced demyelination of spinal tracts. Whereas remyelinated fiber numbers in the lesion site were increased several fold, no effect of Nogo-A-inhibition was observed on oligodendrocyte precursor proliferation, migration, or differentiation. Enhancing remyelination and promoting axonal regeneration and plasticity represent important unmet medical needs in multiple sclerosis. Anti-Nogo-A antibodies hold promise as a potential new therapy for multiple sclerosis, in particular during the chronic phase of the disease when neurodegeneration and remyelination failure determine disability evolution.
Collapse
Affiliation(s)
- Benjamin V Ineichen
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland.
| | - Sandra Kapitza
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Christiane Bleul
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Nicolas Good
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Patricia S Plattner
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Maryam S Seyedsadr
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Julia Kaiser
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Marc P Schneider
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Björn Zörner
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Roland Martin
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Michael Linnebank
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
- Department of Neurorehabilitation, School of Medicine, HELIOS Klinik Hagen-Ambrock, Witten/Herdecke University Faculty of Health, Ambrocker Weg 60, 58091, Hagen, Germany
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
29
|
Lee JY, Kim MJ, Li L, Velumian AA, Aui PM, Fehlings MG, Petratos S. Nogo receptor 1 regulates Caspr distribution at axo-glial units in the central nervous system. Sci Rep 2017; 7:8958. [PMID: 28827698 PMCID: PMC5567129 DOI: 10.1038/s41598-017-09405-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/24/2017] [Indexed: 11/09/2022] Open
Abstract
Axo-glial units are highly organised microstructures propagating saltatory conduction and are disrupted during multiple sclerosis (MS). Nogo receptor 1 (NgR1) has been suggested to govern axonal damage during the progression of disease in the MS-like mouse model, experimental autoimmune encephalomyelitis (EAE). Here we have identified that adult ngr1 -/- mice, previously used in EAE and spinal cord injury experiments, display elongated paranodes, and nodes of Ranvier. Unstructured paranodal regions in ngr1 -/- mice are matched with more distributed expression pattern of Caspr. Compound action potentials of optic nerves and spinal cords from naïve ngr1 -/- mice are delayed and reduced. Molecular interaction studies revealed enhanced Caspr cleavage. Our data suggest that NgR1 may regulate axo-myelin ultrastructure through Caspr-mediated adhesion, regulating the electrophysiological signature of myelinated axons of central nervous system (CNS).
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia
- ToolGen, Inc., #1204, Byucksan Digital Valley 6-cha, Seoul, South Korea
| | - Min Joung Kim
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia
| | - Lijun Li
- Krembil Research Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alexander A Velumian
- Krembil Research Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Neuroscience Centre, University Health Network, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Pei Mun Aui
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia
| | - Michael G Fehlings
- Krembil Research Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Neuroscience Centre, University Health Network, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, 3004, Australia.
| |
Collapse
|
30
|
Neural Glycosylphosphatidylinositol-Anchored Proteins in Synaptic Specification. Trends Cell Biol 2017; 27:931-945. [PMID: 28743494 DOI: 10.1016/j.tcb.2017.06.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are a specialized class of lipid-associated neuronal membrane proteins that perform diverse functions in the dynamic control of axon guidance, synaptic adhesion, cytoskeletal remodeling, and localized signal transduction, particularly at lipid raft domains. Recent studies have demonstrated that a subset of GPI-anchored proteins act as critical regulators of synapse development by modulating specific synaptic adhesion pathways via direct interactions with key synapse-organizing proteins. Additional studies have revealed that alteration of these regulatory mechanisms may underlie various brain disorders. In this review, we highlight the emerging role of GPI-anchored proteins as key synapse organizers that aid in shaping the properties of various types of synapses and circuits in mammals.
Collapse
|
31
|
Cole KLH, Early JJ, Lyons DA. Drug discovery for remyelination and treatment of MS. Glia 2017; 65:1565-1589. [PMID: 28618073 DOI: 10.1002/glia.23166] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
Glia constitute the majority of the cells in our nervous system, yet there are currently no drugs that target glia for the treatment of disease. Given ongoing discoveries of the many roles of glia in numerous diseases of the nervous system, this is likely to change in years to come. Here we focus on the possibility that targeting the oligodendrocyte lineage to promote regeneration of myelin (remyelination) represents a therapeutic strategy for the treatment of the demyelinating disease multiple sclerosis, MS. We discuss how hypothesis driven studies have identified multiple targets and pathways that can be manipulated to promote remyelination in vivo, and how this work has led to the first ever remyelination clinical trials. We also highlight how recent chemical discovery screens have identified a host of small molecule compounds that promote oligodendrocyte differentiation in vitro. Some of these compounds have also been shown to promote myelin regeneration in vivo, with one already being trialled in humans. Promoting oligodendrocyte differentiation and remyelination represents just one potential strategy for the treatment of MS. The pathology of MS is complex, and its complete amelioration may require targeting multiple biological processes in parallel. Therefore, we present an overview of new technologies and models for phenotypic analyses and screening that can be exploited to study complex cell-cell interactions in in vitro and in vivo systems. Such technological platforms will provide insight into fundamental mechanisms and increase capacities for drug-discovery of relevance to glia and currently intractable disorders of the CNS.
Collapse
Affiliation(s)
- Katy L H Cole
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Jason J Early
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - David A Lyons
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| |
Collapse
|
32
|
Karlsson TE, Wellfelt K, Olson L. Spatiotemporal and Long Lasting Modulation of 11 Key Nogo Signaling Genes in Response to Strong Neuroexcitation. Front Mol Neurosci 2017; 10:94. [PMID: 28442990 PMCID: PMC5386981 DOI: 10.3389/fnmol.2017.00094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
Inhibition of nerve growth and plasticity in the CNS is to a large part mediated by Nogo-like signaling, now encompassing a plethora of ligands, receptors, co-receptors and modulators. Here we describe the distribution and levels of mRNA encoding 11 key genes involved in Nogo-like signaling (Nogo-A, Oligodendrocyte-Myelin glycoprotein (OMgp), Nogo receptor 1 (NgR1), NgR2, NgR3, Lingo-1, TNF receptor orphan Y (Troy), Olfactomedin, Lateral olfactory tract usher substance (Lotus) and membrane-type matrix metalloproteinase-3 (MT3-MPP)), as well as BDNF and GAPDH. Expression was analyzed in nine different brain areas before, and at eight time points during the first 3 days after a strong neuroexcitatory stimulation, caused by one kainic acid injection. A temporo-spatial pattern of orderly transcriptional regulations emerges that strengthens the role of Nogo-signaling mechanisms for synaptic plasticity in synchrony with transcriptional increases of BDNF mRNA. For most Nogo-type signaling genes, the largest alterations of mRNA levels occur in the dentate gyrus, with marked alterations also in the CA1 region. Changes occurred somewhat later in several areas of the cerebral cortex. The detailed spatio-temporal pattern of mRNA presence and kainic acid-induced transcriptional response is gene-specific. We reveal that several different gene alterations combine to decrease (and later increase) Nogo-like signaling, as expected to allow structural plasticity responses. Other genes are altered in the opposite direction, suggesting that the system prepares in advance in order to rapidly restore balance. However, the fact that Lingo-1 shows a seemingly opposite, plasticity inhibiting response to kainic acid (strong increase of mRNA in the dentate gyrus), may instead suggest a plasticity-enhancing intracellular function of this presumed NgR1 co-receptor.
Collapse
Affiliation(s)
| | - Katrin Wellfelt
- Department of Neuroscience, Karolinska InstitutetStockholm, Sweden
| | - Lars Olson
- Department of Neuroscience, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|