1
|
Ribeiro JM, Teixeira EDM, Alves LL, Alves ÉAR, Pascoal-Xavier MA, Santi AMM, Oliveira E, Guimarães PPG, Teixeira-Carvalho A, Murta SMF, Peruhype-Magalhães V, Souza-Fagundes EM. Can letrozole be repurposed for the treatment of visceral leishmaniasis? Antimicrob Agents Chemother 2024; 68:e0075624. [PMID: 39387580 PMCID: PMC11540148 DOI: 10.1128/aac.00756-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024] Open
Abstract
Visceral leishmaniasis, caused by Leishmania infantum in New World countries, is the most serious and potentially fatal form of leishmaniasis, if left untreated. There are currently no effective prophylactic measures, and therapeutic options are limited. Therefore, we investigated whether the aromatase inhibitor letrozole (LET), which is already used to treat breast cancer, has an antileishmanial activity and/or immunomodulatory potential and therefore may be used to treat L. infantum infection. LET was active against L. infantum promastigote and amastigote life cycle stages in an in vitro infection model using human THP-1 cell-derived macrophages. In human peripheral blood leukocytes ex vivo, LET reduced the internalized forms of L. infantum by classical monocytes and activated neutrophils. Concomitantly, LET stimulated the production of IL-12/TNF-α and decreased the production of IL-10/TGF-β by peripheral blood phagocytes, while in T and B cells, it promoted the production of TNF-α/IFN-γ and decreased that of IL-10. In a murine infection model, LET significantly reduced the parasite load in the liver after just 5 days and in the spleen after 15 days. During in vivo treatment with LET, the production of TNF-α/IFN-γ also increased. In addition, the proportion of developing granulomas decreased and that of mature granulomas increased in the liver, while there was no significant change in organ architecture in the spleen. Based on these data, repositioning of LET may be promising for the treatment of visceral leishmaniasis in humans.
Collapse
Affiliation(s)
- Juliana Martins Ribeiro
- Departamento de
Fisiologia e Biofísica, Instituto de Ciências
Biológicas, Universidade Federal de Minas
Gerais, Belo Horizonte,
Minas Gerais, Brazil
- Grupo de
Genômica Funcional de Parasitos, Instituto René Rachou,
Fundação Oswaldo Cruz,
Belo Horizonte, Minas Gerais,
Brazil
| | - Eliane de Morais Teixeira
- Grupo Pesquisa
Clínica e Políticas Públicas em Doenças
Infecto-Parasitárias, Instituto René Rachou,
Fundação Oswaldo Cruz,
Belo Horizonte, Minas Gerais,
Brazil
| | - Líndicy Leidicy Alves
- Grupo Pesquisa
Clínica e Políticas Públicas em Doenças
Infecto-Parasitárias, Instituto René Rachou,
Fundação Oswaldo Cruz,
Belo Horizonte, Minas Gerais,
Brazil
| | - Érica Alessandra Rocha Alves
- Grupo Imunologia
Celular e Molecular, Instituto René Rachou,
Fundação Oswaldo Cruz,
Belo Horizonte, Minas Gerais,
Brazil
| | | | - Ana Maria Murta Santi
- Departamento de
Fisiologia e Biofísica, Instituto de Ciências
Biológicas, Universidade Federal de Minas
Gerais, Belo Horizonte,
Minas Gerais, Brazil
| | - Edward Oliveira
- Grupo de
Genômica Funcional de Parasitos, Instituto René Rachou,
Fundação Oswaldo Cruz,
Belo Horizonte, Minas Gerais,
Brazil
| | - Pedro Pires Goulart Guimarães
- Departamento de
Fisiologia e Biofísica, Instituto de Ciências
Biológicas, Universidade Federal de Minas
Gerais, Belo Horizonte,
Minas Gerais, Brazil
| | - Andrea Teixeira-Carvalho
- Grupo Integrado de
Pesquisa em Biomarcadores, Instituto René Rachou,
Fundação Oswaldo Cruz,
Belo Horizonte, Minas Gerais,
Brazil
| | - Silvane Maria Fonseca Murta
- Grupo de
Genômica Funcional de Parasitos, Instituto René Rachou,
Fundação Oswaldo Cruz,
Belo Horizonte, Minas Gerais,
Brazil
| | - Vanessa Peruhype-Magalhães
- Grupo Integrado de
Pesquisa em Biomarcadores, Instituto René Rachou,
Fundação Oswaldo Cruz,
Belo Horizonte, Minas Gerais,
Brazil
| | - Elaine Maria Souza-Fagundes
- Departamento de
Fisiologia e Biofísica, Instituto de Ciências
Biológicas, Universidade Federal de Minas
Gerais, Belo Horizonte,
Minas Gerais, Brazil
| |
Collapse
|
2
|
Monge-Maillo B, López-Vélez R. Leishmaniasis in transplant patients: what do we know so far? Curr Opin Infect Dis 2024; 37:342-348. [PMID: 39012806 DOI: 10.1097/qco.0000000000001034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
PURPOSE OF REVIEW The number of cases of visceral leishmaniasis associated with transplant-associated immunosuppression has increased in recent years. Reviewing and updating the latest developments in its diagnostic management, treatment, and follow-up is necessary and relevant. RECENT FINDINGS Visceral leishmaniasis cases associated with non-HIV immunosuppression are a growing cause of the parasitic infections, and the transplant patients are included in this context. These have been described especially in kidney transplantation. Liposomal amphotericin B is the first-line treatment. Due to immunosuppression, these patients often suffer from recurrent infections. The use of markers that indicate whether the patient has developed an adequate cellular response against Leishmania after treatment seems to be good biomarkers of cure and useful for monitoring and guiding secondary prophylaxis. SUMMARY There is a lack of consensus regarding the need for leishmaniasis screening in donors and recipients and the indications for secondary prophylaxis. The study of new biomarkers of cure may be useful in all three contexts.
Collapse
Affiliation(s)
- Begoña Monge-Maillo
- National Reference Unit for Tropical Diseases, WHO Collaborating Centre for Clinical Management of Leishmaniasis, Infectious Diseases Department, Ramón y Cajal University Hospital, IRICYS. CIBERINFEC, Madrid, Spain
| | | |
Collapse
|
3
|
Zhou Q, Zheng Z, Yin S, Duan D, Liao X, Xiao Y, He J, Zhong J, Zeng Z, Su L, Luo L, Dong C, Chen J, Li J. Nicotinamide mitigates visceral leishmaniasis by regulating inflammatory response and enhancing lipid metabolism. Parasit Vectors 2024; 17:288. [PMID: 38971783 PMCID: PMC11227177 DOI: 10.1186/s13071-024-06370-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Currently, treatment regimens for visceral leishmaniasis (VL) are limited because of the presence of numerous adverse effects. Nicotinamide, a readily available and cost-effective vitamin, has been widely acknowledged for its safety profile. Several studies have demonstrated the anti-leishmanial effects of nicotinamide in vitro. However, the potential role of nicotinamide in Leishmania infection in vivo remains elusive. METHODS In this study, we assessed the efficacy of nicotinamide as a therapeutic intervention for VL caused by Leishmania infantum in an experimental mouse model and investigated its underlying molecular mechanisms. The potential molecular mechanism was explored through cytokine analysis, examination of spleen lymphocyte subsets, liver RNA-seq analysis, and pathway validation. RESULTS Compared to the infection group, the group treated with nicotinamide demonstrated significant amelioration of hepatosplenomegaly and recovery from liver pathological damage. The NAM group exhibited parasite reduction rates of 79.7% in the liver and 86.7% in the spleen, respectively. Nicotinamide treatment significantly reduced the activation of excessive immune response in infected mice, thereby mitigating hepatosplenomegaly and injury. Furthermore, nicotinamide treatment enhanced fatty acid β-oxidation by upregulating key enzymes to maintain lipid homeostasis. CONCLUSIONS Our findings provide initial evidence supporting the safety and therapeutic efficacy of nicotinamide in the treatment of Leishmania infection in BALB/c mice, suggesting its potential as a viable drug for VL.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
| | - Shuangshuang Yin
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Dengbinpei Duan
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xuechun Liao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yuying Xiao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
| | - Junchao Zhong
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Zeng
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
- Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Liang Su
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
- Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Lu Luo
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
- Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Chunxia Dong
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
- Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China.
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China.
| |
Collapse
|
4
|
Akbari M, Heli H, Oryan A, Hatam G. A novel outlook in the delivery of artemisinin: production and efficacy in experimental visceral leishmaniasis. Pathog Glob Health 2024; 118:40-46. [PMID: 37183476 PMCID: PMC10769112 DOI: 10.1080/20477724.2023.2212347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The visceral form of leishmaniasis (VL), due to infection by Leishmania infantum, is a neglected tropical disease. The accessible therapeutic options are limited. Artemisinin is an efficient antileishmanial product with poor biological availability that requires high repetition of therapeutic doses in VL. Solid lipid nanoparticles (SLNs) provide targeted delivery, increase bioavailability and reduce toxicity of the traditional therapeutic strategy. The spherical shape artemisinin-loaded SLNs were prepared in a particle diameter of 222.0 ± 14.0 nm. The SLNs showed no particular toxic effect on the parasites, whereas the native artemisinin demonstrated a significant toxicity rate of 31% in viability of the promastigotes at the 250 µg/ml concentration. The therapeutic efficacy of the artemisinin-loaded SLNs was demonstrated in the experimental VL, using the L. infantum-infected BALB/c mice, in the present study. The 10 and 20 mg/kg doses of artemisinin-loaded SLNs showed higher level of antileishmanial efficacy compared with the free artemisinin. There was a significant diminishing of the parasite burden in liver (84.7 ± 4.9%) and spleen (85.0 ± 3.1%) and hepatosplenomegaly by the artemisinin-loaded SLNs treated at 20 mg/kg compared to the free artemisinin. Therefore, the present study supports the superior efficacy of artemisinin-loaded SLNs over the free artemisinin and could be considered as a new therapeutic strategy in the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Maryam Akbari
- Department of Parasitology and mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Heli
- Department of Nanomedicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Bernardo L, Solana JC, Sánchez C, Torres A, Reyes-Cruz EY, Carrillo E, Moreno J. Immunosuppressants alter the immune response associated with Glucantime ® treatment for Leishmania infantum infection in a mouse model. Front Immunol 2023; 14:1285943. [PMID: 38106411 PMCID: PMC10722182 DOI: 10.3389/fimmu.2023.1285943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Background Immunosuppression is a major risk factor for the development of visceral leishmaniasis (VL). The number of patients receiving immunosuppressant drugs such as TNF antagonist (anti-TNF) and methotrexate (MTX) is increasing. In these patients, VL is more severe, their response to treatment poorer, and they are at higher risk of relapse, a consequence (largely) of the poor and inappropriate immune response they develop. Objectives To examine the effect of immunosuppressive treatment on the host immune response and thus gain insight into the reduced efficacy of pentavalent antimonials in these patients. Experiments were performed using BALB/c mice immunosuppressed with anti-TNF or MTX, infected with Leishmania infantum promastigotes, and then treated with Glucantime® at clinical doses. Results Immunosuppression with both agents impeded parasite elimination from the spleen and bone marrow. Low pro-inflammatory cytokine production by CD4+ and CD8+ T cells was detected, along with an increase in PD-1 and IL-10 expression by B and T cells in the immunosuppressed groups after treatment. Conclusion The immunosuppressed mice were unable to develop specific cellular immunity to the parasite, perhaps explaining the greater risk of VL relapse seen in pharmacologically immunosuppressed human patients.
Collapse
Affiliation(s)
- Lorena Bernardo
- WHO Collaborating Centre for Leishmaniasis, National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Carlos Solana
- WHO Collaborating Centre for Leishmaniasis, National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Sánchez
- WHO Collaborating Centre for Leishmaniasis, National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Ana Torres
- WHO Collaborating Centre for Leishmaniasis, National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Eder Yaveth Reyes-Cruz
- LADISER Immunology and Molecular Biology, Faculty of Chemical Sciences, Universidad Veracruzana, Orizaba, Veracruz, Mexico
| | - Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Soleimanifard S, Saeedi S, Yazdiniapour Z. Isolation of potent antileishmanial agents from Artemisia kermanensis Podlech using bioguided fractionation. J Parasit Dis 2023; 47:297-305. [PMID: 37193491 PMCID: PMC10182224 DOI: 10.1007/s12639-023-01569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Leishmaniasis is a major health problem worldwide with different clinical forms that depend on the parasite, the host's immune system, and immune-inflammatory responses. This study aimed to evaluate the secondary metabolites from Artemisia kermanensis Podlech by bioguided fractionation against Leishmania major. The chemical structures of the isolated compounds were determined based on analysis of mass and nuclear magnetic resonance spectra. Antileishmanial activity were determined on promastigotes and amastigotes. Chemical structures of the isolated compound were as 1-Acetoxy-3,7-dimethyl-7-hydroxy-octa-2E,5E-dien-4-one for compound 1 and 5,7-dihydroxy-3',4',6-trimethoxyflavone (Eupatilin) for compound 2, and 5,7,3'-Trihydroxy-6,4',5'-trimethoxyflavone for compound 3. Compound 2 were confirmed by significant activity with IC50 of less than 50 μg/ml for 24 and 48 h in clinical form (amastigotes). Compound 3 demonstrated high susceptibility with an IC50 of less than 30 μg/ml for promastigotes for 24 h. The bioguided fractionation of A. kermanensis resulted the isolation of potent antileishmanial agents with a low toxicity effect on macrophages. These plant metabolites can be a candidate as a drug for treating cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Simindokht Soleimanifard
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Saeedi
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave., Isfahan, Iran
| | - Zeinab Yazdiniapour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave., Isfahan, Iran
| |
Collapse
|
7
|
Antinarelli LMR, Midlej V, da Silva EDS, Coelho EAF, da Silva AD, Coimbra ES. Exploring the repositioning of the amodiaquine as potential drug against visceral leishmaniasis: The in vitro effect against Leishmania infantum is associated with multiple mechanisms, involving mitochondria dysfunction, oxidative stress and loss of cell cycle control. Chem Biol Interact 2023; 371:110333. [PMID: 36592711 DOI: 10.1016/j.cbi.2022.110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Visceral leishmaniasis (VL) is a progressive, debilitating, and potentially fatal disease if left untreated. As a neglected tropical disease (NTD), the available treatment is restricted to a few drugs, which typically must be administered over a long period but are associated with serious adverse effects and have variability in efficacy. In this sense, drug repositioning has been considered an excellent strategy in the search for alternative treatments, especially in reducing the time and cost of the research. In this work, the repositioning potential of amodiaquine (AQ), a well-known antimalarial drug, was investigated for the treatment of VL. AQ showed significant and selective activity against promastigotes (IC50 = 11.6 μg/mL) and intracellular amastigotes (IC50 = 2.4 μg/mL) of L. infantum, being 10 times more destructive to the intracellular parasites than the host cell. In addition, pre-treatment of macrophages with AQ caused a significant reduction in the infection index, indicating a prophylactic effect of this drug. SEM images showed that AQ induces strong shape alterations of the promastigotes with an increase in cell volume with rounding and ribbing (vertical ridges), as well as a shortened flagellum. In addition, AQ induced depolarization of the ΔΨm, an increase in ROS and neutral lipids levels, and changes in the cell cycle in promastigotes, without alterations to the permeability of the parasite plasma membrane. L. infantum-infected macrophages treated with AQ induced the activation of oxidative mechanisms by infected host cells, with an increase in ROS and NO levels. Finally, in vitro interactions between AQ and miltefosine were found to have an additive effect in both biological stages of the parasite, with the ∑FIC50 values ranging from 0.74 to 1.16 μg/mL and 0.54-1.11 μg/mL for promastigotes and intracellular amastigotes, respectively. Overall, these data highlight the utility of drug repurposing and indicate future preclinical testing for AQ itself or in combination as a potential VL treatment.
Collapse
Affiliation(s)
- Luciana M Ribeiro Antinarelli
- Department of Parasitology, Microbiology, and Immunology, Biological Sciences Institute, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Minas Gerais, 36.036-900, Brazil; Postgraduation Program in Health Sciences, Infectology and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Victor Midlej
- Laboratory of Cellular and Ultrastructure, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, 21040-900, Brazil
| | | | - Eduardo Antônio Ferraz Coelho
- Postgraduation Program in Health Sciences, Infectology and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, 30130-100, Brazil; Department of Clinical Pathology, COLTEC, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Adilson David da Silva
- Department of Chemistry, Institute of Exact Sciences, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Minas Gerais, 36.036-900, Brazil
| | - Elaine Soares Coimbra
- Department of Parasitology, Microbiology, and Immunology, Biological Sciences Institute, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Minas Gerais, 36.036-900, Brazil.
| |
Collapse
|
8
|
Schäfer I, Müller E, Naucke TJ. Ein Update zur Leishmaniose des Hundes: Diagnostik, Therapie und Monitoring. TIERÄRZTLICHE PRAXIS AUSGABE K: KLEINTIERE / HEIMTIERE 2022; 50:431-445. [DOI: 10.1055/a-1970-9590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ZusammenfassungAufgrund von steigenden Importzahlen von Hunden aus dem Ausland, zunehmendem Reiseverkehr sowie den Veränderungen klimatischer Bedingungen in Europa gewinnen Infektionen mit Leishmania (L.) infantum bei Hunden in Deutschland zunehmend an Bedeutung. Daher sollten auch Hunde aus dem Ausland, die keine klinischen Symptome zeigen, direkt nach Import sowie erneut 6 Monate später auf vektorübertragene Infektionserreger getestet werden. Bei Hunden mit klinischer Symptomatik, die hinweisend auf eine Leishmaniose sind, werden direkte und indirekte Nachweisverfahren sowie eine hämatologische und biochemische Untersuchung unter Einbezug von Serumeiweißelektrophorese sowie Bestimmung des C-reaktiven Proteins empfohlen. Als Leitfaden für die Therapie sowie das Monitoring stehen die LeishVet-Guidelines zur Verfügung. Es stehen leishmanizide und leishmaniostatische Wirkstoffe zur Verfügung, die in first-line, second-line und third-line unterschieden werden. Zur Anpassung der Allopurinol-Dosierung wird der Stufenplan empfohlen. Aufgrund der Veränderung der klimatischen Bedingungen kommt es zu einer Ausbreitung der Habitate von Sandmücken, die als Vektoren der Leishmaniose bekannt sind. Als weitere Infektionsquellen sind Deckakte, transplazentare Infektionen, Bisswunden und Bluttransfusionen beschrieben. Leishmania infantum hat zoonotisches Potential und ist daher auch in Hinblick auf den „One-Health“-Gedanken bedeutend.
Collapse
|
9
|
Budhathoki D, Deore B, Finn MG, Sanhueza CA. A Ferrier glycosylation/ cis-dihydroxylation strategy to synthesize Leishmania spp. lipophosphoglycan-associated βGal(1,4)Man disaccharide. RSC Adv 2022; 12:28207-28216. [PMID: 36320230 PMCID: PMC9530798 DOI: 10.1039/d2ra05158c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
The Galβ(1→4)Man disaccharide, found in the cell surface lipophosphoglycan (LPG) of Leishmania species, has been synthesized by a Ferrier glycosylation/cis-dihydroxylation strategy. This stereoselective method proved efficient for synthesizing the target saccharide in good yield. In addition, we prepared two clickable O-glycoside and phospho-glycoside versions of Galβ(1→4)Man to enable conjugation to protein carriers for further immunological and antibody-binding studies.
Collapse
Affiliation(s)
- Dipesh Budhathoki
- Department of Pharmaceutical Sciences, St. John's University8000 Utopia ParkwayQueensNY 11439USA
| | - Bhavesh Deore
- Department of Pharmaceutical Sciences, St. John's University8000 Utopia ParkwayQueensNY 11439USA
| | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology901 Atlantic DriveAtlantaGA 30306USA
| | - Carlos A. Sanhueza
- Department of Pharmaceutical Sciences, St. John's University8000 Utopia ParkwayQueensNY 11439USA,School of Chemistry and Biochemistry, Georgia Institute of Technology901 Atlantic DriveAtlantaGA 30306USA
| |
Collapse
|
10
|
Calkilic NM, Alici H, Direkel Ş, Tahtaci H. Synthesis, Characterization, Theoretical Analyses, and Investigation of Their Biological Activities of Acetovanillone-Derived Novel Benzyl Ethers. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1950782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Hakan Alici
- Department of Physics, Faculty of Arts and Sciences, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Şahin Direkel
- Department of Medical Microbiology, Faculty of Medicine, Giresun University, Giresun, Turkey
| | - Hakan Tahtaci
- Department of Chemistry, Faculty of Science, Karabuk University, Karabuk, Turkey
| |
Collapse
|
11
|
Evaluation of In vitro and In vivo Protective Efficacy of Bauhinia variegata Against Leishmania donovani in Murine Model. Acta Parasitol 2021; 66:812-826. [PMID: 33528770 DOI: 10.1007/s11686-020-00326-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Visceral leishmaniasis is one of the ignored parasitic infection affecting millions of people globally. Currently, available treatment options are unsatisfactory because of high cost and side effects of the leishmanicidal drugs. Therefore, herbal medicines provide a promising choice for the detection of efficient and novel leishmanicidal therapeutics which can rejuvenate the immune response of the host with less adverse effects. The objective of the present study was to determine the in vitro and in vivo effect of hydroethanolic extract of Bauhinia variegata (HEBV) against Leishmania donovani. METHODS The in vitro efficacy and cytotoxicity of HEBV was checked against L. donovani and THP1 human macrophages. Further HEBV (500 and 1000 mg/kg b.wt.) were given orally to inbred BALB/c mice infected with L. donovani for 2 weeks and euthanized on 14th post treatment day. Various parameters like parasite load, delayed-type hypersensitivity (DTH) responses, T cells, Th1/Th2 cytokines, histological and biochemical tests were investigated. RESULTS HEBV showed marked antileishmanial activity with cell cycle arrest at sub-G0/G1 phase. HEBV was found to be more effective at higher dose in declining parasite concentration in the spleen as compared to the lower dose. Moreover, the extract augmented the DTH reaction and T cell responses in the infected mice. Oral administration of HEBV caused the enhancement of disease-suppressing Th1 cytokines and suppression of disease-progressing Th2 cytokines with no toxicities. CONCLUSION Thus, HEBV showed the antileishmanial efficacy through the generation of pro-inflammatory immunity of the host which further suggests the mechanistic exploration of it as a leishmanicidal therapeutic.
Collapse
|
12
|
1,2,3-triazole derivative: Synthesis, characterization, DFT, molecular docking study and antibacterial-antileishmanial activities. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Monge-Maillo B, López-Vélez R. Anfotericina B liposomal en el tratamiento de la leishmaniasis visceral. Rev Iberoam Micol 2021; 38:101-104. [PMID: 34127386 DOI: 10.1016/j.riam.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 11/15/2022] Open
Abstract
A review on the current evidence of the efficacy and security of liposomal amphotericinB (L-AmB) for the treatment of visceral leishmaniasis (VL) has been performed. In the Indian subcontinent, a single dose of 10mg/kg has shown effectiveness in the treatment of VL due to Leishmania donovani. In contrast, higher doses of L-AmB (up to 30mg/kg) are required in Africa to treat a VL of the same etiology. When treating VL by Leishmania infantum acquired in the Americas and Europe the usual dose of L-AmB is 20-21mg/kg. In HIV co-infected patients the required doses are usually higher, up to 60mg/kg, and if it is administered in a prophylactic schedule after the treatment of VL relapses are reduced. L-AmB has shown synergism with other antiparasitic drugs, especially with paromomycin in the Indian subcontinent and with miltefosin in patients coinfected with HIV in East Africa. Due to its efficacy and safety profile, L-AmB is the first therapeutic option for VL.
Collapse
Affiliation(s)
- Begoña Monge-Maillo
- Unidad de Referencia Nacional para Enfermedades Tropicales, Servicio de Enfermedades Infecciosas, Hospital Universitario Ramón y Cajal, Madrid, España
| | - Rogelio López-Vélez
- Unidad de Referencia Nacional para Enfermedades Tropicales, Servicio de Enfermedades Infecciosas, Hospital Universitario Ramón y Cajal, Madrid, España.
| |
Collapse
|
14
|
Akao Y, Canan S, Cao Y, Condroski K, Engkvist O, Itono S, Kaki R, Kimura C, Kogej T, Nagaoka K, Naito A, Nakai H, Pairaudeau G, Radu C, Roberts I, Shimada M, Shum D, Watanabe NA, Xie H, Yonezawa S, Yoshida O, Yoshida R, Mowbray C, Perry B. Collaborative virtual screening to elaborate an imidazo[1,2- a]pyridine hit series for visceral leishmaniasis. RSC Med Chem 2021; 12:384-393. [PMID: 34041487 PMCID: PMC8130605 DOI: 10.1039/d0md00353k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
An innovative pre-competitive virtual screening collaboration was engaged to validate and subsequently explore an imidazo[1,2-a]pyridine screening hit for visceral leishmaniasis. In silico probing of five proprietary pharmaceutical company libraries enabled rapid expansion of the hit chemotype, alleviating initial concerns about the core chemical structure while simultaneously improving antiparasitic activity and selectivity index relative to the background cell line. Subsequent hit optimization informed by the structure–activity relationship enabled by this virtual screening allowed thorough investigation of the pharmacophore, opening avenues for further improvement and optimization of the chemical series. Ligand-based similarity screening of proprietary pharmaceutical company libraries enables rapid hit to lead investigation of a chemotype with anti-leishmania activity.![]()
Collapse
Affiliation(s)
- Yuichiro Akao
- Takeda Pharmaceutical Company Limited 26-1 Muraoka-Higashi 2-chrome Fujisawa Kanagawa 251-8555 Japan
| | - Stacie Canan
- Celgene Corporation, Celgene Global Health 10300 Campus Point Drive San Diego California 92121 USA
| | - Yafeng Cao
- WuXi AppTec Company Ltd. 666 Gaoxin Road, East Lake High-Tech Development Zone Wuhan 430075 People's Republic of China
| | - Kevin Condroski
- Celgene Corporation, Celgene Global Health 10300 Campus Point Drive San Diego California 92121 USA
| | - Ola Engkvist
- AstraZeneca Discovery Sciences, R&D AstraZeneca Gothenburg Sweden
| | - Sachiko Itono
- Takeda Pharmaceutical Company Limited 26-1 Muraoka-Higashi 2-chrome Fujisawa Kanagawa 251-8555 Japan
| | - Rina Kaki
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Chiaki Kimura
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Thierry Kogej
- AstraZeneca Discovery Sciences, R&D AstraZeneca Gothenburg Sweden
| | - Kazuya Nagaoka
- Eisai Co., Ltd 1-3,Tokodai 5-chome Tsukuba Ibaraki 300-2635 Japan
| | - Akira Naito
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Hiromi Nakai
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | | | - Constantin Radu
- Institut Pasteur Korea 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu Seongnam-si Gyeonggi-do 13488 Republic of Korea
| | - Ieuan Roberts
- AstraZeneca, Discovery Sciences, R&D AstraZeneca Cambridge UK
| | - Mitsuyuki Shimada
- Takeda Pharmaceutical Company Limited 26-1 Muraoka-Higashi 2-chrome Fujisawa Kanagawa 251-8555 Japan
| | - David Shum
- Institut Pasteur Korea 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu Seongnam-si Gyeonggi-do 13488 Republic of Korea
| | - Nao-Aki Watanabe
- Eisai Co., Ltd 1-3,Tokodai 5-chome Tsukuba Ibaraki 300-2635 Japan
| | - Huanxu Xie
- WuXi AppTec Company Ltd. 666 Gaoxin Road, East Lake High-Tech Development Zone Wuhan 430075 People's Republic of China
| | - Shuji Yonezawa
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Osamu Yoshida
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Ryu Yoshida
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Charles Mowbray
- Drugs for Neglected Diseases initiative 15 Chemin Louis Dunant Geneva 1202 Switzerland
| | - Benjamin Perry
- Drugs for Neglected Diseases initiative 15 Chemin Louis Dunant Geneva 1202 Switzerland
| |
Collapse
|
15
|
Parvez S, Yadagiri G, Karole A, Singh OP, Verma A, Sundar S, Mudavath SL. Recuperating Biopharmaceutical Aspects of Amphotericin B and Paromomycin Using a Chitosan Functionalized Nanocarrier via Oral Route for Enhanced Anti-leishmanial Activity. Front Cell Infect Microbiol 2020; 10:570573. [PMID: 33178626 PMCID: PMC7593694 DOI: 10.3389/fcimb.2020.570573] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
The design and development of new pharmaceutical formulations for the existing anti-leishmanial is a new strategic alternate to improve efficacy and safety rather than new drug discovery. Herein hybrid solid lipid nanoparticles (SLN) have been engineered to direct the oral delivery of two anti-leishmanial drugs amphotericin B (AmB) and paromomycin (PM). The combinatorial nanocarriers consist of conventional SLN, antileishmanial drugs (AmB and PM) which have been functionalized with chitosan (Cs) grafted onto the external surface. The Cs-SLN have the mean particle size of 373.9 ± 1.41 nm, polydispersity index (PDI) of 0.342 ± 0.02 and the entrapment efficiency for AmB and PM was found to be 95.20 ± 3.19% and 89.45 ± 6.86 %, respectively. Characterization of SLN was performed by scanning electron microscopy and transmission electron microscopy. Complete internalization of the formulation was observed in Caco-2 cells. Cs-SLN has shown a controlled and slow drug release profile over a period of 72 h and was stable at gastrointestinal fluids, confirmed by simulated gastro-intestinal fluids study. Cs coating enhanced the mucoadhesive property of Cs-SLN. The in-vitro anti-leishmanial activity of Cs-SLN (1 μg/ml) has shown a maximum percentage of inhibition (92.35%) on intra-cellular amastigote growth of L. donovani.
Collapse
Affiliation(s)
- Shabi Parvez
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology, Mohali, India
| | - Ganesh Yadagiri
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology, Mohali, India
| | - Archana Karole
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology, Mohali, India
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anurag Verma
- School of Pharmaceutical Sciences, Institute of Foreign Trade and Management (IFTM) University, Moradabad, India.,Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University (TMU), Moradabad, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology, Mohali, India
| |
Collapse
|
16
|
Zheng Z, Chen J, Ma G, Satoskar AR, Li J. Integrative genomic, proteomic and phenotypic studies of Leishmania donovani strains revealed genetic features associated with virulence and antimony-resistance. Parasit Vectors 2020; 13:510. [PMID: 33046138 PMCID: PMC7552375 DOI: 10.1186/s13071-020-04397-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/07/2020] [Indexed: 12/26/2022] Open
Abstract
Background Leishmaniasis is a neglected tropical disease affecting millions of people worldwide. Emerging drug resistance of Leishmania species poses threaten to the effective control and elimination programme of this neglected tropical disease. Methods In this work, we conducted drug-resistance testing, whole genome resequencing and proteome profiling for a recently reported clinical isolate with supposed drug resistance (HCZ), and two reference sensitive strains (DD8 and 9044) of Leishmania donovani, to explore molecular mechanisms underlying drug resistance in this parasite. Results With reference to DD8 and 9044 strains, HCZ isolate showed higher-level virulence and clear resistance to antimonials in promastigote culture, infected macrophages and animal experiment. Pairwise genomic comparisons revealed genetic variations (86 copy number variations, 271 frameshift mutations in protein-coding genes and two site mutations in non-coding genes) in HCZ isolate that were absent from the reference sensitive strains. Proteomic analysis indicated different protein expression between HCZ isolate and reference strains, including 69 exclusively detected proteins and 82 consistently down-/upregulated molecules in the HCZ isolate. Integrative analysis showed linkage of 12 genomic variations (gene duplication, insertion and deletion) and their protein expression changes in HCZ isolate, which might be associated with pathogenic and antimony-resistant phenotype. Functional annotation analyses further indicated that molecules involved in nucleotide-binding, fatty acid metabolism, oxidation-reduction and transport might play a role in host-parasite interaction and drug-resistance. Conclusions This comprehensive integrative work provided novel insights into the genetic basis underlying virulence and resistance, suggesting new aspects to be investigated for a better intervention against L. donovani and associated diseases.![]()
Collapse
Affiliation(s)
- Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.,Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Abhay R Satoskar
- Department of Pathology, Ohio State University Medical Center, Ohio State University, Columbus, USA.,Department of Microbiology, Ohio State University, Columbus, USA
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Roatt BM, de Oliveira Cardoso JM, De Brito RCF, Coura-Vital W, de Oliveira Aguiar-Soares RD, Reis AB. Recent advances and new strategies on leishmaniasis treatment. Appl Microbiol Biotechnol 2020; 104:8965-8977. [PMID: 32875362 DOI: 10.1007/s00253-020-10856-w] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/13/2020] [Accepted: 08/23/2020] [Indexed: 12/18/2022]
Abstract
Leishmaniasis is one of the most important tropical neglected diseases according to the World Health Organization. Even after more than a century, we still have few drugs for the disease therapy and their great toxicity and side effects put in check the treatment control program around the world. Moreover, the emergence of strains resistant to conventional drugs, co-infections such as HIV/Leishmania spp., the small therapeutic arsenal (pentavalent antimonials, amphotericin B and formulations, and miltefosine), and the low investment for the discovery/development of new drugs force researchers and world health agencies to seek new strategies to combat and control this important neglected disease. In this context, the aim of this review is to summarize new advances and new strategies used on leishmaniasis therapy addressing alternative and innovative treatment paths such as physical and local/topical therapies, combination or multi-drug uses, immunomodulation, drug repurposing, and the nanotechnology-based drug delivery systems.Key points• The treatment of leishmaniasis is a challenge for global health agencies.• Toxicity, side effects, reduced therapeutic arsenal, and drug resistance are the main problems.• New strategies and recent advances on leishmaniasis treatment are urgent.• Immunomodulators, nanotechnology, and drug repurposing are the future of leishmaniasis treatment.
Collapse
Affiliation(s)
- Bruno Mendes Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Instituto de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil
| | - Jamille Mirelle de Oliveira Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Rory Cristiane Fortes De Brito
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Wendel Coura-Vital
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-00, Brazil
| | - Rodrigo Dian de Oliveira Aguiar-Soares
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-00, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil. .,Instituto de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil. .,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-00, Brazil.
| |
Collapse
|
18
|
Pérez-Pertejo Y, Escudero-Martínez JM, Reguera RM, Balaña-Fouce R, García PA, Jambrina PG, San Feliciano A, Castro MÁ. Antileishmanial activity of terpenylquinones on Leishmania infantum and their effects on Leishmania topoisomerase IB. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 11:70-79. [PMID: 31678841 PMCID: PMC6904838 DOI: 10.1016/j.ijpddr.2019.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/22/2019] [Indexed: 10/31/2022]
Abstract
Leishmania is the aethiological agent responsible for the visceral leishmaniasis, a serious parasite-borne disease widely spread all over the World. The emergence of resistant strains makes classical treatments less effective; therefore, new and better drugs are necessary. Naphthoquinones are interesting compounds for which many pharmacological properties have been described, including leishmanicidal activity. This work shows the antileishmanial effect of two series of terpenyl-1,4-naphthoquinones (NQ) and 1,4-anthraquinones (AQ) obtained from natural terpenoids, such as myrcene and myrceocommunic acid. They were evaluated both in vitro and ex vivo against the transgenic iRFP-Leishmania infantum strain and also tested on liver HepG2 cells to determine their selectivity indexes. The results indicated that NQ derivatives showed better antileishmanial activity than AQ analogues, and among them, compounds with a diacetylated hydroquinone moiety provided better results than their corresponding quinones. Regarding the terpenic precursor, compounds obtained from the monoterpenoid myrcene displayed good antiparasitic efficiency and low cytotoxicity for mammalian cells, whereas those derived from the diterpenoid showed better antileishmanial activity without selectivity. In order to explore their mechanism of action, all the compounds have been tested as potential inhibitors of Leishmania type IB DNA topoisomerases, but only some compounds that displayed the quinone ring were able to inhibit the recombinant enzyme in vitro. This fact together with the docking studies performed on LTopIB suggested the existence of another mechanism of action, alternative or complementary to LTopIB inhibition. In silico druglikeness and ADME evaluation of the best leishmanicidal compounds has shown good predictable druggability.
Collapse
Affiliation(s)
- Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas. Campus de Vegazana, University of León, León, Spain
| | | | - Rosa M Reguera
- Departamento de Ciencias Biomédicas. Campus de Vegazana, University of León, León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas. Campus de Vegazana, University of León, León, Spain
| | - Pablo A García
- Departamento de Ciencias Farmacéuticas, Área de Química Farmacéutica, Facultad de Farmacia, CIETUS, IBSAL, Campus Miguel de Unamuno, University of Salamanca, Salamanca, Spain
| | - Pablo G Jambrina
- Departamento de Química Física. Facultad de Ciencias Químicas, University of Salamanca, Salamanca, Spain
| | - Arturo San Feliciano
- Departamento de Ciencias Farmacéuticas, Área de Química Farmacéutica, Facultad de Farmacia, CIETUS, IBSAL, Campus Miguel de Unamuno, University of Salamanca, Salamanca, Spain
| | - María-Ángeles Castro
- Departamento de Ciencias Farmacéuticas, Área de Química Farmacéutica, Facultad de Farmacia, CIETUS, IBSAL, Campus Miguel de Unamuno, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
19
|
Souto EB, Dias-Ferreira J, Craveiro SA, Severino P, Sanchez-Lopez E, Garcia ML, Silva AM, Souto SB, Mahant S. Therapeutic Interventions for Countering Leishmaniasis and Chagas's Disease: From Traditional Sources to Nanotechnological Systems. Pathogens 2019; 8:pathogens8030119. [PMID: 31374930 PMCID: PMC6789685 DOI: 10.3390/pathogens8030119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 02/02/2023] Open
Abstract
The incidence of neglected diseases in tropical countries, such as Leishmaniasis and Chagas's disease, is attributed to a set of biological and ecological factors associated with the socioeconomic context of developing countries and with a significant burden to health care systems. Both Leishmaniasis and Chagas's disease are caused by different protozoa and develop diverse symptoms, which depend on the specific species infecting man. Currently available drugs to treat these disorders have limited therapeutic outcomes, frequently due to microorganisms' drug resistance. In recent years, significant efforts have been made towards the development of innovative drug delivery systems aiming to improve bioavailability and pharmacokinetic profiles of classical drug therapy. This paper discusses the key facts of Leishmaniasis and Chagas's disease, the currently available pharmacological therapies and the new drug delivery systems for conventional drugs.
Collapse
Affiliation(s)
- Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - João Dias-Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Sara A Craveiro
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, Paranhos, 4200-150 Porto, Portugal
| | - Patrícia Severino
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
- University of Tiradentes (UNIT), Industrial Biotechnology Program, Av. Murilo Dantas 300, Aracaju 49032-490, Brazil
| | - Elena Sanchez-Lopez
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
| | - Maria L Garcia
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
| | - Amélia M Silva
- Departamento de Biologia e Ambiente, Universidade de Trás-os-Montes e Alto Douro (UTAD), P.O. Box 1013; 5001-801 Vila Real, Portugal
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB-UTAD), 5001-801 Vila Real, Portugal
| | - Selma B Souto
- Department of Endocrinology of Braga Hospital, Sete Fontes, 4710-243 São Victor, Braga, Portugal
| | - Sheefali Mahant
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
20
|
Visceral and Cutaneous Leishmaniasis Recommendations for Solid Organ Transplant Recipients and Donors. Transplantation 2018; 102:S8-S15. [PMID: 29381573 DOI: 10.1097/tp.0000000000002018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Martins TAF, Barbosa VS, Almeida GG, Antonelli LRDV, Tafuri WL, Mosser DM, Gonçalves R. Monocyte subpopulations as important biomarkers of resistence and susceptibility during experimental infection with Leishmania (Leishmania) major. Biomed Pharmacother 2018; 107:1530-1539. [PMID: 30257371 DOI: 10.1016/j.biopha.2018.08.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022] Open
Abstract
Visceral Leishmaniasis is a chronic and lethal, parasitic disease. In the later infection stages, it is known that expressive hematological disorders can be observed, including changes in the frequency and phenotype of certain leukocytes. There is a lack of good prognostic indicators to characterize the on-goin clinical status of the patient. In this study, we have analyzed the frequency of monocyte subpopulations in mice infected with Leishmania major (L. major). Our results show a significant correlation between increased blood monocyte frequency and lesion development in both BALB/c and in the C57BL/6 mice infected with L. major. In BALB/c mice we observed a significant correlation between the frequency of GR1+ monocytes and lesion size. Furthermore, treatment of infected BALB/c mice with Anfotericin B, to resolve lesions, resulted in a lower frequency of GR1+ monocytes compared to untreated infected BALB/c mice. C57BL/6 infected mice, which normally resolve infections, show decreased numbers of monocytes during the healing phase of infection. The results indicate that disease severity can be predicted by analyzing monocyte frequency. Thus, we propose that the frequency of monocytes, can be used to define the severity of the disease as well as the success of the treatment in experimental leishmaniasis.
Collapse
Affiliation(s)
- Tassiane Assiria Fontes Martins
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vitor Silva Barbosa
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gregório Guilherme Almeida
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Wagner Luiz Tafuri
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| | - Ricardo Gonçalves
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
22
|
Recent Development of Visceral Leishmaniasis Treatments: Successes, Pitfalls, and Perspectives. Clin Microbiol Rev 2018; 31:31/4/e00048-18. [PMID: 30158301 DOI: 10.1128/cmr.00048-18] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Research in visceral leishmaniasis in the last decade has been focused on how better to use the existing medicines as monotherapy or in combination. Systematic research by geographical regions has shown that a universal treatment is far from today's reality. Substantial progress has been made in the elimination of kala-azar in South Asia, with a clear strategy on first- and second-line therapy options of single-dose liposomal amphotericin B and a combination of paromomycin and miltefosine, respectively, among other interventions. In Eastern Africa, sodium stibogluconate (SSG) and paromomycin in combination offer an advantage compared to the previous SSG monotherapy, although not exempted of limitations, as this therapy requires 17 days of painful double injections and bears the risk of SSG-related cardiotoxicity. In this region, attempts to improve the combination therapy have been unsuccessful. However, pharmacokinetic studies have led to a better understanding of underlying mechanisms, like the underexposure of children to miltefosine treatment, and an improved regimen using an allometric dosage. Given this global scenario of progress and pitfalls, we here review what steps need to be taken with existing medicines and highlight the urgent need for oral drugs. Furthermore, it should be noted that six candidates belonging to five new chemical classes are reaching phase I, ensuring an optimistic near future.
Collapse
|
23
|
Yasur-Landau D, Jaffe CL, David L, Doron-Faigenboim A, Baneth G. Resistance of Leishmania infantum to allopurinol is associated with chromosome and gene copy number variations including decrease in the S-adenosylmethionine synthetase (METK) gene copy number. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:403-410. [PMID: 30173105 PMCID: PMC6122375 DOI: 10.1016/j.ijpddr.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/09/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022]
Abstract
Leishmania infantum is one of the causative agents of visceral leishmaniasis (VL), a widespread, life-threatening disease. This parasite is responsible for the majority of human VL cases in Brazil, the Middle East, China, Central Asia and the Mediterranean basin. Its main reservoir are domestic dogs which, similar to human patients, may develop severe visceral disease and die if not treated. The drug allopurinol is used for the long-term maintenance of dogs with canine leishmaniasis. Following our report of allopurinol resistance in treated relapsed dogs, we investigated the mechanisms and markers of resistance to this drug. Whole genome sequencing (WGS) of clinical resistant and susceptible strains, and laboratory induced resistant parasites, was carried out in order to detect genetic changes associated with resistance. Significant gene copy number variation (CNV) was found between resistant and susceptible isolates at several loci, including a locus on chromosome 30 containing the genes LinJ.30.3550 through LinJ.30.3580. A reduction in copy number for LinJ.30.3560, encoding the S-adenosylmethionine synthetase (METK) gene, was found in two resistant clinical isolates and four induced resistant clonal strains. Using quantitative real time PCR, this reduction in METK copy number was also found in three additional resistant clinical isolates. Furthermore, inhibition of S-adenosylmethionine synthetase encoded by the METK gene in allopurinol susceptible strains resulted in increased allopurinol resistance, confirming its role in resistance to allopurinol. In conclusion, this study identified genetic changes associated with L. infantum resistance to allopurinol and the reduction in METK copy number identified may serve as a marker for resistance in dogs, and reduced protein activity correlated with increased allopurinol resistance. Allopurinol resistance was previously described in L. infantum isolated from dogs. This study aimed at defining the genetic differences between susceptible and resistant strains. Gene and chromosome copy numbers differed between susceptible and resistant L. infantum strains. Decrease in METK gene copies was associated with increased allopurinol resistance. Inhibition of the enzyme encoded by METK increased allopurinol resistance.
Collapse
Affiliation(s)
| | - Charles L Jaffe
- Department of Microbiology and Molecular Genetics, IMRIC, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | - Lior David
- Department of Animal Sciences, The Hebrew University, Rehovot, Israel
| | - Adi Doron-Faigenboim
- Agricultural Research Organization, The Volcani Center, Institute of Plant Science, Bet Dagan, Israel
| | - Gad Baneth
- Koret School of Veterinary Medicine, The Hebrew University, Rehovot, Israel.
| |
Collapse
|
24
|
Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence. PLoS Pathog 2018; 14:e1007076. [PMID: 30059535 PMCID: PMC6085062 DOI: 10.1371/journal.ppat.1007076] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/09/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
Phosphate is an essential macronutrient required for cell growth and division. Pho84 is the major high-affinity cell-surface phosphate importer of Saccharomyces cerevisiae and a crucial element in the phosphate homeostatic system of this model yeast. We found that loss of Candida albicans Pho84 attenuated virulence in Drosophila and murine oropharyngeal and disseminated models of invasive infection, and conferred hypersensitivity to neutrophil killing. Susceptibility of cells lacking Pho84 to neutrophil attack depended on reactive oxygen species (ROS): pho84-/- cells were no more susceptible than wild type C. albicans to neutrophils from a patient with chronic granulomatous disease, or to those whose oxidative burst was pharmacologically inhibited or neutralized. pho84-/- mutants hyperactivated oxidative stress signalling. They accumulated intracellular ROS in the absence of extrinsic oxidative stress, in high as well as low ambient phosphate conditions. ROS accumulation correlated with diminished levels of the unique superoxide dismutase Sod3 in pho84-/- cells, while SOD3 overexpression from a conditional promoter substantially restored these cells’ oxidative stress resistance in vitro. Repression of SOD3 expression sharply increased their oxidative stress hypersensitivity. Neither of these oxidative stress management effects of manipulating SOD3 transcription was observed in PHO84 wild type cells. Sod3 levels were not the only factor driving oxidative stress effects on pho84-/- cells, though, because overexpressing SOD3 did not ameliorate these cells’ hypersensitivity to neutrophil killing ex vivo, indicating Pho84 has further roles in oxidative stress resistance and virulence. Measurement of cellular metal concentrations demonstrated that diminished Sod3 expression was not due to decreased import of its metal cofactor manganese, as predicted from the function of S. cerevisiae Pho84 as a low-affinity manganese transporter. Instead of a role of Pho84 in metal transport, we found its role in TORC1 activation to impact oxidative stress management: overexpression of the TORC1-activating GTPase Gtr1 relieved the Sod3 deficit and ROS excess in pho84-/- null mutant cells, though it did not suppress their hypersensitivity to neutrophil killing or hyphal growth defect. Pharmacologic inhibition of Pho84 by small molecules including the FDA-approved drug foscarnet also induced ROS accumulation. Inhibiting Pho84 could hence support host defenses by sensitizing C. albicans to oxidative stress. Candida albicans is the species most often isolated from patients with invasive fungal disease, and is also a common colonizer of healthy people. It is well equipped to compete for nutrients with bacteria co-inhabiting human gastrointestinal mucous membranes, since it possesses multiple transporters to internalize important nutrients like sugars, nitrogen sources, and phosphate. During infection, the fungus needs to withstand human defense cells that attack it with noxious chemicals, among which reactive oxygen species (ROS) are critical. We found that a high-affinity phosphate transporter, Pho84, is required for C. albicans’ ability to successfully invade animal hosts and to eliminate ROS. Levels of a fungal enzyme that breaks down ROS, Sod3, were decreased in cells lacking Pho84. A connection between this phosphate transporter and the ROS-detoxifying enzyme was identified in the Target of Rapamycin (TOR) pathway, to which Pho84 is known to provide activating signals when phosphate is abundant. Small molecules that block Pho84 activity impair the ability of C. albicans to detoxify ROS. Since humans manage phosphate differently than fungi and have no Pho84 homolog, a drug that inhibits Pho84 could disable the defense of the fungus against the host.
Collapse
|
25
|
Rastrojo A, García-Hernández R, Vargas P, Camacho E, Corvo L, Imamura H, Dujardin JC, Castanys S, Aguado B, Gamarro F, Requena JM. Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:246-264. [PMID: 29689531 PMCID: PMC6039315 DOI: 10.1016/j.ijpddr.2018.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/10/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
Abstract
Leishmaniasis is a serious medical issue in many countries around the World, but it remains largely neglected in terms of research investment for developing new control and treatment measures. No vaccines exist for human use, and the chemotherapeutic agents currently used are scanty. Furthermore, for some drugs, resistance and treatment failure are increasing to alarming levels. The aim of this work was to identify genomic and trancriptomic alterations associated with experimental resistance against the common drugs used against VL: trivalent antimony (SbIII, S line), amphotericin B (AmB, A line), miltefosine (MIL, M line) and paromomycin (PMM, P line). A total of 1006 differentially expressed transcripts were identified in the S line, 379 in the A line, 146 in the M line, and 129 in the P line. Also, changes in ploidy of chromosomes and amplification/deletion of particular regions were observed in the resistant lines regarding the parental one. A series of genes were identified as possible drivers of the resistance phenotype and were validated in both promastigotes and amastigotes from Leishmania donovani, Leishmania infantum and Leishmania major species. Remarkably, a deletion of the gene LinJ.36.2510 (coding for 24-sterol methyltransferase, SMT) was found to be associated with AmB-resistance in the A line. In the P line, a dramatic overexpression of the transcripts LinJ.27.T1940 and LinJ.27.T1950 that results from a massive amplification of the collinear genes was suggested as one of the mechanisms of PMM resistance. This conclusion was reinforced after transfection experiments in which significant PMM-resistance was generated in WT parasites over-expressing either gene LinJ.27.1940 (coding for a D-lactate dehydrogenase-like protein, D-LDH) or gene LinJ.27.1950 (coding for an aminotransferase of branched-chain amino acids, BCAT). This work allowed to identify new drivers, like SMT, the deletion of which being associated with resistance to AmB, and the tandem D-LDH-BCAT, the amplification of which being related to PMM resistance.
Collapse
Affiliation(s)
- Alberto Rastrojo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Paola Vargas
- Instituto de Parasitología y Biomedicina ''López-Neyra'' (IPBLN-CSIC), Granada, Spain
| | - Esther Camacho
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Corvo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Santiago Castanys
- Instituto de Parasitología y Biomedicina ''López-Neyra'' (IPBLN-CSIC), Granada, Spain
| | - Begoña Aguado
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina ''López-Neyra'' (IPBLN-CSIC), Granada, Spain.
| | - Jose M Requena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
26
|
Oxidative Stress-Mediated Overexpression of Uracil DNA Glycosylase in Leishmania donovani Confers Tolerance against Antileishmanial Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4074357. [PMID: 29636843 PMCID: PMC5845521 DOI: 10.1155/2018/4074357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/01/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
Abstract
Leishmania donovani is an intracellular protozoan parasite that causes endemic tropical disease visceral leishmaniasis (VL). Present drugs used against this fatal disease are facing resistance and toxicity issues. Survival of leishmania inside the host cells depends on the parasite's capacity to cope up with highly oxidative environment. Base excision repair (BER) pathway in L. donovani remains unexplored. We studied uracil DNA glycosylase (UNG), the key enzyme involved in BER pathway, and found that the glycosylase activity of recombinant LdUNG (Leishmania donovani UNG) expressed in E. coli is in sync with the activity of the parasite lysate under different reaction conditions. Overexpression of UNG in the parasite enhances its tolerance towards various agents which produce reactive oxygen species (ROS) and shows a higher infectivity in macrophages. Surprisingly, exposure of parasite to amphotericin B and sodium antimony gluconate upregulates the expression of UNG. Further, we found that the drug resistant parasites isolated from VL patients show higher expression of UNG. Mechanisms of action of some currently used drugs include accumulation of ROS. Our findings strongly suggest that targeting LdUNG would be an attractive therapeutic strategy as well as potential measure to tackle the problem of drug resistance in the treatment of leishmaniasis.
Collapse
|
27
|
Corpas-López V, Merino-Espinosa G, Acedo-Sánchez C, Díaz-Sáez V, Navarro-Moll MC, Morillas-Márquez F, Martín-Sánchez J. Effectiveness of the sesquiterpene (-)-α-bisabolol in dogs with naturally acquired canine leishmaniosis: an exploratory clinical trial. Vet Res Commun 2018; 42:121-130. [PMID: 29453596 DOI: 10.1007/s11259-018-9714-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/11/2018] [Indexed: 11/28/2022]
Abstract
The use of natural products is a promising approach for treating visceral leishmaniosis. (-)-α-Bisabolol is a sesquiterpene that have been proved active in vivo on Leishmania infantum-infected mice without showing toxicity. A single-centre, parallel-group, randomized, exploratory study was designed to assess its efficacy in a canine leishmaniosis model involving naturally infected dogs. In this clinical trial, 12 dogs were allocated into two groups and were treated with either meglumine antimoniate (100 mg/kg) through subcutaneous route or (-)-α-bisabolol (30 mg/kg) through oral route for two treatment series of 30 days, separated by a 30-day interval. A 4-month follow-up period was established as well. Parasite loads in bone marrow, lymph node and blood were estimated through quantitative PCR. Antibody titres were determined through immunofluorescence antibody test and cytokine expression values were estimated through real-time reverse transcription-PCR. Treatment safety was assessed through the evaluation of weight, gastrointestinal alterations and hematological and biochemical parameters in blood. Analyses were performed before and after treatment, and after a 4-months follow-up period. Treatment with the sesquiterpene was effective at decreasing parasite loads and increasing gamma-interferon expression level. Dogs treated with (-)-α-bisabolol did not show any toxicity sign. These results were better than those obtained using the reference drug, meglumine antimoniate. The natural compound seemed to induce a Th1 immune response that led to parasitological and clinical improvement without showing any safety issue, suggesting a high potential for the treatment of canine and human visceral leishmaniosis.
Collapse
Affiliation(s)
- V Corpas-López
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, Granada, 18011, Spain.
| | - G Merino-Espinosa
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, Granada, 18011, Spain
| | - C Acedo-Sánchez
- ANLAVE Laboratorio de Análisis Veterinario, Avenida de Pulianas 15, 18013, Granada, Spain
| | - V Díaz-Sáez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, Granada, 18011, Spain
| | - M C Navarro-Moll
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, Granada, 18011, Spain
| | - F Morillas-Márquez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, Granada, 18011, Spain
| | - J Martín-Sánchez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, Granada, 18011, Spain.
| |
Collapse
|
28
|
Santos DCMD, de Souza MLS, Teixeira EM, Alves LL, Vilela JMC, Andrade M, Carvalho MDG, Fernandes AP, Ferreira LAM, Aguiar MMG. A new nanoemulsion formulation improves antileishmanial activity and reduces toxicity of amphotericin B. J Drug Target 2017; 26:357-364. [DOI: 10.1080/1061186x.2017.1387787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Délia Chaves Moreira dos Santos
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Marselle Leite Silvério de Souza
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Eliane Morais Teixeira
- Laboratory of Clinical Research, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Líndicy Leidicy Alves
- Laboratory of Clinical Research, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | | | - Margareth Andrade
- Centro de Inovação e Tecnologia Senai Fiemg – Campus CETEC, Belo Horizonte, Minas Gerais, Brazil
| | - Maria das Graças Carvalho
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Antônio Miranda Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Marta Marques Gontijo Aguiar
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
29
|
Azzouz S, Lawton P. In vitro effects of purine and pyrimidine analogues on Leishmania donovani and Leishmania infantum promastigotes and intracellular amastigotes. Acta Parasitol 2017; 62:582-588. [PMID: 28682767 DOI: 10.1515/ap-2017-0070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/26/2017] [Indexed: 01/19/2023]
Abstract
Inhibition of parasite metabolic pathways is a rationale for new chemotherapeutic strategies. The pyrimidine and purine salvage pathways are thus targets against Leishmania donovani and L. infantum, causative agents of visceral human leishmaniasis and canine leishmaniosis. The antiproliferative effect of the pyrimidine analogues Cytarabine and 5-fluorouracil and of the purine analogues Azathioprine and 6-mercaptopurine was evaluated in vitro on the promastigote and the intracellular amastigote stages of the parasite. Cytarabine and 5-fluorouracil were the best inhibitors against promastigotes, whereas 5- fluorouracil and azathioprine displayed the best efficacy against the amastigote stage. The ultrastructural study showed an important cytoplasmic vacuolization and with azathioprine and 5-fluorouracyl, a mitochondrial swelling and appearance of autophagosome-like structures. Alterations of the kinetoplast were also observed with 5-fluorouracil, all these damages eventually resulting in an autolysis process that triggered the subsequent death of the intracellular parasites.
Collapse
|
30
|
Combined treatment of miltefosine and paromomycin delays the onset of experimental drug resistance in Leishmania infantum. PLoS Negl Trop Dis 2017; 11:e0005620. [PMID: 28505185 PMCID: PMC5444850 DOI: 10.1371/journal.pntd.0005620] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/25/2017] [Accepted: 05/03/2017] [Indexed: 11/29/2022] Open
Abstract
Background Since miltefosine monotherapy against visceral leishmaniasis (VL) caused by Leishmania donovani has been discontinued in the Indian subcontinent due to an increase in the number of treatment failures, single dose liposomal amphotericin B is now advocated as a treatment option of choice. Paromomycin-miltefosine combination therapy can be used as substitute first-line treatment in regions without cold-chain potential. Previous laboratory studies in the closely related species Leishmania infantum have demonstrated that paromomycin monotherapy fairly rapidly selects for resistance producing a phenotype with increased fitness. Given the possible clinical implications of these findings for the current field situation, the present study aimed to identify the potential hazards of paromomycin-miltefosine combination therapy. Principal findings Drug interaction studies using the fixed-ratio isobologram method revealed an indifferent interaction between paromomycin and miltefosine. In hamsters infected with L. infantum, the combination resulted in cumulative efficacy in reducing parasite burdens in the liver, spleen and bone marrow. Selected resistant lines against the single drugs did not display cross-resistance. When the intracellular amastigote stage was repeatedly exposed to the paromomycin-miltefosine combination, either in vitro or in vivo, no significant susceptibility decrease towards either drug was noted. Conclusions These results suggest that implementation of paromomycin-miltefosine combination therapy indeed could represent a safe and affordable treatment option for L. donovani VL as miltefosine appears to overrule the anticipated rapid development of PMM resistance. Liposomal amphotericin B is presently being used as first-line treatment option against visceral leishmaniasis in the Indian subcontinent. However, the need for temperature-controlled transport and storage limits its widespread use in rural areas. Previous studies already suggested that paromomycin-miltefosine combination therapy could be a valuable alternative, side passing some of the disadvantages associated with monotherapy, such as development of drug resistance. As the first reports of miltefosine resistant clinical isolates have already surfaced and paromomycin resistance could be easily induced under laboratory conditions, it remains essential to assess the risk of developing resistance against both drugs upon combination therapy. This study evaluated the efficacy of combined therapy against a Leishmania species closely related to the agent found in the Indian subcontinent, using both in vitro and in vivo models with the aim to select multidrug-resistant species by simultaneous exposure to paromomycin and miltefosine. The combination of both drugs in the hamster model resulted in a cumulative efficacy but did not lead to a significant susceptibility decrease, indicating that paromomycin-miltefosine combination therapy may represent a safe and affordable treatment option for visceral leishmaniasis.
Collapse
|
31
|
Jesus JA, Fragoso TN, Yamamoto ES, Laurenti MD, Silva MS, Ferreira AF, Lago JHG, Santos-Gomes G, Passero LFD. Therapeutic effect of ursolic acid in experimental visceral leishmaniasis. Int J Parasitol Drugs Drug Resist 2017; 7:1-11. [PMID: 27984757 PMCID: PMC5156607 DOI: 10.1016/j.ijpddr.2016.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022]
Abstract
Leishmaniasis is an important neglected tropical disease, affecting more than 12 million people worldwide. The available treatments are not well tolerated and present diverse side effects in patients, justifying the search for new therapeutic compounds. In the present study, the therapeutic potential and toxicity of ursolic acid (UA), isolated from the leaves of Baccharis uncinella C. DC. (Asteraceae), were evaluated in experimental visceral leishmaniasis. To evaluate the therapeutic potential of UA, hamsters infected with L. (L.) infantum were treated daily during 15 days with 1.0 or 2.0 mg UA/kg body weight, or with 5.0 mg amphotericin B/kg body weight by intraperitoneal route. Fifteen days after the last dose, the parasitism of the spleen and liver was stimated and the main histopathological alterations were recorded. The proliferation of splenic mononuclear cells was evaluated and IFN-γ, IL-4, and IL-10 gene expressions were analyzed in spleen fragments. The toxicity of UA and amphotericin B were evaluated in healthy golden hamsters by histological analysis and biochemical parameters. Animals treated with UA had less parasites in the spleen and liver when compared with the infected control group, and they also showed preservation of white and red pulps, which correlate with a high rate of proliferation of splenic mononuclear cells, IFN-γ mRNA and iNOS production. Moreover, animals treated with UA did not present alterations in the levels of AST, ALT, creatinine and urea. Taken together, these findings indicate that UA is an interesting natural compound that should be considered for the development of prototype drugs against visceral leishmaniasis.
Collapse
Affiliation(s)
- Jéssica A Jesus
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil; Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, São Paulo, 09210-180, Brazil
| | - Thais N Fragoso
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Eduardo S Yamamoto
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Márcia D Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - Marcelo S Silva
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil
| | - Aurea F Ferreira
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School of São Paulo University, Av. Dr. Arnaldo, 455. Cerqueira César, São Paulo, 01246-903, SP, Brazil
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, São Paulo, 09210-180, Brazil
| | - Gabriela Santos-Gomes
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil
| | - Luiz Felipe D Passero
- São Paulo State University (Unesp), Institute of Biosciences, São Vicente, Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil.
| |
Collapse
|
32
|
|
33
|
Eichenberger A, Buechi AE, Neumayr A, Hatz C, Rauch A, Huguenot M, Diamantis-Karamitopoulou E, Staehelin C. A severe case of visceral leishmaniasis and liposomal amphotericin B treatment failure in an immunosuppressed patient 15 years after exposure. BMC Infect Dis 2017; 17:81. [PMID: 28095796 PMCID: PMC5240427 DOI: 10.1186/s12879-017-2192-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 01/05/2017] [Indexed: 11/15/2022] Open
Abstract
Background Visceral leishmaniasis (VL) is a protozoan disease, which is responsible for 200.000–400.000 yearly infections worldwide. If left untreated, the fatality rate can be as high as 100% within 2 years. 90% of cases occur in just six countries: India, Bangladesh, Sudan, South Sudan, Ethiopia and Brazil. It is thus a disease rarely seen by physicians in Europe or North America. We report on the fatal case of VL in an 80-year-old immunosuppressed patient who presented with a latency of over 15 years after having visited an endemic region. This is the first report showing such extreme latency of VL in a European traveller. This case is furthermore unusual because it suggests primary treatment failure to liposomal amphotericin B. Case presentation An 80-year-old man who was on immunosuppressive treatment due to a non-specific inflammatory disease of the liver and kidney presented to our hospital with recurrent fever, fatigue and bloody diarrhoea. Histopathological analysis from a colon biopsy showed intracellular amastigotes. The diagnosis of VL was confirmed by polymerase-chain-reaction (PCR) of the colon biopsy. PCR was also performed in plasma, a bronchopulmonary lavage, a lymph node, liver and bone marrow biopsy and proved L. donovani as causative species. The disseminated infection was unresponsive to treatment with liposomal amphotericin B as recommended in immunosuppressed individuals despite stopping immunosuppressive treatment. Conclusion Imported cases of VL to non-endemic regions are increasing due to extensive international travel and migration. Furthermore, the increase of elderly patients and immunosuppressed individuals, secondary to HIV, post-transplant and chemotherapeutic agents, has resulted in an increase of VL also in endemic regions of Europe. It is thus important for physicians to be able to recognize the infection. This case also demonstrates treatment failure to amphotericin B, which was only a known problem in patients with HIV until now. The knowledge of this as a possible complication is important for specialists treating the disease.
Collapse
Affiliation(s)
- Anna Eichenberger
- Department of Infectious Diseases, Bern University Hospital (Inselspital), University of Bern, PKT2B, CH-3010, Bern, Switzerland.
| | - Annina E Buechi
- Department of Infectious Diseases, Bern University Hospital (Inselspital), University of Bern, PKT2B, CH-3010, Bern, Switzerland
| | - Andreas Neumayr
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Chistroph Hatz
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Bern University Hospital (Inselspital), University of Bern, PKT2B, CH-3010, Bern, Switzerland
| | - Marc Huguenot
- Department of Nephrology, Bern University Hospital (Inselspital), University of Bern, Bern, Switzerland
| | | | - Cornelia Staehelin
- Department of Infectious Diseases, Bern University Hospital (Inselspital), University of Bern, PKT2B, CH-3010, Bern, Switzerland
| |
Collapse
|
34
|
Leishmaniasis visceral en inmigrante marroquí. Semergen 2017; 43:63-65. [DOI: 10.1016/j.semerg.2016.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 11/19/2022]
|
35
|
Aronson N, Herwaldt BL, Libman M, Pearson R, Lopez-Velez R, Weina P, Carvalho EM, Ephros M, Jeronimo S, Magill A. Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Clin Infect Dis 2016; 63:e202-e264. [PMID: 27941151 DOI: 10.1093/cid/ciw670] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 09/22/2016] [Indexed: 12/25/2022] Open
Abstract
It is important to realize that leishmaniasis guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. The IDSA and ASTMH consider adherence to these guidelines to be voluntary, with the ultimate determinations regarding their application to be made by the physician in the light of each patient's individual circumstances.
Collapse
Affiliation(s)
- Naomi Aronson
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Michael Libman
- McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | - Peter Weina
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | | | | | - Selma Jeronimo
- Federal University of Rio Grande do Norte, Natal, Brazil
| | - Alan Magill
- Bill and Melinda Gates Foundation, Seattle, Washington
| |
Collapse
|
36
|
Santos DCM, Lima ML, Toledo JS, Fernandes PA, Aguiar MMG, López-Gonzálvez Á, Ferreira LAM, Fernandes AP, Barbas C. Metabolomics as a tool to evaluate the toxicity of formulations containing amphotericin B, an antileishmanial drug. Toxicol Res (Camb) 2016; 5:1720-1732. [PMID: 30090471 PMCID: PMC6062298 DOI: 10.1039/c6tx00253f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/12/2016] [Indexed: 11/21/2022] Open
Abstract
Amphotericin B (AmB) is a drug of choice against life-threatening systemic fungal infections and an alternative therapy for the treatment of all forms of leishmaniasis. It is known that AmB and its conventional formulation cause renal damage; however, the lipid formulations can reduce these effects. The aim of the present study was to identify metabolic changes in mice treated with two different AmB formulations, a nanoemulsion (NE) (lipid system carrier) loaded with AmB and the conventional formulation (C-AmB). For this purpose, metabolic fingerprinting represents a valuable strategy to monitor, in a non-targeted manner, the changes that are at the base of the toxicity mechanism of AmB. Plasma samples of BALB-c mice were collected after treatment with 3 alternate doses of AmB at 1 mg kg-1 administered intravenously and analysed with CE, LC and GC coupled to MS. Blood urea nitrogen (BUN) and plasma creatinine levels were also analysed. Kidney tissue specimens were collected and evaluated. It was not observed that there were any alterations in BUN and creatinine levels as well as in histopathological analysis. Approximately 30 metabolites were identified as potentially related to early C-AmB-induced nephrotoxicity. Disturbances in the arachidonic acid, glycerophospholipid, acylcarnitine and polyunsaturated fatty acid (PUFA) pathways were observed in C-AmB-treated mice. In the AmB-loaded NE group, it was observed that there were fewer metabolic changes, including changes in the plasma levels of cortisol and pyranose. The candidate biomarkers revealed in this study could be useful in the detection of the onset and severity of kidney injury induced by AmB formulations.
Collapse
Affiliation(s)
- Délia C M Santos
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
- CEMBIO , Centre for Metabolomics and Bioanalysis , Faculty of Pharmacy , San Pablo CEU University , Madrid , Spain
| | - Marta L Lima
- Institute of Tropical Medicine , University of São Paulo , São Paulo , SP , Brazil
- CEMBIO , Centre for Metabolomics and Bioanalysis , Faculty of Pharmacy , San Pablo CEU University , Madrid , Spain
| | - Juliano S Toledo
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
- CEMBIO , Centre for Metabolomics and Bioanalysis , Faculty of Pharmacy , San Pablo CEU University , Madrid , Spain
| | - Paula A Fernandes
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
| | - Marta M G Aguiar
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
| | - Ángeles López-Gonzálvez
- CEMBIO , Centre for Metabolomics and Bioanalysis , Faculty of Pharmacy , San Pablo CEU University , Madrid , Spain
| | - Lucas A M Ferreira
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
| | - Ana Paula Fernandes
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
| | - Coral Barbas
- CEMBIO , Centre for Metabolomics and Bioanalysis , Faculty of Pharmacy , San Pablo CEU University , Madrid , Spain
| |
Collapse
|
37
|
Garcia-Salcedo JA, Unciti-Broceta JD, Valverde-Pozo J, Soriano M. New Approaches to Overcome Transport Related Drug Resistance in Trypanosomatid Parasites. Front Pharmacol 2016; 7:351. [PMID: 27733833 PMCID: PMC5039210 DOI: 10.3389/fphar.2016.00351] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/16/2016] [Indexed: 01/07/2023] Open
Abstract
Leishmania and Trypanosoma are members of the Trypanosomatidae family that cause severe human infections such as leishmaniasis, Chagas disease, and sleeping sickness affecting millions of people worldwide. Despite efforts to eradicate them, migrations are expanding these infections to developing countries. There are no vaccines available and current treatments depend only on chemotherapy. Drug resistance is a major obstacle for the treatment of these diseases given that existing drugs are old and limited, with some having severe side effects. Most resistance mechanisms developed by these parasites are related with a decreased uptake or increased efflux of the drug due to mutations or altered expression of membrane transporters. Different new approaches have been elaborated that can overcome these mechanisms of resistance including the use of inhibitors of efflux pumps and drug carriers for both active and passive targeting. Here we review new formulations that have been successfully applied to circumvent resistance related to drug transporters, opening alternative ways to solve drug resistance in protozoan parasitic diseases.
Collapse
Affiliation(s)
- Jose A Garcia-Salcedo
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospitales Universitarios de Granada - Universidad de Granada, GranadaSpain; Centro de Genómica e Investigación Oncológica - Pfizer/Universidad de Granada/Junta de Andalucía, GranadaSpain
| | - Juan D Unciti-Broceta
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospitales Universitarios de Granada - Universidad de Granada, Granada Spain
| | - Javier Valverde-Pozo
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospitales Universitarios de Granada - Universidad de Granada, GranadaSpain; Centro de Genómica e Investigación Oncológica - Pfizer/Universidad de Granada/Junta de Andalucía, GranadaSpain
| | - Miguel Soriano
- Centro de Genómica e Investigación Oncológica - Pfizer/Universidad de Granada/Junta de Andalucía, GranadaSpain; Departamento de Agronomía, Universidad de Almería, AlmeríaSpain
| |
Collapse
|
38
|
Pereira WL, de Souza Vasconcellos R, Mariotini-Moura C, Saar Gomes R, Firmino RDC, da Silva AM, Silva Júnior A, Bressan GC, Almeida MR, Crocco Afonso LC, Teixeira RR, Lopes Rangel Fietto J. The Antileishmanial Potential of C-3 Functionalized Isobenzofuranones against Leishmania (Leishmania) Infantum Chagasi. Molecules 2015; 20:22435-44. [PMID: 26694330 PMCID: PMC6332184 DOI: 10.3390/molecules201219857] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/03/2015] [Accepted: 12/08/2015] [Indexed: 01/30/2023] Open
Abstract
Leishmaniases are diseases caused by protozoan parasites of the genus Leishmania. Clinically, leishmaniases range from cutaneous to visceral forms, with estimated global incidences of 1.2 and 0.4 million cases per year, respectively. The treatment of these diseases relies on multiple parenteral injections with pentavalent antimonials or amphotericin B. However, these pharmaceuticals are either too toxic or expensive for routine use in developing countries. These facts call for safer, cheaper, and more effective new antileishmanial drugs. In this investigation, we describe the results of the assessment of the activities of a series of isobenzofuran-1(3H)-ones (phtalides) against Leishmania (Leishmania) infantum chagasi, which is the main causative agent of visceral leishmaniasis in the New World. The compounds were tested at concentrations of 100, 75, 50, 25 and 6.25 µM over 24, 48, and 72 h. After 48 h of treatment at the 100 µM concentration, compounds 7 and 8 decreased parasite viability to 4% and 6%, respectively. The concentration that gives half-maximal responses (LC50) for the antileishmanial activities of compounds 7 and 8 against promastigotes after 24 h were 60.48 and 65.93 µM, respectively. Additionally, compounds 7 and 8 significantly reduced parasite infection in macrophages.
Collapse
Affiliation(s)
- Wagner Luiz Pereira
- Departamento de Química, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, MG, 36.570-900, Brazil.
| | - Raphael de Souza Vasconcellos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, MG, 36.570-900, Brazil.
- Instituto Nacional de Biotecnologia Estrutural e Química Medicinal em Doenças Infecciosas (INBEQMeDi), Instituto de Física de São Carlos, Av. Trabalhador São Carlense, 400, Caixa Postal 369, São Carlos, SP, 13.560-970, Brazil.
| | - Christiane Mariotini-Moura
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, MG, 36.570-900, Brazil.
- Instituto Nacional de Biotecnologia Estrutural e Química Medicinal em Doenças Infecciosas (INBEQMeDi), Instituto de Física de São Carlos, Av. Trabalhador São Carlense, 400, Caixa Postal 369, São Carlos, SP, 13.560-970, Brazil.
| | - Rodrigo Saar Gomes
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas-ICEB/NUPEB, Campus do Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35.400-000, Brazil.
| | - Rafaela de Cássia Firmino
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, MG, 36.570-900, Brazil.
- Instituto Nacional de Biotecnologia Estrutural e Química Medicinal em Doenças Infecciosas (INBEQMeDi), Instituto de Física de São Carlos, Av. Trabalhador São Carlense, 400, Caixa Postal 369, São Carlos, SP, 13.560-970, Brazil.
| | - Adalberto Manoel da Silva
- Departamento de Química, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, MG, 36.570-900, Brazil.
| | - Abelardo Silva Júnior
- Departamento de Veterinária, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, MG, 36.570-900, Brazil.
| | - Gustavo Costa Bressan
- Departamento de Bioquímica e Biologia Molecular, Av. P.H. Rolfs, S/N, Viçosa, MG, 36.570-900, Brazil.
| | - Márcia Rogéria Almeida
- Departamento de Bioquímica e Biologia Molecular, Av. P.H. Rolfs, S/N, Viçosa, MG, 36.570-900, Brazil.
| | - Luís Carlos Crocco Afonso
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas-ICEB/NUPEB, Campus do Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35.400-000, Brazil.
| | - Róbson Ricardo Teixeira
- Departamento de Química, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, MG, 36.570-900, Brazil.
| | - Juliana Lopes Rangel Fietto
- Instituto Nacional de Biotecnologia Estrutural e Química Medicinal em Doenças Infecciosas (INBEQMeDi), Instituto de Física de São Carlos, Av. Trabalhador São Carlense, 400, Caixa Postal 369, São Carlos, SP, 13.560-970, Brazil.
- Departamento de Bioquímica e Biologia Molecular, Av. P.H. Rolfs, S/N, Viçosa, MG, 36.570-900, Brazil.
| |
Collapse
|
39
|
Pawar H, Chavan S, Mahale K, Khobragade S, Kulkarni A, Patil A, Chaphekar D, Varriar P, Sudeep A, Pai K, Prasad T, Gowda H, Patole MS. A proteomic map of the unsequenced kala-azar vector Phlebotomus papatasi using cell line. Acta Trop 2015; 152:80-89. [PMID: 26307495 DOI: 10.1016/j.actatropica.2015.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/16/2015] [Accepted: 08/18/2015] [Indexed: 11/25/2022]
Abstract
The debilitating disease kala-azar or visceral leishmaniasis is caused by the kinetoplastid protozoan parasite Leishmania donovani. The parasite is transmitted by the hematophagous sand fly vector of the genus Phlebotomus in the old world and Lutzomyia in the new world. The predominant Phlebotomine species associated with the transmission of kala-azar are Phlebotomus papatasi and Phlebotomus argentipes. Understanding the molecular interaction of the sand fly and Leishmania, during the development of parasite within the sand fly gut is crucial to the understanding of the parasite life cycle. The complete genome sequences of sand flies (Phlebotomus and Lutzomyia) are currently not available and this hinders identification of proteins in the sand fly vector. The current study utilizes a three frame translated transcriptomic data of P. papatasi in the absence of genomic sequences to analyze the mass spectrometry data of P. papatasi cell line using a proteogenomic approach. Additionally, we have carried out the proteogenomic analysis of P. papatasi by comparative homology-based searches using related sequenced dipteran protein data. This study resulted in the identification of 1313 proteins from P. papatasi based on homology. Our study demonstrates the power of proteogenomic approaches in mapping the proteomes of unsequenced organisms.
Collapse
|
40
|
|
41
|
Nühs A, De Rycker M, Manthri S, Comer E, Scherer CA, Schreiber SL, Ioset JR, Gray DW. Development and Validation of a Novel Leishmania donovani Screening Cascade for High-Throughput Screening Using a Novel Axenic Assay with High Predictivity of Leishmanicidal Intracellular Activity. PLoS Negl Trop Dis 2015; 9:e0004094. [PMID: 26407168 PMCID: PMC4583543 DOI: 10.1371/journal.pntd.0004094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/30/2015] [Indexed: 11/18/2022] Open
Abstract
Visceral leishmaniasis is an important parasitic disease of the developing world with a limited arsenal of drugs available for treatment. The existing drugs have significant deficiencies so there is an urgent need for new and improved drugs. In the human host, Leishmania are obligate intracellular parasites which poses particular challenges in terms of drug discovery. To achieve sufficient throughput and robustness, free-living parasites are often used in primary screening assays as a surrogate for the more complex intracellular assays. We and others have found that such axenic assays have a high false positive rate relative to the intracellular assays, and that this limits their usefulness as a primary platform for screening of large compound collections. While many different reasons could lie behind the poor translation from axenic parasite to intracellular parasite, we show here that a key factor is the identification of growth slowing and cytostatic compounds by axenic assays in addition to the more desirable cytocidal compounds. We present a screening cascade based on a novel cytocidal-only axenic amastigote assay, developed by increasing starting density of cells and lowering the limit of detection, and show that it has a much improved translation to the intracellular assay. We propose that this assay is an improved primary platform in a new Leishmania screening cascade designed for the screening of large compound collections. This cascade was employed to screen a diversity-oriented-synthesis library, and yielded two novel antileishmanial chemotypes. The approach we have taken may have broad relevance to anti-infective and anti-parasitic drug discovery.
Collapse
Affiliation(s)
- Andrea Nühs
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Manu De Rycker
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Sujatha Manthri
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Eamon Comer
- Broad Institute, Cambridge, Massachusetts, United States of America
| | | | | | | | - David W. Gray
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Antileishmanial Activity of Disulfiram and Thiuram Disulfide Analogs in an Ex Vivo Model System Is Selectively Enhanced by the Addition of Divalent Metal Ions. Antimicrob Agents Chemother 2015; 59:6463-70. [PMID: 26239994 DOI: 10.1128/aac.05131-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/24/2015] [Indexed: 12/17/2022] Open
Abstract
Current treatments for cutaneous and visceral leishmaniasis are toxic, expensive, difficult to administer, and limited in efficacy and availability. Disulfiram has primarily been used to treat alcoholism. More recently, it has shown some efficacy as therapy against protozoan pathogens and certain cancers, suggesting a wide range of biological activities. We used an ex vivo system to screen several thiuram disulfide compounds for antileishmanial activity. We found five compounds (compound identifier [CID] 7188, 5455, 95876, 12892, and 3117 [disulfiram]) with anti-Leishmania activity at nanomolar concentrations. We further evaluated these compounds with the addition of divalent metal salts based on studies that indicated these salts could potentiate the action of disulfiram. In addition, clinical studies suggested that zinc has some efficacy in treating cutaneous leishmaniasis. Several divalent metal salts were evaluated at 1 μM, which is lower than the normal levels of copper and zinc in plasma of healthy individuals. The leishmanicidal activity of disulfiram and CID 7188 were enhanced by several divalent metal salts at 1 μM. The in vitro therapeutic index (IVTI) of disulfiram and CID 7188 increased 12- and 2.3-fold, respectively, against L. major when combined with ZnCl2. The combination of disulfiram with ZnSO4 resulted in a 1.8-fold increase in IVTI against L. donovani. This novel combination of thiuram disulfides and divalent metal ions salts could have application as topical and/or oral therapies for treatment of cutaneous and visceral leishmaniasis.
Collapse
|
43
|
|
44
|
Targeting Ergosterol biosynthesis in Leishmania donovani: essentiality of sterol 14 alpha-demethylase. PLoS Negl Trop Dis 2015; 9:e0003588. [PMID: 25768284 PMCID: PMC4359151 DOI: 10.1371/journal.pntd.0003588] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/03/2015] [Indexed: 01/14/2023] Open
Abstract
Leishmania protozoan parasites (Trypanosomatidae family) are the causative agents of cutaneous, mucocutaneous and visceral leishmaniasis worldwide. While these diseases are associated with significant morbidity and mortality, there are few adequate treatments available. Sterol 14alpha-demethylase (CYP51) in the parasite sterol biosynthesis pathway has been the focus of considerable interest as a novel drug target in Leishmania. However, its essentiality in Leishmania donovani has yet to be determined. Here, we use a dual biological and pharmacological approach to demonstrate that CYP51 is indispensable in L. donovani. We show via a facilitated knockout approach that chromosomal CYP51 genes can only be knocked out in the presence of episomal complementation and that this episome cannot be lost from the parasite even under negative selection. In addition, we treated wild-type L. donovani and CYP51-deficient strains with 4-aminopyridyl-based inhibitors designed specifically for Trypanosoma cruzi CYP51. While potency was lower than in T. cruzi, these inhibitors had increased efficacy in parasites lacking a CYP51 allele compared to complemented parasites, indicating inhibition of parasite growth via a CYP51-specific mechanism and confirming essentiality of CYP51 in L. donovani. Overall, these results provide support for further development of CYP51 inhibitors for the treatment of visceral leishmaniasis. Visceral leishmaniasis is the second most lethal parasitic infection after malaria. Other forms of leishmaniasis also cause significant morbidity. However, there are few treatments available, and many cause severe side effects or are associated with the development of resistance. A key difference between mammalian cells and Leishmania parasites is the type of sterol in their membranes: while mammalian cell membranes contain cholesterol, Leishmania parasites use ergosterol. There has therefore been considerable interest in developing inhibitors of sterol biosynthesis pathways to target Leishmania parasites. Sterol 14alpha-demethylase (CYP51) is one of the enzymes in the sterol biosynthesis pathway, and the target of significant drug development research in Leishmania. Here we use a double approach to determine whether this gene is essential in Leishmania donovani, the causative agent of visceral leishmaniasis. We demonstrate via gene knockout and drug targeting approaches that loss or inhibition of CYP51 inhibits L. donovani growth. These results validate CYP51 as a drug target in L. donovani and support further work to develop CYP51-directed therapies for visceral leishmaniasis.
Collapse
|
45
|
Monge-Maillo B, López-Vélez R. Miltefosine for visceral and cutaneous leishmaniasis: drug characteristics and evidence-based treatment recommendations. Clin Infect Dis 2015; 60:1398-404. [PMID: 25601455 DOI: 10.1093/cid/civ004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/23/2014] [Indexed: 12/25/2022] Open
Abstract
Miltefosine is the only recognized oral agent with potential to treat leishmaniasis. Miltefosine had demonstrated very good cure rates for visceral leishmaniasis (VL) in India, Nepal, and Bangladesh, but high rates of clinical failures have been recently reported. Moderate efficacy has been observed for VL in East Africa, whereas data from Mediterranean countries and Latin America are scarce. Results have not been very promising for patients coinfected with VL and human immunodeficiency virus. However, miltefosine's long half-life and its oral administration could make it a good option for maintenance prophylaxis. Good evidence of efficacy has been documented in Old World cutaneous leishmaniasis (CL), and different cure rates among New World CL have been obtained depending on the geographical areas and species involved. Appropriate regimens for New World mucocutaneous leishmaniasis need to be established, although longer treatment duration seems to confer better results. Strategies to prevent the development and spread of miltefosine resistance are urgently needed.
Collapse
Affiliation(s)
- Begoña Monge-Maillo
- Tropical Medicine Centre, Infectious Diseases Department, Ramón y Cajal Hospital, Madrid, Spain
| | - Rogelio López-Vélez
- Tropical Medicine Centre, Infectious Diseases Department, Ramón y Cajal Hospital, Madrid, Spain
| |
Collapse
|
46
|
Norman FF, Monge-Maillo B, Martínez-Pérez Á, Perez-Molina JA, López-Vélez R. Parasitic infections in travelers and immigrants: part I protozoa. Future Microbiol 2015; 10:69-86. [DOI: 10.2217/fmb.14.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
ABSTRACT The growth in international commerce, travel and migration contribute to the global emergence of certain parasitic infections. Importation of vectors and food products may contribute to the emergence of protozoan infections in nonendemic countries. Infections such as malaria are potentially fatal, especially in nonimmune patients, and outcome depends largely on timely diagnosis and treatment. Diagnosis/management of imported parasitic infections may be complex especially as some patients may have underlying immunosuppressive conditions such as HIV infection. Major challenges concern the development of improved diagnostic techniques, safer/more effective drug therapies and identification of biological markers of progression and response to treatment. Imported parasitic diseases which may be transmitted vertically or through blood transfusion/organ donation could become a public health priority in the near future. Climate change may affect arthropod distribution and facilitate the spread of protozoan vector-borne diseases. The first part of this review focuses on protozoan infections in travelers and immigrants.
Collapse
Affiliation(s)
- Francesca F Norman
- Tropical Medicine & Clinical Parasitology, Infectious Diseases Department, Ramon y Cajal Hospital, Ctra. De Colmenar, Km 9.1, 28034 Madrid, Spain
| | - Begoña Monge-Maillo
- Tropical Medicine & Clinical Parasitology, Infectious Diseases Department, Ramon y Cajal Hospital, Ctra. De Colmenar, Km 9.1, 28034 Madrid, Spain
| | - Ángela Martínez-Pérez
- Tropical Medicine & Clinical Parasitology, Infectious Diseases Department, Ramon y Cajal Hospital, Ctra. De Colmenar, Km 9.1, 28034 Madrid, Spain
| | - Jose A Perez-Molina
- Tropical Medicine & Clinical Parasitology, Infectious Diseases Department, Ramon y Cajal Hospital, Ctra. De Colmenar, Km 9.1, 28034 Madrid, Spain
| | - Rogelio López-Vélez
- Tropical Medicine & Clinical Parasitology, Infectious Diseases Department, Ramon y Cajal Hospital, Ctra. De Colmenar, Km 9.1, 28034 Madrid, Spain
| |
Collapse
|
47
|
Effects of in utero and lactational exposure to SbV on rat neurobehavioral development and fertility. Reprod Toxicol 2014; 50:98-107. [DOI: 10.1016/j.reprotox.2014.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/25/2014] [Accepted: 10/14/2014] [Indexed: 11/20/2022]
|
48
|
New series of monoamidoxime derivatives displaying versatile antiparasitic activity. Eur J Med Chem 2014; 87:440-53. [PMID: 25282267 DOI: 10.1016/j.ejmech.2014.07.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 11/24/2022]
Abstract
Following the promising antileishmanial results previously obtained in monoamidoxime series, a new series of derivatives was synthesized using manganese(III) acetate, Wittig reactions and Suzuki-Miyaura cross coupling reactions. Pharmacomodulation in R(1), R(2) or R(3) substituents on the amidoxime structure is shown to influence antiprotozoan activity in vitro: a monosubstituted phenyl group in R1 (32-35) led to an activity against Leishmania donovani promastigotes (32, IC50 = 9.16 μM), whereas a polysubstituted group (36-37) led to an activity against Plasmodium falciparum (36, IC50 = 2.76 μM). Modulating chemical substituents in R(2) and R(3) only influenced the antiplasmodial activity in vitro. This suggests that the amidoxime scaffold has properties that could make it a promising new antiparasitic pharmacophore.
Collapse
|
49
|
Treatment of visceral leishmaniasis: anomalous pricing and distribution of AmBisome and emergence of an indigenous liposomal amphotericin B, FUNGISOME. J Parasit Dis 2014; 40:1094-5. [PMID: 27605844 DOI: 10.1007/s12639-014-0607-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/18/2014] [Indexed: 01/19/2023] Open
Abstract
Visceral leishmaniasis (VL) is one of the severest forms of parasite borne diseases worldwide with a mortality rate second only to malaria. Treatment of VL patients with currently available chemotherapeutic agents poses problems of large scale failure, toxicity, prolonged hospitalization time, high treatment cost and drug resistance. However, most of these problems can be overcome by the use of liposomal formulations of Amphotericin B (L-AmB). Of the two L-AmBs currently available in Indian market, AmBisome is imported and FUNGISOME is indigenous. Initially AmBisome remained exorbitantly costly and therefore inaccessible to most of the VL patients. However, with the launch of FUNGISOME in India, Gilead in agreement with WHO started a donation program of AmBisome in developing countries through a slashed price of US $18 per vial. The price reduction is, however, restricted to clinical trials thus eluding majority of the VL patients. In fact, India was not included in this program and AmBisome was sold in Indian market at prices higher than the WHO proposed price of US $18 per vial. FUNGISOME, on the other hand, produced consistently good results against VL both clinically and experimentally. In the context of unavailability and price anomaly of AmBisome, successful emergence of FUNGISOME could mark it as the major L-AmB against VL.
Collapse
|
50
|
Leishmaniasis and autoimmune diseases in pediatric age. Cell Immunol 2014; 292:9-13. [DOI: 10.1016/j.cellimm.2014.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/23/2014] [Accepted: 08/18/2014] [Indexed: 12/27/2022]
|