1
|
Patil VS, Seth BK, Chaudhari HK. In silico ADME and target prediction studies of Alogliptin as drug molecule. Drug Metab Rev 2025; 57:1-8. [PMID: 39636221 DOI: 10.1080/03602532.2024.2439102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Alogliptin is an oral hypoglycemic agent selective inhibitor of the dipeptidyl peptidase-4 (DPP-4) enzyme. Inhibition of DPP-4 increases the levels of the incretin hormones glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) by preventing their degradation. The main goal is to study the predicted and experimental properties of absorption, distribution, metabolism, and elimination (ADME), compare them, examine predicted targets, and understand the use of SwissADME in designing other drug molecules. SwissADME, an online tool for ADME prediction, was used together with Swiss Target Prediction to understand drug targets. In addition, we obtained experimental data from the available scientific literature. Molecular docking studies against human DPP-4 were also conducted. We found similarities between the predicted and experimental data; however, some errors depended on the test conditions. The results are interpreted in the first half of the article. We describe the predicted ADME properties of Alogliptin, and based on the results, we can conclude that these tools can be used to predict other drug molecules similarly. It can also reconfigure and manufacture several different formulations of the drug based on predictive data.
Collapse
Affiliation(s)
- Vaishnavi Sanjay Patil
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Bhavika Kapil Seth
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Hemchandra K Chaudhari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
2
|
Epelde F. Impact of DPP-4 Inhibitors in Patients with Diabetes Mellitus and Heart Failure: An In-Depth Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1986. [PMID: 39768866 PMCID: PMC11727843 DOI: 10.3390/medicina60121986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/06/2025]
Abstract
The increasing prevalence of both type 2 diabetes mellitus and heart failure has underscored the urgent need for optimized therapeutic strategies that address the complex interplay between these conditions. Dipeptidyl peptidase-4 (DPP-4) inhibitors have emerged as a popular class of glucose-lowering agents due to their favorable glycemic effects, safety profile, and potential cardiovascular benefits. However, the impact of DPP-4 inhibitors on heart failure outcomes in patients with diabetes remains contentious, with conflicting evidence from clinical trials and observational studies. This review critically examines current evidence on the use of DPP-4 inhibitors in patients with coexisting diabetes and heart failure, focusing on pharmacodynamics, safety, and efficacy outcomes. We explore the physiological mechanisms by which DPP-4 inhibitors may influence heart failure risk, including modulation of inflammation, oxidative stress, and myocardial fibrosis. Clinical trials such as SAVOR-TIMI 53, EXAMINE, and TECOS are evaluated to provide a comprehensive analysis of DPP-4 inhibitors' effects on hospitalization for heart failure, mortality, and cardiovascular events in diabetic patients. While some trials suggest an increased risk of HF hospitalizations with specific DPP-4 inhibitors (e.g., saxagliptin), others report neutral effects, raising questions about the class effects versus individual drug characteristics within this group. Additionally, we address discrepancies in outcomes related to patient demographics, HF phenotype, and comorbid conditions that may influence DPP-4 inhibitors' risk-benefit profile. Comparative insights into alternative glucose-lowering therapies such as SGLT2 inhibitors and GLP-1 receptor agonists are also provided, highlighting potential implications for treatment selection in this high-risk population. In summary, this review synthesizes available evidence on DPP-4 inhibitors' impact in diabetic patients with heart failure, aiming to guide clinicians in making informed therapeutic decisions. While DPP-4 inhibitors remain a viable option in diabetes management, caution is warranted in patients with advanced heart failure, and future research is essential to refine patient-specific guidelines.
Collapse
Affiliation(s)
- Francisco Epelde
- Medicine Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, 08208 Sabadell, Spain
| |
Collapse
|
3
|
Guo L, Tian F, Liu L, Chen M, Jiang C, Li S, Liu C, Zhang Y, Qin J, Yu D, Zong Y, Dai W. Retagliptin as add-on therapy to metformin in Chinese patients with type 2 diabetes inadequately controlled with metformin: A multicentre, randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Obes Metab 2024; 26:2830-2838. [PMID: 38602409 DOI: 10.1111/dom.15601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
AIM To evaluate the efficacy and safety of retagliptin in Chinese patients with type 2 diabetes (T2D) inadequately controlled with metformin. MATERIALS AND METHODS This multicentre, phase 3 trial consisted of a 16-week, randomized, double-blind, placebo-controlled period, where patients with HbA1c levels between 7.5% and 11.0% were randomized to receive either once-daily (QD) retagliptin 100 mg (n = 87) or placebo (n = 87), both as an add-on to metformin. The primary endpoint was the change in HbA1c from baseline to week 16. RESULTS At week 16, the least squares mean change in HbA1c from baseline, compared with placebo, was -0.82% (95% CI, -1.05% to -0.58%) for the retagliptin 100 mg QD group (P < .0001) per treatment policy estimand. Significantly higher proportions of patients in the retagliptin 100 mg QD group achieved HbA1c levels of less than 6.5% (11.5%) and less than 7.0% (26.4%) compared with those receiving placebo (0% and 4.6%; P = .0016 and P < .0001, respectively) at week 16. Retagliptin 100 mg QD also lowered fasting plasma glucose and 2-hour postprandial plasma glucose levels. The incidence of adverse events (AEs) during the treatment period was similar between the two groups. However, slightly higher proportions of increased lipase and increased amylase in the retagliptin 100 mg QD group were observed. No patients discontinued treatment permanently because of AEs, and no episodes of severe hypoglycaemia were reported. CONCLUSIONS Retagliptin 100 mg QD as an add-on therapy to metformin offers a new therapeutic option for treating Chinese patients with T2D inadequately controlled by metformin alone, and is generally well tolerated.
Collapse
Affiliation(s)
- Lixin Guo
- Department of Endocrinology, Beijing Hospital; National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Fengsheng Tian
- Department of Endocrinology, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese Medicine-Western Medicine, Cangzhou, China
| | - Li Liu
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengxia Jiang
- Department of Endocrinology, The Second People's Hospital of Yibin, Yibin, China
| | - Shuangqing Li
- Department of General practice, West China Hospital, Chengdu, China
| | - Cong Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yawei Zhang
- Department of Endocrinology, Pingxiang People's Hospital, Pingxiang, China
| | - Jie Qin
- Department of Endocrinology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Dongni Yu
- Department of Endocrinology, Beijing Hospital; National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Yicen Zong
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Wei Dai
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| |
Collapse
|
4
|
Zhao Z, Ma R, Ma Y, Zhao L, Wang L, Fang Y, Zhang Y, Wu X, Wang X. Discovery of Nine Dipeptidyl Peptidase-4 Inhibitors from Coptis chinensis Using Virtual Screening, Bioactivity Evaluation, and Binding Studies. Molecules 2024; 29:2304. [PMID: 38792165 PMCID: PMC11123979 DOI: 10.3390/molecules29102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The objective of this study was to identify multiple alkaloids in Coptis chinensis that demonstrate inhibitory activity against DPP-4 and systematically evaluate their activity and binding characteristics. A combined strategy that included molecular docking, a DPP-4 inhibition assay, surface plasmon resonance (SPR), and a molecular dynamics simulation technique was employed. The results showed that nine alkaloids in Coptis chinensis directly inhibited DPP-4, with IC50 values of 3.44-53.73 μM. SPR-based binding studies revealed that these alkaloids display rapid binding and dissociation characteristics when interacting with DPP-4, with KD values ranging from 8.11 to 29.97 μM. A molecular dynamics analysis revealed that equilibrium was rapidly reached by nine DPP-4-ligand systems with minimal fluctuations, while binding free energy calculations showed that the ∆Gbind values for the nine test compounds ranged from -31.84 to -16.06 kcal/mol. The most important forces for the binding of these alkaloids with DPP-4 are electrostatic interactions and van der Waals forces. Various important amino acid residues, such as Arg125, His126, Phe357, Arg358, and Tyr547, were involved in the inhibition of DPP-4 by the compounds, revealing a mechanistic basis for the further optimization of these alkaloids as DPP-4 inhibitors. This study confirmed nine alkaloids as direct inhibitors of DPP-4 and characterized their binding features, thereby providing a basis for further research and development on novel DPP-4 inhibitors.
Collapse
Affiliation(s)
- Zixi Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| | - Ruonan Ma
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| | - Yuqing Ma
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| | - Liqiang Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| | - Lele Wang
- School of Pharmacy, Minzu University of China, Haidian District, Beijing 100081, China; (L.W.); (Y.F.)
| | - Yuzhen Fang
- School of Pharmacy, Minzu University of China, Haidian District, Beijing 100081, China; (L.W.); (Y.F.)
| | - Yuxin Zhang
- School of Pharmacy, Minzu University of China, Haidian District, Beijing 100081, China; (L.W.); (Y.F.)
| | - Xia Wu
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| | - Xing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| |
Collapse
|
5
|
Alam A, Dhoundiyal S, Ahmad N, Rao GSNK. Unveiling Diabetes: Categories, Genetics, Diagnostics, Treatments, and Future Horizons. Curr Diabetes Rev 2024; 20:e180823219972. [PMID: 37594107 DOI: 10.2174/1573399820666230818092958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 08/19/2023]
Abstract
Diabetes mellitus is a global epidemic affecting millions of individuals worldwide. This comprehensive review aims to provide a thorough understanding of the categorization, disease identity, genetic architecture, diagnosis, and treatment of diabetes. The categorization of diabetes is discussed, with a focus on type 1 and type 2 diabetes, as well as the lesser-known types, type 3 and type 4 diabetes. The geographical variation, age, gender, and ethnic differences in the prevalence of type 1 and type 2 diabetes are explored. The impact of disease identity on disease management and the role of autoimmunity in diabetes are examined. The genetic architecture of diabetes, including the interplay between genotype and phenotype, is discussed to enhance our understanding of the underlying mechanisms. The importance of insulin injection sites and the insulin signalling pathway in diabetes management are highlighted. The diagnostic techniques for diabetes are reviewed, along with advancements for improved differentiation between types. Treatment and management approaches, including medications used in diabetes management are presented. Finally, future perspectives are discussed, emphasizing the need for further research and interventions to address the global burden of diabetes. This review serves as a valuable resource for healthcare professionals, researchers, and policymakers, providing insights to develop targeted strategies for the prevention, diagnosis, and management of this complex disease.
Collapse
Affiliation(s)
- Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shivang Dhoundiyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Niyaz Ahmad
- Department of Pharmaceutical Analysis, Green Research Lab, Green Industrial Company, Second Industrial Area, Riyadh 14334, Saudi Arabia
| | - G S N Koteswara Rao
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| |
Collapse
|
6
|
Złotek M, Kurowska A, Herbet M, Piątkowska-Chmiel I. GLP-1 Analogs, SGLT-2, and DPP-4 Inhibitors: A Triad of Hope for Alzheimer's Disease Therapy. Biomedicines 2023; 11:3035. [PMID: 38002034 PMCID: PMC10669527 DOI: 10.3390/biomedicines11113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's is a prevalent, progressive neurodegenerative disease marked by cognitive decline and memory loss. The disease's development involves various pathomechanisms, including amyloid-beta accumulation, neurofibrillary tangles, oxidative stress, inflammation, and mitochondrial dysfunction. Recent research suggests that antidiabetic drugs may enhance neuronal survival and cognitive function in diabetes. Given the well-documented correlation between diabetes and Alzheimer's disease and the potential shared mechanisms, this review aimed to comprehensively assess the potential of new-generation anti-diabetic drugs, such as GLP-1 analogs, SGLT-2 inhibitors, and DPP-4 inhibitors, as promising therapeutic approaches for Alzheimer's disease. This review aims to comprehensively assess the potential therapeutic applications of novel-generation antidiabetic drugs, including GLP-1 analogs, SGLT-2 inhibitors, and DPP-4 inhibitors, in the context of Alzheimer's disease. In our considered opinion, antidiabetic drugs offer a promising avenue for groundbreaking developments and have the potential to revolutionize the landscape of Alzheimer's disease treatment.
Collapse
Affiliation(s)
| | | | | | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (M.Z.); (A.K.); (M.H.)
| |
Collapse
|
7
|
Ambhore JP, Laddha PS, Kide AA, Ajmire PV, Chumbhale DS, Navghare AB, Kuchake VG, Chaudhari PJ, Adhao VS. Medicinal Chemistry of Non-peptidomimetic Dipeptidyl Peptidase IV (DPP IV) Inhibitors for Treatment of Type-2 Diabetes Mellitus: Insights on Recent Development. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Shallan AI, Abdel-Hakim A, Hammad MA, Abou El-Alamin MM. Spectrofluorimetric determination of selected genotoxic impurities in pharmaceutical raw materials and final products. Sci Rep 2022; 12:15319. [PMID: 36097190 PMCID: PMC9467988 DOI: 10.1038/s41598-022-19603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
A green spectrofluorimetric method was introduced for the determination of selected genotoxic impurities; 2-aminopyridine and 3-aminopyridine in different pharmaceutical raw materials and dosage forms. The method relied on the native fluorescence of these impurities in acidic medium. The experimental conditions were carefully studied and optimized, and the method was validated according to International Council on Harmonisation (ICH) guidelines. The linear range for both analytes was 2.50–100 ng/mL with good determination coefficients of 0.9995 and 0.9992 and detection limits of 0.62 ng/mL and 0.74 ng/mL for 2-aminopyridine and 3-aminopyridine, respectively. The method was successfully applied for determination of 2-aminopyridine and 3-aminopyridine in four active pharmaceutical ingredients and nine dosage forms with satisfactory percentage recoveries and without interference from co-formulated excipients. Analytical performance of the proposed method was comparable to that of the reported methods; hence, the proposed method can be used as a simple and low-cost alternative in quality control laboratories.
Collapse
Affiliation(s)
- Aliaa I Shallan
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Ali Abdel-Hakim
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Mohamed A Hammad
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Maha M Abou El-Alamin
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
| |
Collapse
|
9
|
Natural Compounds as DPP-4 Inhibitors: 3D-Similarity Search, ADME Toxicity, and Molecular Docking Approaches. Symmetry (Basel) 2022. [DOI: 10.3390/sym14091842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Type 2 diabetes mellitus is one of the most common diseases of the 21st century, caused by a sedentary lifestyle, poor diet, high blood pressure, family history, and obesity. To date, there are no known complete cures for type 2 diabetes. To identify bioactive natural products (NPs) to manage type 2 diabetes, the NPs from the ZINC15 database (ZINC-NPs DB) were screened using a 3D shape similarity search, molecular docking approaches, and ADMETox approaches. Frequently, in silico studies result in asymmetric structures as “hit” molecules. Therefore, the asymmetrical FDA-approved diabetes drugs linagliptin (8-[(3R)-3-aminopiperidin-1-yl]-7-but-2-ynyl-3-methyl-1-[(4-methylquinazolin-2-yl)methyl]purine-2,6-dione), sitagliptin ((3R)-3-amino-1-[3-(trifluoromethyl)-6,8-dihydro-5H-[1,2,4]triazolo[4,3-a]pyrazin-7-yl]-4-(2,4,5-trifluorophenyl)butan-1-one), and alogliptin (2-[[6-[(3R)-3-aminopiperidin-1-yl]-3-methyl-2,4-dioxopyrimidin-1-yl]methyl]benzonitrile) were used as queries to virtually screen the ZINC-NPs DB and detect novel potential dipeptidyl peptidase-4 (DPP-4) inhibitors. The most promising NPs, characterized by the best sets of similarity and ADMETox features, were used during the molecular docking stage. The results highlight that 11 asymmetrical NPs out of 224,205 NPs are potential DPP-4 candidates from natural sources and deserve consideration for further in vitro/in vivo tests.
Collapse
|
10
|
Zhang KW, Liu SY, Jia Y, Zou ML, Teng YY, Chen ZH, Li Y, Guo D, Wu JJ, Yuan ZD, Yuan FL. Insight into the role of DPP-4 in fibrotic wound healing. Biomed Pharmacother 2022; 151:113143. [PMID: 35643071 DOI: 10.1016/j.biopha.2022.113143] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/05/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Wound healing is a complex and long-term process consisting of hemostasis, inflammation, proliferation, and maturation/remodeling. These four stages overlap and influence each other; they affect wound healing in different ways, and if they do not function perfectly, they may cause scarring, proliferative scarring and keloid formation. A therapeutic target affecting wound healing in multiple ways will help the healing process proceed more effectively. DPP-4/CD26 is a multifunctional dimorphic glycoprotein widely distributed on the surface of a variety of cells, including fibroblasts and keratin-forming cells. It has been found to affect periwound inflammation, re-epithelialization, extracellular matrix secretion and skin fibrosis and is a potential target for promoting wound healing and inhibiting scar formation. After presenting a brief introduction of the wound healing process and DPP-4/CD26, this paper summarizes the effects of DPP-4/CD26 on cells involved in different stages of wound healing and discusses the feasibility of DPP-4/CD26 as a multifunctional target for the treatment of wound healing and inhibition of scar formation.
Collapse
Affiliation(s)
- Kai-Wen Zhang
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Si-Yu Liu
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Yuan Jia
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Ming-Li Zou
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Ying-Ying Teng
- The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Zhong-Hua Chen
- Department of Medicine, The Nantong University, Nantong, China
| | - Yueyue Li
- The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Danyang Guo
- The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China; Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China; The Hospital Affiliated to Jiangnan University, Wuxi, China.
| |
Collapse
|
11
|
Tammam AS, Gahlan AA, Taher MA, Haredy AM. Hantzsch Condensation Reaction as a Spectrofluorometric Method for Determination of Alogliptin, an Anti-diabetic Drug, in Pure, Tablet, Human, and rat plasma. LUMINESCENCE 2021; 37:543-550. [PMID: 34907663 DOI: 10.1002/bio.4178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/13/2021] [Accepted: 11/29/2021] [Indexed: 11/07/2022]
Abstract
To analyze alogliptin in its pharmaceutical dosage forms and human plasma, a sensitive, inexpensive, simple, and precise spectrofluorimetric method was developed and tested. Also, this method was used to investigate the drug pharmacokinetic behavior in the blood of rats. It is based on the Hantzsch reaction, which produces yellowish luminous products that can be detected spectrofluorometrically at 480 and 415 nm, emission, and excitation, respectively, when the primary amine group in the examined drug reacts with acetylacetone and formaldehyde. Several experimental parameters that affect the reaction product's development and stability were explored and improved. The curve of fluorescence and concentration for alogliptin was linear in the concentration range of 0.05-3.60 μg ml-1 . According to ICH criteria, the proposed approach was validated. The method was successfully utilized to evaluate the examined drug in dose formulations and spiked human plasma with high accuracy.
Collapse
Affiliation(s)
- Azza S Tammam
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Ahmed A Gahlan
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mahmoud A Taher
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Ahmed M Haredy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Merit University, New Sohag, Egypt
| |
Collapse
|
12
|
Shaikh S, Lee EJ, Ahmad K, Ahmad SS, Lim JH, Choi I. A Comprehensive Review and Perspective on Natural Sources as Dipeptidyl Peptidase-4 Inhibitors for Management of Diabetes. Pharmaceuticals (Basel) 2021; 14:591. [PMID: 34203048 PMCID: PMC8235117 DOI: 10.3390/ph14060591] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an increasing global public health problem, and its prevalence is expected to rise in coming decades. Dipeptidyl peptidase-4 (DPP-4) is a therapeutic target for the management of T2DM, and its inhibitors prevent the degradation of glucose-dependent insulinotropic peptide and glucagon-like peptide 1, and thus, maintain their endogenous levels and lower blood glucose levels. Various medicinal plant extracts and isolated bioactive compounds exhibit DPP-4 inhibitory activity. In this review, we discussed different natural sources that have been shown to have anti-diabetic efficacy with a particular emphasis on DPP-4 inhibition. Furthermore, the effect of DPP-4 inhibition on pancreatic beta cell function, skeletal muscle function, and the glucose-lowering mechanisms were also discussed. We believe that scientists looking for novel compounds with therapeutic promise against T2DM will be able to develop antidiabetic drugs using these natural sources.
Collapse
Affiliation(s)
- Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.); (E.-J.L.); (K.A.); (S.-S.A.); (J.-H.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Eun-Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.); (E.-J.L.); (K.A.); (S.-S.A.); (J.-H.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.); (E.-J.L.); (K.A.); (S.-S.A.); (J.-H.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Syed-Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.); (E.-J.L.); (K.A.); (S.-S.A.); (J.-H.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Jeong-Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.); (E.-J.L.); (K.A.); (S.-S.A.); (J.-H.L.)
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.); (E.-J.L.); (K.A.); (S.-S.A.); (J.-H.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
13
|
Gupta A, Behl T, Sehgal A, Bhardwaj S, Singh S, Sharma N, Hafeez A. Exploring the recent molecular targets for diabetes and associated complications. Mol Biol Rep 2021; 48:2863-2879. [PMID: 33763776 DOI: 10.1007/s11033-021-06294-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/16/2021] [Indexed: 12/19/2022]
Abstract
Diabetes is likely one of the centenarian diseases which is apprehended with certainty to humans. According to established protocols of the World Health Organisation (WHO) and numerous investigated studies diabetes is analyzed as a stellar and leading health issue worldwide. Although, the implicit costs of this pathology are increasing every year, thus, there is a need to find a novel method which can provide promising results in the management of diabetes and can overcome the side effects associated with the conventional medication. Comprehensive review of this topic was undertaken through various research and review papers which were conducted using MEDLINE, BIOSIS and EMBASE database. Using various keywords, we retrieve the most relevant content for the thorough review on recent targets and novel molecular pathways for targeting diabetes and associated complications. From the detailed analysis, we have highlighted some molecular pathways and novel targets which had shown promising results in both in-vitro and in-vivo studies and may be considered as pipeline target for clinical trials. Furthermore, these targets not only abetted amelioration of diabetes but also helped in mitigation of diabetes associated complications as well. Thus, based on the available information and literature on these potential molecules, conclusive evidence can be drawn which confirms targeting these novel pathways may unleash an array of benefits that have the potential to overpower the benefits obtained from conventional therapy in the management of diabetes thereby decreasing morbidity and mortality associated with diabetic complications.
Collapse
Affiliation(s)
- Amit Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Shaveta Bhardwaj
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Uttar Pradesh, India
| |
Collapse
|
14
|
Liu J, Ting JP, Al-Azzam S, Ding Y, Afshar S. Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases. Int J Mol Sci 2021; 22:ijms22062805. [PMID: 33802091 PMCID: PMC8001105 DOI: 10.3390/ijms22062805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Since 2015, 170 small molecules, 60 antibody-based entities, 12 peptides, and 15 gene- or cell-therapies have been approved by FDA for diverse disease indications. Recent advancement in medicine is facilitated by identification of new targets and mechanisms of actions, advancement in discovery and development platforms, and the emergence of novel technologies. Early disease detection, precision intervention, and personalized treatments have revolutionized patient care in the last decade. In this review, we provide a comprehensive overview of current and emerging therapeutic modalities developed in the recent years. We focus on nine diseases in three major therapeutics areas, diabetes, autoimmune, and neurological disorders. The pathogenesis of each disease at physiological and molecular levels is discussed and recently approved drugs as well as drugs in the clinic are presented.
Collapse
Affiliation(s)
- Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA;
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
- Correspondence:
| |
Collapse
|
15
|
Wu M, Li QQ, Zhang H, Zhu XX, Li XJ, Li Y, Sun HG, Ding YH. Safety, Pharmacokinetics, and Pharmacodynamics of a Dipeptidyl Peptidase-4 Inhibitor: A Randomized, Double-Blinded, Placebo-Controlled Daily Administration of Fotagliptin Benzoate for 14 Days for Type 2 Diabetes Mellitus. Clin Pharmacol Drug Dev 2021; 10:660-668. [PMID: 33440080 DOI: 10.1002/cpdd.895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/23/2020] [Indexed: 11/08/2022]
Abstract
This study investigated the pharmacokinetics, pharmacodynamics, and safety of fotagliptin benzoate (fotagliptin), a dipeptidyl peptidase-4 (DPP-4) inhibitor, in Chinese patients with type 2 diabetes mellitus (T2DM). In a randomized, double-blinded, placebo-controlled study, 10 and 4 patients with T2DM were randomized and received, respectively, once-daily oral fotagliptin (24 mg) or placebo, for 14 days. The pharmacokinetics and pharmacodynamics were assessed throughout the study, including monitoring DPP-4, glucagon-like peptide-1 (GLP-1), glycosylated hemoglobin, and fasting blood glucose. Fotagliptin was rapidly absorbed, and the median time to maximum concentration value was ∼1.5 hours. Plasma fotagliptin levels were stable after 14 days of once-daily dosage. The accumulation ratios for the area under the plasma concentration-time curve of fotagliptin, M1, and M2-1, were 1.19 ± 0.10, 1.59 ± 0.27, and 1.39 ± 0.26, respectively. The durations for DPP-4 inhibition >80% in the fotagliptin group on days 1 and 14 were 23.5 and 24.0 hours, respectively. The concentrations of GLP-1 were higher on days 1 and 14 than at the baseline. No serious complications occurred. Fotagliptin showed favorable pharmacokinetics and pharmacodynamics and was well tolerated. Treatment with fotagliptin can achieve high DPP-4 inhibition and increase plasma GLP-1. A once-per-day dosing regimen may be recommended as clinically efficacious.
Collapse
Affiliation(s)
- Min Wu
- Department of Phase I Clinical Trial Unit, First Hospital of Jilin University, Changchun, Jilin, China
| | - Qian-Qian Li
- Department of Phase I Clinical Trial Unit, First Hospital of Jilin University, Changchun, Jilin, China
| | - Hong Zhang
- Department of Phase I Clinical Trial Unit, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao-Xue Zhu
- Department of Phase I Clinical Trial Unit, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao-Jiao Li
- Department of Phase I Clinical Trial Unit, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Li
- Shenzhen Salubris Pharmaceuticals Co., Ltd. Shenzhen, Guangdong, China
| | - Hai-Gang Sun
- Shenzhen Salubris Pharmaceuticals Co., Ltd. Shenzhen, Guangdong, China
| | - Yan-Hua Ding
- Department of Phase I Clinical Trial Unit, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Syam YM, Anwar MM, Abd El-Karim SS, Elseginy SA, Essa BM, Sakr TM. New quinoxaline compounds as DPP-4 inhibitors and hypoglycemics: design, synthesis, computational and bio-distribution studies. RSC Adv 2021; 11:36989-37010. [PMID: 35494381 PMCID: PMC9043576 DOI: 10.1039/d1ra06799k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/24/2021] [Indexed: 11/23/2022] Open
Abstract
The current work represents the design and synthetic approaches of a new set of compounds 6–10 bearing the 1,4-dimethyl-2,3-dioxo-1,2,3,4-tetrahydroquinoxaline-6-sulfonamide scaffold. The biological evaluation revealed that most of the new compounds were promising selective dipeptidyl peptidase-IV (DPP-4) inhibitors and in vivo hypoglycemic agents utilizing linagliptin as a standard drug. The acute toxicity examination confirmed the safety profile of all compounds. Molecular docking studies related the significant DPP-4 suppression activity of compounds 9a, 10a, 10f, 10g to their nice fitting in the active pocket of DPP-4. In addition, the molecular dynamic study exhibited the stability of both 10a and 10g within the active site of DPP-4. The QSAR study showed that the difference between the predicted activities is very close to the experimental suppression effect. Moreover, both compounds 10a and 10g obeyed Lipinski's rule, indicating their efficient oral bioavailability. Compound 10a was radiolabeled, forming the 131I-SQ compound 10a to study the pharmacokinetic profile of this set of compounds. The biodistribution pattern hit the target protein since the tracer accumulated mainly in the visceral organs where DPP-4 is secreted in a high-level, thus with consequent stimulation of insulin secretion, leading to the target hypoglycemic effect. The current work represents the design and synthetic approaches of a new set of compounds 6–10 bearing the 1,4-dimethyl-2,3-dioxo-1,2,3,4-tetrahydroquinoxaline-6-sulfonamide scaffold.![]()
Collapse
Affiliation(s)
- Yasmin M. Syam
- Department of Therapeutic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt
| | - Manal M. Anwar
- Department of Therapeutic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt
| | - Somaia S. Abd El-Karim
- Department of Therapeutic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt
| | - Samia A. Elseginy
- Green Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Basma M. Essa
- Radioactive Isotopes and Generator Department, Hot Laboratories Centre, Egyptian Atomic Energy Authority (EAEA), P.O. Box 13759, Cairo, Egypt
| | - Tamer M. Sakr
- Radioactive Isotopes and Generator Department, Hot Laboratories Centre, Egyptian Atomic Energy Authority (EAEA), P.O. Box 13759, Cairo, Egypt
| |
Collapse
|
17
|
Ookawara M, Matsuda K, Watanabe M, Moritoh Y. The GPR40 Full Agonist SCO-267 Improves Liver Parameters in a Mouse Model of Nonalcoholic Fatty Liver Disease without Affecting Glucose or Body Weight. J Pharmacol Exp Ther 2020; 375:21-27. [PMID: 32719069 DOI: 10.1124/jpet.120.000046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Full agonism of G-protein-coupled receptor 40 (GPR40)/free fatty acid 1 receptor improves glycemic control in diabetic rodents. However, the effects of GPR40 full agonism on liver parameters are largely unknown. In the present study, we examined the effects of a GPR40 full agonist, SCO-267, on liver parameters in a nondiabetic mouse model with early-stage nonalcoholic fatty liver disease (NAFLD). SCO-267 was orally administered to mice, which were fed a choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD), a mouse model for NAFLD. An oral dose of SCO-267 increased levels of circulating glucagon and glucagon-like peptide-1 in CDAHFD-fed mice. In a chronic-dose experiment, effects of SCO-267 were compared with those of a dipeptidyl peptidase-4 inhibitor (alogliptin) and a sodium glucose cotransporter 2 inhibitor (dapagliflozin). SCO-267 decreased liver triglyceride content, weight, collagen content, and plasma alanine aminotransferase (ALT) levels without affecting food intake or glucose levels in CDAHFD-fed mice. Furthermore, SCO-267 decreased levels of liver thiobarbituric acid reactive substances (TBARS), markers of oxidative stress. Alogliptin and dapagliflozin had no effect on liver weight or levels of triglyceride, collagen, plasma ALT, and liver TBARS. SCO-267 elevated mRNA levels of molecules with roles in mitochondrial function and β-oxidation while inhibiting those with roles in lipogenesis, inflammation, reactive oxygen species generation, and fibrosis in the liver, all of which were less evident with alogliptin and dapagliflozin. This is the first study to show that the GPR40 full agonist SCO-267 improves liver parameters without affecting glucose or body weight in a mouse model of NAFLD. SIGNIFICANCE STATEMENT: Full agonism of GPR40/free fatty acid 1 receptor signaling stimulates islet and gut hormone secretions. The present study is the first to show the treatment effects of GPR40 full agonism on liver parameters in a mouse model for nonalcoholic fatty liver disease.
Collapse
|
18
|
Hu J, Yang C, Wang H, Li J, Tan X, Wang J, Zhang B, Zhao Y. An up-to-date evaluation of alogliptin benzoate for the treatment of type 2 diabetes. Expert Opin Pharmacother 2019; 20:1679-1687. [PMID: 31335214 DOI: 10.1080/14656566.2019.1645124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: A growth in the market for anti-diabetic drugs, along with an ever-increasing population suffering from type 2 diabetes mellitus (T2DM), requires a critical re-evaluation of anti-diabetic drugs used for a long time, in order to provide up-to-date practical prescribing information for clinicians. Alogliptin benzoate was firstly approved in 2010 in Japan for T2DM, both as a monotherapy or in combination with other anti-diabetic drugs. Areas covered: This article provides a comprehensive review of the latest data on alogliptin benzoate, including hypoglycemic activity and safety. Expert opinion: The cumulative evidence for alogliptin benzoate is robust with regards to glycemic efficacy and safety. Low hypoglycemia risks and weight changes support its consideration as a first-line medication for T2DM, either as a monotherapy or in combination therapy with other anti-diabetic drugs such as metformin. Ongoing trials will look to better analyze and address its safety and efficacy in pediatric patients and expand our clinical knowledge of this medication.
Collapse
Affiliation(s)
- Jingbo Hu
- Institute of Drug Discovery Technology, Ningbo University , Ningbo , China
| | - Chunlin Yang
- Department of pharmacy, Ningbo University affiliated Yangming Hospital , Yuyao , China
| | - Hongbo Wang
- Department of pharmacy, Ningbo University affiliated Yangming Hospital , Yuyao , China
| | - Jing Li
- Department of pharmacy, Ningbo University affiliated Yangming Hospital , Yuyao , China
| | - Xueying Tan
- College of pharmacy, Zhejiang Pharmaceutical College , Ningbo , China
| | - Jinhui Wang
- Institute of Drug Discovery Technology, Ningbo University , Ningbo , China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University , Ningbo , China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University , Ningbo , China
| |
Collapse
|
19
|
Syam YM, El-Karim SSA, Nasr T, Elseginy SA, Anwar MM, Kamel MM, Ali HF. Design, Synthesis and Biological Evaluation of Spiro Cyclohexane-1,2- Quinazoline Derivatives as Potent Dipeptidyl Peptidase IV Inhibitors. Mini Rev Med Chem 2019; 19:250-269. [PMID: 28847268 DOI: 10.2174/1389557517666170828121018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/26/2016] [Accepted: 02/19/2017] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Inhibition of dipeptidyl peptidase IV (DPP-4) is currently one of the most valuable and potential chemotherapeutic regimes for the medication of Type 2 Diabetes Mellitus (T2DM). METHOD Based on linagliptin, this study discusses the design, synthesis and biological evaluation of spiro cyclohexane-1,2'-quinazoline scaffold hybridized with various heterocyclic ring systems through different atomic spacers as a highly potent DPP-4 inhibitors. DPP-4 enzyme assay represented that most of the target compounds are 102-103 folds more active than the reference drug linagliptin (IC50: 0.0005-0.0089 nM vs 0.77 nM; respectively). Moreover, in vivo oral hypoglycemic activity assay revealed that most of the tested candidates were more potent than the reference drug, sitagliptin, producing rapid onset with long duration of activity that extends to 24 h. Interestingly, the derivatives 11, 16, 18a and 23 showed evidence of mild cytochrome P450 3A4 (CYP3A4) inhibition (IC50; > 210 µM) and their acute toxicity (LD50) was more than 1.9 gm/kg. Molecular simulation study of the new quinazoline derivatives explained the obtained biological results. CONCLUSION Finally, we conclude that our target compounds could be highly beneficial for diabetic patients in the clinic.
Collapse
Affiliation(s)
- Yasmin M Syam
- Therapeutical Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Somaia S Abd El-Karim
- Therapeutical Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Tamer Nasr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, 11795 Helwan, Cairo, Egypt
| | - Samia A Elseginy
- Green Chemistry Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Manal M Anwar
- Therapeutical Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Mohsen M Kamel
- Therapeutical Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Hanan F Ali
- Therapeutical Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
20
|
Gomez-Peralta F, Abreu C, Gomez-Rodriguez S, Barranco RJ, Umpierrez GE. Safety and Efficacy of DPP4 Inhibitor and Basal Insulin in Type 2 Diabetes: An Updated Review and Challenging Clinical Scenarios. Diabetes Ther 2018; 9:1775-1789. [PMID: 30117055 PMCID: PMC6167285 DOI: 10.1007/s13300-018-0488-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 12/18/2022] Open
Abstract
The safety and efficacy of dipeptidyl peptidase-4 (DPP4) inhibitors as monotherapy or in combination with other oral antidiabetic agents or basal insulin are well established. DPP4 inhibitors stimulate glucose-dependent insulin secretion and inhibit glucagon production. As monotherapy, they reduce the hemoglobin A1c level by about 0.6-0.8%. The addition of a DPP4 inhibitor to basal insulin is an attractive option, because they lower both postprandial and fasting plasma glucose concentrations without increasing the risk of hypoglycemia or weight gain. The present review summarizes the extensive evidence on the combination therapy of DPP4 inhibitors and insulin-based regimens in patients with type 2 diabetes. We focus our discussion on challenging clinical scenarios including patients with chronic renal impairment, elderly persons and hospitalized patients. The evidence indicates that these drugs are highly effective and safe in the elderly and in the presence of mild, moderate and severe renal failure improving glycemic control with low risk of hypoglycemia. In addition, several randomized-controlled trials have shown that the use of DPP4 inhibitors in combination with basal insulin represents an alternative to the basal-bolus insulin regimen in hospitalized patients with type 2 diabetes.
Collapse
Affiliation(s)
| | - Cristina Abreu
- Endocrinology and Nutrition Unit, Segovia General Hospital, Segovia, Spain
| | | | | | | |
Collapse
|
21
|
Li N, Wang LJ, Jiang B, Li XQ, Guo CL, Guo SJ, Shi DY. Recent progress of the development of dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus. Eur J Med Chem 2018; 151:145-157. [PMID: 29609120 DOI: 10.1016/j.ejmech.2018.03.041] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
Abstract
Diabetes is a fast growing chronic metabolic disorder around the world. Dipeptidyl peptidase-4 (DPP-4) is a new promising target during type 2 diabetes glycemic control. Thus, a number of potent DPP-4 inhibitors were developed and play a rapidly evolving role in the management of type 2 diabetes in recent years. This article reviews the development of synthetic and natural DPP-4 inhibitors from 2012 to 2017 and provides their physico-chemical properties, biological activities against DPP-4 and selectivity over dipeptidyl peptidase-8/9. Moreover, the glucose-lowering mechanisms and the active site of DPP-4 are also discussed. We also discuss strategies and structure-activity relationships for identifying potent DPP-4 inhibitors, which will provide useful information for developing potent DPP-4 drugs as type 2 diabtes treatments.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, China
| | - Li-Jun Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, China
| | - Bo Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, China
| | - Xiang-Qian Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, China
| | - Chuan-Long Guo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, China
| | - Shu-Ju Guo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, China
| | - Da-Yong Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, China.
| |
Collapse
|
22
|
Li Y, Li L, Hölscher C. Incretin-based therapy for type 2 diabetes mellitus is promising for treating neurodegenerative diseases. Rev Neurosci 2018; 27:689-711. [PMID: 27276528 DOI: 10.1515/revneuro-2016-0018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/02/2016] [Indexed: 12/13/2022]
Abstract
Incretin hormones include glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Due to their promising action on insulinotropic secretion and improving insulin resistance (IR), incretin-based therapies have become a new class of antidiabetic agents for the treatment of type 2 diabetes mellitus (T2DM). Recently, the links between neurodegenerative diseases and T2DM have been identified in a number of studies, which suggested that shared mechanisms, such as insulin dysregulation or IR, may underlie these conditions. Therefore, the effects of incretins in neurodegenerative diseases have been extensively investigated. Protease-resistant long-lasting GLP-1 mimetics such as lixisenatide, liraglutide, and exenatide not only have demonstrated promising effects for treating neurodegenerative diseases in preclinical studies but also have shown first positive results in Alzheimer's disease (AD) and Parkinson's disease (PD) patients in clinical trials. Furthermore, the effects of other related incretin-based therapies such as GIP agonists, dipeptidyl peptidase-IV (DPP-IV) inhibitors, oxyntomodulin (OXM), dual GLP-1/GIP, and triple GLP-1/GIP/glucagon receptor agonists on neurodegenerative diseases have been tested in preclinical studies. Incretin-based therapies are a promising approach for treating neurodegenerative diseases.
Collapse
|
23
|
White WB, Wilson CA, Bakris GL, Bergenstal RM, Cannon CP, Cushman WC, Heller SK, Mehta CR, Nissen SE, Zannad F, Kupfer S. Angiotensin-Converting Enzyme Inhibitor Use and Major Cardiovascular Outcomes in Type 2 Diabetes Mellitus Treated With the Dipeptidyl Peptidase 4 Inhibitor Alogliptin. Hypertension 2016; 68:606-13. [DOI: 10.1161/hypertensionaha.116.07797] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/17/2016] [Indexed: 11/16/2022]
Abstract
Activation of the sympathetic nervous system when there is dipeptidyl peptidase 4 inhibition in the presence of high-dose angiotensin-converting enzyme (ACE) inhibition has led to concerns of potential increases in cardiovascular events when the 2 classes of drugs are coadministered. We evaluated cardiovascular outcomes from the EXAMINE (Examination of Cardiovascular Outcomes With Alogliptin versus Standard of Care) trial according to ACE inhibitor use. Patients with type 2 diabetes mellitus and a recent acute coronary syndrome were randomly assigned to receive the dipeptidyl peptidase 4 inhibitor alogliptin or placebo added to existing antihyperglycemic and cardiovascular prophylactic therapies. Risks of adjudicated cardiovascular death, nonfatal myocardial infarction and stroke, and hospitalized heart failure were analyzed using a Cox proportional hazards model in patients according to ACE inhibitor use and dose. There were 3323 (62%) EXAMINE patients treated with an ACE inhibitor (1681 on alogliptin and 1642 on placebo). The composite rates of cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke were comparable for alogliptin and placebo with ACE inhibitor (11.4% versus 11.8%; hazard ratio, 0.97; 95% confidence interval, 0.79–1.19;
P
=0.76) and without ACE inhibitor use (11.2% versus 11.9%; hazard ratio, 0.94; 95% confidence interval, 0.73–1.21;
P
=0.62). Composite rates for cardiovascular death and heart failure in patients on ACE inhibitor occurred in 6.8% of patients on alogliptin versus 7.2% on placebo (hazard ratio, 0.93; 95% confidence interval, 0.72–1.2;
P
=0.57). There were no differences for these end points nor for blood pressure or heart rate in patients on higher doses of ACE inhibitor. Cardiovascular outcomes were similar for alogliptin and placebo in patients with type 2 diabetes mellitus and coronary disease treated with ACE inhibitors.
Collapse
Affiliation(s)
- William B. White
- From the Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Takeda Development Center Americas, Inc, Deerfield, IL (C.A.W., S.K.); University of Chicago Medicine, IL (G.L.B.); International Diabetes Center, Park-Nicollet Clinic, Minneapolis, MN (R.M.B.); Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.P.C.); Memphis Veterans Affairs Medical Center, University of Tennessee College of Medicine (W.C.C.); University of Sheffield, United
| | - Craig A. Wilson
- From the Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Takeda Development Center Americas, Inc, Deerfield, IL (C.A.W., S.K.); University of Chicago Medicine, IL (G.L.B.); International Diabetes Center, Park-Nicollet Clinic, Minneapolis, MN (R.M.B.); Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.P.C.); Memphis Veterans Affairs Medical Center, University of Tennessee College of Medicine (W.C.C.); University of Sheffield, United
| | - George L. Bakris
- From the Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Takeda Development Center Americas, Inc, Deerfield, IL (C.A.W., S.K.); University of Chicago Medicine, IL (G.L.B.); International Diabetes Center, Park-Nicollet Clinic, Minneapolis, MN (R.M.B.); Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.P.C.); Memphis Veterans Affairs Medical Center, University of Tennessee College of Medicine (W.C.C.); University of Sheffield, United
| | - Richard M. Bergenstal
- From the Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Takeda Development Center Americas, Inc, Deerfield, IL (C.A.W., S.K.); University of Chicago Medicine, IL (G.L.B.); International Diabetes Center, Park-Nicollet Clinic, Minneapolis, MN (R.M.B.); Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.P.C.); Memphis Veterans Affairs Medical Center, University of Tennessee College of Medicine (W.C.C.); University of Sheffield, United
| | - Christopher P. Cannon
- From the Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Takeda Development Center Americas, Inc, Deerfield, IL (C.A.W., S.K.); University of Chicago Medicine, IL (G.L.B.); International Diabetes Center, Park-Nicollet Clinic, Minneapolis, MN (R.M.B.); Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.P.C.); Memphis Veterans Affairs Medical Center, University of Tennessee College of Medicine (W.C.C.); University of Sheffield, United
| | - William C. Cushman
- From the Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Takeda Development Center Americas, Inc, Deerfield, IL (C.A.W., S.K.); University of Chicago Medicine, IL (G.L.B.); International Diabetes Center, Park-Nicollet Clinic, Minneapolis, MN (R.M.B.); Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.P.C.); Memphis Veterans Affairs Medical Center, University of Tennessee College of Medicine (W.C.C.); University of Sheffield, United
| | - Simon K. Heller
- From the Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Takeda Development Center Americas, Inc, Deerfield, IL (C.A.W., S.K.); University of Chicago Medicine, IL (G.L.B.); International Diabetes Center, Park-Nicollet Clinic, Minneapolis, MN (R.M.B.); Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.P.C.); Memphis Veterans Affairs Medical Center, University of Tennessee College of Medicine (W.C.C.); University of Sheffield, United
| | - Cyrus R. Mehta
- From the Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Takeda Development Center Americas, Inc, Deerfield, IL (C.A.W., S.K.); University of Chicago Medicine, IL (G.L.B.); International Diabetes Center, Park-Nicollet Clinic, Minneapolis, MN (R.M.B.); Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.P.C.); Memphis Veterans Affairs Medical Center, University of Tennessee College of Medicine (W.C.C.); University of Sheffield, United
| | - Steven E. Nissen
- From the Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Takeda Development Center Americas, Inc, Deerfield, IL (C.A.W., S.K.); University of Chicago Medicine, IL (G.L.B.); International Diabetes Center, Park-Nicollet Clinic, Minneapolis, MN (R.M.B.); Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.P.C.); Memphis Veterans Affairs Medical Center, University of Tennessee College of Medicine (W.C.C.); University of Sheffield, United
| | - Faiez Zannad
- From the Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Takeda Development Center Americas, Inc, Deerfield, IL (C.A.W., S.K.); University of Chicago Medicine, IL (G.L.B.); International Diabetes Center, Park-Nicollet Clinic, Minneapolis, MN (R.M.B.); Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.P.C.); Memphis Veterans Affairs Medical Center, University of Tennessee College of Medicine (W.C.C.); University of Sheffield, United
| | - Stuart Kupfer
- From the Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington (W.B.W.); Takeda Development Center Americas, Inc, Deerfield, IL (C.A.W., S.K.); University of Chicago Medicine, IL (G.L.B.); International Diabetes Center, Park-Nicollet Clinic, Minneapolis, MN (R.M.B.); Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (C.P.C.); Memphis Veterans Affairs Medical Center, University of Tennessee College of Medicine (W.C.C.); University of Sheffield, United
| |
Collapse
|
24
|
Salvo F, Moore N, Arnaud M, Robinson P, Raschi E, De Ponti F, Bégaud B, Pariente A. Addition of dipeptidyl peptidase-4 inhibitors to sulphonylureas and risk of hypoglycaemia: systematic review and meta-analysis. BMJ 2016; 353:i2231. [PMID: 27142267 PMCID: PMC4854021 DOI: 10.1136/bmj.i2231] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2016] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To quantify the risk of hypoglycaemia associated with the concomitant use of dipeptidyl peptidase-4 (DPP-4) inhibitors and sulphonylureas compared with placebo and sulphonylureas. DESIGN Systematic review and meta-analysis. DATA SOURCES Medline, ISI Web of Science, SCOPUS, Cochrane Central Register of Controlled Trials, and clinicaltrial.gov were searched without any language restriction. STUDY SELECTION Placebo controlled randomised trials comprising at least 50 participants with type 2 diabetes treated with DPP-4 inhibitors and sulphonylureas. REVIEW METHODS Risk of bias in each trial was assessed using the Cochrane Collaboration tool. The risk ratio of hypoglycaemia with 95% confidence intervals was computed for each study and then pooled using fixed effect models (Mantel Haenszel method) or random effect models, when appropriate. Subgroup analyses were also performed (eg, dose of DPP-4 inhibitors). The number needed to harm (NNH) was estimated according to treatment duration. RESULTS 10 studies were included, representing a total of 6546 participants (4020 received DPP-4 inhibitors plus sulphonylureas, 2526 placebo plus sulphonylureas). The risk ratio of hypoglycaemia was 1.52 (95% confidence interval 1.29 to 1.80). The NNH was 17 (95% confidence interval 11 to 30) for a treatment duration of six months or less, 15 (9 to 26) for 6.1 to 12 months, and 8 (5 to 15) for more than one year. In subgroup analysis, no difference was found between full and low doses of DPP-4 inhibitors: the risk ratio related to full dose DPP-4 inhibitors was 1.66 (1.34 to 2.06), whereas the increased risk ratio related to low dose DPP-4 inhibitors did not reach statistical significance (1.33, 0.92 to 1.94). CONCLUSIONS Addition of DPP-4 inhibitors to sulphonylurea to treat people with type 2 diabetes is associated with a 50% increased risk of hypoglycaemia and to one excess case of hypoglycaemia for every 17 patients in the first six months of treatment. This highlights the need to respect recommendations for a decrease in sulphonylureas dose when initiating DPP-4 inhibitors and to assess the effectiveness of this risk minimisation strategy.
Collapse
Affiliation(s)
- Francesco Salvo
- University of Bordeaux, UMR1219, F-33000 Bordeaux, France INSERM, UMR1219, Bordeaux Population Health Research Center, Pharmacoepidemiology team, Bordeaux, France CHU Bordeaux, Bordeaux, France
| | - Nicholas Moore
- University of Bordeaux, UMR1219, F-33000 Bordeaux, France INSERM, UMR1219, Bordeaux Population Health Research Center, Pharmacoepidemiology team, Bordeaux, France CHU Bordeaux, Bordeaux, France CIC Bordeaux CIC1401, Bordeaux, France
| | - Mickael Arnaud
- University of Bordeaux, UMR1219, F-33000 Bordeaux, France INSERM, UMR1219, Bordeaux Population Health Research Center, Pharmacoepidemiology team, Bordeaux, France
| | - Philip Robinson
- CIC Bordeaux CIC1401, Bordeaux, France ADERA, Pessac, France
| | - Emanuel Raschi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio De Ponti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Bernard Bégaud
- University of Bordeaux, UMR1219, F-33000 Bordeaux, France INSERM, UMR1219, Bordeaux Population Health Research Center, Pharmacoepidemiology team, Bordeaux, France CHU Bordeaux, Bordeaux, France
| | - Antoine Pariente
- University of Bordeaux, UMR1219, F-33000 Bordeaux, France INSERM, UMR1219, Bordeaux Population Health Research Center, Pharmacoepidemiology team, Bordeaux, France CHU Bordeaux, Bordeaux, France
| |
Collapse
|
25
|
Fisman EZ, Tenenbaum A. Antidiabetic treatment with gliptins: focus on cardiovascular effects and outcomes. Cardiovasc Diabetol 2015; 14:129. [PMID: 26415691 PMCID: PMC4587723 DOI: 10.1186/s12933-015-0294-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 12/11/2022] Open
Abstract
The traditional oral pharmacological therapy for type 2 diabetes mellitus (T2DM) has been based on the prescription of metformin, a biguanide, as first line antihyperglycemic agent world over. It has been demonstrated that after 3 years of treatment, approximately 50 % of diabetic patients could achieve acceptable glucose levels with monotherapy; but by 9 years this had declined to only 25 %. Therefore, the implementation of a combined pharmacological therapy acting via different pathways becomes necessary, and its combination with a compound of the sulfonylurea group was along decades the most frequently employed prescription in routine clinical practice. Meglitinides, glitazones and alpha-glucosidase inhibitors were subsequently developed, but the five mentioned groups of oral antihyperglycemic agents are associated with variable degrees of undesirable or even severe cardiovascular events. The gliptins—also called dipeptidyl peptidase 4 (DPP4) inhibitors—are an additional group of antidiabetic compounds with increasing clinical use. We review the status of the gliptins with emphasis on their capabilities to positively or negatively affect the cardiovascular system, and their potential involvement in major adverse cardiovascular events (MACE). Alogliptin, anagliptin, linagliptin, saxagliptin, sitagliptin, teneligliptin and vildagliptin are the compounds currently in clinical use. Regardless differences in chemical structure and metabolic pathways, gliptins as a group exert favorable changes in experimental models. These changes, as an almost general rule, include improved endothelial function, reduction of inflammatory markers, oxidative stress ischemia/reperfusion injury and atherogenesis. In addition, increased adiponectin levels and modest decreases in lipidemia and blood pressure were reported. In clinical settings, several trials—notably the longer one, employing sitagliptin, with a mean follow-up period of 3 years—did not show an increased risk for ischemic events. Anyway, it should be emphasized that the encouraging results from basic science were not yet translated into clinical evidence, probably due the multiple and pleiotropic enzymatic effects of DPP4 inhibition. Moreover, when employing saxagliptin, while the drug was not associated with an augmented risk for ischemic events, it should be pinpointed that the rate of hospitalization for heart failure was significantly increased. Gliptins as a group constitute a widely accepted therapy for the management of T2DM, usually as a second-line medication. Nonetheless, for the time being, a definite relationship between gliptins treatment and improved cardiovascular outcomes remains uncertain and needs yet to be proven.
Collapse
Affiliation(s)
- Enrique Z Fisman
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel. .,Cardiovascular Diabetology Research Foundation, 58484, Holon, Israel.
| | - Alexander Tenenbaum
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel. .,Cardiovascular Diabetology Research Foundation, 58484, Holon, Israel. .,Cardiac Rehabilitation Institute, Sheba Medical Center, 52621, Tel Hashomer, Israel.
| |
Collapse
|