1
|
Sripusanapan A, Piriyakulthorn C, Apaijai N, Chattipakorn SC, Chattipakorn N. Ivabradine ameliorates doxorubicin-induced cardiotoxicity through improving mitochondrial function and cardiac calcium homeostasis. Biochem Pharmacol 2025; 236:116881. [PMID: 40112930 DOI: 10.1016/j.bcp.2025.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
Doxorubicin (Dox) is a potent anthracycline chemotherapeutic agent. However, its efficacy is limited by its cardiotoxicity, which is driven by excessive oxidative stress, calcium overload, and mitochondrial dysfunction. These mechanisms ultimately result in cardiomyocyte death and cardiac dysfunction. Ivabradine, a hyperpolarization-activated cyclic nucleotide-gated channel blocker, has cardioprotective effects in heart failure and coronary artery disease. However, its potential for mitigating doxorubicin-induced cardiotoxicity (DIC) has not been explored. This study hypothesized that ivabradine reduces cardiac dysfunction in DIC by improving mitochondrial function, restoring calcium homeostasis, and attenuating apoptosis. For in vitro experiments, H9C2 cells were divided into four groups: control, ivabradine (3 μM), Dox (10 μM), and ivabradine co-treated with Dox, with treatments lasting 24 h. Cell viability and mitochondrial function were assessed. For in vivo experiments, male rats (n = 6 per group) were divided into control, ivabradine (10 mg/kg/day, p.o., 30 days), Dox (3 mg/kg, i.p., 6 doses), and ivabradine co-treated with Dox. Cardiac function, mitochondrial function, calcium regulatory proteins, and apoptosis were analyzed. Dox reduced cell viability, increased oxidative stress, and decreased ATP levels in vitro. Co-treatment with ivabradine increased cell viability and reduced oxidative stress but did not restore ATP levels. In rats, Dox impaired mitochondrial function, disrupted mitochondrial dynamics and mitophagy, and altered calcium homeostasis, resulting in cardiomyocyte apoptosis and left ventricular dysfunction. Ivabradine co-treatment attenuated these pathological changes and preserved cardiac function. These findings suggest the potential of ivabradine for cardioprotection against DIC.
Collapse
Affiliation(s)
- Adivitch Sripusanapan
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chotrawee Piriyakulthorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
2
|
Imamura T. Current Advances in Optimal Medical Therapy for Heart Failure. J Clin Med 2025; 14:1417. [PMID: 40094869 PMCID: PMC11900176 DOI: 10.3390/jcm14051417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
I am delighted to present this Special Issue, which focuses on the latest advancements in the optimal medical therapy for heart failure [...].
Collapse
Affiliation(s)
- Teruhiko Imamura
- Second Department of Internal Medicine, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194, Japan
| |
Collapse
|
3
|
Zheng J, Chen C, Fan Z, Ye Q, Zhong Y, Li J, Huang H, Deng J, Zhao J, Xiong T, Tian W, Zhang X. Association of Time in Target Range of Resting Heart Rate With Adverse Clinical Outcomes in Patients With Acute Coronary Syndromes After Percutaneous Coronary Intervention. Glob Heart 2025; 20:3. [PMID: 39829969 PMCID: PMC11740706 DOI: 10.5334/gh.1384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Heart rate (HR) has been proved to be associated with major adverse cardiovascular events (MACE) in Acute coronary syndrome patients. However, the threshold value and clinical significance of time in target of resting heart rate (TTR-HR) remain insufficiently elucidated. Our study aimed to evaluate the independent association between TTR-HR and cardiovascular outcomes in the follow-up study of ACS. A total of 1455 ACS patients who underwent percutaneous coronary intervention (PCI) and were admitted to 22 hospitals between 2019 and 2022 were enrolled and followed up for 12 months. MACE was defined as a composite of cardiac death, nonfatal recurrent myocardial infarction, ischemic-driven revascularization, and ischemic stroke. The association between TTR-HR and cardiovascular outcomes was assessed using Cox regression model. Compared to patients with TTR-HR 0-50% and >50%-75%, patients with TTR-HR > 75%-100% were older and less alcohol user, less likely to use diuretics and anti-diabetic drugs, these patients had less comorbidities of hyperlipidemia, diabetes, heart failure, and cardiac shock. After 12 months follow up, the incidence of MACE and composite endpoint but not mortality was higher in patients with TTR-HR 0-50% and >50%-75% than those with TTR-HR > 75%-100%. After multivariate adjustment, TTR-HR [hazard ratio = 2.11, 95% CI: 1.19-3.74, p = 0.01] was independently associated with composite endpoint. In summary, our study demonstrates that TTR-HR holds significant prognostic value, with TTR-HR > 75%-100% being independently associated with reduced composite endpoint risk in ACS patients following PCI. These findings emphasize the importance of effective heart rate control in ACS patients following PCI.
Collapse
Affiliation(s)
- Jianmei Zheng
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cen Chen
- The First People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, China
| | - Zhongcai Fan
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qiang Ye
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Zhong
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinsong Li
- Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Hao Huang
- Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Jianping Deng
- Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Jinghong Zhao
- Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Tinglin Xiong
- Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Wenjie Tian
- Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Xuemei Zhang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Iness AN, Shah KM, Kukreja RC. Physiological effects of ivabradine in heart failure and beyond. Mol Cell Biochem 2024; 479:2405-2414. [PMID: 37768496 DOI: 10.1007/s11010-023-04862-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Ivabradine is a pharmacologic agent that inhibits the funny current responsible for determining heart rate in the sinoatrial node. Ivabradine's clinical potential has been investigated in the context of heart failure since it is associated with reduced myocardial oxygen demand, enhanced diastolic filling, stroke volume, and coronary perfusion time; however, it is yet to demonstrate definitive mortality benefit. Alternative effects of ivabradine include modulation of the renin-angiotensin-aldosterone system, sympathetic activation, and endothelial function. Here, we review key clinical trials informing the clinical use of ivabradine and explore opportunities for leveraging its potential pleiotropic effects in other diseases, including treatment of hyperadrenergic states and mitigating complications of COVID-19 infection.
Collapse
Affiliation(s)
- Audra N Iness
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Keyur M Shah
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
5
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Delgado-Betancourt V, Chinda K, Mesirca P, Barrère C, Covinhes A, Gallot L, Vincent A, Bidaud I, Kumphune S, Nargeot J, Piot C, Wickman K, Mangoni ME, Barrère-Lemaire S. Heart rate reduction after genetic ablation of L-type Ca v1.3 channels induces cardioprotection against ischemia-reperfusion injury. Front Cardiovasc Med 2023; 10:1134503. [PMID: 37593151 PMCID: PMC10429177 DOI: 10.3389/fcvm.2023.1134503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/21/2023] [Indexed: 08/19/2023] Open
Abstract
Background Acute myocardial infarction (AMI) is the major cause of cardiovascular mortality worldwide. Most ischemic episodes are triggered by an increase in heart rate, which induces an imbalance between myocardial oxygen delivery and consumption. Developing drugs that selectively reduce heart rate by inhibiting ion channels involved in heart rate control could provide more clinical benefits. The Cav1.3-mediated L-type Ca2+ current (ICav1.3) play important roles in the generation of heart rate. Therefore, they can constitute relevant targets for selective control of heart rate and cardioprotection during AMI. Objective We aimed to investigate the relationship between heart rate and infarct size using mouse strains knockout for Cav1.3 (Cav1.3-/-) L-type calcium channel and of the cardiac G protein gated potassium channel (Girk4-/-) in association with the funny (f)-channel inhibitor ivabradine. Methods Wild-type (WT), Cav1.3+/-, Cav1.3-/- and Girk4-/- mice were used as models of respectively normal heart rate, moderate heart rate reduction, bradycardia, and mild tachycardia, respectively. Mice underwent a surgical protocol of myocardial IR (40 min ischemia and 60 min reperfusion). Heart rate was recorded by one-lead surface ECG recording, and infarct size measured by triphenyl tetrazolium chloride staining. In addition, Cav1.3-/- and WT hearts perfused on a Langendorff system were subjected to the same ischemia-reperfusion protocol ex vivo, without or with atrial pacing, and the coronary flow was recorded. Results Cav1.3-/- mice presented reduced infarct size (-29%), while Girk4-/- displayed increased infarct size (+30%) compared to WT mice. Consistently, heart rate reduction in Cav1.3+/- or by the f-channel blocker ivabradine was associated with significant decrease in infarct size (-27% and -32%, respectively) in comparison to WT mice. Conclusion Our results show that decreasing heart rate allows to protect the myocardium against IR injury in vivo and reveal a close relationship between basal heart rate and IR injury. In addition, this study suggests that targeting Cav1.3 channels could constitute a relevant target for reducing infarct size, since maximal heart rate dependent cardioprotective effect is already observed in Cav1.3+/- mice.
Collapse
Affiliation(s)
- Viviana Delgado-Betancourt
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Kroekkiat Chinda
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Christian Barrère
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Aurélie Covinhes
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Laura Gallot
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Sarawut Kumphune
- Biomedical Engineering Institute (BMEi), Chiang Mai University, Chiang Mai, Thailand
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Christophe Piot
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Matteo Elia Mangoni
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| | - Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science & Therapeutics (ICST), Université de Nice, Valbonne, France
| |
Collapse
|
7
|
Hackl B, Lukacs P, Ebner J, Pesti K, Haechl N, Földi MC, Lilliu E, Schicker K, Kubista H, Stary-Weinzinger A, Hilber K, Mike A, Todt H, Koenig X. The Bradycardic Agent Ivabradine Acts as an Atypical Inhibitor of Voltage-Gated Sodium Channels. Front Pharmacol 2022; 13:809802. [PMID: 35586063 PMCID: PMC9108390 DOI: 10.3389/fphar.2022.809802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/24/2022] [Indexed: 12/19/2022] Open
Abstract
Background and purpose: Ivabradine is clinically administered to lower the heart rate, proposedly by inhibiting hyperpolarization-activated cyclic nucleotide-gated cation channels in the sinoatrial node. Recent evidence suggests that voltage-gated sodium channels (VGSC) are inhibited within the same concentration range. VGSCs are expressed within the sinoatrial node and throughout the conduction system of the heart. A block of these channels thus likely contributes to the established and newly raised clinical indications of ivabradine. We, therefore, investigated the pharmacological action of ivabradine on VGSCs in sufficient detail in order to gain a better understanding of the pro- and anti-arrhythmic effects associated with the administration of this drug. Experimental Approach: Ivabradine was tested on VGSCs in native cardiomyocytes isolated from mouse ventricles and the His-Purkinje system and on human Nav1.5 in a heterologous expression system. We investigated the mechanism of channel inhibition by determining its voltage-, frequency-, state-, and temperature-dependence, complemented by a molecular drug docking to the recent Nav1.5 cryoEM structure. Automated patch-clamp experiments were used to investigate ivabradine-mediated changes in Nav1.5 inactivation parameters and inhibition of different VGSC isoforms. Key results: Ivabradine inhibited VGSCs in a voltage- and frequency-dependent manner, but did not alter voltage-dependence of activation and fast inactivation, nor recovery from fast inactivation. Cardiac (Nav1.5), neuronal (Nav1.2), and skeletal muscle (Nav1.4) VGSC isoforms were inhibited by ivabradine within the same concentration range, as were sodium currents in native cardiomyocytes isolated from the ventricles and the His-Purkinje system. Molecular drug docking suggested an interaction of ivabradine with the classical local anesthetic binding site. Conclusion and Implications: Ivabradine acts as an atypical inhibitor of VGSCs. Inhibition of VGSCs likely contributes to the heart rate lowering effect of ivabradine, in particular at higher stimulation frequencies and depolarized membrane potentials, and to the observed slowing of intra-cardiac conduction. Inhibition of VGSCs in native cardiomyocytes and across channel isoforms may provide a potential basis for the anti-arrhythmic potential as observed upon administration of ivabradine.
Collapse
Affiliation(s)
- Benjamin Hackl
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Peter Lukacs
- ELKH, Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Janine Ebner
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Krisztina Pesti
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- Semmelweis University, School of Ph.D. Studies, Budapest, Hungary
| | - Nicholas Haechl
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Mátyás C Földi
- ELKH, Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Elena Lilliu
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Klaus Schicker
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Karlheinz Hilber
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Arpad Mike
- ELKH, Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hannes Todt
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Borovac JA, Kowalski M, Poklepovic Pericic T, Vidak M, Schwarz K, D'Amario D, Miric D, Glavas D, Bozic J. Clinical use of ivabradine in the acute coronary syndrome: A systematic review and narrative synthesis of current evidence. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 17:100158. [PMID: 38559878 PMCID: PMC10978351 DOI: 10.1016/j.ahjo.2022.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 04/04/2024]
Abstract
Heart rate (HR) lowering during acute coronary syndrome (ACS) is beneficial as it reduces myocardial oxygen consumption. However, the role of ivabradine as an HR-lowering agent in the setting of ACS is not clear. We aimed to systematically review and synthesize the current evidence on the role of ivabradine use in the ACS. A systematic review was conducted for eligible randomized clinical trials and quasi-experimental studies, between 2009 and 2020, that investigated the use of ivabradine in ACS. Various clinical endpoints were evaluated such as major adverse cardiovascular events, efficacy in HR control, impact on left ventricular (LV) dimensions and function, and overall safety. Eleven publications were included encompassing a total of 1833 patients. The mean age of the examined cohort was 57 ± 11 years and 80 % were men. Seven studies were in the setting of ST-segment elevation myocardial infarction (MI) while the remaining studies also included patients with unstable angina and non-ST-segment elevation MI. Ivabradine was administered as a peroral drug with dosing from 2.5 to 7.5 mg b.i.d. Overall, the addition of ivabradine was superior to the control arm concerning HR control with a good safety profile. Beneficial effects on LV function and potential impact on infarct size reduction were observed as well. The use of ivabradine appeared to not affect short-term mortality. In conclusion, the use of ivabradine for HR control is safe, feasible, and efficacious for HR control in the ACS. Further studies are required to elucidate other potentially beneficial effects of ivabradine.
Collapse
Affiliation(s)
- Josip A. Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
- Clinic for Heart and Vascular Diseases, University Hospital of Split, Split, Croatia
- Department of Health Studies, University of Split, Split, Croatia
| | - Martin Kowalski
- University Hospital and Faculty of Medicine Tübingen, Tübingen, Germany
| | - Tina Poklepovic Pericic
- Department of Research in Biomedicine and Health, University of Split School of Medicine, Split, Croatia
- Cochrane Croatia, University of Split School of Medicine, Split, Croatia
| | - Marin Vidak
- Cardiology Department, University Hospital Dubrava, Zagreb, Croatia
| | - Konstantin Schwarz
- Karl Landsteiner University of Health Sciences, Department of Internal Medicine 3, University Hospital St. Pölten, Krems, Austria
| | - Domenico D'Amario
- Department of Cardiovascular and Thoracic Sciences, IRCCS Fondazione Policlinico A Gemelli, Universita Cattolica Sacro Cuore, Rome, Italy
| | - Dino Miric
- Clinic for Heart and Vascular Diseases, University Hospital of Split, Split, Croatia
| | - Duska Glavas
- Clinic for Heart and Vascular Diseases, University Hospital of Split, Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
9
|
Repova K, Aziriova S, Krajcirovicova K, Simko F. Cardiovascular therapeutics: A new potential for anxiety treatment? Med Res Rev 2022; 42:1202-1245. [PMID: 34993995 PMCID: PMC9304130 DOI: 10.1002/med.21875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Besides the well‐recognized risk factors, novel conditions increasing cardiovascular morbidity and mortality are emerging. Undesirable emotions and behavior such as anxiety and depression, appear to participate in worsening cardiovascular pathologies. On the other hand, deteriorating conditions of the heart and vasculature result in disturbed mental and emotional health. The pathophysiological background of this bidirectional interplay could reside in an inappropriate activation of vegetative neurohormonal and other humoral systems in both cardiovascular and psychological disturbances. This results in circulus vitiosus potentiating mental and circulatory disorders. Thus, it appears to be of utmost importance to examine the alteration of emotions, cognition, and behavior in cardiovascular patients. In terms of this consideration, recognizing the potential of principal cardiovascular drugs to interact with the mental state in patients with heart or vasculature disturbances is unavoidable, to optimize their therapeutic benefit. In general, beta‐blockers, central sympatholytics, ACE inhibitors, ARBs, aldosterone receptor blockers, sacubitril/valsartan, and fibrates are considered to exert anxiolytic effect in animal experiments and clinical settings. Statins and some beta‐blockers appear to have an equivocal impact on mood and anxiety and ivabradine expressed neutral psychological impact. It seems reasonable to suppose that the knowledge of a patient's mood, cognition, and behavior, along with applying careful consideration of the choice of the particular cardiovascular drug and respecting its potential psychological benefit or harm might improve the individualized approach to the treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
10
|
Kawada T, Yamamoto H, Miyamoto T, Hayama Y, Li M, Zheng C, Uemura K, Sugimachi M, Saku K. Ivabradine increases the high frequency gain ratio in the vagal heart rate transfer function via an interaction with muscarinic potassium channels. Physiol Rep 2021; 9:e15134. [PMID: 34889074 PMCID: PMC8661101 DOI: 10.14814/phy2.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 11/24/2022] Open
Abstract
Muscarinic potassium channels (IK,ACh ) are thought to contribute to the high frequency (HF) dynamic heart rate (HR) response to vagal nerve stimulation (VNS) because they act faster than the pathway mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. However, the interactions between the two pathways have not yet been fully elucidated. We previously demonstrated that HCN channel blockade by ivabradine (IVA) increased the HF gain ratio of the transfer function from VNS to HR. To test the hypothesis that IVA increases the HF gain ratio via an interaction with IK,ACh , we examined the dynamic HR response to VNS under conditions of control (CNT), IK,ACh blockade by tertiapin-Q (TQ, 50 nM/kg), and TQ plus IVA (2 mg/kg) (TQ + IVA) in anesthetized rats (n = 8). In each condition, the right vagal nerve was stimulated for 10 min with binary white noise signals between 0-10, 0-20, and 0-40 Hz. On multiple regression analysis, the HF gain ratio positively correlated with the VNS rate with a coefficient of 1.691 ± 0.151 (×0.01) (p < 0.001). TQ had a negative effect on the HF gain ratio with a coefficient of -1.170 ± 0.214 (×0.01) (p < 0.001). IVA did not significantly increase the HF gain ratio in the presence of TQ. The HF gain ratio remained low under the TQ + IVA condition compared to controls. These results affirm that the IVA-induced increase in the HF gain ratio is dependent on the untethering of the hyperpolarizing effect of IK,ACh .
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular DynamicsNational Cerebral and Cardiovascular CenterOsakaJapan
| | - Hiromi Yamamoto
- Department of CardiologyKurashiki Central HospitalOhara HealthCare FoundationOkayamaJapan
- Division of Clinical ResearchKurashiki Clinical Research InstituteOhara HealthCare FoundationOkayamaJapan
| | - Tadayoshi Miyamoto
- Department of Sport and Health SciencesFaculty of Sport and Health ScienceOsaka Sangyo UniversityOsakaJapan
| | - Yohsuke Hayama
- Department of Cardiovascular DynamicsNational Cerebral and Cardiovascular CenterOsakaJapan
| | - Meihua Li
- Department of Cardiovascular DynamicsNational Cerebral and Cardiovascular CenterOsakaJapan
| | - Can Zheng
- Department of Cardiovascular DynamicsNational Cerebral and Cardiovascular CenterOsakaJapan
| | - Kazunori Uemura
- Department of Cardiovascular DynamicsNational Cerebral and Cardiovascular CenterOsakaJapan
| | - Masaru Sugimachi
- Department of Cardiovascular DynamicsNational Cerebral and Cardiovascular CenterOsakaJapan
| | - Keita Saku
- Department of Cardiovascular DynamicsNational Cerebral and Cardiovascular CenterOsakaJapan
| |
Collapse
|
11
|
Kawada T, Yamamoto H, Uemura K, Hayama Y, Nishikawa T, Zheng C, Li M, Miyamoto T, Sugimachi M. Ivabradine augments high-frequency dynamic gain of the heart rate response to low- and moderate-intensity vagal nerve stimulation under β-blockade. Am J Physiol Heart Circ Physiol 2021; 320:H2201-H2210. [PMID: 33891515 DOI: 10.1152/ajpheart.00057.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous study indicated that intravenously administered ivabradine (IVA) augmented the dynamic heart rate (HR) response to moderate-intensity vagal nerve stimulation (VNS). Considering an accentuated antagonism, the results were somewhat paradoxical; i.e., the accentuated antagonism indicates that an activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels via the accumulation of intracellular cyclic adenosine monophosphate (cAMP) augments the HR response to VNS, whereas the inhibition of HCN channels by IVA also augmented the HR response to VNS. To remove the possible influence from the accentuated antagonism, we examined the effects of IVA on the dynamic vagal control of HR under β-blockade. In anesthetized rats (n = 7), the right vagal nerve was stimulated for 10 min according to binary white noise signals between 0 and 10 Hz (V0-10), between 0 and 20 Hz (V0-20), and between 0 and 40 Hz (V0-40). The transfer function from VNS to HR was estimated. Under β-blockade (propranolol, 2 mg/kg iv), IVA (2 mg/kg iv) did not augment the asymptotic low-frequency gain but increased the asymptotic high-frequency gain in V0-10 (0.53 ± 0.10 vs. 1.74 ± 0.40 beats/min/Hz, P < 0.01) and V0-20 (0.79 ± 0.14 vs. 2.06 ± 0.47 beats/min/Hz, P < 0.001). These changes, which were observed under a minimal influence from sympathetic background tone, may reflect an increased contribution of the acetylcholine-sensitive potassium channel (IK,ACh) pathway after IVA, because the HR control via the IK,ACh pathway is faster and acts in the frequency range higher than the cAMP-mediated pathway.NEW & NOTEWORTHY Since ivabradine (IVA) inhibits hyperpolarization-activated cyclic nucleotide-gated channels, interactions among the sympathetic effect, vagal effect, and IVA can occur in the control of heart rate (HR). To remove the sympathetic effect, we estimated the transfer function from vagal nerve stimulation to HR under β-blockade in anesthetized rats. IVA augmented the high-frequency dynamic gain during low- and moderate-intensity vagal nerve stimulation. Untethering the hyperpolarizing effect of acetylcholine-sensitive potassium channels after IVA may be a possible underlying mechanism.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hiromi Yamamoto
- Department of Cardiology, Kurashiki Central Hospital, Ohara HealthCare Foundation, Okayama, Japan.,Division of Clinical Research, Kurashiki Clinical Research Institute, Ohara HealthCare Foundation, Okayama, Japan
| | - Kazunori Uemura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yohsuke Hayama
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Takuya Nishikawa
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Can Zheng
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Meihua Li
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tadayoshi Miyamoto
- Department of Sport and Health Sciences, Faculty of Sport and Health Science, Osaka Sangyo University, Osaka, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
12
|
Simko F, Baka T, Repova K, Aziriova S, Krajcirovicova K, Paulis L, Adamcova M. Ivabradine improves survival and attenuates cardiac remodeling in isoproterenol-induced myocardial injury. Fundam Clin Pharmacol 2020; 35:744-748. [PMID: 33098700 PMCID: PMC8451821 DOI: 10.1111/fcp.12620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
Abstract
This study investigated whether ivabradine, a selective If current inhibitor reducing heart rate (HR), is able to improve survival and prevent left ventricular (LV) remodeling in isoproterenol‐induced heart damage. Wistar rats were treated for 6 weeks: controls (n = 10), ivabradine (10 mg/kg/day orally; n = 10), isoproterenol (5 mg/kg/day intraperitoneally; n = 40), and isoproterenol plus ivabradine (n = 40). Isoproterenol increased mortality, induced hypertrophy of both ventricles and LV fibrotic rebuilding, and reduced systolic blood pressure (SBP). Ivabradine significantly increased survival rate (by 120%) and prolonged average survival time (by 20%). Furthermore, ivabradine reduced LV weight and hydroxyproline content in soluble and insoluble collagen fraction, reduced HR and attenuated SBP decline. We conclude that ivabradine improved survival in isoproterenol‐damaged hearts.
Collapse
Affiliation(s)
- Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, 81108, Slovak Republic.,3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, 83305, Slovak Republic.,Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, 84505, Slovak Republic
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, 81108, Slovak Republic
| | - Kristina Repova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, 81108, Slovak Republic
| | - Silvia Aziriova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, 81108, Slovak Republic
| | - Kristina Krajcirovicova
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, 81108, Slovak Republic
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, 81108, Slovak Republic
| | - Michaela Adamcova
- Department of Physiology, School of Medicine, Charles University, Hradec Kralove, 50003, Czech Republic
| |
Collapse
|
13
|
Levy BI, Heusch G, Camici PG. The many faces of myocardial ischaemia and angina. Cardiovasc Res 2020; 115:1460-1470. [PMID: 31228187 DOI: 10.1093/cvr/cvz160] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/25/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
Obstructive disease of the epicardial coronary arteries is the main cause of angina. However, a number of patients with anginal symptoms have normal coronaries or non-obstructive coronary artery disease (CAD) despite electrocardiographic evidence of ischaemia during stress testing. In addition to limited microvascular vasodilator capacity, the coronary microcirculation of these patients is particularly sensitive to vasoconstrictor stimuli, in a condition known as microvascular angina. This review briefly summarizes the determinants and control of coronary blood flow (CBF) and myocardial perfusion. It subsequently analyses the mechanisms responsible for transient myocardial ischaemia: obstructive CAD, coronary spasm and coronary microvascular dysfunction in the absence of epicardial coronary lesions, and variable combinations of structural anomalies, impaired endothelium-dependent and/or -independent vasodilation, and enhanced perception of pain. Lastly, we exemplify mechanism of angina during tachycardia. Distal to a coronary stenosis, coronary dilator reserve is already recruited and can be nearly exhausted at rest distal to a severe stenosis. Increased heart rate reduces the duration of diastole and thus CBF when metabolic vasodilation is no longer able to increase CBF. The increase in myocardial oxygen consumption and resulting metabolic vasodilation in adjacent myocardium without stenotic coronary arteries further acts to divert blood flow away from the post-stenotic coronary vascular bed through collaterals.
Collapse
Affiliation(s)
- Bernard I Levy
- Inserm U970 and Vessels and Blood Institute, 8 Rue Guy Patin, Paris, France
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, Universitätsklinikum Essen, Essen, Germany
| | - Paolo G Camici
- Vita Salute University and San Raffaele Hospital, Milan, Italy
| |
Collapse
|
14
|
Teeäär T, Serg M, Paapstel K, Vähi M, Kals J, Cockcroft JR, Zilmer M, Eha J, Kampus P. Atenolol's Inferior Ability to Reduce Central vs Peripheral Blood Pressure Can Be Explained by the Combination of Its Heart Rate-Dependent and Heart Rate-Independent Effects. Int J Hypertens 2020; 2020:4259187. [PMID: 32395337 PMCID: PMC7201670 DOI: 10.1155/2020/4259187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 03/16/2020] [Accepted: 03/28/2020] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Whether the inferior ability of atenolol to reduce central (aortic) compared to peripheral (brachial) blood pressure (BP) is related to its heart rate (HR)-dependent or -independent effects, or their combination, remains unclear. To provide further mechanistic insight into this topic, we studied the acute effects of atenolol versus nebivolol and ivabradine on systolic blood pressure amplification (SBPA; peripheral systolic BP minus central systolic BP) in a model of sick sinus syndrome patients with a permanent dual-chamber cardiac pacemaker in a nonrandomized single-blind single-group clinical trial. METHODS We determined hemodynamic indices noninvasively (Sphygmocor XCEL) before and at least 3 h after administration of oral atenolol 50 or 100 mg, nebivolol 5 mg, or ivabradine 5 or 7.5 mg during atrial pacing at a low (40 bpm), middle (60 bpm), and high (90 bpm) HR level in 25 participants (mean age 65.5 years, 12 men). RESULTS At the low HR level, i.e., when the drugs could exert their HR-dependent and HR-independent effects on central BP, only atenolol produced a significant decrease in SBPA (mean change 0.74 ± 1.58 mmHg (95% CI, 0.09-1.40; P = 0.028)), indicating inferior central vs peripheral systolic BP change. However, we observed no significant change in SBPA with atenolol at the middle and high HR levels, i.e., when HR-dependent mechanisms had been eliminated by pacing. CONCLUSION The findings of our trial with a mechanistic approach to the topic imply that the inferior ability of atenolol to reduce central vs peripheral BP can be explained by the combination of its heart rate-dependent and -independent effects. This trial is registered with NCT03245996.
Collapse
Affiliation(s)
- Tuuli Teeäär
- Department of Cardiology, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, Tartu 50406, Estonia
- Heart Clinic, Tartu University Hospital, 8 Puusepa Street, Tartu 50406, Estonia
| | - Martin Serg
- Department of Cardiology, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, Tartu 50406, Estonia
- Centre of Cardiology, North Estonia Medical Centre, 19 Sütiste Street, Tallinn 13419, Estonia
| | - Kaido Paapstel
- Department of Cardiology, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, Tartu 50406, Estonia
- Heart Clinic, Tartu University Hospital, 8 Puusepa Street, Tartu 50406, Estonia
| | - Mare Vähi
- Institute of Mathematics and Statistics, University of Tartu, 2 J. Liivi Street, Tartu 50409, Estonia
| | - Jaak Kals
- Department of Biochemistry, Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, Tartu 50411, Estonia
- Department of Surgery, Institute of Clinical Medicine, Tartu University Hospital, 8 Puusepa Street, Tartu 50406, Estonia
- Surgery Clinic, Tartu University Hospital, 8 Puusepa Street, Tartu 50406, Estonia
| | - John R. Cockcroft
- Division of Cardiology, Department of Medicine, Columbia University, 622 West 168th Street, New York, NY 10032, USA
| | - Mihkel Zilmer
- Department of Biochemistry, Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, Tartu 50411, Estonia
| | - Jaan Eha
- Department of Cardiology, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, Tartu 50406, Estonia
- Heart Clinic, Tartu University Hospital, 8 Puusepa Street, Tartu 50406, Estonia
| | - Priit Kampus
- Department of Cardiology, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, Tartu 50406, Estonia
- Centre of Cardiology, North Estonia Medical Centre, 19 Sütiste Street, Tallinn 13419, Estonia
| |
Collapse
|
15
|
Baehr A, Klymiuk N, Kupatt C. Evaluating Novel Targets of Ischemia Reperfusion Injury in Pig Models. Int J Mol Sci 2019; 20:E4749. [PMID: 31557793 PMCID: PMC6801853 DOI: 10.3390/ijms20194749] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
Coronary heart diseases are of high relevance for health care systems in developed countries regarding patient numbers and costs. Disappointingly, the enormous effort put into the development of innovative therapies and the high numbers of clinical studies conducted are counteracted by the low numbers of therapies that become clinically effective. Evidently, pre-clinical research in its present form does not appear informative of the performance of treatments in the clinic and, even more relevant, it appears that there is hardly any consent about how to improve the predictive capacity of pre-clinical experiments. According to the steadily increasing relevance that pig models have gained in biomedical research in the recent past, we anticipate that research in pigs can be highly predictive for ischemia-reperfusion injury (IRI) therapies as well. Thus, we here describe the significance of pig models in IRI, give an overview about recent developments in evaluating such models by clinically relevant methods and present the latest insight into therapies applied to pigs under IRI.
Collapse
Affiliation(s)
- Andrea Baehr
- Klinikum Rechts der Isar, Internal Medicine I, Technical University of Munich, 81675 Munich, Germany.
- German Centre for Cardiovascular Research, Munich Heart Alliance, 80802 Munich, Germany.
| | - Nikolai Klymiuk
- Klinikum Rechts der Isar, Internal Medicine I, Technical University of Munich, 81675 Munich, Germany.
- German Centre for Cardiovascular Research, Munich Heart Alliance, 80802 Munich, Germany.
| | - Christian Kupatt
- Klinikum Rechts der Isar, Internal Medicine I, Technical University of Munich, 81675 Munich, Germany.
- German Centre for Cardiovascular Research, Munich Heart Alliance, 80802 Munich, Germany.
| |
Collapse
|
16
|
Kakehi K, Iwanaga Y, Watanabe H, Sonobe T, Akiyama T, Shimizu S, Yamamoto H, Miyazaki S. Modulation of Sympathetic Activity and Innervation With Chronic Ivabradine and β-Blocker Therapies: Analysis of Hypertensive Rats With Heart Failure. J Cardiovasc Pharmacol Ther 2019; 24:387-396. [PMID: 30786751 DOI: 10.1177/1074248419829168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Whether the reduction of heart rate with ivabradine (IVA) could affect sympathetic activation and cardiac innervation in heart failure (HF) remains unknown. PURPOSE The present study assessed the chronic effects of IVA and β-blocker on the systemic and local sympathetic nervous systems of hypertensive animals with HF. METHODS AND RESULTS The Dahl salt-sensitive rats received chronic IVA, bisoprolol (BIS), or placebo (CTL) therapy. The survival of the animal models with IVA and BIS significantly improved (median; 19.7 in IVA and 19.7 in BIS vs 17.0 weeks in CTL, P < .001). A similar decrease in 24-hour heart rate (mean; 305 in IVA and 329 in BIS vs 388 beats/min in CTL, P < .001) without effect on blood pressure, and an improvement in the left ventricular dysfunction (mean fractional shortening; 56.7% in IVA and 47.8% in BIS vs 39.0% in CTL, P < .001) were observed in the animals with IVA and BIS. However, a negative inotropic effect was only observed in the animals with BIS. Excessive urinary noradrenaline excretion in animals with CTL was only suppressed with the use of IVA (mean; 1.35 μg/d in IVA and 1.95 μg/d in BIS vs 2.27 μg/d in CTL, P = .002). In contrast, atrial noradrenaline and acetylcholine depletion in the animals with CTL improved and the tyrosine hydroxylase expression in the both atria were restored with the use of both IVA and BIS. CONCLUSIONS IVA therapy improved the survival of hypertensive animals with HF. Furthermore, it was associated with the amelioration of systemic sympathetic activation and cardiac sympathetic and parasympathetic nerve innervations. Chronic β-blocker therapy with negative inotropic effects had beneficial effects only on cardiac innervations.
Collapse
Affiliation(s)
- Kazuyoshi Kakehi
- 1 Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yoshitaka Iwanaga
- 1 Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Heitaro Watanabe
- 1 Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Takashi Sonobe
- 2 Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tsuyoshi Akiyama
- 2 Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Shuji Shimizu
- 3 Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiromi Yamamoto
- 1 Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Shunichi Miyazaki
- 1 Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
17
|
Thomas D, Christ T, Fabritz L, Goette A, Hammwöhner M, Heijman J, Kockskämper J, Linz D, Odening KE, Schweizer PA, Wakili R, Voigt N. German Cardiac Society Working Group on Cellular Electrophysiology state-of-the-art paper: impact of molecular mechanisms on clinical arrhythmia management. Clin Res Cardiol 2018; 108:577-599. [PMID: 30306295 DOI: 10.1007/s00392-018-1377-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
Cardiac arrhythmias remain a common challenge and are associated with significant morbidity and mortality. Effective and safe rhythm control strategies are a primary, yet unmet need in everyday clinical practice. Despite significant pharmacological and technological advances, including catheter ablation and device-based therapies, the development of more effective alternatives is of significant interest to increase quality of life and to reduce symptom burden, hospitalizations and mortality. The mechanistic understanding of pathophysiological pathways underlying cardiac arrhythmias has advanced profoundly, opening up novel avenues for mechanism-based therapeutic approaches. Current management of arrhythmias, however, is primarily guided by clinical and demographic characteristics of patient groups as opposed to individual, patient-specific mechanisms and pheno-/genotyping. With this state-of-the-art paper, the Working Group on Cellular Electrophysiology of the German Cardiac Society aims to close the gap between advanced molecular understanding and clinical decision-making in cardiac electrophysiology. The significance of cellular electrophysiological findings for clinical arrhythmia management constitutes the main focus of this document. Clinically relevant knowledge of pathophysiological pathways of arrhythmias and cellular mechanisms of antiarrhythmic interventions are summarized. Furthermore, the specific molecular background for the initiation and perpetuation of atrial and ventricular arrhythmias and mechanism-based strategies for therapeutic interventions are highlighted. Current "hot topics" in atrial fibrillation are critically appraised. Finally, the establishment and support of cellular and translational electrophysiology programs in clinical rhythmology departments is called for to improve basic-science-guided patient management.
Collapse
Affiliation(s)
- Dierk Thomas
- Department of Cardiology, Medical University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany. .,HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.,Department of Cardiology, UHB NHS Trust, Birmingham, UK.,Department of Cardiovascular Medicine, Division of Rhythmology, University Hospital Münster, Münster, Germany
| | - Andreas Goette
- St. Vincenz-Hospital, Paderborn, Germany.,Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Matthias Hammwöhner
- St. Vincenz-Hospital, Paderborn, Germany.,Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.,Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jens Kockskämper
- Biochemical and Pharmacological Center (BPC) Marburg, Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Dominik Linz
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, SA, Australia.,Experimental Electrophysiology, University Hospital of Saarland, Homburg, Saar, Germany
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Freiburg, Germany
| | - Patrick A Schweizer
- Department of Cardiology, Medical University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.,Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany
| | - Reza Wakili
- Department of Cardiology and Vascular Medicine, Medical Faculty, West German Heart Center, University Hospital Essen, Essen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.
| |
Collapse
|
18
|
Niccoli G, Borovac JA, Vetrugno V, Camici PG, Crea F. Ivabradine in acute coronary syndromes: Protection beyond heart rate lowering. Int J Cardiol 2017; 236:107-112. [DOI: 10.1016/j.ijcard.2017.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 12/26/2022]
|
19
|
Effectiveness and Tolerability of Ivabradine with or Without Concomitant Beta-Blocker Therapy in Patients with Chronic Stable Angina in Routine Clinical Practice. Adv Ther 2016; 33:1550-64. [PMID: 27432382 PMCID: PMC5020130 DOI: 10.1007/s12325-016-0377-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 12/22/2022]
Abstract
Introduction In the prospective, open-label, non-interventional, multicenter RESPONSIfVE study, the effectiveness, response rates and tolerability of ivabradine with or without beta blocker (BB) were evaluated in patients with chronic stable angina pectoris (AP) in daily clinical practice. Methods In patients with AP, ivabradine was given twice daily in flexible doses for 4 months. Resting heart rate (HR), number of angina attacks, short-acting nitrate use, severity of symptoms [by Canadian Cardiovascular Society (CCS) score] and tolerability with or without existing BB therapy were documented and analyzed using descriptive statistical methods. Results In total, 1250 patients with AP (mean age 66.0 ± 10.9 years, 59.6% male, 31.9% previous myocardial infarction) and an indication for ivabradine were included. Sixty-five percent of all patients received BB. Further concomitant standard medication included aspirin (74.2%), statins (69.3%), angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (84.2%), diuretics (40.0%), long-acting nitrates (15.7%), and calcium antagonists (21.4%). After 4 months of ivabradine treatment (mean daily dose 11.0 ± 2.7 mg), mean HR was reduced from 82.4 ± 11.8 beats per minute (bpm) to 67.1 ± 8.4 bpm. The average number of angina attacks/week decreased from 1.2 ± 1.9 to 0.1 ± 0.6 and the average use of short-acting nitrates/week from 1.5 ± 2.8 units to 0.2 ± 1.0 units. CCS classification of patients improved from 76% classified in CCS grades II or III and 24% in CCS grade I to 66% classified in CCS grade I and only 35% remaining in CCS grades II or III at study end. Response rate to ivabradine (defined as HR <70 bpm or HR reduction ≥10 bpm) reached 87%. HR reduction, symptomatic improvement and response rates were comparable in patients with or without BB. Adverse drug reactions were reported for 2.2% of patients. Conclusion In this prospective study over a four-month period in clinical practice, ivabradine effectively reduced HR, angina attacks, and nitrate consumption in patients with AP with or without concomitant BB therapy. Ivabradine improved CCS scores and achieved a high treatment response rate with good general tolerability. Funding Servier. Trial registration Controlled-trials.com identifier, ISRCTN73861224.
Collapse
|