1
|
Panizza BJ, O'Leary SJ, Hart CD, Diwakarla CS, Barnett C, Lapuerta P, Lee J, Raines S, Quigley T, Wolff HM, Keilty J, Ladwa R, Porceddu SV, McGrath M, Seetharamu N, Fua T, Rischin D. Randomized Phase Ib Clinical Trial of DB-020 Intratympanic Injections to Reduce High-Dose Cisplatin Ototoxicity. J Clin Oncol 2025:JCO2400905. [PMID: 40403227 DOI: 10.1200/jco.24.00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 02/12/2025] [Accepted: 03/26/2025] [Indexed: 05/24/2025] Open
Abstract
PURPOSE This study evaluated DB-020, a formulation of thiosulfate for intratympanic (IT) injection, in patients receiving high-dose cisplatin chemotherapy. METHODS This randomized phase Ib clinical trial enrolled patients older than 18 years from five centers in Australia and the United States scheduled for at least three cycles of cisplatin and total cumulative exposure of ≥280 mg/m2. Patients received IT DB-020 (at a dose level of either 12% or 25%) in one ear and placebo in the other, once every 3 or 4 weeks, within 3 hours before receiving cisplatin. The primary end points were safety and tolerability, and the secondary end points included ototoxicity measured by air conduction audiometry. Ototoxicity was defined by American Speech-Language-Hearing Association criteria. RESULTS Twenty-two patients with a median age of 55.1 years were randomly assigned and received a mean total cumulative cisplatin dose of 255 mg/m2. Mean number of cisplatin cycles was 2.3. Twenty patients had both baseline and follow-up audiometry. Ear pain of short duration was common after IT injection. There were no persistent tympanic perforations and no serious adverse events in the category of ear and labyrinth disorders. A progressive reduction in patient numbers was observed at each cycle due to patients ceasing cisplatin treatment. DB-020 treatment did not affect plasma thiosulfate concentrations. Ototoxicity after cisplatin administration was significantly more common in placebo-treated ears than in DB-020-treated ears (DB-020 v placebo, P = .0027). The incidence of ototoxicity (250-8,000 Hz) was 85.0% in placebo-treated ears, and 54.5% and 22.2% in ears treated with DB-020 12% and DB-020 25%, respectively. CONCLUSION DB-020 IT injections were tolerated by patients and showed meaningful reductions in cisplatin ototoxicity.
Collapse
Affiliation(s)
- Benedict J Panizza
- Princess Alexandra Hospital, Brisbane, Australia
- University of Queensland, Brisbane, Australia
| | | | | | | | | | | | - John Lee
- Decibel Therapeutics Inc, Boston, MA
| | | | | | | | | | - Rahul Ladwa
- Princess Alexandra Hospital, Brisbane, Australia
- University of Queensland, Brisbane, Australia
| | | | | | | | - Tsien Fua
- University of Queensland, Brisbane, Australia
| | - Danny Rischin
- The University of Melbourne, Melbourne, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
2
|
Coltin H, Coleman C, Cacciotti C. Approaches to Reduce Toxicity in Pediatric Brain Tumors. Curr Oncol 2025; 32:281. [PMID: 40422540 DOI: 10.3390/curroncol32050281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
Pediatric central nervous system (CNS) tumor survivors are highly susceptible to long-term toxicity due to tumor location and also the treatment received. Advancements in treatment techniques, risk-adapted approaches to therapy with adjustments to treatment regimens-including de-escalation when feasible-along with the addition of supportive therapy and surveillance in these survivors, serve to minimize and manage late effects of therapy.
Collapse
Affiliation(s)
- Hallie Coltin
- Division of Hematology/Oncology, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, QC H3C 3A7, Canada
- Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Christina Coleman
- Division of Hematology/Oncology, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Chantel Cacciotti
- Division of Hematology/Oncology, Department of Pediatrics, London Health Sciences Centre & Western University, London, ON N6A 5W9, Canada
| |
Collapse
|
3
|
De-la-Torre P, Martínez-García C, Gratias P, Mun M, Santana P, Akyuz N, González W, Indzhykulian AA, Ramírez D. Identification of druggable binding sites and small molecules as modulators of TMC1. Commun Biol 2025; 8:742. [PMID: 40360848 PMCID: PMC12075566 DOI: 10.1038/s42003-025-07943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/17/2025] [Indexed: 05/15/2025] Open
Abstract
Our ability to hear and maintain balance relies on the proper functioning of inner ear sensory hair cells, which translate mechanical stimuli into electrical signals via mechano-electrical transducer (MET) channels, composed of TMC1/2 proteins. However, the therapeutic use of ototoxic drugs, such as aminoglycosides and cisplatin, which can enter hair cells through MET channels, often leads to profound auditory and vestibular dysfunction. To date, our understanding of how small-molecule modulators interact with TMCs remains limited, hampering the discovery of novel drugs. Here, we propose a structure-based drug screening approach, integrating 3D-pharmacophore modeling, molecular dynamics simulations of the TMC1 + CIB2 + TMIE complex, and experimental validation. Our pipeline successfully identified three potential drug-binding sites within the TMC1 pore, phospholipids, and key amino acids involved in the binding of several compounds, as well as FDA-approved drugs that reduced dye uptake in cultured cochlear explants. Our pipeline offers a broad application for discovering modulators for mechanosensitive ion channels.
Collapse
Affiliation(s)
- Pedro De-la-Torre
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA.
- Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla, Colombia.
- Life Sciences Research Center, Universidad Simón Bolívar, Barranquilla, Colombia.
| | - Claudia Martínez-García
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paul Gratias
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA
| | - Matthew Mun
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA
- Speech and Hearing Bioscience & Technology Program, Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Paula Santana
- Facultad de Ingeniería, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Santiago, Chile
| | - Nurunisa Akyuz
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Wendy González
- Center for Bioinformatics, Simulations and Modelling (CBSM), University of Talca, Talca, Chile
| | - Artur A Indzhykulian
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA.
- Speech and Hearing Bioscience & Technology Program, Division of Medical Sciences, Harvard University, Boston, MA, USA.
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
4
|
Millstein J, Rassekh SR, Brown AL, Nie Q, Esbenshade AJ, Knight KR, Scheurer ME, Sung L, Brooks B, Moke DJ, Ross CJD, Wright M, Mena V, Rushing T, Carleton BC, Orgel E. Development and Validation of a Novel Prediction Model for Hearing Loss From Cisplatin Chemotherapy. J Clin Oncol 2025:JCO2401861. [PMID: 40324146 DOI: 10.1200/jco-24-01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 05/07/2025] Open
Abstract
PURPOSE Cisplatin treats many common tumors but causes permanent and debilitating hearing loss (HL). The objective of this study was to develop and externally validate a predictive model of HL in cisplatin-treated children and adolescent cancer survivors. METHODS The Pediatric Holistic Evaluation of Auditory Risk (PedsHEAR) model architecture used several machine learning approaches followed by an ensemble predictor. The primary end point was post-treatment communication-affecting HL (International Society of Pediatric Oncology Ototoxicity Scale [SIOP] Grade ≥2). PedsHEAR was developed from a multicenter data set of cisplatin-exposed patients up to 21 years old (1984-2017) and externally validated using data from the Children's Oncology Group ACCL05C1 study (2007-2012) and two combined institutional cohorts (1988-2022). The model predicts post-treatment HL in each patient (probability [%], 95% CI) and classifies patients as low, intermediate, or high risk for HL (probability HL <0.33, 0.33-0.60, >0.60, respectively). RESULTS In the training data set (n = 1,115, median age 6.3 years, SIOP Grade ≥2 HL 44%), PedsHEAR demonstrated excellent discrimination (AUC, 0.93 [95% CI, 0.92 to 0.95]) and then successfully validated within the internal (testing; AUC, 0.79 [95% CI, 0.74 to 0.85]) and two external validation cohorts (AUC, 0.74 and AUC, 0.67). In an aggregate validation cohort (n = 631), the model predicted the probability of HL (AUC, 0.76 [95% CI, 0.72 to 0.79]) and classified 22% (141/631), 71% (447/631), and 7% (43/631) of patients as low, intermediate, or high risk for HL. CONCLUSION PedsHEAR predicted SIOP Grade ≥2 HL in pediatric cisplatin-treated patients. This is the first validated model to successfully predict cisplatin-induced HL in a broadly representative population treated with diverse regimens across a range of treatment settings.
Collapse
Affiliation(s)
- Joshua Millstein
- University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Shahrad R Rassekh
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Austin L Brown
- Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Cancer and Hematology Center, Houston, TX
| | - Qi Nie
- University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Adam J Esbenshade
- Division of Pediatric Hematology and Oncology, Vanderbilt University Medical Center and the Vanderbilt Ingram Cancer Center, Nashville, TN
| | - Kristin R Knight
- Department of Pediatric Audiology, Child Development and Rehabilitation Center, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, OR
| | - Michael E Scheurer
- Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Cancer and Hematology Center, Houston, TX
| | - Lillian Sung
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Beth Brooks
- British Columbia's Children's Hospital, Vancouver, BC, Canada
- School of Audiology and Speech Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Diana J Moke
- Department of Pediatrics, Southern California Kaiser Permanente-Lynwood, Lynwood, CA
| | - Colin J D Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Michael Wright
- University of Tennessee Health Science Center, Memphis, TN
| | - Victoria Mena
- Division of Rehabilitation Services, Hearing and Speech, Children's Hospital Los Angeles, Los Angeles, CA
| | - Teresa Rushing
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pharmacy, Children's Hospital Los Angeles, Cancer and Blood Diseases Institute, Los Angeles, CA
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Etan Orgel
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
5
|
Xu B, Huang Y, Yu D, Chen Y. Advancements of ROS-based biomaterials for sensorineural hearing loss therapy. Biomaterials 2025; 316:123026. [PMID: 39705924 DOI: 10.1016/j.biomaterials.2024.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Sensorineural hearing loss (SNHL) represents a substantial global health challenge, primarily driven by oxidative stress-induced damage within the auditory system. Excessive reactive oxygen species (ROS) play a pivotal role in this pathological process, leading to cellular damage and apoptosis of cochlear hair cells, culminating in irreversible hearing impairment. Recent advancements have introduced ROS-scavenging biomaterials as innovative, multifunctional platforms capable of mitigating oxidative stress. This comprehensive review systematically explores the mechanisms of ROS-mediated oxidative stress in SNHL, emphasizing etiological factors such as aging, acoustic trauma, and ototoxic medication exposure. Furthermore, it examines the therapeutic potential of ROS-scavenging biomaterials, positioning them as promising nanomedicines for targeted antioxidant intervention. By critically assessing recent advances in biomaterial design and functionality, this review thoroughly evaluates their translational potential for clinical applications. It also addresses the challenges and limitations of ROS-neutralizing strategies, while highlighting the transformative potential of these biomaterials in developing novel SNHL treatment modalities. This review advocates for continued research and development to integrate ROS-scavenging biomaterials into future clinical practice, aiming to address the unmet needs in SNHL management and potentially revolutionize the treatment landscape for this pervasive health issue.
Collapse
Affiliation(s)
- Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China; Shanghai Institute of Materdicine, Shanghai, 200012, China.
| |
Collapse
|
6
|
Ma J, Foster JH, Rassekh SR, Malvar J, Chi YY, Sauer HE, Jeon J, Freyer DR, Rushing T, Orgel E. Real-World Experience Using Sodium Thiosulfate Pentahydrate Off-Label for Cisplatin Otoprotection in Children, Adolescents, and Young Adults. Pediatr Blood Cancer 2025; 72:e31631. [PMID: 40032793 DOI: 10.1002/pbc.31631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Cisplatin is used to treat solid tumors but causes irreversible hearing loss. Pedmark, a formulation of sodium thiosulfate (STS), is approved to prevent cisplatin-induced hearing loss (CIHL). Prior to approval, non-Pedmark formulations of STS pentahydrate (STS-P) were prescribed off-label for otoprotection and continue to be used in the absence of data. PROCEDURE This multicenter retrospective study examined tolerability, toxicity, and hearing outcomes of STS-P used off-label for otoprotection. Exploratory analyses compared toxicity and hearing data in patients receiving STS-P versus the pre-Pedmark investigational formulation (STS-inv) tested in trials. RESULTS Fifty-nine patients received STS-P (16 or 20 g/m2). Infusion-related reactions (IRR) occurred in 14% (8/59), more commonly in patients receiving 20 g/m2. No severe adverse events occurred. One patient (2%) discontinued STS-P for IRR. The prevalence of CIHL (International Society of Paediatric Oncology [SIOP] Grade ≥2) at the end of therapy and at the most recent hearing assessment was 30% at both timepoints (12/40 and 8/27, respectively). In exploratory analyses comparing STS-P with STS-inv (n = 14), there was no difference in tolerance or toxicity. In multivariable analysis, a lower risk for CIHL at the end of therapy was found for age ≥5 years, higher dosing of 20 g/m2, and received STS-inv (odds ratio 0.02, 95% confidence interval: 0.0003-0.691, p < 0.01). No difference was present at the most recent exam. CONCLUSIONS STS-P off-label for otoprotection following cisplatin was tolerable in a real-world setting across age groups and cancer types. Formal testing in larger studies of different STS formulations is needed to explore possible differences in toxicity and CIHL prevention.
Collapse
Affiliation(s)
- Julie Ma
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Jennifer H Foster
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shahrad R Rassekh
- BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jemily Malvar
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Yueh-Yun Chi
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hannah E Sauer
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jessica Jeon
- Department of Pharmacy, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - David R Freyer
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Teresa Rushing
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Pharmacy, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Etan Orgel
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Qin X, Fu L, Li C, Tan X, Yin X. Optimized inner ear organoids for efficient hair cell generation and ototoxicity response modeling. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1369-1383. [PMID: 39862345 DOI: 10.1007/s11427-024-2803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/02/2024] [Indexed: 01/27/2025]
Abstract
Hair cells in the mammalian cochlea are highly vulnerable to damage from drug toxicity, noise exposure, aging, and genetic mutations, with no capacity for regeneration. Progress in hair cell protection research has been limited by the scarcity of cochlear tissue and suitable in vitro models. Here, we present a novel one-step, self-organizing inner ear organoid system optimized with small molecules, which bypasses the need for multi-step expansion and forced differentiation protocols. This approach efficiently generates hair cells and supporting cells that recapitulate the molecular, cellular, and structural characteristics of the inner ear. Single-cell RNA sequencing revealed the diversity and fidelity of cell populations within the organoids. Utilizing this platform, we validated the protective effects of candidate compounds against hair cell damage, highlighting its potential as a powerful tool for drug discovery and mechanistic studies of hair cell protection.
Collapse
Affiliation(s)
- Xuanhe Qin
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Liping Fu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chunying Li
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xilin Tan
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaolei Yin
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
8
|
Orasan A, Negru MC, Morgovan AI, Fleser RC, Sandu D, Sitaru AM, Motofelea AC, Balica NC. Strategies to Mitigate Cisplatin-Induced Ototoxicity: A Literature Review of Protective Agents, Mechanisms, and Clinical Gaps. Audiol Res 2025; 15:22. [PMID: 40126270 PMCID: PMC11932224 DOI: 10.3390/audiolres15020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Cisplatin, a widely used chemotherapeutic agent, is associated with significant ototoxicity, leading to progressive and irreversible sensorineural hearing loss in up to 93% of patients. Cisplatin generates reactive oxygen species (ROS) in the cochlea, activating apoptotic and necroptotic pathways that result in hair cell death. Inflammatory processes and nitrative stress also contribute to cochlear damage. METHODS This literature review was conducted to explore the mechanisms underlying cisplatin-induced ototoxicity and evaluate protective strategies, including both current and emerging approaches. A structured search was performed in multiple scientific databases, including PubMed and ScienceDirect, for articles published up to November 2024. RESULTS Current otoprotective strategies include systemic interventions such as antioxidants, anti-inflammatory agents, and apoptosis inhibitors, as well as localized delivery methods like intratympanic injection and nanoparticle-based systems. However, these approaches have limitations, including potential interference with cisplatin's antitumor efficacy and systemic side effects. Emerging strategies focus on genetic and biomarker-based risk stratification, novel otoprotective agents targeting alternative pathways, and combination therapies. Repurposed drugs like pravastatin also show promise in reducing cisplatin-induced ototoxicity. CONCLUSIONS Despite these advancements, significant research gaps remain in translating preclinical findings to clinical applications and developing selective otoprotective agents that do not compromise cisplatin's efficacy. This review examines the mechanisms of cisplatin-induced ototoxicity, current otoprotective strategies, and emerging approaches to mitigate this adverse effect.
Collapse
Affiliation(s)
- Alexandru Orasan
- ENT Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.O.); (A.I.M.); (N.C.B.)
| | - Mihaela-Cristina Negru
- ENT Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.O.); (A.I.M.); (N.C.B.)
| | - Anda Ioana Morgovan
- ENT Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.O.); (A.I.M.); (N.C.B.)
| | - Razvan Claudiu Fleser
- Otorhinolaryngology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Daniela Sandu
- OncoHelp Cancer Centre, Radiation Oncology Department, “Victor Babes” University of Medicine and Pharmacy, Str. Rusu Sireanu nr. 34 Timisoara, 300041 Timisoara, Romania;
| | - Adrian Mihail Sitaru
- Department of Pediatric Surgery, “Louis Turcanu” Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania;
| | - Alexandru-Catalin Motofelea
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Nicolae Constantin Balica
- ENT Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.O.); (A.I.M.); (N.C.B.)
| |
Collapse
|
9
|
Pisani A, Rolesi R, Mohamed-Hizam V, Montuoro R, Paludetti G, Giorgio C, Cocchiaro P, Brandolini L, Detta N, Sirico A, Amendola PG, Novelli R, Aramini A, Allegretti M, Paciello F, Grassi C, Fetoni AR. Early transtympanic administration of rhBDNF exerts a multifaceted neuroprotective effect against cisplatin-induced hearing loss. Br J Pharmacol 2025; 182:546-563. [PMID: 39390645 DOI: 10.1111/bph.17359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Cisplatin-induced sensorineural hearing loss is a significant clinical challenge. Although the potential effects of brain-derived neurotrophic factor (BDNF) have previously been investigated in some ototoxicity models, its efficacy in cisplatin-induced hearing loss remains uncertain. This study aimed to investigate the therapeutic potential of recombinant human BDNF (rhBDNF) in protecting cells against cisplatin-induced ototoxicity. EXPERIMENTAL APPROACH Using an in vivo model of cisplatin-induced hearing loss, we investigated the beneficial effects of transtympanic administration of rhBDNF in a thermogel solution on hearing function and cochlear injury, using electrophysiological, morphological, immunofluorescence and molecular analyses. KEY RESULTS Our data showed that local rhBDNF treatment counteracted hearing loss in rats receiving cisplatin by preserving synaptic connections in the cochlear epithelium and protecting hair cells (HCs) and spiral ganglion neurons (SGNs) against cisplatin-induced cell death. Specifically, rhBDNF maintains the balance of its receptor levels (pTrkB and p75), boosting TrkB-CREB pro-survival signalling and reducing caspase 3-dependent apoptosis in the cochlea. Additionally, it activates antioxidant mechanisms while inhibiting inflammation and promoting vascular repair. CONCLUSION AND IMPLICATIONS Collectively, we demonstrated that early transtympanic treatment with rhBDNF plays a multifaceted protective role against cisplatin-induced ototoxicity, thus holding promise as a novel potential approach to preserve hearing in adult and paediatric patients undergoing cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Anna Pisani
- Department of Neuroscience, Unit of Audiology, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Rolando Rolesi
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Raffaele Montuoro
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristina Giorgio
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | - Pasquale Cocchiaro
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | - Laura Brandolini
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | | | - Anna Sirico
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | | | - Rubina Novelli
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | - Andrea Aramini
- Research & Early Development, Dompé Farmaceutici S.p.A., L'Aquila, Italy
| | | | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Unit of Audiology, Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
10
|
Kessler L, Koo C, Richter CP, Tan X. Hearing loss during chemotherapy: prevalence, mechanisms, and protection. Am J Cancer Res 2024; 14:4597-4632. [PMID: 39417180 PMCID: PMC11477841 DOI: 10.62347/okgq4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Ototoxicity is an often-underestimated sequela for cancer patients undergoing chemotherapy, with an incidence rate exceeding 50%, affecting approximately 4 million individuals worldwide each year. Despite the nearly 2,000 publications on chemotherapy-related ototoxicity in the past decade, the understanding of its prevalence, mechanisms, and preventative or therapeutic measures remains ambiguous and subject to debate. To date, only one drug, sodium thiosulfate, has gained FDA approval for treating ototoxicity in chemotherapy. However, its utilization is restricted. This review aims to offer clinicians and researchers a comprehensive perspective by thoroughly and carefully reviewing available data and current evidence. Chemotherapy-induced ototoxicity is characterized by four primary symptoms: hearing loss, tinnitus, vertigo, and dizziness, originating from both auditory and vestibular systems. Hearing loss is the predominant symptom. Amongst over 700 chemotherapeutic agents documented in various databases, only seven are reported to induce hearing loss. While the molecular mechanisms of the hearing loss caused by the two platinum-based drugs are extensively explored, the pathways behind the action of the other five drugs are primarily speculative, rooted in their therapeutic properties and side effects. Cisplatin attracts the majority of attention among these drugs, encompassing around two-thirds of the literature regarding ototoxicity in chemotherapy. Cisplatin ototoxicity chiefly manifests through the loss of outer hair cells, possibly resulting from damages directly by cisplatin uptake or secondary effects on the stria vascularis. Both direct and indirect influences contribute to cisplatin ototoxicity, while it is still debated which path is dominant or where the primary target of cisplatin is located. Candidates for hearing protection against cisplatin ototoxicity are also discussed, with novel strategies and methods showing promise on the horizon.
Collapse
Affiliation(s)
- Lexie Kessler
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Chail Koo
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| |
Collapse
|
11
|
Dai D, Chen C, Lu C, Guo Y, Li Q, Sun C. Apoptosis, autophagy, ferroptosis, and pyroptosis in cisplatin-induced ototoxicity and protective agents. Front Pharmacol 2024; 15:1430469. [PMID: 39380912 PMCID: PMC11459463 DOI: 10.3389/fphar.2024.1430469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Cisplatin is widely used to treat various solid tumors. However, its toxicity to normal tissues limits its clinical application, particularly due to its ototoxic effects, which can result in hearing loss in patients undergoing chemotherapy. While significant progress has been made in preclinical studies to elucidate the cellular and molecular mechanisms underlying cisplatin-induced ototoxicity (CIO), the precise mechanisms remain unclear. Moreover, the optimal protective agent for preventing or mitigating cisplatin-induced ototoxicity has yet to be identified. This review summarizes the current understanding of the roles of apoptosis, autophagy, ferroptosis, pyroptosis, and protective agents in cisplatin-induced ototoxicity. A deeper understanding of these cell death mechanisms in the inner ear, along with the protective agents, could facilitate the translation of these agents into clinical therapeutics, help identify new therapeutic targets, and provide novel strategies for cisplatin-based cancer treatment.
Collapse
Affiliation(s)
- Dingyuan Dai
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Chen
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Lu
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Guo
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Li
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chen Sun
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Chen F, Jiang Q, Xu B, Huang Y, Xu K, Xu X, Yu D, Chen Y, Wang X. Ototoxicity-Alleviating and Cytoprotective Allomelanin Nanomedicine for Efficient Sensorineural Hearing Loss Treatment. ACS NANO 2024. [PMID: 39259947 DOI: 10.1021/acsnano.4c10610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Sensorineural hearing loss (SNHL) represents a significant clinical challenge, predominantly attributed to oxidative stress-related mechanisms. In this work, we report an innovative antioxidant strategy for mitigating SNHL, utilizing synthetically engineered allomelanin nanoparticles (AMNPs). Empirical evidence elucidates AMNPs' profound capability in free radical neutralization, substantiated by a significant decrement in reactive oxygen species (ROS) levels within HEI-OC1 auditory cells exposure to cisplatin or hydrogen peroxide (H2O2). Comparative analyses reveal that AMNPs afford protection against cisplatin-induced and noise-induced auditory impairments, mirroring the effect of dexamethasone (DEX), a standard pharmacological treatment for acute SNHL. AMNPs exhibit notable cytoprotective properties for auditory hair cells (HCs), effectively preventing ototoxicity from cisplatin or H2O2 exposure, as confirmed by both in vitro assays and cultured organ of Corti studies. Further in vivo research corroborates AMNPs' ability to reverse auditory brainstem response (ABR) threshold shifts resulting from acoustic injury, concurrently reducing HCs loss, ribbon synapse depletion, and spiral ganglion neuron degeneration. The therapeutic benefits of AMNPs are attributed to mitigating oxidative stress and inflammation within the cochlea, with transcriptome analysis indicating downregulated gene expression related to these processes post-AMNPs treatment. The pronounced antioxidative and anti-inflammatory effects of AMNPs position them as a promising alternative to DEX for SNHL treatment.
Collapse
Affiliation(s)
- Fengqiu Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Qingjun Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ke Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Xiaoju Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| |
Collapse
|
13
|
Lu X, Yin N, Chen C, Zhou Y, Ji L, Zhang B, Hu H. Mangiferin alleviates cisplatin-induced ototoxicity in sensorineural hearing loss. Biomed Pharmacother 2024; 178:117174. [PMID: 39098177 DOI: 10.1016/j.biopha.2024.117174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024] Open
Abstract
Mangiferin(MGF) exhibits crucial biological roles, including antioxidant and anti-inflammatory functions. However, how to clearly elucidate the functioning mechanism of MGF for inhibiting cisplatin-induced hearing loss requires in-depth investigation. In this work, we aimed at gaining insight into how MGF functions as the protective agent against cisplatin-triggered ototoxicity using various assays. The variation for reactive oxygen species (ROS) concentrations was determined with MitoSOX-Red and 2',7'-Dichlorodihydrofluorescein diacetate staining (DCFH-DA). The protective function and corresponding mechanism of MGF in hair cell survival in the House Ear Institute-Organ of Corti (HEI-OC1) cell line were assessed using RNA sequencing (RNA-Seq). Our findings demonstrated that MGF significantly alleviated cisplatin-induced injury to hair cells in vitro, encompassing cell lines and cochlear explants, as well as in vivo models, including C57BL/6 J mice and zebrafish larvae. Mechanistic studies revealed that MGF reversed the increased accumulation of ROS and inhibited cell apoptosis through mitochondrial-mediated intrinsic pathway. Moreover, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting data indicated MGF protected against cisplatin-mediated ototoxicity via the mitogen-activated protein kinase pathway (MAPK). These findings demonstrated MGF has significant potential promise in combating cisplatin-induced ototoxicity, offering a foundation for expanded investigation into therapeutic approaches for auditory protection.
Collapse
Affiliation(s)
- Xiaochan Lu
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Na Yin
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chen Chen
- Department of Otorhinolaryngology, Shenzhen Children's Hospital, Shenzhen 518034, China
| | - Yaqi Zhou
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Lingchao Ji
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Bin Zhang
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China.
| | - Hongyi Hu
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| |
Collapse
|
14
|
Lim KH, Park S, Han E, Yoon HS, Lee Y, Hong S, Hyun K, Baek SH, Baek HW, Chan Rah Y, Choi J. Protective effects of Y-27632 against cisplatin-induced ototoxicity: A zebrafish model Y-27632 and cisplatin-induced ototoxicity. Food Chem Toxicol 2024; 190:114792. [PMID: 38849049 DOI: 10.1016/j.fct.2024.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Cisplatin is an effective chemotherapy agent against various solid malignancies; however, it is associated with irreversible bilateral sensorineural hearing loss, emphasizing the need for drug development to prevent this complication, with the current options being very limited. Rho-associated coiled-coil-containing protein kinase (ROCK) is a serine-threonine protein kinase involved in various cellular processes, including apoptosis regulation. In this study, we used a transgenic zebrafish model (Brn3C: EGFP) in which hair cells within neuromasts are observed in green under fluorescent microscopy without the need for staining. Zebrafish larvae were exposed to cisplatin alone or in combination with various concentrations of Y-27632, a potent ROCK inhibitor. Hair cell counts, apoptosis assessments using the terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling assay, FM1-43FX labeling assay and behavioral analyses (startle response and rheotaxis) were performed to evaluate the protective effects of Y-27632 against cisplatin-induced ototoxicity. Cisplatin treatment reduced the number of hair cells in neuromasts, induced apoptosis, and impaired zebrafish larval behaviors. Y-27632 demonstrated a dose-dependent protective effect against cisplatin-induced hair cell loss and apoptosis. These findings suggest that Y-27632, as a ROCK inhibitor, mitigates cisplatin-induced hair cell loss and associated ototoxicity in zebrafish.
Collapse
Affiliation(s)
- Kang Hyeon Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Ansan, Gyeonggi, Republic of Korea
| | - Saemi Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Ansan, Gyeonggi, Republic of Korea
| | - Eunjung Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Ansan, Gyeonggi, Republic of Korea
| | - Hee Soo Yoon
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Ansan, Gyeonggi, Republic of Korea
| | - Yunkyoung Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Ansan, Gyeonggi, Republic of Korea; Zebrafish Translational Medical Research Center, Korea University, Ansan, Republic of Korea
| | - Sumin Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Ansan, Gyeonggi, Republic of Korea
| | - Kyungtae Hyun
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Ansan, Gyeonggi, Republic of Korea
| | - Seung Hwa Baek
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Ansan, Gyeonggi, Republic of Korea; Zebrafish Translational Medical Research Center, Korea University, Ansan, Republic of Korea
| | - Hyun Woo Baek
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Ansan, Gyeonggi, Republic of Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Ansan, Gyeonggi, Republic of Korea
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Ansan, Gyeonggi, Republic of Korea; Zebrafish Translational Medical Research Center, Korea University, Ansan, Republic of Korea.
| |
Collapse
|
15
|
Meijer AJ, Diepstraten FA, Ansari M, Bouffet E, Bleyer A, Fresneau B, Geller JI, Huitema AD, Kogner P, Maibach R, O'Neill AF, Papadakis V, Rajput KM, Veal GJ, Sullivan M, van den Heuvel-Eibrink MM, Brock PR. Use of Sodium Thiosulfate as an Otoprotectant in Patients With Cancer Treated With Platinum Compounds: A Review of the Literature. J Clin Oncol 2024; 42:2219-2232. [PMID: 38648563 PMCID: PMC11191063 DOI: 10.1200/jco.23.02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/05/2024] [Accepted: 02/07/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Hearing loss occurs in 50%-70% of children treated with cisplatin. Scientific efforts have led to the recent approval of a pediatric formula of intravenous sodium thiosulfate (STS) for otoprotection by the US Food and Drug Administration, the European Medicines Agency, and the Medicines and Health Regulatory Authority in the United Kingdom. To inform stakeholders regarding the clinical utility of STS, the current review summarizes available literature on the efficacy, pharmacokinetics (PK), and safety of systemic STS to minimize cisplatin-induced hearing loss (CIHL). DESIGN A comprehensive narrative review is presented. RESULTS Thirty-one articles were summarized. Overall, systemic STS effectively reduces CIHL in the preclinical and controlled clinical study settings, in both adults and children with cancer. The extent of CIHL reduction depends on the timing and dosing of STS in relation to cisplatin. Both preclinical and clinical data suggest that systemic STS may affect plasma platinum levels, but studies are inconclusive. Delayed systemic administration of STS, at 6 hours after the cisplatin infusion, does not affect cisplatin-induced inhibition of tumor growth or cellular cytotoxicity in the preclinical setting, nor affect cisplatin efficacy and survival in children with localized disease in the clinical setting. CONCLUSION Systemic administration of STS effectively reduces the development and degree of CIHL in both the preclinical and clinical settings. More studies are needed on the PK of STS and cisplatin drug combinations, the efficacy and safety of STS in patients with disseminated disease, and the ability of STS to prevent further deterioration of pre-established hearing loss.
Collapse
Affiliation(s)
| | | | - Marc Ansari
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
| | - Eric Bouffet
- Division of Pediatric Neuro-Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Archie Bleyer
- Department of Radiation Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, Canada
| | - Brice Fresneau
- Department of Children and Adolescents Oncology, Gustave Roussy, University Paris Saclay and Radiation Epidemiology Team, CESO, Inserm U1018, Villejuif, France
| | - James I. Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Alwin D.R. Huitema
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Per Kogner
- Department of Pediatric Oncology and Childhood Cancer Research Unit, Karolinska Institutet, Stockholm, Sweden
| | | | - Allison F. O'Neill
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Vassilios Papadakis
- Department of Pediatric Hematology-Oncology (TAO), Agia Sofia Children's Hospital, Athens, Greece
| | - Kaukab M. Rajput
- Department of Pediatric Audiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Gareth J. Veal
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael Sullivan
- Children's Cancer Centre and Department of Pediatric Oncology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Wilhelmina Childrens' Hospital, Division of Child Health, Utrecht, the Netherlands
| | - Penelope R. Brock
- Department of Pediatric Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
16
|
Lutze RD, Ingersoll MA, Kelmann RG, Teitz T. Trametinib, a MEK1/2 Inhibitor, Protects Mice from Cisplatin- and Noise-Induced Hearing Loss. Pharmaceuticals (Basel) 2024; 17:735. [PMID: 38931403 PMCID: PMC11206450 DOI: 10.3390/ph17060735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Hearing loss is one of the most common types of disability; however, there is only one FDA-approved drug to prevent any type of hearing loss. Treatment with the highly effective chemotherapy agent, cisplatin, and exposure to high-decibel noises are two of the most common causes of hearing loss. The mitogen-activated protein kinase (MAPK) pathway, a phosphorylation cascade consisting of RAF, MEK1/2, and ERK1/2, has been implicated in both types of hearing loss. Pharmacologically inhibiting BRAF or ERK1/2 is protective against noise- and cisplatin-induced hearing loss in multiple mouse models. Trametinib, a MEK1/2 inhibitor, protects from cisplatin-induced outer hair cell death in mouse cochlear explants; however, to the best of our knowledge, inhibiting MEK1/2 has not yet been shown to be protective against hearing loss in vivo. In this study, we demonstrate that trametinib protects against cisplatin-induced hearing loss in a translationally relevant mouse model and does not interfere with cisplatin's tumor-killing efficacy in cancer cell lines. Higher doses of trametinib were toxic to mice when combined with cisplatin, but lower doses of the drug were protective against hearing loss without any known toxicity. Trametinib also protected mice from noise-induced hearing loss and synaptic damage. This study shows that MEK1/2 inhibition protects against both insults of hearing loss, as well as that targeting all three kinases in the MAPK pathway protects mice from cisplatin- and noise-induced hearing loss.
Collapse
Affiliation(s)
- Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (R.G.K.)
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (R.G.K.)
| | - Regina G. Kelmann
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (R.G.K.)
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (R.G.K.)
- The Scintillon Research Institute, San Diego, CA 92121, USA
| |
Collapse
|
17
|
Yao Z, Xiao Y, Li W, Kong S, Tu H, Guo S, Liu Z, Ma L, Qiao R, Wang S, Chang M, Zhao X, Zhang Y, Xu L, Sun D, Fu X. FDA-Approved Tedizolid Phosphate Prevents Cisplatin-Induced Hearing Loss Without Decreasing Its Anti-tumor Effect. J Assoc Res Otolaryngol 2024; 25:259-275. [PMID: 38622383 DOI: 10.1007/s10162-024-00945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/04/2024] [Indexed: 04/17/2024] Open
Abstract
PURPOSE Cisplatin is a low-cost clinical anti-tumor drug widely used to treat solid tumors. However, its use could damage cochlear hair cells, leading to irreversible hearing loss. Currently, there appears one drug approved in clinic only used for reducing ototoxicity associated with cisplatin in pediatric patients, which needs to further explore other candidate drugs. METHODS Here, by screening 1967 FDA-approved drugs to protect cochlear hair cell line (HEI-OC1) from cisplatin damage, we found that Tedizolid Phosphate (Ted), a drug indicated for the treatment of acute infections, had the best protective effect. Further, we evaluated the protective effect of Ted against ototoxicity in mouse cochlear explants, zebrafish, and adult mice. The mechanism of action of Ted was further explored using RNA sequencing analysis and verified. Meanwhile, we also observed the effect of Ted on the anti-tumor effect of cisplatin. RESULTS Ted had a strong protective effect on hair cell (HC) loss induced by cisplatin in zebrafish and mouse cochlear explants. In addition, when administered systemically, it protected mice from cisplatin-induced hearing loss. Moreover, antitumor studies showed that Ted had no effect on the antitumor activity of cisplatin both in vitro and in vivo. RNA sequencing analysis showed that the otoprotective effect of Ted was mainly achieved by inhibiting phosphorylation of ERK. Consistently, ERK activator aggravated the damage of cisplatin to HCs. CONCLUSION Collectively, these results showed that FDA-approved Ted protected HCs from cisplatin-induced HC loss by inhibiting ERK phosphorylation, indicating its potential as a candidate for preventing cisplatin ototoxicity in clinical settings.
Collapse
Affiliation(s)
- Zhiwei Yao
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Yu Xiao
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
- School of Life Science, Shandong University, Qingdao, 266237, China
| | - Wen Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China.
| | - Shuhui Kong
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, China
| | - Hailong Tu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Siwei Guo
- School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ziyi Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Lushun Ma
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Ruifeng Qiao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, China
| | - Song Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Miao Chang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Xiaoxu Zhao
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yuan Zhang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, China.
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Xiaolong Fu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China.
| |
Collapse
|
18
|
Lutze RD, Ingersoll MA, Kelmann RG, Teitz T. FDA-Approved MEK1/2 Inhibitor, Trametinib, Protects Mice from Cisplatin and Noise-Induced Hearing Loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595056. [PMID: 38826449 PMCID: PMC11142120 DOI: 10.1101/2024.05.20.595056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Hearing loss is one of the most common types of disability; however, there is only one FDA-approved drug to prevent any type of hearing loss. Treatment with the highly effective chemotherapy agent, cisplatin, and exposure to high decibel noises are two of the most common causes of hearing loss. The mitogen activated protein kinase (MAPK) pathway, a phosphorylation cascade consisting of RAF, MEK1/2, and ERK1/2, has been implicated in both types of hearing loss. Pharmacologically inhibiting BRAF or ERK1/2 is protective from noise and cisplatin-induced hearing loss in multiple mouse models. Trametinib, a MEK1/2 inhibitor, protects from cisplatin induced outer hair cell death in mouse cochlear explants; however, to the best of our knowledge, inhibiting MEK1/2 has not yet been shown to be protective from hearing loss in vivo. In this study, we demonstrate that trametinib protects from cisplatin-induced hearing loss in a translationally relevant mouse model and does not interfere with cisplatin's tumor killing efficacy in cancer cell lines. Higher doses of trametinib were toxic to mice when combined with cisplatin but lower doses of the drug were protective from hearing loss without any known toxicity. Trametinib also protected mice from noise-induced hearing loss and synaptic damage. This study shows that MEK1/2 inhibition protects from both insults of hearing loss and that targeting all three kinases in the MAPK pathway protect from cisplatin and noise-induced hearing loss in mice.
Collapse
Affiliation(s)
- Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Regina G. Kelmann
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
19
|
Sailor-Longsworth E, Lutze RD, Ingersoll MA, Kelmann RG, Ly K, Currier D, Chen T, Zuo J, Teitz T. Oseltamivir (Tamiflu), a Commonly Prescribed Antiviral Drug, Mitigates Hearing Loss in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592815. [PMID: 38765999 PMCID: PMC11100672 DOI: 10.1101/2024.05.06.592815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Hearing loss affects up to 10% of all people worldwide, but currently there is only one FDA-approved drug for its prevention in a subgroup of cisplatin-treated pediatric patients. Here, we performed an unbiased screen of 1,300 FDA-approved drugs for protection against cisplatin-induced cell death in an inner ear cell line, and identified oseltamivir phosphate (brand name Tamiflu), a common influenza antiviral drug, as a top candidate. Oseltamivir phosphate was found to be otoprotective by oral delivery in multiple established cisplatin and noise exposure mouse models. The drug conferred permanent hearing protection of 15-25 dB SPL for both female and male mice. Oseltamivir treatment reduced in mice outer hair cells death after cisplatin treatment and mitigated cochlear synaptopathy after noise exposure. A potential binding protein, ERK1/2, associated with inflammation, was shown to be activated with cisplatin treatment and reduced by oseltamivir cotreatment in cochlear explants. Importantly, the number of infiltrating immune cells to the cochleae in mice post noise exposure, were significantly reduced with oseltamivir treatment, suggesting an anti-inflammatory mechanism of action. Our results support oseltamivir, a widespread drug for influenza with low side effects, as a promising otoprotective therapeutic candidate in both cisplatin chemotherapy and traumatic noise exposure.
Collapse
Affiliation(s)
- Emma Sailor-Longsworth
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Regina G. Kelmann
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Kristina Ly
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Duane Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
20
|
Dong W, Jiang Y, Yao Q, Xu M, Jin Y, Dong L, Li Z, Yu D. Inhibition of CISD1 attenuates cisplatin-induced hearing loss in mice via the PI3K and MAPK pathways. Biochem Pharmacol 2024; 223:116132. [PMID: 38492782 DOI: 10.1016/j.bcp.2024.116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
Cisplatin is an effective chemotherapeutic drug for different cancers, but it also causes severe and permanent hearing loss. Oxidative stress and mitochondrial dysfunction in cochlear hair cells (HCs) have been shown to be important in the pathogenesis of cisplatin-induced hearing loss (CIHL). CDGSH iron sulfur domain 1 (CISD1, also known as mitoNEET) plays a critical role in mitochondrial oxidative capacity and cellular bioenergetics. Targeting CISD1 may improve mitochondrial function in various diseases. However, the role of CISD1 in cisplatin-induced ototoxicity is unclear. Therefore, this study was performed to assess the role of CISD1 in cisplatin-induced ototoxicity. We found that CISD1 expression was significantly increased after cisplatin treatment in both HEI-OC1 cells and cochlear HCs. Moreover, pharmacological inhibition of CISD1 with NL-1 inhibited cell apoptosis and reduced mitochondrial reactive oxygen species accumulation in HEI-OC1 cells and cochlear explants. Inhibition of CISD1 with small interfering RNA in HEI-OC1 cells had similar protective effects. Furthermore, NL-1 protected against CIHL in adult C57 mice, as evaluated by the auditory brainstem response and immunofluorescent staining. Mechanistically, RNA sequencing revealed that NL-1 attenuated CIHL via the PI3K and MAPK pathways. Most importantly, NL-1 did not interfere with the antitumor efficacy of cisplatin. In conclusion, our study revealed that targeting CISD1 with NL-1 reduced reactive oxygen species accumulation, mitochondrial dysfunction, and apoptosis via the PI3K and MAPK pathways in HEI-OC1 cell lines and mouse cochlear explants in vitro, and it protected against CIHL in adult C57 mice. Our study suggests that CISD1 may serve as a novel target for the prevention of CIHL.
Collapse
Affiliation(s)
- Wenqi Dong
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yumeng Jiang
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingxiu Yao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Maoxiang Xu
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Yuchen Jin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingkang Dong
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuangzhuang Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dongzhen Yu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Kaur M, Miquel S, Ollivier-Nakusi L, Thoral C, Vareille-Delarbre M, Bekirian C, d'Enfert C, Fontaine T, Roget K, Forestier C. Elemental sulfur enhances the anti-fungal effect of Lacticaseibacillus rhamnosus Lcr35. Microbes Infect 2024; 26:105286. [PMID: 38160785 DOI: 10.1016/j.micinf.2023.105286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Lacticaseibacillus rhamnosus Lcr35 is a well-known bacterial strain whose efficiency in preventing recurrent vulvovaginal candidiasis has been largely demonstrated in clinical trials. The presence of sodium thiosulfate (STS) has been shown to enhance its ability to inhibit the growth of Candida albicans strains. In this study, we confirmed that Lcr35 has a fungicidal effect not only on the planktonic form of C. albicans but also on other life forms such as hypha and biofilm. Transcriptomic analysis showed that the presence of C. albicans induced a metabolic adaptation of Lcr35 potentially associated with a competitive advantage over yeast cells. However, STS alone had no impact on the global gene expression of Lcr35, which is not in favor of the involvement of an enzymatic transformation of STS. Comparative HPLC and gas chromatography-mass spectrometry analysis of the organic phase from cell-free supernatant (CFS) fractions obtained from Lcr35 cultures performed in the presence and absence of STS identified elemental sulfur (S0) in the samples initially containing STS. In addition, the anti-Candida activity of CFS from STS-containing cultures was shown to be pH-dependent and occurred at acidic pH lower than 5. We next investigated the antifungal activity of lactic acid and acetic acid, the two main organic acids produced by lactobacilli. The two molecules affected the viability of C. albicans but only at pH 3.5 and in a dose-dependent manner, an antifungal effect that was enhanced in samples containing STS in which the thiosulfate was decomposed into S0. In conclusion, the use of STS as an excipient in the manufacturing process of Lcr35 exerted a dual action since the production of organic acids by Lcr35 facilitates the decomposition of thiosulfate into S0, thereby enhancing the bacteria's own anti-fungal effect.
Collapse
Affiliation(s)
- Manjyot Kaur
- NEXBIOME Therapeutics, 22 Allée Alan Turing, 63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Sylvie Miquel
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France.
| | | | - Claudia Thoral
- NEXBIOME Therapeutics, 22 Allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Clara Bekirian
- Institut Pasteur, Université Paris Cité, INRAE USC 2019, Unité Biologie et Pathogénicité Fongiques, 25, rue du Docteur Roux, 75015 Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC 2019, Unité Biologie et Pathogénicité Fongiques, 25, rue du Docteur Roux, 75015 Paris, France
| | - Thierry Fontaine
- Institut Pasteur, Université Paris Cité, INRAE USC 2019, Unité Biologie et Pathogénicité Fongiques, 25, rue du Docteur Roux, 75015 Paris, France
| | - Karine Roget
- NEXBIOME Therapeutics, 22 Allée Alan Turing, 63000 Clermont-Ferrand, France
| | | |
Collapse
|
22
|
Reynard P, Thai-Van H. Drug-induced hearing loss: Listening to the latest advances. Therapie 2024; 79:283-295. [PMID: 37957052 DOI: 10.1016/j.therap.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/14/2023] [Indexed: 11/15/2023]
Abstract
Sensorineural hearing loss (SNHL) is the most common type of hearing loss. Causes include degenerative changes in the sensory hair cells, their synapses and/or the cochlear nerve. As human inner ear hair cells have no capacity for regeneration, their destruction is irreversible and leads to permanent hearing loss. SNHL can be genetically inherited or acquired through ageing, exposure to noise or ototoxic drugs. Ototoxicity generally refers to damage to the structures and functions of the inner ear following exposure to specific drugs. Ototoxicity can be multifactorial, causing damage to cochlear hair cells or cells with homeostatic functions that modulate cochlear hair cell function. Clinical strategies to limit ototoxicity include identifying patients at risk, monitoring drug concentrations, performing serial hearing assessments and switching to less ototoxic therapy. This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, using the PubMed® database. The search terms "ototoxicity", "hearing loss" and "drugs" were combined. We included studies published between September 2013 and June 2023, and focused on medicines and drugs used in hospitals. The review highlighted a number of articles reporting the main drug classes potentially involved: namely, immunosuppressants, antimalarials, vaccines, antibiotics, antineoplastic agents, diuretics, nonsteroidal anti-inflammatory drugs and analgesics. The presumed ototoxic mechanisms were described, together with the therapeutic and preventive options developed over the last ten years.
Collapse
Affiliation(s)
- Pierre Reynard
- Service d'audiologie & explorations oto-neurologiques, hospices civils de Lyon, hôpital Edouard-Herriot & hôpital Femme Mère-Enfant, 69000 Lyon, France; Institut Pasteur, Institut de l'Audition, Center for Research and Innovation in Human Audiology, 75000 Paris, France; Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Hung Thai-Van
- Service d'audiologie & explorations oto-neurologiques, hospices civils de Lyon, hôpital Edouard-Herriot & hôpital Femme Mère-Enfant, 69000 Lyon, France; Institut Pasteur, Institut de l'Audition, Center for Research and Innovation in Human Audiology, 75000 Paris, France; Université Claude Bernard Lyon 1, 69622 Villeurbanne, France.
| |
Collapse
|
23
|
Ingersoll MA, Lutze RD, Pushpan CK, Kelmann RG, Liu H, May MT, Hunter WJ, He DZ, Teitz T. Dabrafenib protects from cisplatin-induced hearing loss in a clinically relevant mouse model. JCI Insight 2023; 8:e171140. [PMID: 37934596 PMCID: PMC10807719 DOI: 10.1172/jci.insight.171140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
The widely used chemotherapy cisplatin causes permanent hearing loss in 40%-60% of patients with cancer. One drug, sodium thiosulfate, is approved by the FDA for use in pediatric patients with localized solid tumors for preventing cisplatin-induced hearing loss, but more drugs are desperately needed. Here, we tested dabrafenib, an FDA-approved BRAF kinase inhibitor and anticancer drug, in a clinically relevant multidose cisplatin mouse model. The protective effects of dabrafenib, given orally twice daily with cisplatin, were determined by functional hearing tests and cochlear outer hair cell counts. Toxicity of the drug cotreatment was evaluated, and levels of phosphorylated ERK were measured. A dabrafenib dose of 3 mg/kg BW, twice daily, in mice, was determined to be the minimum effective dose, and it is equivalent to one-tenth of the daily FDA-approved dose for human cancer treatment. The levels of hearing protection acquired, 20-25 dB at the 3 frequencies tested, in both female and male mice, persisted for 4 months after completion of treatments. Moreover, dabrafenib exhibited a good in vivo therapeutic index (> 25), protected hearing in 2 mouse strains, and diminished cisplatin-induced weight loss. This study demonstrates that dabrafenib is a promising candidate drug for protection from cisplatin-induced hearing loss.
Collapse
Affiliation(s)
| | | | | | | | | | | | - William J. Hunter
- Department of Pathology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | | | - Tal Teitz
- Department of Pharmacology and Neuroscience
| |
Collapse
|
24
|
Tan WJT, Vlajkovic SM. Molecular Characteristics of Cisplatin-Induced Ototoxicity and Therapeutic Interventions. Int J Mol Sci 2023; 24:16545. [PMID: 38003734 PMCID: PMC10671929 DOI: 10.3390/ijms242216545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cisplatin is a commonly used chemotherapeutic agent with proven efficacy in treating various malignancies, including testicular, ovarian, cervical, breast, bladder, head and neck, and lung cancer. Cisplatin is also used to treat tumors in children, such as neuroblastoma, osteosarcoma, and hepatoblastoma. However, its clinical use is limited by severe side effects, including ototoxicity, nephrotoxicity, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, and retinal toxicity. Cisplatin-induced ototoxicity manifests as irreversible, bilateral, high-frequency sensorineural hearing loss in 40-60% of adults and in up to 60% of children. Hearing loss can lead to social isolation, depression, and cognitive decline in adults, and speech and language developmental delays in children. Cisplatin causes hair cell death by forming DNA adducts, mitochondrial dysfunction, oxidative stress, and inflammation, culminating in programmed cell death by apoptosis, necroptosis, pyroptosis, or ferroptosis. Contemporary medical interventions for cisplatin ototoxicity are limited to prosthetic devices, such as hearing aids, but these have significant limitations because the cochlea remains damaged. Recently, the U.S. Food and Drug Administration (FDA) approved the first therapy, sodium thiosulfate, to prevent cisplatin-induced hearing loss in pediatric patients with localized, non-metastatic solid tumors. Other pharmacological treatments for cisplatin ototoxicity are in various stages of preclinical and clinical development. This narrative review aims to highlight the molecular mechanisms involved in cisplatin-induced ototoxicity, focusing on cochlear inflammation, and shed light on potential antioxidant and anti-inflammatory therapeutic interventions to prevent or mitigate the ototoxic effects of cisplatin. We conducted a comprehensive literature search (Google Scholar, PubMed) focusing on publications in the last five years.
Collapse
Affiliation(s)
- Winston J. T. Tan
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Srdjan M. Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
25
|
Ingersoll MA, Lutze RD, Kelmann RG, Kresock DF, Marsh JD, Quevedo RV, Zuo J, Teitz T. KSR1 knockout mouse model demonstrates MAPK pathway's key role in cisplatin- and noise-induced hearing loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566316. [PMID: 38014104 PMCID: PMC10680565 DOI: 10.1101/2023.11.08.566316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hearing loss is a major disability in everyday life and therapeutic interventions to protect hearing would benefit a large portion of the world population. Here we found that mice devoid of the protein kinase suppressor of RAS 1 (KSR1) in their tissues (germline KO mice) exhibit resistance to both cisplatin- and noise-induced permanent hearing loss compared to their wild-type KSR1 littermates. KSR1 is expressed in the cochlea and is a scaffold protein that brings in proximity the mitogen-activated protein kinase (MAPK) proteins BRAF, MEK and ERK and assists in their activation through a phosphorylation cascade induced by both cisplatin and noise insults in the cochlear cells. Deleting the KSR1 protein tempered down the MAPK phosphorylation cascade in the cochlear cells following both cisplatin and noise insults and conferred hearing protection of up to 30 dB SPL in three tested frequencies in mice. Treatment with dabrafenib, an FDA-approved oral BRAF inhibitor, downregulated the MAPK kinase cascade and protected the KSR1 wild-type mice from both cisplatin- and noise-induced hearing loss. Dabrafenib treatment did not enhance the protection of KO KSR1 mice, as excepted, providing evidence dabrafenib works primarily through the MAPK pathway. Thus, either elimination of the KSR1 gene expression or drug inhibition of the MAPK cellular pathway in mice resulted in profound protection from both cisplatin- and noise-induce hearing loss. Inhibition of the MAPK pathway, a cellular pathway that responds to damage in the cochlear cells, can prove a valuable strategy to protect and treat hearing loss.
Collapse
Affiliation(s)
- Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Regina G. Kelmann
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Daniel F. Kresock
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jordan D. Marsh
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Rene V. Quevedo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
26
|
Yin H, Sun Y, Ya B, Guo Y, Zhao H, Zhang L, Wang F, Zhang W, Yang Q. Apelin-13 protects against cisplatin-induced ototoxicity by inhibiting apoptosis and regulating STAT1 and STAT3. Arch Toxicol 2023; 97:2477-2493. [PMID: 37395757 DOI: 10.1007/s00204-023-03544-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
The ototoxic side effect of cisplatin is a main cause of sensorineural hearing loss. This side effect limits the clinical application of cisplatin and affects patients' quality of life. This study was designed to investigate the effect of apelin-13 on cisplatin-induced C57BL/6 mice hearing loss model and explore the potential underlying molecular mechanisms. Mice were intraperitoneally injected with 100 μg/kg apelin-13 2 h before 3 mg/kg cisplatin injection for 7 consecutive days. Cochlear explants cultured in vitro were pretreated with 10 nM apelin-13 2 h prior to 30 μM cisplatin treatment for another 24 h. Hearing test and morphology results showed that apelin-13 attenuated cisplatin-induced mice hearing loss and protected cochlear hair cells and spiral ganglion neurons from damage. In vivo and in vitro experimental results showed that apelin-3 reduced cisplatin-induced apoptosis of hair cells and spiral ganglion neurons. In addition, apelin-3 preserved mitochondrial membrane potential and inhibited ROS production in cultured cochlear explants. Mechanistic studies showed that apelin-3 decreased cisplatin-induced cleaved caspase 3 expression but increased Bcl-2; inhibited the expression of pro-inflammatory factors TNF-a and IL-6; and increased STAT1 phosphorylation but decreased STAT3 phosphorylation. In conclusion, our results indicate that apelin-13 could be a potential otoprotective agent to prevent cisplatin-induced ototoxicity by inhibiting apoptosis, ROS production, TNF-α and IL-6 expression, and regulating phosphorylation of STAT1 and STAT3 transcription factors.
Collapse
Affiliation(s)
- Haiyan Yin
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China.
| | - Yinuo Sun
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China
| | - Bailiu Ya
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China
| | - Yan Guo
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China
| | - Hao Zhao
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, China
| | - Lili Zhang
- Department of Otolaryngology-Head and Neck Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Fan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Weiwei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Qianqian Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
27
|
Orgel E, Knight KR, Chi YY, Malvar J, Rushing T, Mena V, Eisenberg LS, Rassekh SR, Ross CJD, Scott EN, Neely M, Neuwelt EA, Muldoon LL, Freyer DR. Intravenous N-Acetylcysteine to Prevent Cisplatin-Induced Hearing Loss in Children: A Nonrandomized Controlled Phase I Trial. Clin Cancer Res 2023; 29:2410-2418. [PMID: 37134194 PMCID: PMC10330342 DOI: 10.1158/1078-0432.ccr-23-0252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/29/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE Cisplatin-induced hearing loss (CIHL) is common and permanent. As compared with earlier otoprotectants, we hypothesized N-acetylcysteine (NAC) offers potential for stronger otoprotection through stimulation of glutathione (GSH) production. This study tested the optimal dose, safety, and efficacy of NAC to prevent CIHL. PATIENTS AND METHODS In this nonrandomized, controlled phase Ia/Ib trial, children and adolescents newly diagnosed with nonmetastatic, cisplatin-treated tumors received NAC intravenously 4 hours post-cisplatin. The trial performed dose-escalation across three dose levels to establish a safe dose that exceeded the targeted peak serum NAC concentration of 1.5 mmol/L (as identified from preclinical models). Patients with metastatic disease or who were otherwise ineligible were enrolled in an observation-only/control arm. To evaluate efficacy, serial age-appropriate audiology assessments were performed. Integrated biology examined genes involved in GSH metabolism and post-NAC GSH concentrations. RESULTS Of 52 patients enrolled, 24 received NAC and 28 were in the control arm. The maximum tolerated dose was not reached; analysis of peak NAC concentration identified 450 mg/kg as the recommended phase II dose (RP2D). Infusion-related reactions were common. No severe adverse events occurred. Compared with the control arm, NAC decreased likelihood of CIHL at the end of cisplatin therapy [OR, 0.13; 95% confidence interval (CI), 0.021-0.847; P = 0.033] and recommendations for hearing intervention at end of study (OR, 0.082; 95% CI, 0.011-0.60; P = 0.014). NAC increased GSH; GSTP1 influenced risk for CIHL and NAC otoprotection. CONCLUSIONS NAC was safe at the RP2D, with strong evidence for efficacy to prevent CIHL, warranting further development as a next-generation otoprotectant.
Collapse
Affiliation(s)
- Etan Orgel
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Kristin R. Knight
- Department of Pediatric Audiology, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, Oregon
| | - Yueh-Yun Chi
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jemily Malvar
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Teresa Rushing
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Victoria Mena
- Department of Rehabilitation Services-Pediatric Audiology, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Laurie S. Eisenberg
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Shahrad R. Rassekh
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin JD Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erika N. Scott
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Neely
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Laboratory of Applied Pharmacokinetics and Bioinformatics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California
| | - Edward A. Neuwelt
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Leslie L. Muldoon
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - David R Freyer
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
28
|
Le Prell CG. Preclinical prospects of investigational agents for hearing loss treatment. Expert Opin Investig Drugs 2023; 32:685-692. [PMID: 37695693 DOI: 10.1080/13543784.2023.2253141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION : Hearing loss has a high prevalence, with aging, noise exposure, ototoxic drug therapies, and genetic mutations being some of the leading causes of hearing loss. Health conditions such as cardiovascular disease and diabetes are associated with hearing loss, perhaps due to shared vascular pathology in the ear and in other tissues. AREAS COVERED : Issues in the design of preclinical research preclude the ability to make comparisons regarding the relative efficacy of different drugs of interest for possible hearing loss prevention or hearing restoration. This has not slowed the advancement of candidate therapeutics into human clinical testing. There is a robust pipeline with drugs that have different mechanisms of action providing diverse candidate therapies and opportunities for combination therapies to be considered. EXPERT OPINION : Much of the preclinical research literature lacks standard study design elements such as dose response testing, and lack of standardization of test protocols significantly limits conclusions regarding relative efficacy. Nonetheless, the many positive results to date have supported translation of preclinical efforts into clinical trials assessing potential human benefits. Approval of the first hearing loss prevention therapeutic is a major success, providing a pathway for other drugs to follow.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing, University of Texas at Dallas, Richardson, TX, USA
- Callier Center for Communication Disorders, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
29
|
Tan WJT, Song L. Role of mitochondrial dysfunction and oxidative stress in sensorineural hearing loss. Hear Res 2023; 434:108783. [PMID: 37167889 DOI: 10.1016/j.heares.2023.108783] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Sensorineural hearing loss (SNHL) can either be genetically inherited or acquired as a result of aging, noise exposure, or ototoxic drugs. Although the precise pathophysiological mechanisms underlying SNHL remain unclear, an overwhelming body of evidence implicates mitochondrial dysfunction and oxidative stress playing a central etiological role. With its high metabolic demands, the cochlea, particularly the sensory hair cells, stria vascularis, and spiral ganglion neurons, is vulnerable to the damaging effects of mitochondrial reactive oxygen species (ROS). Mitochondrial dysfunction and consequent oxidative stress in cochlear cells can be caused by inherited mitochondrial DNA (mtDNA) mutations (hereditary hearing loss and aminoglycoside-induced ototoxicity), accumulation of acquired mtDNA mutations with age (age-related hearing loss), mitochondrial overdrive and calcium dysregulation (noise-induced hearing loss and cisplatin-induced ototoxicity), or accumulation of ototoxic drugs within hair cell mitochondria (drug-induced hearing loss). In this review, we provide an overview of our current knowledge on the role of mitochondrial dysfunction and oxidative stress in the development of SNHL caused by genetic mutations, aging, exposure to excessive noise, and ototoxic drugs. We also explore the advancements in antioxidant therapies for the different forms of acquired SNHL that are being evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand.
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Otolaryngology - Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
30
|
Future Pharmacotherapy for Sensorineural Hearing Loss by Protection and Regeneration of Auditory Hair Cells. Pharmaceutics 2023; 15:pharmaceutics15030777. [PMID: 36986638 PMCID: PMC10054686 DOI: 10.3390/pharmaceutics15030777] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Sensorineural hearing loss has been a global burden of diseases for decades. However, according to recent progress in experimental studies on hair cell regeneration and protection, clinical trials of pharmacotherapy for sensorineural hearing loss have rapidly progressed. In this review, we focus on recent clinical trials for hair cell protection and regeneration and outline mechanisms based on associated experimental studies. Outcomes of recent clinical trials provided valuable data regarding the safety and tolerability of intra-cochlear and intra-tympanic applications as drug delivery methods. Recent findings in molecular mechanisms of hair cell regeneration suggested the realization of regenerative medicine for sensorineural hearing loss in the near future.
Collapse
|