1
|
Chen X, Zhu Y, Luo M. The relationship between visual impairment and insomnia among people middle-aged and older in India. Sci Rep 2024; 14:30261. [PMID: 39633014 PMCID: PMC11618690 DOI: 10.1038/s41598-024-82125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
The correlation between insomnia and visual impairment has not been extensively studied. This study aims to investigate this relationship among individuals aged 45 and above in India. This investigation utilized data from the 2017-2018 Wave 1 of the Longitudinal Aging Study in India (LASI). Visual impairment was self-reported, including presbyopia, cataracts, glaucoma, myopia, and hyperopia. Insomnia symptoms were determined by at least one of the following: difficulty in initiating sleep (DIS), difficulty in maintaining sleep (DMS), or early morning awakening (EMA) occurring three or more times per week. Analytical methods involved multivariate logistic regression, subgroup analyses, and interaction tests to interpret the data. In our cohort of 65,840 participants, 29.6% reporting insomnia symptoms demonstrated a higher risk for visual impairment. There was a significant association between visual impairment and increased risk of insomnia symptoms after adjustment for confounders. Furthermore, age in the relationship between insomnia and cataracts, sex in the relationship between insomnia and myopia, and age, sex, and smoking status in the relationship between insomnia and hyperopia, was found to have a significant interaction effect, respectively. Visual impairment was significantly associated with a higher incidence of insomnia among middle-aged and older adults in India. These findings underscore the importance of timely interventions to improve sleep quality and overall well-being in visually impaired populations.
Collapse
Affiliation(s)
- Xueqin Chen
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Yangang Zhu
- Lianshui People's Hospital of Kangda College Affiliated to Nanjing Medical University, Huai'an, Jiangsu, China
| | - Man Luo
- Huai'an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 3 HePing Road, Qing He Distinct, Huai'an, Jiangsu, 223002, China.
| |
Collapse
|
2
|
Megha KB, Arathi A, Shikha S, Alka R, Ramya P, Mohanan PV. Significance of Melatonin in the Regulation of Circadian Rhythms and Disease Management. Mol Neurobiol 2024; 61:5541-5571. [PMID: 38206471 DOI: 10.1007/s12035-024-03915-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Melatonin, the 'hormone of darkness' is a neuronal hormone secreted by the pineal gland and other extra pineal sites. Responsible for the circadian rhythm and seasonal behaviour of vertebrates and mammals, melatonin is responsible for regulating various physiological conditions and the maintenance of sleep, body weight and the neuronal activities of the ocular sites. With its unique amphiphilic structure, melatonin can cross the cellular barriers and elucidate its activities in the subcellular components, including mitochondria. Melatonin is a potential scavenger of oxygen and nitrogen-reactive species and can directly obliterate the ROS and RNS by a receptor-independent mechanism. It can also regulate the pro- and anti-inflammatory cytokines in various pathological conditions and exhibit therapeutic activities against neurodegenerative, psychiatric disorders and cancer. Melatonin is also found to show its effects on major organs, particularly the brain, liver and heart, and also imparts a role in the modulation of the immune system. Thus, melatonin is a multifaceted candidate with immense therapeutic potential and is still considered an effective supplement on various therapies. This is primarily due to rectification of aberrant circadian rhythm by improvement of sleep quality associated with risk development of neurodegenerative, cognitive, cardiovascular and other metabolic disorders, thereby enhancing the quality of life.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - Saini Shikha
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Rao Alka
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Prabhu Ramya
- P.G. Department of Biotechnology, Government Arts College, Trivandrum, 695 014, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India.
| |
Collapse
|
3
|
Schulz A, Patel N, Brudvig JJ, Stehr F, Weimer JM, Augustine EF. The parent and family impact of CLN3 disease: an observational survey-based study. Orphanet J Rare Dis 2024; 19:125. [PMID: 38500130 PMCID: PMC10949783 DOI: 10.1186/s13023-024-03119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND CLN3 disease (also known as CLN3 Batten disease or Juvenile Neuronal Ceroid Lipofuscinosis) is a rare pediatric neurodegenerative disorder caused by biallelic mutations in CLN3. While extensive efforts have been undertaken to understand CLN3 disease etiology, pathology, and clinical progression, little is known about the impact of CLN3 disease on parents and caregivers. Here, we investigated CLN3 disease progression, clinical care, and family experiences using semi-structured interviews with 39 parents of individuals with CLN3 disease. Analysis included response categorization by independent observers and quantitative methods. RESULTS Parents reported patterns of disease progression that aligned with previous reports. Insomnia and thought- and mood-related concerns were reported frequently. "Decline in visual acuity" was the first sign/symptom noticed by n = 28 parents (70%). A minority of parents reported "behavioral issues" (n = 5, 12.5%), "communication issues" (n = 3, 7.5%), "cognitive decline" (n = 1, 2.5%), or "seizures" (n = 1, 2.5%) as the first sign/symptom. The mean time from the first signs or symptoms to a diagnosis of CLN3 disease was 2.8 years (SD = 4.1). Misdiagnosis was common, being reported by n = 24 participants (55.8%). Diagnostic tests and treatments were closely aligned with observed symptoms. Desires for improved or stabilized vision (top therapeutic treatment concern for n = 14, 32.6%), cognition (n = 8, 18.6%), and mobility (n = 3, 7%) dominated parental concerns and wishes for therapeutic correction. Family impacts were common, with n = 34 (81%) of respondents reporting a financial impact on the family and n = 20 (46.5%) reporting marital strain related to the disease. CONCLUSIONS Collectively, responses demonstrated clear patterns of disease progression, a strong desire for therapies to treat symptoms related to vision and cognition, and a powerful family impact driven by the unrelenting nature of disease progression.
Collapse
Affiliation(s)
- Angela Schulz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nita Patel
- Amicus Therapeutics, Princeton, NJ, USA.
| | - Jon J Brudvig
- Amicus Therapeutics, Princeton, NJ, USA
- Pediatrics & Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Jill M Weimer
- Amicus Therapeutics, Princeton, NJ, USA
- Pediatrics & Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | |
Collapse
|
4
|
Cardinali DP, Pandi-Perumal SR, Brown GM. Melatonin as a Chronobiotic and Cytoprotector in Non-communicable Diseases: More than an Antioxidant. Subcell Biochem 2024; 107:217-244. [PMID: 39693027 DOI: 10.1007/978-3-031-66768-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A circadian disruption, manifested by disturbed sleep and low-grade inflammation, is commonly seen in noncommunicable diseases (NCDs). Cardiovascular, respiratory and renal disorders, diabetes and the metabolic syndrome, cancer, and neurodegenerative diseases are among the most common NCDs prevalent in today's 24-h/7 days Society. The decline in plasma melatonin, which is a conserved phylogenetic molecule across all known aerobic creatures, is a constant feature in NCDs. The daily evening melatonin surge synchronizes both the central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN) and myriads of cellular clocks in the periphery ("chronobiotic effect"). Melatonin is the prototypical endogenous chronobiotic agent. Several meta-analyses and consensus studies support the use of melatonin to treat sleep/wake cycle disturbances associated with NCDs. Melatonin also has cytoprotective properties, acting primarily not only as an antioxidant by buffering free radicals, but also by regulating inflammation, down-regulating pro-inflammatory cytokines, suppressing low-grade inflammation, and preventing insulin resistance, among other effects. Melatonin's phylogenetic conservation is explained by its versatility of effects. In animal models of NCDs, melatonin treatment prevents a wide range of low-inflammation-linked alterations. As a result, the therapeutic efficacy of melatonin as a chronobiotic/cytoprotective drug has been proposed. Sirtuins 1 and 3 are at the heart of melatonin's chronobiotic and cytoprotective function, acting as accessory components or downstream elements of circadian oscillators and exhibiting properties such as mitochondrial protection. Allometric calculations based on animal research show that melatonin's cytoprotective benefits may require high doses in humans (in the 100 mg/day range). If melatonin is expected to improve health in NCDs, the low doses currently used in clinical trials (i.e., 2-10 mg) are unlikely to be beneficial. Multicentre double-blind studies are required to determine the potential utility of melatonin in health promotion. Moreover, melatonin dosage and levels used should be re-evaluated based on preclinical research information.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
| | - Seithikurippu R Pandi-Perumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Cardinali DP. Melatonin as a chronobiotic/cytoprotective agent in bone. Doses involved. J Pineal Res 2024; 76:e12931. [PMID: 38083808 DOI: 10.1111/jpi.12931] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Because the chronobiotic and cytoprotective molecule melatonin diminishes with age, its involvement in postmenopausal and senescence pathology has been considered since long. One relevant melatonin target site in aging individuals is bone where melatonin chronobiotic effects mediated by MT1 and MT2 receptors are demonstrable. Precursors of bone cells located in bone marrow are exposed to high quantities of melatonin and the possibility arises that melatonin acts a cytoprotective compound via an autacoid effect. Proteins that are incorporated into the bone matrix, like procollagen type I c-peptide, augment after melatonin exposure. Melatonin augments osteoprotegerin, an osteoblastic protein that inhibits the differentiation of osteoclasts. Osteoclasts are target cells for melatonin as they degrade bone partly by generating free radicals. Osteoclast activity and bone resorption are impaired via the free radical scavenger properties of melatonin. The administration of melatonin in chronobiotic doses (less than 10 mg daily) is commonly used in clinical studies on melatonin effect on bone. However, human equivalent doses allometrically derived from animal studies are in the 1-1.5 mg/kg/day range for a 75 kg human adult, a dose rarely used clinically. In view of the absence of toxicity of melatonin in phase 1 pharmacological studies with doses up to 100 mg in normal volunteers, further investigation is needed to determine whether high melatonin doses have higher therapeutic efficacy in preventing bone loss.
Collapse
Affiliation(s)
- Daniel P Cardinali
- CENECON, Faculty of Medical Sciences, Universidad de Buenos Aires, Buenos Aires, Argentina
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
6
|
Cardinali DP, Garay A. Melatonin as a Chronobiotic/Cytoprotective Agent in REM Sleep Behavior Disorder. Brain Sci 2023; 13:brainsci13050797. [PMID: 37239269 DOI: 10.3390/brainsci13050797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Dream-enactment behavior that emerges during episodes of rapid eye movement (REM) sleep without muscle atonia is a parasomnia known as REM sleep behavior disorder (RBD). RBD constitutes a prodromal marker of α-synucleinopathies and serves as one of the best biomarkers available to predict diseases such as Parkinson disease, multiple system atrophy and dementia with Lewy bodies. Most patients showing RBD will convert to an α-synucleinopathy about 10 years after diagnosis. The diagnostic advantage of RBD relies on the prolonged prodromal time, its predictive power and the absence of disease-related treatments that could act as confounders. Therefore, patients with RBD are candidates for neuroprotection trials that delay or prevent conversion to a pathology with abnormal α-synuclein metabolism. The administration of melatonin in doses exhibiting a chronobiotic/hypnotic effect (less than 10 mg daily) is commonly used as a first line treatment (together with clonazepam) of RBD. At a higher dose, melatonin may also be an effective cytoprotector to halt α-synucleinopathy progression. However, allometric conversion doses derived from animal studies (in the 100 mg/day range) are rarely employed clinically regardless of the demonstrated absence of toxicity of melatonin in phase 1 pharmacological studies with doses up to 100 mg in normal volunteers. This review discusses the application of melatonin in RBD: (a) as a symptomatic treatment in RBD; (b) as a possible disease-modifying treatment in α-synucleinopathies. To what degree melatonin has therapeutic efficacy in the prevention of α-synucleinopathies awaits further investigation, in particular multicenter double-blind trials.
Collapse
Affiliation(s)
- Daniel P Cardinali
- CENECON, Faculty of Medical Sciences, University of Buenos Aires, Buenos Aires C1431FWO, Argentina
| | - Arturo Garay
- Unidad de Medicina del Sueño-Sección Neurología, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Buenos Aires C1431FWO, Argentina
| |
Collapse
|
7
|
Burgess HJ, Emens JS. Drugs Used in Circadian Sleep-Wake Rhythm Disturbances. Sleep Med Clin 2022; 17:421-431. [PMID: 36150804 DOI: 10.1016/j.jsmc.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This article focuses on melatonin and other melatonin receptor agonists and summarizes their circadian phase shifting and sleep-enhancing properties, along with their associated possible safety concerns. The circadian system and circadian rhythm sleep-wake disorders are described, along with the latest American Academy of Sleep Medicine recommendations for the use of exogenous melatonin in treating them. In addition, the practical aspects of using exogenous melatonin obtainable over the counter in the United States, consideration of the effects of concomitant light exposure, and assessing treatment response are discussed.
Collapse
Affiliation(s)
- Helen J Burgess
- Biological Rhythms Research Laboratory, Department of Behavioral Sciences, Rush University Medical Center, 1645 West Jackson Boulevard, Suite 425, Chicago, IL 60612, USA.
| | - Jonathan S Emens
- Department of Psychiatry, Oregon Health & Science University, VA Portland Health Care System, 3710 Southwest US Veterans Hospital, Road P3-PULM, Portland, OR 97239, USA; Department of Medicine, Oregon Health & Science University, VA Portland Health Care System, 3710 Southwest US Veterans Hospital, Road P3-PULM, Portland, OR 97239, USA
| |
Collapse
|
8
|
Neves AR, Albuquerque T, Quintela T, Costa D. Circadian rhythm and disease: Relationship, new insights, and future perspectives. J Cell Physiol 2022; 237:3239-3256. [PMID: 35696609 DOI: 10.1002/jcp.30815] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023]
Abstract
The circadian system is responsible for internal functions and regulation of the organism according to environmental cues (zeitgebers). Circadian rhythm dysregulation or chronodisruption has been associated with several diseases, from mental to autoimmune diseases, and with life quality change. Following this, some therapies have been developed to correct circadian misalignments, such as light therapy and chronobiotics. In this manuscript, we describe the circadian-related diseases so far investigated, and studies reporting relevant data on this topic, evidencing this relationship, are included. Despite the actual limitations in published work, there is clear evidence of the correlation between circadian rhythm dysregulation and disease origin/development, and, in this way, clock-related therapies emerge as great progress in the clinical field. Future improvements in such interventions can lead to the development of successful chronotherapy strategies, deeply contributing to enhanced therapeutic outcomes.
Collapse
Affiliation(s)
- Ana R Neves
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Tânia Albuquerque
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.,Unidade de Investigação para o Desenvolvimento do Interior (UDI-IPG), Instituto Politécnico da Guarda, Guarda, Portugal
| | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
9
|
Beyond the limits of circadian entrainment: Non-24-hour sleep-wake disorder, shift work, and social jet lag. J Theor Biol 2022; 545:111148. [PMID: 35513166 DOI: 10.1016/j.jtbi.2022.111148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 01/07/2023]
Abstract
While the vast majority of humans are able to entrain their circadian rhythm to the 24-hour light-dark cycle, there are numerous individuals who are not able to do so due to disease or societal reasons. We use computational and mathematical methods to analyze a well-established model of human circadian rhythms to address cases where individuals do not entrain to the 24-hour light-dark cycle, leading to misalignment of their circadian phase. For each case, we provide a mathematically justified strategy for how to minimize circadian misalignment. In the case of non-24-hour sleep-wake disorder, we show why appropriately timed bright light therapy induces entrainment. With regard to shift work, we explain why reentrainment times following transitions between day and night shifts are asymmetric, and how higher light intensity enables unusually rapid reentrainment after certain transitions. Finally, with regard to teenagers who engage in compensatory catch-up sleep on weekends, we propose a rule of thumb for sleep and wake onset times that minimizes circadian misalignment due to this type of social jet lag. In all cases, the primary mathematical approach involves understanding the dynamics of entrainment maps that measure the phase of the entrained rhythm with respect to the daily onset of lights.
Collapse
|
10
|
Ingram DG, Cruz JM, Stahl ED, Carr NM, Lind LJ, Keirns CC. Sleep Challenges and Interventions in Children With Visual Impairment. J Pediatr Ophthalmol Strabismus 2022; 59:77-86. [PMID: 34435902 DOI: 10.3928/01913913-20210623-01] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To examine sleep patterns in a large and heterogeneous group of children with visual impairment. METHODS A cross-sectional survey of parents of children with visual impairment was offered via the National Federation of the Blind and the National Organization for Albinism and Hypopigmentation. RESULTS Complete survey results were available for 72 participants, aged 1 to 16 years. Parents of 52 (72%) children reported that their child had cycles of good sleep and bad sleep, and 50 (69%) reported that their child's sleep patterns caused significant stress for them or their family. Scores on the Childhood Sleep Habits Questionnaire (CSHQ) increased (> 41) in 64 (89%) children, indicating a likely clinically significant sleep problem. When compared to normative data from children aged 4 to 10 years, children in the current sample scored higher (more sleep problems) on all eight subscales on the CSHQ. The presence of comorbid developmental delay was most strongly associated with sleep problems. Supplemental melatonin and improving daytime and nighttime schedules or routines were reported as the most helpful for sleep. Many families reported a need for further information regarding melatonin use as a supplement. CONCLUSIONS A high proportion of children with visual impairment experience clinically meaningful sleep problems, regardless of degree of light perception or visual acuity. There is a strong need for increased awareness and screening for sleep problems in this population. Potential treatment modalities, including supplemental melatonin, should be discussed with families. [J Pediatr Ophthalmol & Strabismus. 2022;59(2):77-86.].
Collapse
|
11
|
Cardinali DP, Brown GM, Pandi-Perumal SR. Melatonin's Benefits and Risks as a Therapy for Sleep Disturbances in the Elderly: Current Insights. Nat Sci Sleep 2022; 14:1843-1855. [PMID: 36267165 PMCID: PMC9578490 DOI: 10.2147/nss.s380465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 01/19/2023] Open
Abstract
Aging is accompanied by circadian changes, including disruptive alterations in the sleep/wake cycle, as well as the beginning of low-degree inflammation ("inflammaging"), a scenario that leads to several chronic illnesses, including cancer, and metabolic, cardiovascular, and neurological dysfunctions. As a result, any effective approach to healthy aging must consider both the correction of circadian disturbance and the control of low-grade inflammation. One of the most important prerequisites for healthy aging is the preservation of robust circadian rhythmicity (particularly of the sleep/wake cycle). Sleep disturbance disrupts various activities in the central nervous system, including waste molecule elimination. Melatonin is a chemical with extraordinary phylogenetic conservation found in all known aerobic creatures whose alteration plays an important role in sleep changes with aging. Every day, the late afternoon/nocturnal surge in pineal melatonin helps to synchronize both the central circadian pacemaker found in the hypothalamic suprachiasmatic nuclei (SCN) and a plethora of peripheral cellular circadian clocks. Melatonin is an example of an endogenous chronobiotic substance that can influence the timing and amplitude of circadian rhythms. Moreover, melatonin is also an excellent anti-inflammatory agent, buffering free radicals, down-regulating proinflammatory cytokines, and reducing insulin resistance, among other things. We present both scientific and clinical evidence that melatonin is a safe drug for treating sleep disturbances in the elderly.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Gregory M Brown
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | |
Collapse
|
12
|
Abstract
Foster provides an overview of the hormone melatonin, discussing its role in seasonal biology and its more controversial function in human sleep.
Collapse
Affiliation(s)
- Russell G Foster
- Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, New Biochemistry Building, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
13
|
Brown GM, Pandi-Perumal SR, Pupko H, Kennedy JL, Cardinali DP. Melatonin as an Add-On Treatment of COVID-19 Infection: Current Status. Diseases 2021; 9:64. [PMID: 34562971 PMCID: PMC8482145 DOI: 10.3390/diseases9030064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
This brief review was written to provide a perspective on the flurry of reports suggesting that melatonin can be an important add-on therapy for COVID-19. Despite the passage of more than 60 years since its discovery and much evidence representing the contrary, there has been great reluctance to conceive melatonin as anything other than a hormone. Many other body chemicals are known to have multiple roles. Melatonin was first shown to be a hormone derived from the pineal gland, to be actively synthesized there only at night, and to act on targets directly or via the G-protein-coupled receptors (GPCRs) superfamily. It is of note that over 40 years ago, it was also established that melatonin is present, synthesized locally, and acts within the gastrointestinal tract. A wider distribution was then found, including the retina and multiple body tissues. In addition, melatonin is now known to have non-hormonal actions, acting as a free radical scavenger, an antioxidant, and as modulating immunity, dampening down innate tissue responses to invaders while boosting the production of antibodies against them. These actions make it a potentially excellent weapon against infection by the SARS-CoV-2 virus. Early published results support that thesis. Recently, a randomized controlled study reported that low doses of melatonin significantly improved symptoms in hospitalized COVID-19 patients, leading to more rapid discharge with no side effects, while significantly decreasing levels of CRP, proinflammatory cytokines, and modulating dysregulated genes governing cellular and humoral immunity. It is now critical that these trials be repeated, with dose-response studies conducted and safety proven. Numerous randomized controlled trials are ongoing, which should complete those objectives while also allowing for a more thorough evaluation of the mechanisms of action and possible applications to other severe diseases.
Collapse
Affiliation(s)
- Gregory M. Brown
- Centre for Addiction and Mental Health, Molecular Brain Sciences, Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada;
| | - Seithikurippu R. Pandi-Perumal
- Somnogen Canada Inc., Toronto, ON M6H 1C5, Canada;
- Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai 600077, India
| | - Harold Pupko
- Primary Care Mental Health Physician, Bathurst St., Toronto, ON M3H 3S3, Canada;
| | - James L. Kennedy
- Centre for Addiction and Mental Health, Molecular Brain Sciences, Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada;
| | - Daniel P. Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires 1007, Argentina;
| |
Collapse
|
14
|
Abstract
The objective of chronotherapy is to optimize medical treatments taking into account the body's circadian rhythms. Chronotherapy is referred to and practiced in two different ways: (1) to alter the sleep-wake rhythms of patients to improve the sequels of several pathologies; (2) to take into account the circadian rhythms of patients to improve therapeutics. Even minor dysfunction of the biological clock can greatly affect sleep/wake physiology causing excessive diurnal somnolence, increase in sleep onset latency, phase delays or advances in sleep onset, frequent night awakenings, reduced sleep efficiency, delayed and shortened rapid eye movement sleep, or increased periodic leg movements. Chronotherapy aims to restore the proper circadian pattern of the sleep-wake cycle, through adequate sleep hygiene, timed light exposure, and the use of chronobiotic medications, such as melatonin, that affect the output phase of circadian rhythms, thus controlling the clock. Concerning the second use of chronotherapy, therapeutic outcomes as diverse as the survival after open-heart surgery or the efficacy and tolerance to chemotherapy vary according to the time of day. However, humans are heterogeneous concerning the timing of their internal clocks. Not only different chronotypes exist but also the endogenous human circadian period (τ) is not a stable trait as it depends on many internal and external factors. If any scheduled therapeutic intervention is going to be optimized, a tool is needed for simple diagnostic and objectively measurement of an individual's internal time at any given time. Methodologic advances like the use of single-sample gene expression and metabolomics are discussed.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Gregory M Brown
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
15
|
Nishimon S, Nishino N, Nishino S. Advances in the pharmacological management of non-24-h sleep-wake disorder. Expert Opin Pharmacother 2021; 22:1039-1049. [PMID: 33618599 DOI: 10.1080/14656566.2021.1876665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Introduction: Melatonin, a hormone that regulates circadian rhythms and the sleep-wake cycle, is produced mainly during the dark period in the pineal gland and is suppressed by light exposure. Patients with non-24-h sleep-wake disorder (non-24) fail to entrain the master clock with the 24-h light-dark cycle due to the lack of light perception to the suprachiasmatic nucleus typically in totally blind individuals or other organic disorders in sighted individuals, causing a progressive delay in the sleep-wake cycle and periodic insomnia and daytime sleepiness.Areas covered: Herein, the authors review the pharmacological therapies including exogenous melatonin and melatonin receptor agonists for the management of non-24. They introduce a historical report about the effects of melatonin on the phase shift and entrainment for blind individuals with the free-running circadian rhythm.Expert opinion: Orally administered melatonin entrains the endogenous circadian rhythm and improves nighttime sleep and daytime alertness for non-24. Currently, tasimelteon is the only approved medication for non-24 by the US Food and Drug Administration and the European Medicines Agency. Treatments that focus only on sleep problems are insufficient for the treatment of non-24, and aids to entrain the free-running rhythm with the light-dark cycle are needed.
Collapse
Affiliation(s)
- Shohei Nishimon
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, USA.,Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naoya Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, USA
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, USA
| |
Collapse
|
16
|
Abstract
Preservation of a robust circadian rhythmicity (particulsarly of the sleep/wake cycle), a proper nutrition and adequate physical exercise are key elements for healthy aging. Aging comes along with circadian alteration, e.g. a disrupted sleep and inflammation, that leads to metabolic disorders. In turn, sleep cycle disturbances cause numerous pathophysiological changes that accelerates the aging process. In the central nervous system, sleep disruption impairs several functions, among them, the clearance of waste molecules. The decrease of plasma melatonin, a molecule of unusual phylogenetic conservation present in all known aerobic organisms, plays a particular role as far as the endocrine sequels of aging. Every day, the late afternoon/nocturnal increase of melatonin synchronizes both the central circadian pacemaker located in the hypothalamic suprachiasmatic nuclei as well as myriads of peripheral cellular circadian clocks. This is called the "chronobiotic effect" of melatonin, the methoxyindole being the prototype of the endogenous family of chronobiotic agents. In addition, melatonin exerts a significant cytoprotective action by buffering free radicals and reversing inflammation via down regulation of proinflammatory cytokines, suppression of low degree inflammation and prevention of insulin resistance. Because of these properties melatonin has been advocated to be a potential therapeutic tool in COVID 19 pandemic. Melatonin administration to aged animals counteracts a significant number of senescence-related changes. In humans, melatonin is effective both as a chronobiotic and a cytoprotective agent to maintain a healthy aging. Circulating melatonin levels are consistently reduced in the metabolic syndrome, ischemic and non-ischemic cardiovascular diseases and neurodegenerative disorders like the Alzheimer's and Parkinson's diseases. The potential therapeutic value of melatonin has been suggested by a limited number of clinical trials generally employing melatonin in the 2-10mg/day range. However, from animal studies the cytoprotective effects of melatonin need higher doses to become apparent (i.e. in the 100mg/day range). Hence, controlled studies employing melatonin doses in this range are urgently needed.
Collapse
|
17
|
Jia X, Zhang L, Zhang W, Zhou Y, Song Y, Liu C, Yang N, Sun J, Sun Z, Li Z, Shi C, Han Y, Yuan Y, Shi J, Liu Y, Guo X. Melatonin ameliorates the sleep disorder induced by surgery under sevoflurane anaesthesia in aged mice. Basic Clin Pharmacol Toxicol 2021; 128:256-267. [PMID: 32975883 DOI: 10.1111/bcpt.13498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/01/2020] [Accepted: 09/13/2020] [Indexed: 11/30/2022]
Abstract
Post-operative sleep disorders induce adverse effects on patients, especially the elderly, which may be associated with surgery and inhalational anaesthetics. Melatonin is a neuroendocrine regulator of the sleep-wake cycle. In this study, we analysed the alterations of post-operative sleep in aged melatonin-deficient (C57BL/6J) mice, and investigated if exogenous melatonin could facilitate entrainment of circadian rhythm after laparotomy under sevoflurane anaesthesia. The results showed that laparotomy under sevoflurane anaesthesia had a greater influence on post-operative sleep than sevoflurane alone. Laparotomy under anaesthesia led to circadian rhythm shifting forward, altered EEG power density and delta power of NREM sleep, and lengthened REM and NREM sleep latencies. In the light phase, the number of waking episodes tended to decline, and wake episode duration elevated. However, these indicators presented the opposite tendency during the dark phase. Melatonin showed significant efficacy for ameliorating the sleep disorder and restoring physiological sleep, and most of the beneficial effect of melatonin was antagonized by luzindole, a melatonin receptor antagonist.
Collapse
Affiliation(s)
- Xixi Jia
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Liqun Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yang Zhou
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yanan Song
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Chang Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jie Sun
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhuonan Sun
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Chengmei Shi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yi Yuan
- Department of Anesthesiology, Beijing Jishuitan Hospital, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yajie Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
18
|
Abstract
This article focuses on melatonin and other melatonin receptor agonists, and specifically their circadian phase shifting and sleep-enhancing properties. The circadian system and circadian rhythm sleep-wake disorders are briefly reviewed, followed by a summary of the circadian phase shifting, sleep-enhancing properties, and possible safety concerns associated with melatonin and other melatonin receptor agonists. The recommended use of melatonin, including dose and timing, in the latest American Academy of Sleep Medicine Clinical Practice Guidelines for the treatment of intrinsic circadian rhythm disorders is also reviewed. Lastly, the practical aspects of treatment and consideration of clinical treatment outcomes are discussed.
Collapse
Affiliation(s)
- Helen J Burgess
- Biological Rhythms Research Laboratory, Department of Behavioral Sciences, Rush University Medical Center, 1645 West Jackson Boulevard, Suite 425, Chicago, IL 60612, USA.
| | - Jonathan S Emens
- Department of Psychiatry, Oregon Health & Science University, VA Portland Health Care System, 3710 Southwest US Veterans Hospital, Road P3-PULM, Portland, OR 97239, USA; Department of Medicine, Oregon Health & Science University, VA Portland Health Care System, 3710 Southwest US Veterans Hospital, Road P3-PULM, Portland, OR 97239, USA
| |
Collapse
|
19
|
Elderly as a High-risk Group during COVID-19 Pandemic: Effect of Circadian Misalignment, Sleep Dysregulation and Melatonin Administration. ACTA ACUST UNITED AC 2020; 4:81-87. [PMID: 33015537 PMCID: PMC7519696 DOI: 10.1007/s41782-020-00111-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
The association of age with a higher vulnerability to COVID-19 infection is a subject of major importance. Several factors, including higher stress due to social isolation, diminished melatonin levels with age, and higher exposure of individuals to light at the evening, which reduces melatonin levels and disrupts circadian rhythmicity are relevant for maintaining the circadian health in aged individuals. Properly administered, chronotherapy restores the optimal circadian pattern of the sleep–wake cycle in the elderly. It involves adequate sleep hygiene, timed light exposure, and the use of a chronobiotic medication like melatonin, which affects the output phase of circadian rhythms thus controlling the biological clock. Besides, the therapeutic potential of melatonin as an agent to counteract the consequences of COVID-19 infections has been advocated due to its wide-ranging effects as an antioxidant, anti-inflammatory, and as an immunomodulatory agent, as well as to a possible antiviral action. This article discusses how chronotherapy may reverse the detrimental circadian condition of the elderly in the COVID-19 pandemic.
Collapse
|
20
|
|
21
|
Rémi J, Pollmächer T, Spiegelhalder K, Trenkwalder C, Young P. Sleep-Related Disorders in Neurology and Psychiatry. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 116:681-688. [PMID: 31709972 PMCID: PMC6865193 DOI: 10.3238/arztebl.2019.0681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/07/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sleep-related disorders are a group of illnesses with marked effects on patients' quality of life and functional ability. Their diagnosis and treatment is a matter of common interest to multiple medical disciplines. METHODS This review is based on relevant publications retrieved by a selective search in PubMed (Medline) and on the guide- lines of the German Society for Sleep Medicine, the German Neurological Society, and the German Association for Psychiatry, Psychotherapy and Psychosomatics. RESULTS A pragmatic classification of sleep disorders by their three chief complaints-insomnia, daytime somnolence, and sleep-associated motor phenomena-enables tentative diagnoses that are often highly accurate. Some of these disorders can be treated by primary care physicians, while others call for referral to a neurologist or psychiatrist with special experience in sleep medicine. For patients suffering from insomnia as a primary sleep disorder, rather than a symptom of another disease, meta-analyses have shown the efficacy of cognitive behavioral therapy, with high average effect sizes. These patients, like those suffering from secondary sleep disorders, can also benefit from drug treatment for a limited time. Studies have shown marked improvement of sleep latency and sleep duration from short-term treatment with benzodiazepines and Z-drugs (non- benzodiazepine agonists such as zolpidem and zopiclone), but not without a risk of tolerance and dependence. For sleep disorders with the other two main manifestations, specific drug therapy has been found to be beneficial. CONCLUSION Sleep disorders in neurology and psychiatry are a heterogeneous group of disorders with diverse manifestations. Their proper diagnosis and treatment can help prevent secondary diseases and the worsening of concomitant conditions. Care structures for the treatment of sleep disorders should be further developed.
Collapse
Affiliation(s)
- Jan Rémi
- Department of Neurology, Medical Center of the Ludwig-Maximilians–University of Munich (LMU), Germany
| | | | - Kai Spiegelhalder
- Department of Psychiatry and Psychotherapy, University Medical Center Freiburg, Medical Faculty, University of Freiburg, Germany
| | - Claudia Trenkwalder
- Center of Parkinsonism and Movement Disorders, Paracelsus-Elena Hospital, Kassel, Germany and Department of Neurosurgery, University Medical Center Göttingen, Germany
| | - Peter Young
- Specialized Clinic for Therapies in Neurology, Medical Park Reithofpark, Bad Feilnbach, Germany
| |
Collapse
|
22
|
Choi Y, Raymer BK. Sleep modulating agents. Bioorg Med Chem Lett 2019; 29:2025-2033. [PMID: 31307886 DOI: 10.1016/j.bmcl.2019.06.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/17/2019] [Accepted: 06/22/2019] [Indexed: 12/28/2022]
Abstract
Sleep and wake are two fundamental states of human existence. Conditions such as insomnia and hypersomnia can have profound negative effects on human health. Many pharmacological interventions impacting sleep and wake are available or are under development. This brief digest surveys early approaches to sleep modulation and highlights recent developments in sleep modulating agents.
Collapse
Affiliation(s)
- Younggi Choi
- Discovery Chemistry, Alkermes, 852 Winter Street, Waltham, MA, United States
| | - Brian K Raymer
- Discovery Research, Alkermes, 852 Winter Street, Waltham, MA, United States.
| |
Collapse
|
23
|
Nishimon S, Nishimon M, Nishino S. Tasimelteon for treating non-24-h sleep-wake rhythm disorder. Expert Opin Pharmacother 2019; 20:1065-1073. [DOI: 10.1080/14656566.2019.1603293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shohei Nishimon
- Sleep and Circadian Neurobiology Laboratory, Psychiatry and Behavior Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mari Nishimon
- Sleep and Circadian Neurobiology Laboratory, Psychiatry and Behavior Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Psychiatry and Behavior Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
24
|
Tsotinis A, Kompogennitaki R, Papanastasiou I, Garratt PJ, Bocianowska A, Sugden D. Fluorine substituted methoxyphenylalkyl amides as potent melatonin receptor agonists. MEDCHEMCOMM 2019; 10:460-464. [PMID: 31191854 PMCID: PMC6530086 DOI: 10.1039/c8md00604k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/10/2019] [Indexed: 11/21/2022]
Abstract
A series of fluorine substituted methoxyphenylalkyl amides were prepared with different orientations of the fluorine and methoxy groups with respect to the alkylamide side chain and with alkyl sides of differing lengths (n = 1-3). β-Dimethyl and α-methyl derivatives were also synthesised. The compounds were tested as melatonin agonists and antagonists using the pigment aggregation of Xenopus melanophores as the biological assay. A number of these compounds were potent melatonin agonists, the potency depending on the length of the alkyl chain, the orientation of the methoxy and fluorine substituents, the amide chain length and, for the ethyl side-chain analogues, the presence of β-substituents.
Collapse
Affiliation(s)
- Andrew Tsotinis
- School of Health Sciences , Department of Pharmacy , Division of Pharmaceutical Chemistry , National and Kapodistrian University of Athens , Panepistimioupoli-Zografou , 157 84 Athens , Greece .
| | - Rodanthi Kompogennitaki
- School of Health Sciences , Department of Pharmacy , Division of Pharmaceutical Chemistry , National and Kapodistrian University of Athens , Panepistimioupoli-Zografou , 157 84 Athens , Greece .
| | - Ioannis Papanastasiou
- School of Health Sciences , Department of Pharmacy , Division of Pharmaceutical Chemistry , National and Kapodistrian University of Athens , Panepistimioupoli-Zografou , 157 84 Athens , Greece .
| | - Peter J Garratt
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK
| | - Alina Bocianowska
- School of Biomedical and Health Sciences , Division of Reproduction and Endocrinology , King's College London , London SE1 1UL , UK
| | - David Sugden
- School of Biomedical and Health Sciences , Division of Reproduction and Endocrinology , King's College London , London SE1 1UL , UK
| |
Collapse
|
25
|
Leite Góes Gitai D, de Andrade TG, Dos Santos YDR, Attaluri S, Shetty AK. Chronobiology of limbic seizures: Potential mechanisms and prospects of chronotherapy for mesial temporal lobe epilepsy. Neurosci Biobehav Rev 2019; 98:122-134. [PMID: 30629979 PMCID: PMC7023906 DOI: 10.1016/j.neubiorev.2019.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Mesial Temporal Lobe Epilepsy (mTLE) characterized by progressive development of complex partial seizures originating from the hippocampus is the most prevalent and refractory type of epilepsy. One of the remarkable features of mTLE is the rhythmic pattern of occurrence of spontaneous seizures, implying a dependence on the endogenous clock system for seizure threshold. Conversely, circadian rhythms are affected by epilepsy too. Comprehending how the circadian system and seizures interact with each other is essential for understanding the pathophysiology of epilepsy as well as for developing innovative therapies that are efficacious for better seizure control. In this review, we confer how the temporal dysregulation of the circadian clock in the hippocampus combined with multiple uncoupled oscillators could lead to periodic seizure occurrences and comorbidities. Unraveling these associations with additional research would help in developing chronotherapy for mTLE, based on the chronobiology of spontaneous seizures. Notably, differential dosing of antiepileptic drugs over the circadian period and/or strategies that resynchronize biological rhythms may substantially improve the management of seizures in mTLE patients.
Collapse
Affiliation(s)
- Daniel Leite Góes Gitai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA; Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | | | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA; Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA.
| |
Collapse
|
26
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
27
|
Abstract
This article focuses on melatonin and other melatonin receptor agonists, and specifically their circadian phase shifting and sleep-enhancing properties. The circadian system and circadian rhythm sleep-wake disorders are briefly reviewed, followed by a summary of the circadian phase shifting, sleep-enhancing properties, and possible safety concerns associated with melatonin and other melatonin receptor agonists. The recommended use of melatonin, including dose and timing, in the latest American Academy of Sleep Medicine Clinical Practice Guidelines for the treatment of intrinsic circadian rhythm disorders is also reviewed. Lastly, the practical aspects of treatment and consideration of clinical treatment outcomes are discussed.
Collapse
|
28
|
Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol 2018; 175:3190-3199. [PMID: 29318587 PMCID: PMC6057895 DOI: 10.1111/bph.14116] [Citation(s) in RCA: 471] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023] Open
Abstract
In mammals, a central circadian clock, located in the suprachiasmatic nuclei (SCN) of the hypothalamus, tunes the innate circadian physiological rhythms to the ambient 24 h light-dark cycle to invigorate and optimize the internal temporal order. The SCN-activated, light-inhibited production of melatonin conveys the message of darkness to the clock and induces night-state physiological functions, for example, sleep/wake blood pressure and metabolism. Clinically meaningful effects of melatonin treatment have been demonstrated in placebo-controlled trials in humans, particularly in disorders associated with diminished or misaligned melatonin rhythms, for example, circadian rhythm-related sleep disorders, jet lag and shift work, insomnia in children with neurodevelopmental disorders, poor (non-restorative) sleep quality, non-dipping nocturnal blood pressure (nocturnal hypertension) and Alzheimer's disease (AD). The diminished production of melatonin at the very early stages of AD, the role of melatonin in the restorative value of sleep (perceived sleep quality) and its sleep-anticipating effects resulting in attenuated activation of certain brain networks are gaining a new perspective as the role of poor sleep quality in the build-up of β amyloid, particularly in the precuneus, is unravelled. As a result of the recently discovered relationship between circadian clock, sleep and neurodegeneration, new prospects of using melatonin for early intervention, to promote healthy physical and mental ageing, are of prime interest in view of the emerging link to the aetiology of Alzheimer's disease. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Nava Zisapel
- Department of Neurobiology, Faculty of Life SciencesTel‐Aviv University and Neurim PharmaceuticalsTel AvivIsrael
| |
Collapse
|
29
|
Malkani RG, Abbott SM, Reid KJ, Zee PC. Diagnostic and Treatment Challenges of Sighted Non-24-Hour Sleep-Wake Disorder. J Clin Sleep Med 2018; 14:603-613. [PMID: 29609703 DOI: 10.5664/jcsm.7054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 01/05/2018] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES To report the diagnostic and treatment challenges of sighted non-24-hour sleep-wake disorder (N24SWD). METHODS We report a series of seven sighted patients with N24SWD clinically evaluated by history and sleep diaries, and when available wrist actigraphy and salivary melatonin levels, and treated with timed melatonin and bright light therapy. RESULTS Most patients had a history of a delayed sleep-wake pattern prior to developing N24SWD. The typical sleep-wake pattern of N24SWD was seen in the sleep diaries (and in actigraphy when available) in all patients with a daily delay in midpoint of sleep ranging 0.8 to 1.8 hours. Salivary dim light melatonin onset (DLMO) was evaluated in four patients but was missed in one. The estimated phase angle from DLMO to sleep onset ranged from 5.25 to 9 hours. All six patients who attempted timed melatonin and bright light therapy were able to entrain their sleep-wake schedules. Entrainment occurred at a late circadian phase, possibly related to the late timing of melatonin administration, though the patients often preferred late sleep times. Most did not continue treatment and continued to have a non-24-hour sleep-wake pattern. CONCLUSIONS N24SWD is a chronic debilitating disorder that is often overlooked in sighted people and can be challenging to diagnose and treat. Tools to assess circadian pattern and timing can be effectively applied to aid the diagnosis. The progressive delay of the circadian rhythm poses a challenge for determining the most effective timing for melatonin and bright light therapies. Furthermore, once the circadian sleep-wake rhythm is entrained, long-term effectiveness is limited because of the behavioral and environmental structure that is required to maintain stable entrainment.
Collapse
Affiliation(s)
- Roneil G Malkani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sabra M Abbott
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kathryn J Reid
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Phyllis C Zee
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
30
|
Kantermann T, Eastman CI. Circadian phase, circadian period and chronotype are reproducible over months. Chronobiol Int 2017; 35:280-288. [PMID: 29148844 DOI: 10.1080/07420528.2017.1400979] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The timing of the circadian clock, circadian period and chronotype varies among individuals. To date, not much is known about how these parameters vary over time in an individual. We performed an analysis of the following five common circadian clock and chronotype measures: 1) the dim light melatonin onset (DLMO, a measure of circadian phase), 2) phase angle of entrainment (the phase the circadian clock assumes within the 24-h day, measured here as the interval between DLMO and bedtime/dark onset), 3) free-running circadian period (tau) from an ultradian forced desynchrony protocol (tau influences circadian phase and phase angle of entrainment), 4) mid-sleep on work-free days (MSF from the Munich ChronoType Questionnaire; MCTQ) and 5) the score from the Morningness-Eveningness Questionnaire (MEQ). The first three are objective physiological measures, and the last two are measures of chronotype obtained from questionnaires. These data were collected from 18 individuals (10 men, eight women, ages 21-44 years) who participated in two studies with identical protocols for the first 10 days. We show how much these circadian rhythm and chronotype measures changed from the first to the second study. The time between the two studies ranged from 9 months to almost 3 years, depending on the individual. Since the full experiment required living in the laboratory for 14 days, participants were unemployed, had part-time jobs or were freelance workers with flexible hours. Thus, they did not have many constraints on their sleep schedules before the studies. The DLMO was measured on the first night in the lab, after free-sleeping at home and also after sleeping in the lab on fixed 8-h sleep schedules (loosely tailored to their sleep times before entering the laboratory) for four nights. Graphs with lines of unity (when the value from the first study is identical to the value from the second study) showed how much each variable changed from the first to the second study. The DLMO did not change more than 2 h from the first to the second study, except for two participants whose sleep schedules changed the most between studies, a change in sleep times of 3 h. Phase angle did not change by more than 2 h regardless of changes in the sleep schedule. Circadian period did not change more than 0.2 h, except for one participant. MSF did not change more than 1 h, except for two participants. MEQ did not change more than 10 points and the categories (e.g. M-type) did not change. Pearson's correlations for the DLMO between the first and second studies increased after participants slept in the lab on their individually timed fixed 8-h sleep schedules for four nights. A longer time between the two studies did not increase the difference between any of the variables from the first to the second study. This analysis shows that the circadian clock and chronotype measures were fairly reproducible, even after many months between the two studies.
Collapse
Affiliation(s)
- Thomas Kantermann
- a SynOpus , Alte Hattinger Strasse, Bochum , DE.,b FOM University of Applied Sciences , Leimkugelstraße, Essen , Germany
| | - Charmane I Eastman
- c Biological Rhythms Research Lab , Rush University Medical Center , Chicago , IL 60612 , USA
| |
Collapse
|