1
|
Vavak M, Cihova I, Reichwalderova K, Vegh D, Dolezajova L, Slaninova M. Changes in Vertical Jump Parameters After Training Unit in Relation to ACE, ACTN3, PPARA, HIF1A, and AMPD1 Gene Polymorphisms in Volleyball and Basketball Players. Genes (Basel) 2025; 16:250. [PMID: 40149402 PMCID: PMC11942027 DOI: 10.3390/genes16030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The study aims to investigate potential differences in vertical jump performance between elite basketball and volleyball players before and after a standard training session, in comparison to a control group from the general population. The analysis focuses on the influence of selected gene polymorphisms that may contribute to variations in the assessed performance parameters. AIMS The aim was to investigate the influence of ACE (rs4646994), ACTN3 (rs1815739), PPARA rs4253778, HIF1A (rs11549465), and AMPD1 (rs17602729) genes polymorphisms on the combined effects of post-activation potentiation (PAP), post-activation performance enhancement (PAPE), and general adaptation syndrome (GAS), as reflected in vertical jump performance, in elite basketball and volleyball players compared to a control group from the general population. METHODS The effects of PAP at the beginning of the training load (acute exercise), and the combined influences of PAPE and GAS following the training load were evaluated using parameters measured by the OptoJump Next® system (Microgate, Bolzano, Italy). RESULTS A statistically significant (h, p < 0.05) negative effect of the CT genotype of the AMPD1 gene on jump height was observed in the group of athletes. The CT genotype of the AMPD1 gene negatively impacted on PAPE and GAS adaptive responses (ΔP, Δh, p < 0.001) also in the control group. A positive effect on the power during the active phase of the vertical jump was identified for the II genotype of the ACE gene and the Pro/Ser genotype of the HIF1A gene, both exclusively in the control group (ΔP, p < 0.05). CONCLUSION Our findings demonstrate that different gene polymorphisms exert variable influences on the combined effects of PAPE and GAS, as reflected in vertical jump parameters, depending on the participants' level of training adaptation.
Collapse
Affiliation(s)
- Miroslav Vavak
- Department of Track and Field and Sport Conditioning, Faculty of Physical Education and Sport, Comenius University Bratislava, Nábr. arm. gen. L. Svobodu 9, 814 69 Bratislava, Slovakia
| | - Iveta Cihova
- Department of Track and Field and Sport Conditioning, Faculty of Physical Education and Sport, Comenius University Bratislava, Nábr. arm. gen. L. Svobodu 9, 814 69 Bratislava, Slovakia
| | - Katarina Reichwalderova
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - David Vegh
- Department of Track and Field and Sport Conditioning, Faculty of Physical Education and Sport, Comenius University Bratislava, Nábr. arm. gen. L. Svobodu 9, 814 69 Bratislava, Slovakia
| | - Ladislava Dolezajova
- Department of Track and Field and Sport Conditioning, Faculty of Physical Education and Sport, Comenius University Bratislava, Nábr. arm. gen. L. Svobodu 9, 814 69 Bratislava, Slovakia
| | - Miroslava Slaninova
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
2
|
Shiratsuchi D, Taniguchi Y, Akaida S, Tateishi M, Kiuchi Y, Kuratsu R, Makizako H. Influence of exercise and dietary habits on the association of alpha-actinin-3 gene polymorphisms with physical function and body composition in community-dwelling individuals aged 60 years and older. Geriatr Gerontol Int 2025; 25:173-181. [PMID: 39716452 PMCID: PMC11788261 DOI: 10.1111/ggi.15042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024]
Abstract
AIM Alpha-actinin 3 (ACTN3) is associated with diminished physical function and muscle mass in older individuals. However, the effects of lifestyle on this relationship remain unclear. This study explored whether the association between ACTN3 polymorphisms and physical function and body composition varied based on exercise and dietary habits. METHODS A longitudinal analysis of 197 community-dwelling individuals aged 60 years and older (mean age 72.5 ± 5.9 years, 60.9% women) in the Tarumizu study provided data on ACTN3 gene polymorphisms, with surveys completed in 2019 and 2022 (mean follow-up 1156 ± 80.0 days). Physical performance (grip strength, walking speed) and body composition (body weight, appendicular skeletal muscle mass [ASMM], and fat mass) were assessed. Genetic polymorphisms were analyzed in oral mucosa samples and categorized into type R allele carriers and type XX alleles (homozygous for minor alleles). Median values determined exercise habits (≤4 days/week or ≥5 days/week) and dietary habits based on high-protein-food frequency scores. RESULTS The proportion of type XX genetic polymorphism was 26.4%. Two-way repeated-measures analysis of covariance showed a significant interaction between genetic polymorphism and time for ASMM (F = 10.552, P = 0.002) in the ≤4 days/week exercise habits group. Significant interactions were observed in grip strength (F = 7.013, P = 0.009) and ASMM (F = 5.347, P = 0.023) for the ≤11 score high-protein-intake group. CONCLUSIONS This association may contribute to accelerated age-related changes in physical performance and body composition, particularly among individuals with type XX genetic polymorphism who have low exercise habits and a limited intake of high-protein foods. Geriatr Gerontol Int 2025; 25: 173-181.
Collapse
Affiliation(s)
- Daijo Shiratsuchi
- Graduate School of Health Sciences, Kagoshima University, Kagoshima, Japan
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Yoshiaki Taniguchi
- Department of Rehabilitation, Faculty of Nursing and Welfare, Kyushu University of Nursing and Social Welfare, Tamana, Japan
| | - Shoma Akaida
- Graduate School of Health Sciences, Kagoshima University, Kagoshima, Japan
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Mana Tateishi
- Department of Epidemiology of Aging, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yuto Kiuchi
- Graduate School of Health Sciences, Kagoshima University, Kagoshima, Japan
- Department of Preventive Gerontology, Center for Gerontology and Social Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Ryota Kuratsu
- Graduate School of Health Sciences, Kagoshima University, Kagoshima, Japan
| | - Hyuma Makizako
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
3
|
Ren X, Shi Y, Xiao B, Su X, Shi H, He G, Chen P, Wu D, Shi Y. Gene Doping Detection From the Perspective of 3D Genome. Drug Test Anal 2025. [PMID: 39757126 DOI: 10.1002/dta.3850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Since the early 20th century, the concept of doping was first introduced. To achieve better athletic performance, chemical substances were used. By the mid-20th century, it became gradually recognized that the illegal use of doping substances can seriously endangered athletes' health and compromised the fairness of sports competitions. Over the past 30 years, the World Anti-Doping Agency (WADA) has established corresponding rules and regulations to prohibit athletes from using doping substances or restrict the use of certain drugs, and isotope, chromatography, and mass spectrometry techniques were accredited to detect doping substances. With the development of gene editing technology, many genetic diseases have been effectively treated, but enabled by the same technology, doping has also the potential to pose a threat to sports in the form of gene doping. WADA has explicitly indicated gene doping in the Prohibited List as a prohibited method (M3) and approved qPCR detection. However, gene doping can easily evade detection, if the target genes' upstream regulatory elements are considered, the task became more challenging. Hi-C experiment driven 3D genome technology, through perspectives such as topologically associating domain (TAD) and chromatin loop, provides a more comprehensive and in-depth understanding of gene regulation and expression, thereby better preventing the potential use of 3D genome level gene doping. In this work, we will explore gene doping from a different perspective by analyzing recent studies on gene doping and explore related genes under 3D genome.
Collapse
Affiliation(s)
- Xinyuan Ren
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Bo Xiao
- Faculty of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xianbin Su
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Peijie Chen
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Die Wu
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Yi Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Chae JH, Eom SH, Lee SK, Jung JH, Kim CH. Association between Complex ACTN3 and ACE Gene Polymorphisms and Elite Endurance Sports in Koreans: A Case-Control Study. Genes (Basel) 2024; 15:1110. [PMID: 39336701 PMCID: PMC11431688 DOI: 10.3390/genes15091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
ACTN3 R577X and ACE I/D polymorphisms are associated with endurance exercise ability. This case-control study explored the association of ACTN3 and ACE gene polymorphisms with elite pure endurance in Korean athletes, hypothesizing that individuals with both ACTN3 XX and ACE II genotypes would exhibit superior endurance. We recruited 934 elite athletes (713 males, 221 females) and selected 45 pure endurance athletes (36 males, 9 females) requiring "≥90% aerobic energy metabolism during sports events", in addition to 679 healthy non-athlete Koreans (361 males, 318 females) as controls. Genomic DNA was extracted and genotyped for ACTN3 R577X and ACE I/D polymorphisms. ACE ID (p = 0.090) and ACTN3 RX+XX (p = 0.029) genotype distributions were significantly different between the two groups. Complex ACTN3-ACE genotypes also exhibited significant differences (p = 0.014), with dominant complex genotypes positively affecting endurance (p = 0.039). The presence of RX+II or XX+II was associated with a 1.763-fold higher likelihood of possessing a superior endurance capacity than that seen in healthy controls (90% CI = 1.037-3.089). Our findings propose an association of combined ACTN3 RX+XX and ACE II genotypes with enhanced endurance performance in elite Korean athletes. While causality remains to be confirmed, our study highlights the potential of ACTN3-ACE polymorphisms in predicting elite endurance.
Collapse
Affiliation(s)
- Ji Heon Chae
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| | - Seon-Ho Eom
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| | - Sang-Ki Lee
- Department of Physical Education, Korea National Sports University, Seoul 05541, Republic of Korea;
| | - Joo-Ha Jung
- Center for Sport Science in Chungnam, Asan 31580, Republic of Korea
| | - Chul-Hyun Kim
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| |
Collapse
|
5
|
Varillas-Delgado D. Association of Genetic Profile with Muscle Mass Gain and Muscle Injury Prevention in Professional Football Players after Creatine Supplementation. Nutrients 2024; 16:2511. [PMID: 39125391 PMCID: PMC11313812 DOI: 10.3390/nu16152511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND In recent years, the study of creatine supplementation in professional athletes has been of great interest. However, the genetics involved in response to supplementation is unknown. The aim of this study was to analyse, for the first time, the relationship between muscle performance-related genes and the risk of an increased body mass index (BMI) and muscle mass and a decrease in fat mass in professional football players after creatine supplementation. METHODS For this longitudinal study, one hundred and sixty-one men's professional football players were recruited. The polymorphisms ACE I/D, ACTN3 c.1729C>T, AMPD1 c.34C>T, CKM c.*800A>G, and MLCK (c.49C>T and c.37885C>A) were genotyped using Single-Nucleotide Primer Extension (SNPE). To assess the combined impact of these six polymorphisms, a total genotype score (TGS) was calculated. The creatine supplementation protocol consisted of 20 g/day of creatine monohydrate for 5 days (loading dose) and 3-5 g/day for 7 weeks (maintenance dose). Anthropometric characteristics (body mass index (BMI), fat, and muscle mass) were recorded before and after the creatine supplementation protocol. Characteristics of non-contact muscle injuries during the 2022/2023 season were classified according to a consensus statement for injury recording. The results showed that the allelic frequencies of ACE and AMPD1 differed between responders and non-responders in muscle mass increase (all p < 0.05). Players with a TGS exceeding 54.16 a.u. had an odds ratio (OR) of 2.985 (95%CI: 1.560-5.711; p = 0.001) for muscle mass increase. By contrast, those with a TGS below 54.16 a.u. had an OR of 9.385 (95%CI: 4.535-19.425; p < 0.001) for suffering non-contact muscle injuries during the season. CONCLUSIONS The increase in BMI and muscle mass in response to creatine supplementation in professional football players was influenced by a TGS derived from the combination of favourable genotypes linked to muscle performance. The CC genotype and C allele of AMPD1 were particularly associated with a higher likelihood of muscle mass increase under creatine supplementation in this group of professional football players.
Collapse
Affiliation(s)
- David Varillas-Delgado
- Exercise and Sport Science, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain;
- SPORTNOMICS S.L., 28922 Madrid, Spain
| |
Collapse
|
6
|
Liu T. The roles of ACE I/D and ACTN3 R577X gene variants in heat acclimation. Heliyon 2024; 10:e33172. [PMID: 38984309 PMCID: PMC11231590 DOI: 10.1016/j.heliyon.2024.e33172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Roles of genes in heat acclimation (HA, repeated exercise-heat exposures) had not been explored. ACE I/D and ACTN3 R577X genetic polymorphisms are closely associated with outstanding exercise performances. This study investigated whether the two polymorphisms influenced the response to HA. Fifty young Han nationality male subjects were selected and conducted HA for 2 weeks. Exercise indicators (5-km run, push-up and 100-m run) were tested and rest aural thermometry (RTau) was measured before and after HA. ACE gene was grouped by I homozygote and D carrier, and ACTN3 gene was grouped by R homozygote and X carrier. Results showed that there were no differences between groups in age, body mass index, exercise indicators and RTau before HA. After HA, RTau of ACE I homozygote was lower than that of D carrier [F (1, 48) = 9.12, p = 0.004, η = 0.40]. Compared with RTau before HA, that of I homozygote decreased after HA (Δ = -0.26 °C, 95 % CI -0.34-0.18, p < 0.001), while that of D carrier did not change. There was a ACE gene × HA interaction in RTau [F (1, 48) = 14.26, p < 0.001, η = 0.48]. No effect of ACTN3 gene on RTau was observed. For exercise indicators, there were no differences between groups after HA, and no gene × HA interactions were observed. There may be a strong interaction of ACE gene and HA in the change of rest core temperature. I homozygote may have an advantage on improving heat tolerance.
Collapse
Affiliation(s)
- Tao Liu
- Special Operations Experiment Center, Chinese People's Liberation Army Special Warfare School, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Mastalerz A, Johne M, Mróz A, Bojarczuk A, Stastny P, Petr M, Kolinger D, Pisz A, Vostatkova P, Maculewicz E. Changes of Anaerobic Power and Lactate Concentration following Intense Glycolytic Efforts in Elite and Sub-Elite 400-meter Sprinters. J Hum Kinet 2024; 91:165-174. [PMID: 38689580 PMCID: PMC11057624 DOI: 10.5114/jhk/186074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024] Open
Abstract
400-m races are based on anaerobic energy metabolism, they induce significant muscle fatigue, muscle fiber damage, and high blood lactate (LA) concentration. Despite extensive research on sprint training, our understanding of the training process that leads to world-class sprint performance is rather limited. This study aimed to determine differences in LA concentration and anaerobic power using jumping tests after an intense glycolytic effort in a group of elite and sub-elite 400-m runners. One hundred thirty male runners were divided into two groups: elite (n = 66, body mass = 73.4 ± 7.8 kg, body height = 182.1 ± 6.2 cm, age = 20.8 ± 4.0 y) running the 400-m dash below 50 s and sub-elite (n = 64, body mass = 72.0 ± 7.1 kg, body height = 182.1 ± 5.2 cm, age = 20.8 ± 4.0 y) with a 400-m personal best above 50 s. The power of the countermovement and the sequential squat jumps was measured in two sets after a warm-up, followed by two intermittent 30-s Wingate tests. LA concentration was measured eight times. It was observed that elite athletes achieved significantly higher power in both types of jumps. The maximum post-exercise LA concentration was significantly lower in the sub-elite group after the 3rd, the 6th, the 9th, and the 20th min after the cessation of two Wingate tests (p < 0.001). The rate of LA accumulation after exercise and the rate of LA utilization did not differ between the groups. It can be concluded that elite and non-elite runners differ in higher LA production but not in LA utilization. Anaerobic power and LA concentration seem to differentiate between 400 elite and sub-elite performance.
Collapse
Affiliation(s)
- Andrzej Mastalerz
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Monika Johne
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Anna Mróz
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Aleksandra Bojarczuk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Petr Stastny
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Miroslav Petr
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Dominik Kolinger
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Anna Pisz
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Pavlina Vostatkova
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Ewelina Maculewicz
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
- Department of Laboratory Diagnostics, Military Institute of Aviation Medicine, Warsaw, Poland
| |
Collapse
|
8
|
Ebert JR, Magi A, Unt E, Prans E, Wood DJ, Koks S. Genome-wide association study identifying variants related to performance and injury in high-performance athletes. Exp Biol Med (Maywood) 2023; 248:1799-1805. [PMID: 37750015 PMCID: PMC10792416 DOI: 10.1177/15353702231198068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/15/2023] [Indexed: 09/27/2023] Open
Abstract
A growing body of evidence exists supporting the role that genetic variation plays in athletic performance and injury. This study sought to identify genetic variants associated with performance and lower limb musculoskeletal injury in a high-level athletic cohort. A total of 126 Estonian National Team members (Olympic athletes and participants of International Championships) (104 males, 82.5%) underwent a genome-wide association analysis between 2017 and 2018, to identify single-nucleotide polymorphisms (SNPs) associated with performance and/or injury. The athletic cohort was stratified within each sport based on performance and whether they were a medalist (n = 29) or not (n = 97), whether they sustained an injury (n = 47) or not (n = 79), and the type of injury (patella tendinopathy n = 22, Achilles tendinopathy n = 17, hamstring injury n = 3, anterior cruciate ligament rupture n = 6). Three SNPs demonstrated strong genome-wide association with athletic performance (podium/medalist versus not), including DSG1 (rs10502567, OR 14.3) and DSG4 (rs73410248, OR 17.4), while 76 SNPs demonstrated suggestive significance. Overall, 37 SNPs gave genome-wide suggestive association with any type of injury, including PAPPA2 (rs11580456, OR 13.8) and MAS1 (rs220735, rs170219, OR 3.1) which demonstrated positive signal with multiple SNPs. Several genes demonstrated positive association for the specific injury types, including COL22A1 (rs3924862) and PLXNA2 (rs11799530), as well as PAPPA2 (rs11580456), DOK5 (rs73142922), GNG12 (rs28435277), and DAP (rs267959, rs2930047, rs1080440, rs267939). The current study identified genetic variants associated with high-level athletic performance and musculoskeletal injury. Further work is required to permit integration of this and future knowledge into individualized training practices, as well as injury mitigation and rehabilitation programs.
Collapse
Affiliation(s)
- Jay R Ebert
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA 6009, Australia
| | - Agnes Magi
- Department of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
- Sports Medicine and Rehabilitation Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Eve Unt
- Department of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
- Sports Medicine and Rehabilitation Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Ele Prans
- Department of Anaesthesiology and Intensive Care, Tartu University Hospital, 51014 Tartu, Estonia
| | - David J Wood
- School of Surgery, The University of Western Australia, Crawley, WA 6009, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Perth, WA 6150, Australia
| |
Collapse
|
9
|
Ipekoglu G, Cetin T, Apaydin N, Calcali T, Senel E. The Role of AGT, AMPD1, HIF1α, IL-6 Gene Polymorphisms in the Athletes' Power Status: A Meta-Analysis. J Hum Kinet 2023; 89:77-87. [PMID: 38053960 PMCID: PMC10694710 DOI: 10.5114/jhk/169262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/05/2023] [Indexed: 12/07/2023] Open
Abstract
This meta-analysis was designed to investigate the relationship between genetic polymorphisms (AGT rs699, AMPD1 rs17602729, HIF1α rs11549465, IL-6 rs1800795) and power athletes' status. Only case-control studies were included in the meta-analysis. A systematic search of the PubMed and Web of Science databases was performed to identify relevant studies and 23 studies met the inclusion criteria for the meta-analysis. The data from the included studies were pooled and analyzed using a random effects or fix effects model. The effect size was calculated as the odds ratio or a risk ratio with 95% confidence intervals. The results showed that certain genetic polymorphisms, AGT rs699 Thr allele, HIF1A rs11549465 Ser allele and AMPD1 rs17602729 C allele, were significantly more prevalent in power athletes (p < 0.05). When examining the genotype frequency distribution of AGT rs699 and AMPD1 rs17602729, significant differences were found in both the dominant and recessive models (p < 0.05). The results indicate that these gene polymorphisms play a role in power athlete status, however, new and more comprehensive studies are needed to confirm these results.
Collapse
Affiliation(s)
| | - Tugba Cetin
- School of Physical Education and Sports, Karabuk University, Karabuk, Turkey
| | | | - Tugce Calcali
- Faculty of Sport Sciences, Giresun University, Giresun, Turkey
| | - Ebru Senel
- Faculty of Sport Science, Ordu University, Ordu, Turkey
| |
Collapse
|
10
|
Bulgay C, Cepicka L, Dalip M, Yıldırım S, Ceylan Hİ, Yılmaz ÖÖ, Ulucan K, Badicu G, Cerit M. The relationships between ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms and athletic performance characteristics in professional soccer players. BMC Sports Sci Med Rehabil 2023; 15:121. [PMID: 37749582 PMCID: PMC10518950 DOI: 10.1186/s13102-023-00733-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Current research on athletic performance focuses on genetic variants that contribute significantly to individuals' performance. ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms are variants frequently associated with athletic performance among different populations. However, there is limited research examining the pre-and post-test results of some variants of athletic performance in soccer players. Therefore, the presented research is to examine the relationships between the ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms and athletic performance improvement rates in adaptations to six weeks of training in elite soccer players using some athletic performance tests. METHODOLOGY Twenty-two soccer players between the ages of 18 and 35 voluntarily participated in the study. All participants were actively engaged in a rigorous six-day-a-week training program during the pre-season preparation period. Preceding and following the training program, a battery of diverse athletic performance tests was administered to the participants. Moreover, Genomic DNA was extracted from oral epithelial cells using the Invitrogen DNA isolation kit (Invitrogen, USA), following the manufacturer's protocol. Genotyping was conducted using real-time PCR. To assess the pre- and post-test performance differences of soccer players, the Wilcoxon Signed Rank test was employed. RESULTS Upon analyzing the results of the soccer players based on the ACTN3 genotype variable, it was observed that there were no statistically significant differences in the SJ (Squat Jump), 30m sprint, CMJ (Counter Movement Jump), and DJ (Drop Jump) performance tests (p > 0.05). However, a statistically significant difference was identified in the YOYO IRT 2 (Yo-Yo Intermittent Recovery Test Level 2) and 1RM (One Repetition Maximum) test outcomes (YOYO IRT 2: CC, CT, and TT, p = 0.028, 0.028, 0.008, 0.000, respectively; 1RM: CC, CT, and TT, p = 0.010, 0.34, 0.001, respectively). Regarding the PPARA-α genotype variable, the statistical analysis revealed no significant differences in the SJ, 30m sprint, CMJ, and DJ performance tests (p > 0.05). Nevertheless, a statistically significant difference was observed in the YOYO IRT 2 and 1RM test results (YOYO IRT 2: CC, CG p = 0.001, 0.020; 1RM: CC, p = 0.000) CONCLUSIONS: The current study demonstrated significant enhancements in only YOYO INT 2 and 1RM test outcomes across nearly all gene variants following the six-day-a-week training program. Other performance tests, such as the 30m sprint, SJ, CMJ, and DJ tests did not exhibit statistically significant differences. These findings contribute novel insights into the molecular processes involving PPARA-α rs4253778 and ACTN3 rs1815739 that underpin enhancements in endurance (YOYO INT 2) and maximal strength (1RM) aspects of athletic performance. However, to comprehensively elucidate the mechanisms responsible for the association between these polymorphisms and athletic performance, further investigations are warranted. It is thought that the use of field and genetic analyses together to support each other will be an important detail for athletes to reach high performance.
Collapse
Affiliation(s)
- Celal Bulgay
- Sports Science Faculty, Bingol University, Bingöl, 12000 Türkiye
| | - Ladislav Cepicka
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, Pilsen, 30100 Czech Republic
| | - Metin Dalip
- Faculty of Physical Culture and Health, University in Tetovo, Tetova, 1200 Republic of North Macedonia
| | - Selin Yıldırım
- Sports Science Faculty, Lokman Hekim University, Ankara, 06510 Türkiye
| | - Halil İ. Ceylan
- Kazim Karabekir Faculty of Education, Ataturk University, Erzurum, 25240 Türkiye
| | - Özlem Ö. Yılmaz
- Institute of Health Sciences Marmara University, İstanbul, 34722 Türkiye
| | - Korkut Ulucan
- Department of Medical Biology and Genetics, Marmara University, İstanbul, 34722 Türkiye
| | - Georgian Badicu
- Faculty of Physical Education and Mountain Sports, Transilvania University of Braşov, Brasov, 500068 Romania
| | - Mesut Cerit
- Sports Science Faculty, Lokman Hekim University, Ankara, 06510 Türkiye
| |
Collapse
|
11
|
Konopka MJ, Sperlich B, Rietjens G, Zeegers MP. Genetics and athletic performance: a systematic SWOT analysis of non-systematic reviews. Front Genet 2023; 14:1232987. [PMID: 37621703 PMCID: PMC10445150 DOI: 10.3389/fgene.2023.1232987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Exercise genetics/genomics is a growing research discipline comprising several Strengths and Opportunities but also deals with Weaknesses and Threats. This "systematic SWOT overview of non-systematic reviews" (sSWOT) aimed to identify the Strengths, Weaknesses, Opportunities, and Threats linked to exercise genetics/genomics. A systematic search was conducted in the Medline and Embase databases for non-systematic reviews to provide a comprehensive overview of the current literature/research area. The extracted data was thematically analyzed, coded, and categorized into SWOT clusters. In the 45 included reviews five Strengths, nine Weaknesses, six Opportunities, and three Threats were identified. The cluster of Strengths included "advances in technology", "empirical evidence", "growing research discipline", the "establishment of consortia", and the "acceptance/accessibility of genetic testing". The Weaknesses were linked to a "low research quality", the "complexity of exercise-related traits", "low generalizability", "high costs", "genotype scores", "reporting bias", "invasive methods", "research progress", and "causality". The Opportunities comprised of "precision exercise", "omics", "multicenter studies", as well as "genetic testing" as "commercial"-, "screening"-, and "anti-doping" detection tool. The Threats were related to "ethical issues", "direct-to-consumer genetic testing companies", and "gene doping". This overview of the present state of the art research in sport genetics/genomics indicates a field with great potential, while also drawing attention to the necessity for additional advancement in methodological and ethical guidance to mitigate the recognized Weaknesses and Threats. The recognized Strengths and Opportunities substantiate the capability of genetics/genomics to make significant contributions to the performance and wellbeing of athletes.
Collapse
Affiliation(s)
- Magdalena Johanna Konopka
- Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
| | - Billy Sperlich
- Integrative and Experimental Exercise Science and Training, Institute of Sport Science, University of Würzburg, Würzburg, Germany
| | - Gerard Rietjens
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maurice Petrus Zeegers
- Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
- School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
12
|
Furrer R, Hawley JA, Handschin C. The molecular athlete: exercise physiology from mechanisms to medals. Physiol Rev 2023; 103:1693-1787. [PMID: 36603158 PMCID: PMC10110736 DOI: 10.1152/physrev.00017.2022] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Human skeletal muscle demonstrates remarkable plasticity, adapting to numerous external stimuli including the habitual level of contractile loading. Accordingly, muscle function and exercise capacity encompass a broad spectrum, from inactive individuals with low levels of endurance and strength to elite athletes who produce prodigious performances underpinned by pleiotropic training-induced muscular adaptations. Our current understanding of the signal integration, interpretation, and output coordination of the cellular and molecular mechanisms that govern muscle plasticity across this continuum is incomplete. As such, training methods and their application to elite athletes largely rely on a "trial-and-error" approach, with the experience and practices of successful coaches and athletes often providing the bases for "post hoc" scientific enquiry and research. This review provides a synopsis of the morphological and functional changes along with the molecular mechanisms underlying exercise adaptation to endurance- and resistance-based training. These traits are placed in the context of innate genetic and interindividual differences in exercise capacity and performance, with special consideration given to aging athletes. Collectively, we provide a comprehensive overview of skeletal muscle plasticity in response to different modes of exercise and how such adaptations translate from "molecules to medals."
Collapse
Affiliation(s)
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | | |
Collapse
|
13
|
Alvero-Cruz JR, Alarcón-Martín E, García-Romero J, Ruiz-Galdon M, Carrillo-Albornoz-Gil M, Polvillo R, González I, Reyes-Engel A, Royo JL. Moderate exercise reveals the influence of ACTN3 R577X and ACE I/D polymorphisms on physical performance in non-athlete active subjects. Gene 2023; 850:146958. [DOI: 10.1016/j.gene.2022.146958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
14
|
Varillas-Delgado D, Gutierrez-Hellín J, Maestro A. Genetic Profile in Genes Associated with Sports Injuries in Elite Endurance Athletes. Int J Sports Med 2023; 44:64-71. [PMID: 35921847 DOI: 10.1055/a-1917-9212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Injuries are a complex trait that can stem from the interaction of several genes. The aim of this research was to examine the relationship between muscle performance-related genes and overuse injury risk in elite endurance athletes, and to examine the feasibility of determining a total genotype score that significantly correlates with injury. A cohort of 100 elite endurance athletes (50 male and 50 female) was selected. AMPD1 (rs17602729), ACE (rs4646994), ACTN3 (rs1815739), CKM (rs8111989) and MLCK ([rs2849757] and [rs2700352]) polymorphisms were genotyped by using real-time polymerase chain reaction (real time-PCR). Injury characteristics during the athletic season were classified following the Consensus Statement for injuries evaluation. The mean total genotype score (TGS) in non-injured athletes (68.263±13.197 arbitrary units [a.u.]) was different from that of injured athletes (50.037±17.293 a.u., p<0.001). The distribution of allelic frequencies in the AMPD1 polymorphism was also different between non-injured and injured athletes (p<0.001). There was a TGS cut-off point (59.085 a.u.) to discriminate non-injured from injured athletes with an odds ratio of 7.400 (95% CI 2.548-21.495, p<0.001). TGS analysis appears to correlate with elite endurance athletes at higher risk for injury. Further study may help to develop this as one potential tool to help predict injury risk in this population.
Collapse
|
15
|
Genotype Distribution of the ACTN3 p.R577X Polymorphism in Elite Badminton Players: A Preliminary Study. Genes (Basel) 2022; 14:genes14010050. [PMID: 36672791 PMCID: PMC9858904 DOI: 10.3390/genes14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
α-Actinin-3 is a protein with a structural role at the sarcomeric Z-line in skeletal muscle. As it is only present in fast-type muscle fibers, α-actinin-3 is considered a key mechanical component to produce high-intensity muscle contractions and to withstand external tension applied to the skeletal muscle. α-Actinin-3 is encoded by the gene ACTN3, which has a single-nucleotide polymorphism (p.R577X; rs1815739) that affects the expression of α-actinin-3 due to the presence of a stop codon. Individuals homozygous for the 577R allele (i.e., RR genotype) and RX heterozygotes express functional α-actinin-3, while those homozygous for the 577X (i.e., XX genotype) express a non-functional protein. There is ample evidence to support the associations between the ACTN3 genotype and athletic performance, with higher frequencies of the 577R allele in elite and professional sprint and power athletes than in control populations. This suggests a beneficial influence of possessing functional α-actinin-3 to become an elite athlete in power-based disciplines. However, no previous investigation has determined the frequency of the ACTN3 genotypes in elite badminton players, despite this sport being characterized by high-intensity actions of intermittent nature such as changes of direction, accelerations, jumps and smashes. The purpose of this study was to analyze ACTN3 R577X genotype frequencies in professional badminton players to establish whether this polymorphism is associated with elite athlete status. A total of 53 European Caucasian professional badminton players competing in the 2018 European Badminton Championships volunteered to participate in the study. Thirty-one were men (26.2 ± 4.4 years) and twenty-two were women (23.4 ± 4.5 years). Chi-squared tests were used to analyze the differences in the distribution of ACTN3 genotypes (RR, RX and XX) between categories and sexes. The ACTN3 RR genotype was the most frequent in the sample of professional badminton players (RR = 49.1%, RX = 22.6% and XX = 28.3%). None of the badminton players ranked in the world's top ten possessed the XX genotype (RX = 60%, RR = 40%). The distribution of the ACTN3 genotypes was similar between male and female professional badminton players (men: RR = 45.2%, RX = 25.8% and XX = 29.0%; women: RR = 54.5%, RX = 18.2% and XX = 27.3%; χ2 = 0.58; p = 0.750). The distribution of the ACTN3 genotypes in badminton players was different from the 1000 genome database for the European population (χ2 = 15.5; p < 0.001), with an overrepresentation of the RR genotype (p < 0.05) and an underrepresentation of the RX genotype (p < 0.01). In conclusion, the expression of functional α-actinin-3, associated with RR and RX genotypes in the ACTN3 gene may confer an advantage for reaching the status of elite athlete in badminton, and especially the world's top-ten ranking. Large-scale studies with different ethnic backgrounds are needed to confirm the association of the R allele of ACTN3 with badminton performance.
Collapse
|
16
|
Maestro A, Del Coso J, Aguilar-Navarro M, Gutiérrez-Hellín J, Morencos E, Revuelta G, Ruiz Casares E, Perucho T, Varillas-Delgado D. Genetic profile in genes associated with muscle injuries and injury etiology in professional soccer players. Front Genet 2022; 13:1035899. [PMID: 36468031 PMCID: PMC9708895 DOI: 10.3389/fgene.2022.1035899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2024] Open
Abstract
Many causes define injuries in professional soccer players. In recent years, the study of genetics in association with injuries has been of great interest. The purpose of this study was to examine the relationship between muscle injury-related genes, injury risk and injury etiology in professional soccer players. In a cross-sectional cohort study, one hundred and twenty-two male professional football players were recruited. AMPD1 (rs17602729), ACE (rs4646994), ACTN3 (rs1815739), CKM (rs8111989) and MLCK (rs2849757 and rs2700352) polymorphisms were genotyped by using Single Nucleotide Primer Extension (SNPE). The combined influence of the six polymorphisms studied was calculated using a total genotype score (TGS). A genotype score (GS) of 2 was assigned to the "protective" genotype for injuries, a GS of 1 was assigned to the heterozygous genotype while a GS of 0 was assigned to the "worst" genotype. Injury characteristics and etiology during the 2021/2022 season were classified following a Consensus Statement for injuries recording. The distribution of allelic frequencies in the AMPD1 and MLCK c.37885C>A polymorphisms were different between non-injured and injured soccer players (p < 0.001 and p = 0.003, respectively). The mean total genotype score (TGS) in non-injured soccer players (57.18 ± 14.43 arbitrary units [a.u.]) was different from that of injured soccer players (51.71 ± 12.82 a.u., p = 0.034). There was a TGS cut-off point (45.83 a.u.) to discriminate non-injured from injured soccer players. Players with a TGS beyond this cut-off had an odds ratio of 1.91 (95%CI: 1.14-2.91; p = 0.022) to suffer an injury when compared with players with lower TGS. In conclusion, TGS analysis in muscle injury-related genes presented a relationship with professional soccer players at increased risk of injury. Future studies will help to develop this TGS as a potential tool to predict injury risk and perform prevention methodology in this cohort of football players.
Collapse
Affiliation(s)
- Antonio Maestro
- Faculty of Medicine, Oviedo University, Begoña Hospital, Gijón, Spain
| | - Juan Del Coso
- Centre for Sport Studies, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | | | | | - Esther Morencos
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Eva Ruiz Casares
- VIVOLabs, Madrid, Spain
- Department of Genetics, Faculty of Medicine, San Pablo-CEU University, Madrid, Spain
| | - Teresa Perucho
- VIVOLabs, Madrid, Spain
- Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
17
|
Genetic profiles to identify talents in elite endurance athletes and professional football players. PLoS One 2022; 17:e0274880. [PMID: 36112609 PMCID: PMC9480996 DOI: 10.1371/journal.pone.0274880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
The genetic profile that is needed to identify talents has been studied extensively in recent years. The main objective of this investigation was to approach, for the first time, the study of genetic variants in several polygenic profiles and their role in elite endurance and professional football performance by comparing the allelic and genotypic frequencies to the non-athlete population. In this study, genotypic and allelic frequencies were determined in 452 subjects: 292 professional athletes (160 elite endurance athletes and 132 professional football players) and 160 non-athlete subjects. Genotyping of polymorphisms in liver metabolisers (CYP2D6, GSTM1, GSTP and GSTT), iron metabolism and energy efficiency (HFE, AMPD1 and PGC1a), cardiorespiratory fitness (ACE, NOS3, ADRA2A, ADRB2 and BDKRB2) and muscle injuries (ACE, ACTN3, AMPD1, CKM and MLCK) was performed by Polymerase Chain Reaction-Single Nucleotide Primer Extension (PCR-SNPE). The combination of the polymorphisms for the “optimal” polygenic profile was quantified using the genotype score (GS) and total genotype score (TGS). Statistical differences were found in the genetic distributions between professional athletes and the non-athlete population in liver metabolism, iron metabolism and energy efficiency, and muscle injuries (p<0.001). The binary logistic regression model showed a favourable OR (odds ratio) of being a professional athlete against a non-athlete in liver metabolism (OR: 1.96; 95% CI: 1.28–3.01; p = 0.002), iron metabolism and energy efficiency (OR: 2.21; 95% CI: 1.42–3.43; p < 0.001), and muscle injuries (OR: 2.70; 95% CI: 1.75–4.16; p < 0.001) in the polymorphisms studied. Genetic distribution in professional athletes as regards endurance (professional cyclists and elite runners) and professional football players shows genetic selection in these sports disciplines.
Collapse
|
18
|
The Effect of Selected Polymorphisms of the ACTN3, ACE, HIF1A and PPARA Genes on the Immediate Supercompensation Training Effect of Elite Slovak Endurance Runners and Football Players. Genes (Basel) 2022; 13:genes13091525. [PMID: 36140693 PMCID: PMC9498790 DOI: 10.3390/genes13091525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 01/26/2023] Open
Abstract
We aimed to evaluate the effect of selected polymorphisms of the ACTN3, ACE, HIF1A and PPARA genes on the immediate supercompensation training effect of elite Slovak endurance runners and football players compared with a sedentary control group. Adaptation effect levels were evaluated by 10 s continuous vertical jump test parameters measured by Optojump. Genetic polymorphisms were determined by PCR and Sanger sequencing. We found significant differences in the effect of PPARA genotypes in the experimental group. C allele genotypes represented an advantage in immediate supercompensation (p < 0.05). We observed a significant combined effect of multiple genes on immediate supercompensation (p < 0.05): the RR genotype of the ACTN3 gene, the ID genotype of the ACE gene, the Pro/Pro genotype of HIF1A, and the GC and GG genotypes of PPARA genes. In the control group, we found a significant effect (p < 0.05) on immediate supercompensation of the II genotype of the ACE gene and the Pro/Ser genotype of the HIF1A gene. We found significant differences in genotype frequency of ACE (p < 0.01) and PPARA (p < 0.001) genes. We confirmed that individual genetic polymorphisms of ACTN3, ACE, HIF1A and PPARA genes have a different effect on the level of immediate supercompensation of the lower limbs depending on the training adaptation of the probands and the combination of genotypes.
Collapse
|
19
|
Transmission Distortion of MCT1 rs1049434 among Polish Elite Athletes. Genes (Basel) 2022; 13:genes13050870. [PMID: 35627255 PMCID: PMC9142056 DOI: 10.3390/genes13050870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 01/25/2023] Open
Abstract
Background: To date, nearly 300 genetic markers were linked to endurance and power/strength traits. The current study aimed to compare genotype distributions and allele frequencies of the common polymorphisms: MCT1 rs1049434, NRF2 rs12594956, MYBPC3 rs1052373 and HFE rs1799945 in Polish elite athletes versus nonathletes. Methods: The study involved 101 male elite Polish athletes and 41 healthy individuals from the Polish population as a control group. SNP data were extracted from whole-genome sequencing (WGS) performed using the following parameters: paired reads of 150 bps, at least 90 Gb of data per sample with 300 M reads and 30× mean coverage. Results: All the analyzed polymorphisms conformed to Hardy–Weinberg equilibrium (HWE) in athletes and the control group, except the MCT1 rs1049434, where allele T was over-represented in the elite trainers’ group. No significant between-group differences were found for analyzed polymorphisms. Conclusions: The MCT1 rs1049434 transmission distortion might be characteristic of Polish athletes and the effect of strict inclusion criteria. This result and the lack of statistically significant changes in the frequency of other polymorphisms between the groups might result from the small group size.
Collapse
|
20
|
Varillas-Delgado D, Del Coso J, Gutiérrez-Hellín J, Aguilar-Navarro M, Muñoz A, Maestro A, Morencos E. Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing. Eur J Appl Physiol 2022; 122:1811-1830. [PMID: 35428907 PMCID: PMC9012664 DOI: 10.1007/s00421-022-04945-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/29/2022] [Indexed: 12/19/2022]
Abstract
The impact of genetics on physiology and sports performance is one of the most debated research aspects in sports sciences. Nearly 200 genetic polymorphisms have been found to influence sports performance traits, and over 20 polymorphisms may condition the status of the elite athlete. However, with the current evidence, it is certainly too early a stage to determine how to use genotyping as a tool for predicting exercise/sports performance or improving current methods of training. Research on this topic presents methodological limitations such as the lack of measurement of valid exercise performance phenotypes that make the study results difficult to interpret. Additionally, many studies present an insufficient cohort of athletes, or their classification as elite is dubious, which may introduce expectancy effects. Finally, the assessment of a progressively higher number of polymorphisms in the studies and the introduction of new analysis tools, such as the total genotype score (TGS) and genome-wide association studies (GWAS), have produced a considerable advance in the power of the analyses and a change from the study of single variants to determine pathways and systems associated with performance. The purpose of the present study was to comprehensively review evidence on the impact of genetics on endurance- and power-based exercise performance to clearly determine the potential utility of genotyping for detecting sports talent, enhancing training, or preventing exercise-related injuries, and to present an overview of recent research that has attempted to correct the methodological issues found in previous investigations.
Collapse
Affiliation(s)
- David Varillas-Delgado
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain.
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, 28933, Madrid, Spain
| | - Jorge Gutiérrez-Hellín
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Millán Aguilar-Navarro
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Alejandro Muñoz
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | | | - Esther Morencos
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| |
Collapse
|
21
|
Jacob Y, Hart NH, Cochrane JL, Spiteri T, Laws SM, Jones A, Rogalski B, Kenna J, Anderton RS. ACTN3 (R577X) Genotype Is Associated With Australian Football League Players. J Strength Cond Res 2022; 36:573-576. [DOI: 10.1519/jsc.0000000000003458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Barrón-Cabrera E, Torres-Castillo N, González-Becerra K, Zepeda-Carrillo EA, Torres-Valadez R, Hernández-Cañaveral I, Martínez-López E. The ACTN3 R577X polymorphism is associated with metabolic alterations in a sex-dependent manner in subjects from western Mexico. J Hum Nutr Diet 2021; 35:713-721. [PMID: 34750902 DOI: 10.1111/jhn.12948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND The ACTN3 gene is primarily expressed in fast skeletal muscle fibres. A common nonsense polymorphism in this gene is ACTN3 R577X (rs1815739), which causes an absolute deficiency of α-actinin-3 protein and alterations in muscle metabolism. Considering metabolic alterations are influenced by nutrition and genetic factors, as well as lifestyle factors, we hypothesise a possible association of the ACTN3 R577X polymorphism with metabolic alterations. METHODS In this cross-sectional study, 397 adults met the inclusion criteria. Body composition was measured by electrical bioimpedance. Dietary data were analysed using Nutritionist Pro™ software. Biochemical variables were determined by dry chemistry. Genomic DNA was extracted from peripheral leukocytes and genotyping of the ACTN3 R577X polymorphism was determined by allelic discrimination using TaqMan probes. The statistical analyses were performed using SPSS statistical software. p < 0.05 was considered statistically significant. RESULTS The ACTN3 577XX genotype was associated with high glucose, triglyceride and very low density lipoprotein-cholesterol levels and a higher frequency of hypertriglyceridaemia and insulin resistance in women. In males, the genetic variant showed a trend towards significance for insulin resistance. CONCLUSIONS The ACTN3 R577X polymorphism was associated with metabolic alterations in women and a tendency was observed in men variant carriers. Thus, this common genetic variant could be implicated in the development of chronic metabolic diseases.
Collapse
Affiliation(s)
- Elisa Barrón-Cabrera
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Instituto de Nutrigenética y Nutrigenómica Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Nathaly Torres-Castillo
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Instituto de Nutrigenética y Nutrigenómica Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Karina González-Becerra
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Instituto de Nutrigenética y Nutrigenómica Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Eloy A Zepeda-Carrillo
- Centro Nayarita de Innovación y Transferencia de Tecnología, Universidad Autónoma de Nayarit, Tepic, Nayarit, México.,Hospital Civil Dr Antonio González Guevara, Servicios de Salud de Nayarit, Tepic, Nayarit, Mexico
| | - Rafael Torres-Valadez
- Centro Nayarita de Innovación y Transferencia de Tecnología, Universidad Autónoma de Nayarit, Tepic, Nayarit, México.,Unidad Académica de Salud Integral, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - Iván Hernández-Cañaveral
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Erika Martínez-López
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Instituto de Nutrigenética y Nutrigenómica Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
23
|
Varillas-Delgado D, Tellería Orriols JJ, Del Coso J. Genetic Profile in Genes Associated with Cardiorespiratory Fitness in Elite Spanish Male Endurance Athletes. Genes (Basel) 2021; 12:genes12081230. [PMID: 34440404 PMCID: PMC8391315 DOI: 10.3390/genes12081230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND most of the research concerning the influence of genetics on endurance performance has been carried out by investigating target genes separately. However, endurance performance is a complex trait that can stem from the interaction of several genes. The objective of this study was to compare the frequencies of polymorphisms in target genes involving cardiorespiratory functioning in elite endurance athletes vs. non-athlete controls. METHODS genotypic frequencies were determined in 123 elite endurance athletes and in 122 non-athletes. Genotyping of ACE (rs4340), NOS3 (rs2070744 and rs1799983), ADRA2a (rs1800544 and rs553668), ADRB2 (rs1042713 and rs1042714), and BDKRB2 (rs5810761) was performed by polymerase chain reaction. The total genotype score (TGS: from 0 to 100 arbitrary units; a.u.) was calculated from the genotype score in each polymorphism. RESULTS the mean TGS in non-athletes (47.72 ± 11.29 a.u.) was similar to elite endurance athletes (46.54 ± 11.32 a.u., p = 0.415). The distribution of TGS frequencies were also similar in non-athletes and elite endurance athletes (p = 0.333). There was no TGS cut-off point to discriminate being elite endurance athletes. CONCLUSIONS the genetic profile in the selected genes was similar in elite endurance athletes and in controls, suggesting that the combination of these genes does not determine endurance performance.
Collapse
Affiliation(s)
- David Varillas-Delgado
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcon, 28223 Madrid, Spain
- Correspondence: ; Tel.: +34-91-709-1400 (ext. 1965)
| | | | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, 28008 Fuenlabrada, Spain;
| |
Collapse
|
24
|
Melián Ortiz A, Laguarta-Val S, Varillas-Delgado D. Muscle Work and Its Relationship with ACE and ACTN3 Polymorphisms Are Associated with the Improvement of Explosive Strength. Genes (Basel) 2021; 12:genes12081177. [PMID: 34440352 PMCID: PMC8391250 DOI: 10.3390/genes12081177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/24/2023] Open
Abstract
Background: The potential influence of genetics in athletic performance allows the search for genetic profiles associated with muscular work for the orientation of strength training and sports selection. The purpose of the study was to analyze four muscular exercises for effectiveness in improving explosive strength variables, associated to the genetics in Angiotensin Converting Enzyme (ACE) and α-actinin-3 (ACTN3) polymorphisms. Methods: A randomized controlled trial was conducted on a sample of 80 subjects allocated into four groups: concentric muscle work (CMW), eccentric muscle work (EMW), concentric-eccentric muscle (C-EMW) work and isometric muscular work (IMW), by block and gender randomization. Vertical jump, long jump, power jump, and speed were measured to study explosive strength. Genotypic frequencies of ACE (rs4646994) and ACTN3 (rs1815739) were obtained by polymerase chain reaction. Results: ACE gen showed significant improvements regarding the DD genotype in the Sargent test (p = 0.003) and sprint velocity test (p = 0.017). In the ACTN3 gene, the RR variable obtained improvement results with regard to RX and XX variables in long jump (p < 0.001), Sargent test (p < 0.001) and power jump (p = 0.004). Conclusions: The selected genes demonstrated an influence on the muscle work and the improvement in explosive strength variables with a decisive role regarding the type of muscle work performed.
Collapse
Affiliation(s)
- Alberto Melián Ortiz
- Department of Physical Therapy, FREMAP-Majadahonda Hospital, 28222 Madrid, Spain;
- Department of Health Sciences, Faculty of Nursing and Physical Therapy Salus Informorum, Pontifical University of Salamanca, 37007 Madrid, Spain
| | - Sofía Laguarta-Val
- Department of Physiotherapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, 28922 Madrid, Spain
- Correspondence:
| | - David Varillas-Delgado
- Department of Sports Sciences, Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcon, 28223 Madrid, Spain;
| |
Collapse
|
25
|
Appel M, Zentgraf K, Krüger K, Alack K. Effects of Genetic Variation on Endurance Performance, Muscle Strength, and Injury Susceptibility in Sports: A Systematic Review. Front Physiol 2021; 12:694411. [PMID: 34366884 PMCID: PMC8334364 DOI: 10.3389/fphys.2021.694411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022] Open
Abstract
The aim of this systematic review was to assess the effects of genetic variations and polymorphisms on endurance performance, muscle strength and injury susceptibility in competitive sports. The electronic databases PubMed and Web of Science were searched for eligible studies. The study quality was assessed using the RoBANS tool. Studies were included if they met the following criteria: (1) human study in English or German; (2) published in the period 2015–2019; (3) investigation of an association between genetic variants and endurance performance and/or muscle strength and/or endurance/strength training status as well as ligament, tendon, or muscle injuries; (4) participants aged 18–60 years and national or international competition participation; (5) comparison with a control group. Nineteen studies and one replication study were identified. Results revealed that the IGF-1R 275124 A>C rs1464430 polymorphism was overrepresented in endurance trained athletes. Further, genotypes of PPARGC1A polymorphism correlated with performance in endurance exercise capacity tests in athletes. Moreover, the RR genotype of ACTN3 R577X polymorphism, the C allele of IGF-1R polymorphism and the gene variant FTO T>A rs9939609 and/or their AA genotype were linked to muscle strength. In addition, gene variants of MCT1 (T1470A rs1049434) and ACVR1B (rs2854464) were also positively associated with strength athletes. Among others, the gene variants of the MMP group (rs591058 and rs679620) as well as the polymorphism COL5A1 rs13946 were associated with susceptibility to injuries of competitive athletes. Based on the identified gene variants, individualized training programs for injury prevention and optimization of athletic performance could be created for competitive athletes using gene profiling techniques.
Collapse
Affiliation(s)
- Milena Appel
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Karen Zentgraf
- Department of Exercise and Movement Science, Institute of Sports Sciences, Goethe-University Frankfurt, Frankfurt, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Katharina Alack
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
26
|
Lim T, Santiago C, Pareja-Galeano H, Iturriaga T, Sosa-Pedreschi A, Fuku N, Pérez-Ruiz M, Yvert T. Genetic variations associated with non-contact muscle injuries in sport: A systematic review. Scand J Med Sci Sports 2021; 31:2014-2032. [PMID: 34270833 DOI: 10.1111/sms.14020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Non-contact muscle injuries (NCMI) account for a large proportion of sport injuries, affecting athletes' performance and career, team results and financial aspects. Recently, genetic factors have been attributed a role in the susceptibility of an athlete to sustain NCMI. However, data in this field are only just starting to emerge. OBJECTIVES To review available knowledge of genetic variations associated with sport-related NCMI. METHODS The databases Pubmed, Scopus, and Web of Science were searched for relevant articles published until February 2021. The records selected for review were original articles published in peer-reviewed journals describing studies that have examined NCMI-related genetic variations in adult subjects (17-60 years) practicing any sport. The data extracted from the studies identified were as follows: general information, and data on genetic polymorphisms and NCMI risk, incidence and recovery time and/or severity. RESULTS Seventeen studies examining 47 genes and 59 polymorphisms were finally included. 29 polymorphisms affecting 25 genes were found significantly associated with NCMI risk, incidence, recovery time, and/or severity. These genes pertain to three functional categories: (i) muscle fiber structural/contractile properties, (ii) muscle repair and regeneration, or (iii) muscle fiber external matrix composition and maintenance. CONCLUSION Our review confirmed the important role of genetics in NCMI. Some gene variants have practical implications such as differences of several weeks in recovery time detected between genotypes. Knowledge in this field is still in its early stages. Future studies need to examine a wider diversity of sports and standardize their methods and outcome measures.
Collapse
Affiliation(s)
- Tifanny Lim
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Catalina Santiago
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Helios Pareja-Galeano
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Department of Physical Education, Sport and Human Movement, Autonomous University of Madrid, Madrid, Spain
| | - Tamara Iturriaga
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | | | - Thomas Yvert
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
27
|
de L Corrêa H, Ribeiro HS, Maya ÁTD, Neves RP, de Moraes MR, Lima RM, Nóbrega OT, Ferreira AP. Influence of the ACTN3 Genotype and the Exercise Intensity on the Respiratory Exchange Ratio and Excess Oxygen Consumption After Exercise. J Strength Cond Res 2021; 35:1380-1388. [PMID: 30335718 DOI: 10.1519/jsc.0000000000002911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT de L. Corrêa, H, Ribeiro, HS, Maya, ÁTD, Neves, RP, de Moraes, MR, Lima, RM, Nóbrega, OT, and Ferreira, AP. Influence of the ACTN3 genotype and the exercise intensity on the respiratory exchange ratio and excess oxygen consumption after exercise. J Strength Cond Res 35(5): 1380-1388, 2021-This study aimed to assess the respiratory exchange ratio (RER) and excess postexercise oxygen consumption (EPOC) after high-intensity interval training and continuous moderate-intensity aerobic training in accordance with the ACTN3 genotype. A cross-sectional study with 30 physically active individuals who participated in 3 experimental sessions, as follows: a high-intensity interval aerobic exercise, for 3 minutes at 115% anaerobic threshold, with 90 seconds of passive recovery; a continuous moderate-intensity aerobic exercise at 85% anaerobic threshold; and a control session. Respiratory exchange ratio and V̇o2 were obtained through an indirect, calorimetry-based gas analysis method, using a breath-by-breath approach, assessed at baseline, during the trials, and at 1, 2, 3, and 4 hours after exercise. We found that lower postexercise RER values were observed only in subjects with the X allele, in both the high- and the moderate-intensity training protocols. Homozygous RR subjects showed no differences in postexercise RER compared with the scores at the control day. After both sessions of exercise, EPOC levels were higher compared with scores at the control day for 2 hours among X allele carriers, and only in the first hour among RR homozygous. Thus, the RER and EPOC presented different responses after moderate and intense exercise according to the ACTN3 genotype. Moreover, individuals with the X allele of the ACTN3 gene show a higher oxidation of fats in the postexercise period.
Collapse
Affiliation(s)
- Hugo de L Corrêa
- Graduation Program in Physical Education and Health, Catholic University of Brazil-UCB-DF, Brasília, DF, Brazil
| | - Heitor S Ribeiro
- Graduation Program in Physical Education and Health, Catholic University of Brazil-UCB-DF, Brasília, DF, Brazil
| | - Áthila T D Maya
- Graduation Program in Physical Education and Health, Catholic University of Brazil-UCB-DF, Brasília, DF, Brazil
- Interdisciplinary Research Center, ICESP, Brasília, DF, Brazil
| | - Rodrigo P Neves
- Graduation Program in Physical Education and Health, Catholic University of Brazil-UCB-DF, Brasília, DF, Brazil
| | - Milton R de Moraes
- Graduation Program in Physical Education and Health, Catholic University of Brazil-UCB-DF, Brasília, DF, Brazil
| | - Ricardo M Lima
- Graduation Program in Physical Education, Brazil University (UnB), Brasília, DF, Brazil ; and
| | - Otávio T Nóbrega
- Graduation Program in Health Sciences, Brazil University (UnB), Brasília, DF, Brazil
| | - Aparecido P Ferreira
- Graduation Program in Physical Education and Health, Catholic University of Brazil-UCB-DF, Brasília, DF, Brazil
- Interdisciplinary Research Center, ICESP, Brasília, DF, Brazil
| |
Collapse
|
28
|
Kittilsen HT, Goleva-Fjellet S, Freberg BI, Nicolaisen I, Støa EM, Bratland-Sanda S, Helgerud J, Wang E, Sæbø M, Støren Ø. Responses to Maximal Strength Training in Different Age and Gender Groups. Front Physiol 2021; 12:636972. [PMID: 33679448 PMCID: PMC7925619 DOI: 10.3389/fphys.2021.636972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose The present study aimed to investigate the potential impact of age, gender, baseline strength, and selected candidate polymorphisms on maximal strength training (MST) adaptations. Methods A total of 49 subjects (22 men and 27 women) aged 20–76 years, divided into five age groups, completed an 8 weeks MST intervention. Each MST session consisted of 4 sets with 4 repetitions at ∼85–90% of one-repetition maximum (1RM) intensity in leg-press, three times per week. 1RM was tested pre and post the intervention and blood samples were drawn to genotype candidate polymorphisms ACE I/D (rs1799752), ACTN3 R577X (rs1815739), and PPARGC1A Gly482Ser (rs8192678). Results All age groups increased leg-press 1RM (p < 0.01), with a mean improvement of 24.2 ± 14.0%. There were no differences in improvements between the five age groups or between male and female participants, and there were no non-responders. Baseline strength status did not correlate with 1RM improvements. PPARGC1A rs8192678 T allele carriers had a 15% higher age- and gender corrected baseline 1RM than the CC genotype (p < 0.05). C allele carriers improved 1RM (%) by 34.2% more than homozygotes for the T allele (p < 0.05). Conclusion To the best of our knowledge, this is the first study to report improvement in leg-press maximal strength regardless of gender, baseline strength status in all age groups. The present study is also first to demonstrate an association between the PPARGC1A rs8192678 and maximal strength and its trainability in a moderately trained cohort. MST may be beneficial for good health and performance of all healthy individuals.
Collapse
Affiliation(s)
- Hans Torvild Kittilsen
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway
| | - Sannija Goleva-Fjellet
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - Baard Ingegerdsson Freberg
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway.,The Norwegian Biathlon Association, Oslo, Norway.,Top Sports Medical Office, Tønsberg, Norway
| | - Iver Nicolaisen
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway
| | - Eva Maria Støa
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway
| | - Solfrid Bratland-Sanda
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway
| | - Jan Helgerud
- Department of Circulation and Medical Imaging, Faculty of Medicine Trondheim, Norwegian University of Science and Technology, Trondheim, Norway.,Myworkout, Medical Rehabilitation Centre, Trondheim, Norway
| | - Eivind Wang
- Department of Circulation and Medical Imaging, Faculty of Medicine Trondheim, Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Health and Social Sciences, Molde University College, Molde, Norway.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mona Sæbø
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - Øyvind Støren
- Department of Sport and Outdoor Life Studies, University of South-Eastern Norway, Bø, Norway
| |
Collapse
|
29
|
Silva HH, Silva MRG, Cerqueira F, Tavares V, Medeiros R. Genomic profile in association with sport-type, sex, ethnicity, psychological traits and sport injuries of elite athletes: review and future perspectives. J Sports Med Phys Fitness 2021; 62:418-434. [PMID: 33666074 DOI: 10.23736/s0022-4707.21.12020-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the last few years, some inherited determinants have been associated with elite athletic performance, but its polygenic trait character has limited the correct definition of elite athlete's genomic profile. This qualitative descriptive study aims to summarise the current understanding about genetic and epigenetic factors in elite athletes, as well as their genomic profile in association with sport-type, sex, ethnicity, psychological traits and sport injuries. A narrative review of the literature across a broad cross-section of the elite athletes' genomic profile was undertaken. Elite performance relies on rare gene variants within a great interface between molecular, cellular and behavioural sport-related phenotypes and the environment, which is still poorly understood. ACTN3 rs1815739 and ACE I/D polymorphisms appear to be associated to specific sprint phenotypes and influence the athletic status, i.e., the rs1815739 variant is more influential to 200-m performance and the ACE ID polymorphism is more involved in the longer, 400-m sprint performance. Generally, athletes show endurance-based sports characteristics or power-based sports characteristics, but some studies have reported some genes associations to both sports-based characteristics. Furthermore, genetic studies with larger cohorts of single-sport athletes might be preferable than studies combining athletes of different sports, given the existence of distinct athlete profiles and sport demands. Athletic performance may be influenced by the serotonergic pathway and the potential injury risk (namely stress fracture) might be associated to a genetic predisposition associated to the mechanical loading from the intense physical exercise. The study of gene variants associated to sex and ethnicity-related to athletic performance needs further investigation. The combination of genome-wide association studies addressing the genetic architecture of athletes and the subsequent replication and validation studies might for additional genetic data is mandatory.
Collapse
Affiliation(s)
- Hugo-Henrique Silva
- ICBAS-Institute of Biomedical Sciences of the University of Porto, Porto, Portugal - .,União Desportiva Oliveirense, Senior Rink-Hockey Team, Oliveira de Azeméis, Portugal - .,Portuguese Ministry of Education, Lisbon, Portugal -
| | - Maria-Raquel G Silva
- Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal.,CIAS-Research Centre for Anthropology and Health - Human Biology, Health and Society, University of Coimbra, Coimbra, Portugal.,Comprehensive Health Research Centre-Group of Sleep, Chronobiology and Sleep Disorders-Nova Medical School, University of Lisbon, Lisbon, Portugal.,FP-ENAS Research Unit, UFP Energy, Environment and Health Research Unit, CEBIMED, Biomedical Research Centre, Fernando Pessoa University, Porto, Portugal
| | - Fátima Cerqueira
- Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal.,FP-ENAS Research Unit, UFP Energy, Environment and Health Research Unit, CEBIMED, Biomedical Research Centre, Fernando Pessoa University, Porto, Portugal.,Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Valéria Tavares
- ICBAS-Institute of Biomedical Sciences of the University of Porto, Porto, Portugal.,Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,FMUP- Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Medeiros
- FP-ENAS Research Unit, UFP Energy, Environment and Health Research Unit, CEBIMED, Biomedical Research Centre, Fernando Pessoa University, Porto, Portugal.,Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto, Porto, Portugal.,LPCC, Research Department - Portuguese League Against Cancer (LPPC - NRN), Porto, Portugal.,FMUP- Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
30
|
Genetic polymorphisms associated with high-altitude adaptation in a Baltí population. Meta Gene 2021. [DOI: 10.1016/j.mgene.2020.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
Jacob Y, Anderton RS, Cochrane Wilkie JL, Rogalski B, Laws SM, Jones A, Spiteri T, Hart NH. Association of Genetic Variances in ADRB1 and PPARGC1a with Two-Kilometre Running Time-Trial Performance in Australian Football League Players: A Preliminary Study. Sports (Basel) 2021; 9:22. [PMID: 33572708 PMCID: PMC7912285 DOI: 10.3390/sports9020022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Genetic variants in the angiotensin-converting enzyme (ACE) (rs4343), alpha-actinin-3 (ACTN3) (rs1815739), adrenoceptor-beta-1 (ADRB1) (rs1801253), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) (rs8192678) genes have previously been associated with elite athletic performance. This study assessed the influence of polymorphisms in these candidate genes towards endurance test performance in 46 players from a single Australian Football League (AFL) team. Each player provided saliva buccal swab samples for DNA analysis and genotyping and were required to perform two independent two-kilometre running time-trials, six weeks apart. Linear mixed models were created to account for repeated measures over time and to determine whether player genotypes are associated with overall performance in the two-kilometre time-trial. The results showed that the ADRB1 Arg389Gly CC (p = 0.034) and PPARGC1A Gly482Ser GG (p = 0.031) genotypes were significantly associated with a faster two-kilometre time-trial. This is the first study to link genetic polymorphism to an assessment of endurance performance in Australian Football and provides justification for further exploratory or confirmatory studies.
Collapse
Affiliation(s)
- Ysabel Jacob
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
| | - Ryan S. Anderton
- Institute for Health Research, University of Notre Dame Australia, Perth 6160, Australia
- School of Health Science, University of Notre Dame Australia, Perth 6160, Australia
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Jodie L. Cochrane Wilkie
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Centre for Exercise and Sport Science Research, Edith Cowan University, Perth 6027, Australia
| | - Brent Rogalski
- West Coast Eagles Football Club, Perth 6100, Australia; (B.R.); (A.J.)
| | - Simon M. Laws
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Collaborative Genomics Group, School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
- Faculty of Health Sciences, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, Australia
| | - Anthony Jones
- West Coast Eagles Football Club, Perth 6100, Australia; (B.R.); (A.J.)
| | - Tania Spiteri
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Centre for Exercise and Sport Science Research, Edith Cowan University, Perth 6027, Australia
| | - Nicolas H. Hart
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Institute for Health Research, University of Notre Dame Australia, Perth 6160, Australia
- Exercise Medicine Research Institute, Edith Cowan University, Perth 6027, Australia
- Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| |
Collapse
|
32
|
Postnatal maturation of calcium signaling in islets of Langerhans from neonatal mice. Cell Calcium 2020; 94:102339. [PMID: 33422769 DOI: 10.1016/j.ceca.2020.102339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Pancreatic islet cells develop mature physiological responses to glucose and other fuels postnatally. In this study, we used fluorescence imaging techniques to measure changes in intracellular calcium ([Ca2+]i) to compare islets isolated from mice on postnatal days 0, 4, and 12 with islets from adult CD-1 mice. In addition, we used publicly available RNA-sequencing data to compare expression levels of key genes in β-cell physiology with [Ca2+]i data across these ages. We show that islets isolated from mice on postnatal day 0 displayed elevated [Ca2+]i in basal glucose (≤4 mM) but lower [Ca2+]i responses to stimulation by 12-20 mM glucose compared to adult. Neonatal islets displayed more adult-like [Ca2+]i in basal glucose by day 4 but continued to show lower [Ca2+]i responses to 16 and 20 mM glucose stimulation up to at least day 12. A right shift in glucose sensing (EC50) correlated with lower fragment-per-kilobase-of-transcript-per-million-reads-mapped (FPKM) of Slc2a2 (glut2) and Actn3 and increased FPKM for Galk1 and Nupr1. Differences in [Ca2+]i responses to additional stimuli were also observed. Calcium levels in the endoplasmic reticulum were elevated on day 0 but became adult-like by day 4, which corresponded with reduced expression in Atp2a2 (SERCA2) and novel K+-channel Ktd17, increased expression of Pml, Wfs1, Thada, and Herpud1, and basal [Ca2+]i maturing to adult levels. Ion-channel activity also matured rapidly, but RNA sequencing data mining did not yield strong leads. In conclusion, the maturation of islet [Ca2+]i signaling is complex and multifaceted; several possible gene targets were identified that may participate in this process.
Collapse
|
33
|
Pavillon T, Tourny C, Ben Aabderrahman A, Salhi I, Zouita S, Rouissi M, Hackney AC, Granacher U, Zouhal H. Sprint and jump performances in highly trained young soccer players of different chronological age: Effects of linear VS. CHANGE-OF-DIRECTION sprint training. J Exerc Sci Fit 2020; 19:81-90. [PMID: 33335554 PMCID: PMC7732877 DOI: 10.1016/j.jesf.2020.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 11/28/2022] Open
Abstract
Objective The aim of this study was to examine the effects of two different sprint-training regimes on sprint and jump performances according to age in elite young male soccer players over the course of one soccer season. Methods Players were randomly assigned to two training groups. Group 1 performed systematic change-of-direction sprints (CODST, U19 [n = 9], U17 [n = 9], U15 [n = 10]) while group 2 conducted systematic linear sprints (LST, U19 [n = 9], U17 [n = 9], U15 [n = 9]). Training volumes were similar between groups (40 sprints per week x 30 weeks = 1200 sprints per season). Pre and post training, all players performed tests for the assessment of linear and slalom sprint speed (5-m and 10-m), countermovement jump, and maximal aerobic speed performance. Results For all physical fitness measures, the baseline-adjusted means data (ANCOVA) across the age groups showed no significant differences between LST and CODST at post (0.061 < p < 0.995; 0.0017 < d < 1.01). The analyses of baseline-adjusted means for all physical fitness measures for U15, U17, and U19 (LST vs. CODST) revealed no significant differences between LST and CODST for U15 (0.213 < p < 0.917; 0.001 < d < 0.087), U17 (0.132 < p < 0.976; 0.001 < d < 0.310), and U19 (0.300 < p < 0.999; 0.001 < d < 0.049) at post. Conclusions The results from this study showed that both, LST and CODST induced significant changes in the sprint, lower limbs power, and aerobic performances in young elite soccer players. Since no significant differences were observed between LST and CODST, the observed changes are most likely due to training and/or maturation. Therefore, more research is needed to elucidate whether CODST, LST or a combination of both is beneficial for youth soccer athletes' performance development.
Collapse
Affiliation(s)
- Thomas Pavillon
- Football Academy of Mohamed VI, Rabat, Morocco.,Department of Performance, French Football Federation (FFF), Paris, France
| | - Claire Tourny
- Department of Performance, French Football Federation (FFF), Paris, France
| | | | - Iyed Salhi
- High Institute of Sport Sciences, Tunis, Tunisia
| | | | - Mehdi Rouissi
- University of Rouen Normandie, CETAPS - EA 3832, F- 76821, Mont Saint Aignan, France
| | - Anthony C Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Urs Granacher
- Division of Training and Movement Sciences, University of Potsdam, Potsdam, Germany
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, F-35000, Rennes, France
| |
Collapse
|
34
|
Naureen Z, Perrone M, Paolacci S, Maltese PE, Dhuli K, Kurti D, Dautaj A, Miotto R, Casadei A, Fioretti B, Beccari T, Romeo F, Bertelli M. Genetic test for the personalization of sport training. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020012. [PMID: 33170162 PMCID: PMC8023127 DOI: 10.23750/abm.v91i13-s.10593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 11/23/2022]
Abstract
Genetic variants may contribute to confer elite athlete status. However, this does not mean that a person with favourable genetic traits would become a champion because multiple genetic interactions and epigenetic contributions coupled with confounding environmental factors shape the overall phenotype. This opens up a new area in sports genetics with respect to commercial genetic testing. The analysis of genetic polymorphisms linked to sport performance would provide insights into the potential of becoming an elite endurance or power performer. This mini-review aims to highlight genetic interactions that are associated with performance phenotypes and their potentials to be used as markers for talent identification and trainability.
Collapse
Affiliation(s)
- Zakira Naureen
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Oman.
| | - Marco Perrone
- Division of Cardiology, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | | | | | | | | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| | - Francesco Romeo
- Division of Cardiology, University of Rome Tor Vergata, Rome, Italy.
| | - Matteo Bertelli
- MAGI'S LAB, Rovereto (TN), Italy; EBTNA-LAB, Rovereto (TN), Italy; MAGI EUREGIO, Bolzano, Italy.
| |
Collapse
|
35
|
Riddle NC. Variation in the response to exercise stimulation in Drosophila: marathon runner versus sprinter genotypes. J Exp Biol 2020; 223:jeb229997. [PMID: 32737212 DOI: 10.1242/jeb.229997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Animals' behaviors vary in response to their environment, both biotic and abiotic. These behavioral responses have significant impacts on animal survival and fitness, and thus, many behavioral responses are at least partially under genetic control. In Drosophila, for example, genes impacting aggression, courtship behavior, circadian rhythms and sleep have been identified. Animal activity also is influenced strongly by genetics. My lab previously has used the Drosophila melanogaster Genetics Reference Panel (DGRP) to investigate activity levels and identified over 100 genes linked to activity. Here, I re-examined these data to determine whether Drosophila strains differ in their response to rotational exercise stimulation, not simply in the amount of activity, but in activity patterns and timing of activity. Specifically, I asked whether there are fly strains exhibiting either a 'marathoner' pattern of activity, i.e. remaining active throughout the 2 h exercise period, or a 'sprinter' pattern, i.e. carrying out most of the activity early in the exercise period. The DGRP strains examined differ significantly in how much activity is carried out at the beginning of the exercise period, and this pattern is influenced by both sex and genotype. Interestingly, there was no clear link between the activity response pattern and lifespan of the animals. Using genome-wide association studies (GWAS), I identified 10 high confidence candidate genes that control the degree to which Drosophila exercise behaviors fit a marathoner or sprinter activity pattern. This finding suggests that, similar to other aspects of locomotor behavior, the timing of activity patterns in response to exercise stimulation is under genetic control.
Collapse
Affiliation(s)
- Nicole C Riddle
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
36
|
Effect of ACTN3 Genotype on Sports Performance, Exercise-Induced Muscle Damage, and Injury Epidemiology. Sports (Basel) 2020; 8:sports8070099. [PMID: 32668587 PMCID: PMC7404684 DOI: 10.3390/sports8070099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic factors play a significant role in athletic performance and its related phenotypes such as power, strength and aerobic capacity. In this regard, the lack of a muscle protein due to a genetic polymorphism has been found to affect sport performance in a wide variety of ways. α-actinin-3 is a protein located within the skeletal muscle with a key role in the production of sarcomeric force. A common stop-codon polymorphism (rs1815739; R577X) in the gene that codes for α-actinin-3 (ACTN3) produces individuals with the XX genotype that lack expression of a functional α-actinin-3. In contrast, individuals with the R-allele (i.e., RX vs. RR genotypes) in this polymorphism can express α-actinin-3. Interestingly, around ~18% of the world population have the XX genotype and much has been debated about why a polymorphism that produces a lack of a muscle protein has endured natural selection. Several investigations have found that α-actinin-3 deficiency due to XX homozygosity in the ACTN3 R577X polymorphism can negatively affect sports performance through several structural, metabolic, or signaling changes. In addition, new evidence suggests that α-actinin-3 deficiency may also impact sports performance through indirect factors such a higher risk for injury or lower resistance to muscle-damaging exercise. The purpose of this discussion is to provide a clear explanation of the effect of α-actinin-3 deficiency due to the ACTN3 XX genotype on sport. Key focus has been provided about the effect of α-actinin-3 deficiency on morphologic changes in skeletal muscle, on the low frequency of XX athletes in some athletic disciplines, and on injury epidemiology.
Collapse
|
37
|
Varillas Delgado D, Tellería Orriols JJ, Monge Martín D, Del Coso J. Genotype scores in energy and iron-metabolising genes are higher in elite endurance athletes than in nonathlete controls. Appl Physiol Nutr Metab 2020; 45:1225-1231. [PMID: 32379996 DOI: 10.1139/apnm-2020-0174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Information about the association of energy and iron-metabolising genes with endurance performance is scarce. The objective of this investigation was to compare the frequencies of polymorphic variations of genes involved in energy generation and iron metabolism in elite endurance athletes versus nonathlete controls. Genotype frequencies in 123 male elite endurance athletes (75 professional road cyclists and 48 elite endurance runners) and 122 male nonathlete participants were compared by assessing 4 genetic polymorphisms: AMPD1 c.34C/T (rs17602729), PPARGC1A c.1444G/A (rs8192678) HFEH63D c.187C/G (rs1799945) and HFEC282Y c.845G/A (rs1800562). A weighted genotype score (w-TGS; from 0 to 100 arbitrary units (a.u.)) was calculated by assigning a corresponding weight to each polymorphism. In the nonathlete population, the mean w-TGS value was lower (39.962 ± 14.654 a.u.) than in the group of elite endurance athletes (53.344 ± 17.053 a.u). The binary logistic regression analysis showed that participants with a w-TGS > 38.975 a.u had an odds ratio of 1.481 (95% confidence interval: 1.244-1.762; p < 0.001) for achieving elite athlete status. The genotypic distribution of polymorphic variations involved in energy generation and iron metabolism was different in elite endurance athletes vs. controls. Thus, an optimal genetic profile in these genes might contribute to physical endurance in athlete status. Novelty Genetic profile in energy generation and iron-metabolising genes in elite endurance athletes is different than that of nonathletes. There is an implication of an "optimal" genetic profile in the selected genes favouring endurance sporting performance.
Collapse
Affiliation(s)
- David Varillas Delgado
- Universidad Francisco de Vitoria, Faculty of Medicine, Research Unit, Pozuelo de Alarcón, Madrid 28223, Spain
| | | | - Diana Monge Martín
- Universidad Francisco de Vitoria, Faculty of Medicine, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Juan Del Coso
- Rey Juan Carlos University, Centre for Sport Studies, Fuenlabrada, Madrid 28933, Spain
| |
Collapse
|
38
|
John R, Dhillon MS, Dhillon S. Genetics and the Elite Athlete: Our Understanding in 2020. Indian J Orthop 2020; 54:256-263. [PMID: 32399143 PMCID: PMC7205921 DOI: 10.1007/s43465-020-00056-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/17/2020] [Indexed: 02/04/2023]
Abstract
Modern competitive sport has evolved so much that athletes would go to great extremes to develop themselves into champions; medicine has also evolved to the point that many genetic elements have been identified to be associated with specific athletic traits, and genetic alterations are also possible. The current review examines the published literature and looks at three important factors: genetic polymorphism influencing sporting ability, gene doping and genetic tendency to injury. The ACTN3 gene has an influence on type II muscle fibres, with the R allele being advantageous to power sports like sprinting and the XX genotype being associated with lower muscle strength and sprinting ability. The ACE gene polymorphisms are associated with cardio-respiratory efficiency and could influence endurance athletes. Many other genes are being looked at, with specific focus on those that are potentially related to enhancement of athletic ability. Recognition of these specific gene polymorphisms brings into play the concept of genetic engineering in athletes, which constitutes gene doping and is outlawed. This has the potential to develop into the next big threat in elite sports; gene doping could have dangerous and even fatal outcomes, as the knowledge of gene therapy is still in its infancy. Genetic predisposition to injury is also being identified; recent publications have increased the awareness of gene polymorphisms predisposing to injuries of ligaments and tendons due to influence on collagen structure and extracellular matrix. Ongoing work is looking at identifying the same genes from different races and different sexes to see if there are quantitative racial or sexual differences. All of the above have led to serious ethical concerns; in the twenty-first century some sports associations and some countries are looking at genetic testing for their players. Unfortunately, the science is still developing, and the experience of its application is limited worldwide. Nevertheless, this field has caught the imagination of both the public and the sportsperson, and hence the concerned doctors should be aware of the potential problems and current issues involved in understanding genetic traits and polymorphisms, genetic testing and genetic engineering.
Collapse
Affiliation(s)
- Rakesh John
- Department of Trauma and Orthopaedics, Hull University Teaching Hospital, East Yorkshire, Hull, HU3 2JZ UK
| | - Mandeep Singh Dhillon
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research, Chandigarh, India 160012
| | | |
Collapse
|
39
|
Bao T, Han H, Li B, Zhao Y, Bou G, Zhang X, Du M, Zhao R, Mongke T, Laxima, Ding W, Jia Z, Dugarjaviin M, Bai D. The distinct transcriptomes of fast-twitch and slow-twitch muscles in Mongolian horses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100649. [PMID: 31869634 DOI: 10.1016/j.cbd.2019.100649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/19/2023]
Abstract
Skeletal muscle is the largest organ system in the mammalian body and plays a key role in locomotion of horses. Fast and slow muscle fibers have different abilities and functions to adapt to exercises. To investigate the RNA and miRNA expression profiles in the muscles with different muscle fiber compositions on Mongolian horses. We examined the muscle fiber type population and produced deep RNA sequencing for different parts of skeletal muscles. And chose two of them with the highest difference in fast and slow muscle fiber population (splenius and gluteus medius) for comparing the gene expression profile of slow and fast muscle fiber types. We identified a total of 275 differentially expressed genes (DEGs), and 11 differentially expressed miRNAs (DEmiRs). In addition, target gene prediction and alternative splicing analysis were also performed. Significant correlations were found between the differentially expressed gene, miRNAs, and alternative splicing events. The result indicated that differentially expressed muscle-specific genes and target genes of miRNAs might co-regulating the performance of slow and fast muscle fiber types in Mongolian horses.
Collapse
Affiliation(s)
- Tugeqin Bao
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Haige Han
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bei Li
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yiping Zhao
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelchimeg Bou
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinzhuang Zhang
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ming Du
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ruoyang Zhao
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Togtokh Mongke
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Laxima
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenqi Ding
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zijie Jia
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dongyi Bai
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Hohhot 010018, China; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; Equine Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
40
|
Keiller DR, Gordon DA. The plateau at V˙ O 2max is associated with anaerobic alleles. J Sci Med Sport 2019; 23:506-511. [PMID: 31924536 DOI: 10.1016/j.jsams.2019.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study tests the hypothesis that individuals who achieve a plateau at V˙ O2max (V˙ O2plat) are more likely to possess alleles, associated with anaerobic capacity, than those who do not. DESIGN A literature survey, physiological testing and genetic analysis was used to determine any association between the aerobic and anaerobic polymorphisms of 40 genes and V˙ O2plat. METHODS 34, healthy, Caucasian volunteers, completed an exercise test to determine V˙ O2max, and V˙ O2plat. 28 of the volunteers agreed to DNA testing and 26 were successfully genotyped. A literature search was used to determine whether the 40 polymorphisms analysed were associated with aerobic, or anaerobic exercise performance. RESULTS The literature survey enabled classification of the 40 target alleles as aerobic [11], anaerobic [24], or having no apparent association (NAA) [5] with exercise performance. It also found no previous studies linking a genetic component with the ability to achieve V˙ O2plat. Independent t-tests showed a significant difference (p < 0.001) in the ability to achieve V˙ O2plat, but no other measured physiological variable was significantly different. Pearson's χ2 testing demonstrated a highly significant association (p = 0.008) between anaerobic allele frequency and V˙ O2plat, but not with V˙ O2max. There was no association between aerobic alleles and V˙ O2plat, or V˙ O2max. Finally there were no significant differences in the allelic frequencies, observed in this study and those expected of Northern and Western European Caucasians. CONCLUSION These results support the hypothesis that the ability to achieve V˙ O2plat is associated with alleles linked to anaerobic exercise capacity.
Collapse
Affiliation(s)
- Don R Keiller
- Faculty of Science and Engineering, School of Life Sciences, Anglia Ruskin University, UK.
| | - Dan A Gordon
- Faculty of Science and Engineering, School Psychology and Sports Science, Anglia Ruskin University, UK
| |
Collapse
|
41
|
Liver-Metabolizing Genes and Their Relationship to the Performance of Elite Spanish Male Endurance Athletes; a Prospective Transversal Study. SPORTS MEDICINE-OPEN 2019; 5:50. [PMID: 31820125 PMCID: PMC6901632 DOI: 10.1186/s40798-019-0227-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/19/2019] [Indexed: 11/30/2022]
Abstract
Background The genetic profile that is needed to define an endurance athlete has been studied during recent years. The main objective of this work is to approach for the first time the study of genetic variants in liver-metabolizing genes and their role in endurance performance by comparing the allelic and genotypic frequencies in elite endurance athletes to the non-athlete population. Methods Genotypic and allelic frequencies were determined in 123 elite endurance athletes (75 professional road cyclists and 48 endurance elite runners) and 122 male non-athlete subjects (sedentary). Genotyping of cytochrome P450 family 2 subfamily D member 6 (CYP2D6 rs3892097), glutathione-S transferase mu isoform 1 (GSTM1), glutathione S-transferase pi (GSTP rs1695) and glutathione S-transferase theta (GSTT) genes was performed by polymerase chain reaction (PCR). The combination of the polymorphisms for the “optimal” polygenic profile has been quantified using the genotype score (GS). Results Statistical differences were found in the genetic distributions between elite endurance athletes and non-athletes in CYP2D6 (p < 0.001) and GSTT (p = 0.014) genes. The binary logistic regression model showed a favourable OR (odds ratio) of being an elite endurance runner against a professional road cyclist (OR: 2.403, 95% CI: 1.213–4.760 (p = 0.002)) in the polymorphisms studied. Conclusions Genotypic distribution of liver-metabolizing genes in elite endurance athletes is different to non-athlete subjects, with a favourable gene profile in elite endurance athletes in terms of detoxification capacity.
Collapse
|
42
|
Abstract
Muscle strength and maximal speed are factors determining athlete's results during competition. Their association with ACTN3 gene activity has been documented. The purpose of this study was the analysis of ACTN3 gene expression during a 2 month training cycle of soccer players and its correlation with the countermovement jump (CMJ) and squat jump (SJ). The study group consisted of 22 soccer players (aged 17-18). The study material included peripheral blood lymphocytes. The relative expression (RQ) of the ACTN3 gene was analyzed by qPCR and performed before and after the two-month training cycle. Before the training cycle low expression levels of ACTN3 (median RQ = 0.95) were observed, yet after the training cycle they were elevated (median RQ = 1.98) ( p = 0.003). There was an increase in performance of both jumps: SJ (p = 0.020) and CMJ (p = 0.012) at the end of the training cycle. A simultaneous increase in the ACTN3 gene expression level and height in both jump tests was observed in 73% of athletes (p > 0.05). There were no significant relationships between the ACTN3 gene expression level and the results of the CMJ and SJ. However, explosive strength is a complex feature shaped by many different factors and it could be the reason why we did not observe correlations between these variables.
Collapse
|
43
|
Meckel Y, Eliakim A, Nemet D, Levin N, Ben-Zaken S. PPARD CC and ACTN3 RR genotype prevalence among elite soccer players. SCI MED FOOTBALL 2019. [DOI: 10.1080/24733938.2019.1677936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yoav Meckel
- Genetics and Molecular Biology Laboratory, The Academic College at the Wingate, Wingate Institute, Netanya, Israel
| | - Alon Eliakim
- Child Health and Sports Center, Pediatric Department, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dan Nemet
- Child Health and Sports Center, Pediatric Department, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nir Levin
- National Youth Team, The Israel Football Association, Ramat-Gan, Israel
| | - Sigal Ben-Zaken
- Genetics and Molecular Biology Laboratory, The Academic College at the Wingate, Wingate Institute, Netanya, Israel
| |
Collapse
|
44
|
Musiał AD, Ropka-Molik K, Piórkowska K, Jaworska J, Stefaniuk-Szmukier M. ACTN3 genotype distribution across horses representing different utility types and breeds. Mol Biol Rep 2019; 46:5795-5803. [PMID: 31392535 DOI: 10.1007/s11033-019-05013-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/30/2019] [Indexed: 01/13/2023]
Abstract
In horses, the identification of the genetic background of phenotypic variation, especially with regard to performance characteristics and predisposition to effort, has been extensively studied. As α-actinin-3 function is related to the regulation of muscle contraction and cell metabolism, the ACTN3 gene is considered one of the main genetic factors determining muscle strength. The aim of the present study was to assess the genotype distribution of two SNP variants within the equine ACTN3 gene (g.1104G > A and c.2334C > T) across different utility types and horse breeds. The analyses were performed on five breeds representing horses of different types, origins and utilities according to performance (in total 877 horses): primitive (Polish koniks; Hucul horses), draught (Polish heavy draught) and light (Thoroughbred and Arabian horses). Two polymorphisms within the ACTN3 gene locus were genotyped and genotype and allele frequency were compared across populations in order to verify if the identified differences contribute to the phenotypic variation observed in horse breeds. The present study allowed confirmation of the significant differences in genotype distribution of g.1104G > A localized in the promoter region between native breeds and racehorse breeds such as Thoroughbreds and Arabians. The allele/genotype variations between primitive and light breeds confirmed that the analysed variant was under selection pressure and can be correlated with racing ability. Moreover, the significant differences for the c.2334C > T genotype frequency between Arabian horses and other breeds indicate its relationship with endurance and athletic performance. The predominance of the T allele (85%) in Arabians suggests that the T variant was favoured during selection focused on improving stamina and could be one of the genetic factors determining endurance ability. Further research is needed to confirm the association of both polymorphisms with exact racing and/or riding results.
Collapse
Affiliation(s)
- Adrianna D Musiał
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland. .,Laboratory of Genomics, Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland.
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Joanna Jaworska
- Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn - UWM, Olsztyn, Poland
| | - Monika Stefaniuk-Szmukier
- Department of Horse Breeding, Institute of Animal Science, University of Agriculture in Krakow, Kraków, Poland
| |
Collapse
|
45
|
Espinosa-Salinas I, de la Iglesia R, Colmenarejo G, Molina S, Reglero G, Martinez JA, Loria-Kohen V, Ramirez de Molina A. GCKR rs780094 Polymorphism as A Genetic Variant Involved in Physical Exercise. Genes (Basel) 2019; 10:E570. [PMID: 31357711 PMCID: PMC6722860 DOI: 10.3390/genes10080570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/05/2023] Open
Abstract
Exercise performance is influenced by genetics. However, there is a lack of knowledge about the role played by genetic variability in the frequency of physical exercise practice. The objective was to identify genetic variants that modulate the commitment of people to perform physical exercise and to detect those subjects with a lower frequency practice. A total of 451 subjects were genotyped for 64 genetic variants related to inflammation, circadian rhythms, vascular function as well as energy, lipid and carbohydrate metabolism. Physical exercise frequency question and a Minnesota Leisure Time Physical Activity Questionnaire (MLTPAQ) were used to qualitatively and quantitatively measure the average amount of physical exercise. Dietary intake and energy expenditure due to physical activity were also studied. Differences between genotypes were analyzed using linear and logistic models adjusted for Bonferroni. A significant association between GCKR rs780094 and the times the individuals performed physical exercise was observed (p = 0.004). The carriers of the minor allele showed a greater frequency of physical exercise in comparison to the major homozygous genotype carriers (OR: 1.86, 95% CI: 1.36-2.56). The analysis of the GCKR rs780094 variant suggests a possible association with the subjects that present lower frequency of physical exercise. Nevertheless, future studies are needed to confirm these findings.
Collapse
Affiliation(s)
| | - Rocio de la Iglesia
- Nutrition and Clinical Trials Unit, IMDEA Food CEI UAM + CSIC, 28049 Madrid, Spain
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA Food CEI UAM + CSIC, 28049 Madrid, Spain
| | - Susana Molina
- Nutrition and Clinical Trials Unit, IMDEA Food CEI UAM + CSIC, 28049 Madrid, Spain
| | - Guillermo Reglero
- Nutrition and Clinical Trials Unit, IMDEA Food CEI UAM + CSIC, 28049 Madrid, Spain
- Department of Production and Characterization of New Foods, Institute of Food Science Research (CIAL) CEI UAM + CSIC, 28049 Madrid, Spain
| | - J Alfredo Martinez
- Nutrition and Clinical Trials Unit, IMDEA Food CEI UAM + CSIC, 28049 Madrid, Spain
- Department of Food Sciences and Physiology, University of Navarra, 31009 Pamplona, Spain
- CIBERobn, Instituto Carlos III, 28029 Madrid, Spain
| | - Viviana Loria-Kohen
- Nutrition and Clinical Trials Unit, IMDEA Food CEI UAM + CSIC, 28049 Madrid, Spain.
| | | |
Collapse
|
46
|
Sierra APR, Oliveira RA, Silva ED, Lima GHO, Benetti MP, Kiss MAP, Sierra CA, Ghorayeb N, Seto JT, Pesquero JB, Cury-Boaventura MF. Association Between Hematological Parameters and Iron Metabolism Response After Marathon Race and ACTN3 Genotype. Front Physiol 2019; 10:697. [PMID: 31244673 PMCID: PMC6580990 DOI: 10.3389/fphys.2019.00697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/17/2019] [Indexed: 12/19/2022] Open
Abstract
α-Actinin-3 (ACTN3 R577X, rs.1815739) polymorphism is a genetic variation that shows the most consistent influence on metabolic pathway and muscle phenotype. XX genotype is associated with higher metabolic efficiency of skeletal muscle; however, the role of ACTN3 polymorphism in oxygen transport and utilization system has not yet been investigated. Therefore, the aim of this study was to determine the influence of ACTN3 polymorphisms on hematological and iron metabolism response induced by marathon race. Eighty-one Brazilian amateur male endurance runners participated in the study. Blood samples and urine were collected before; immediately after; and 1, 3, and 15 days after the marathon race. Urine, hematological parameters, iron metabolism, and ACTN3 genotyping analyses were performed. The marathon race induced a decrease in erythrocytes, Hb, and Ht, and an increase in hematuria, creatinine, myoglobin, red cell distribution width, mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin, direct and indirect bilirubin and erythropoietin. Moreover, an elevation immediately or 1 day after the marathon race follows a reduction 3 or 15 days after the marathon race were observed on transferrin saturation and iron and transferrin levels. Hematological parameters and iron metabolism changes induced by marathon race were not observed in XX genotypes. Hematuria and decreased erythrocytes, Hb, Ht, and iron and transferrin levels were observed only in RR and/or RX genotypes but not in XX genotypes. The percentage of runners with hematuria, leukocyturia, iron deficiency, creatinine, myoglobin, and bilirubin imbalance was higher in RR compared to XX genotypes. ACTN3 polymorphism is associated with iron metabolism and hematological responses after endurance exercise. Despite these results being based on a small sample, they highlight a protective role of the XX genotype on hematological and renal changes induced by long-distance exercise. Therefore, these findings should be further replicated.
Collapse
Affiliation(s)
- Ana Paula Renno Sierra
- Department of Biodynamics of Human Movements, School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil.,Sports Cardiology Department, Dante Pazzanese Institute of Cardiology, São Paulo, Brazil
| | - Rodrigo Assunção Oliveira
- Department of Interdisciplinary in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Elton Dias Silva
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Giscard Humberto Oliveira Lima
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil.,Department of Movement, Human and Health Sciences, Program of Human Movement and Sport Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Marino Pereira Benetti
- Department of Biodynamics of Human Movements, School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil
| | - Maria Augusta Pedanti Kiss
- Department of Biodynamics of Human Movements, School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil
| | - Carlos Anibal Sierra
- Sports Cardiology Department, Dante Pazzanese Institute of Cardiology, São Paulo, Brazil
| | - Nabil Ghorayeb
- Sports Cardiology Department, Dante Pazzanese Institute of Cardiology, São Paulo, Brazil
| | - Jane T Seto
- Neuromuscular Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - João Bosco Pesquero
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Maria Fernanda Cury-Boaventura
- Department of Interdisciplinary in Health Sciences, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| |
Collapse
|
47
|
Landen S, Voisin S, Craig JM, McGee SL, Lamon S, Eynon N. Genetic and epigenetic sex-specific adaptations to endurance exercise. Epigenetics 2019; 14:523-535. [PMID: 30957644 PMCID: PMC6557612 DOI: 10.1080/15592294.2019.1603961] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/03/2019] [Accepted: 04/02/2019] [Indexed: 01/01/2023] Open
Abstract
In recent years, the interest in personalised interventions such as medicine, nutrition, and exercise is rapidly rising to maximize health outcomes and ensure the most appropriate treatments. Exercising regularly is recommended for both healthy and diseased populations to improve health. However, there are sex-specific adaptations to exercise that often are not taken into consideration. While endurance exercise training alters the human skeletal muscle epigenome and subsequent gene expression, it is still unknown whether it does so differently in men and women, potentially leading to sex-specific physiological adaptations. Elucidating sex differences in genetics, epigenetics, gene regulation and expression in response to exercise will have great health implications, as it may enable gene targets in future clinical interventions and may better individualised interventions. This review will cover this topic and highlight the recent findings of sex-specific genetic, epigenetic, and gene expression studies, address the gaps in the field, and offer recommendations for future research.
Collapse
Affiliation(s)
- Shanie Landen
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Jeffrey M Craig
- Centre for Molecular and Medical Research, Deakin University, Geelong Waurn Ponds Campus, Geelong, Australia
- Environmental & Genetic Epidemiology Research, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Australia
| | - Sean L. McGee
- Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Royal Children’s Hospital, Murdoch Children’s Research Institute, Melbourne, Australia
| |
Collapse
|
48
|
Tharabenjasin P, Pabalan N, Jarjanazi H. Association of the ACTN3 R577X (rs1815739) polymorphism with elite power sports: A meta-analysis. PLoS One 2019; 14:e0217390. [PMID: 31145768 PMCID: PMC6542526 DOI: 10.1371/journal.pone.0217390] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
Objective The special status accorded to elite athletes stems from their uncommon genetic potential to excel in world-class power sports (PS). Genetic polymorphisms have been reported to influence elite PS status. Reports of associations between the α-actinin-3 gene (ACTN3) R577X polymorphism and PS have been inconsistent. In light of new published studies, we perform a meta-analysis to further explore the roles of this polymorphism in PS performance among elite athletes. Methods Multi-database literature search yielded 44 studies from 38 articles. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were used in estimating associations (significance threshold was set at Pa ≤ 0.05) using the allele-genotype model (R and X alleles, RX genotype). Outlier analysis was used to examine its impact on association and heterogeneity outcomes. Subgroup analysis was race (Western and Asian) and gender (male/female)-based. Interaction tests were applied to differential outcomes between the subgroups, P-values of which were Bonferroni corrected (Pinteraction BC). Tests for sensitivity and publication bias were performed. Results Significant overall R allele effects (OR 1.21, 95% CI 1.07–1.37, Pa = 0.002) were confirmed in the Western subgroup (OR 1.11, 95% CI 1.01–1.22, Pa = 0.02) and with outlier treatment (ORs 1.12–1.20, 95% CIs 1.02–1.30, Pa < 10−5–0.01). This treatment resulted in acquired significance of the RX effect in Asian athletes (OR 1.91, 95% CI 1.25–2.92, Pa = 0.003). Gender analysis dichotomized the RX genotype and R allele effects as significantly higher in male (OR 1.14, 95% CI 1.02–1.28, Pa = 0.02) and female (OR 1.58, 95% CI 1.21–2.06, Pa = 0.0009) athletes, respectively, when compared with controls. Significant R female association was improved with a test of interaction (Pinteraction BC = 0.03). The overall, Asian and female outcomes were robust. The R allele results were more robust than the RX genotype outcomes. No evidence of publication bias was found. Conclusions In this meta-analysis, we present clear associations between the R allele/RX genotype in the ACTN3 polymorphism and elite power athlete status. Significant effects of the R allele (overall analysis, Western and female subgroups) and RX genotype (Asians and males) were for the most part, results of outlier treatment. Interaction analysis improved the female outcome. These robust findings were free of publication bias.
Collapse
Affiliation(s)
- Phuntila Tharabenjasin
- Chulabhorn International College of Medicine, Thammasat University, PathumThani, Thailand
| | - Noel Pabalan
- Chulabhorn International College of Medicine, Thammasat University, PathumThani, Thailand
- * E-mail:
| | - Hamdi Jarjanazi
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| |
Collapse
|
49
|
The Development of a Personalised Training Framework: Implementation of Emerging Technologies for Performance. J Funct Morphol Kinesiol 2019; 4:jfmk4020025. [PMID: 33467340 PMCID: PMC7739422 DOI: 10.3390/jfmk4020025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Over the last decade, there has been considerable interest in the individualisation of athlete training, including the use of genetic information, alongside more advanced data capture and analysis techniques. Here, we explore the evidence for, and practical use of, a number of these emerging technologies, including the measurement and quantification of epigenetic changes, microbiome analysis and the use of cell-free DNA, along with data mining and machine learning. In doing so, we develop a theoretical model for the use of these technologies in an elite sport setting, allowing the coach to better answer six key questions: (1) To what training will my athlete best respond? (2) How well is my athlete adapting to training? (3) When should I change the training stimulus (i.e., has the athlete reached their adaptive ceiling for this training modality)? (4) How long will it take for a certain adaptation to occur? (5) How well is my athlete tolerating the current training load? (6) What load can my athlete handle today? Special consideration is given to whether such an individualised training framework will outperform current methods as well as the challenges in implementing this approach.
Collapse
|
50
|
Jeremic D, Macuzic IZ, Vulovic M, Stevanovic J, Radovanovic D, Varjacic V, Djordjevic D. ACE/ACTN3 GENETIC POLYMORPHISMS AND ATHLETIC PERFORMANCE OF FEMALE SOCCER PLAYERS`. REV BRAS MED ESPORTE 2019. [DOI: 10.1590/1517-869220192501187684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Objective: Previous studies have shown controversial relationships between ACE and ACTN3 gene polymorphisms and sports performance. Thus, the aim of our study was to assess anaerobic and aerobic performance indicators of young female soccer players with different ACE/ACTN3 gene profiles. Methods: Twenty-seven female soccer players aged 16-18 underwent acceleration, speed, strength, anaerobic power and aerobic endurance tests and had their ACE and ACTN3 polymorphisms determined. Results: Based on genetic analysis, they were divided into the following groups: ACE II (n=2), ACE ID (n=11), ACE DD (n=14), ACTN3 XX (n=5), ACTN3 RR (n=7) and ACTN3 RX (n=15). ACE DD and ACE ID groups differed significantly in terms of results achieved on the 5 m sprint test (1.15±0.05 s vs 1.10±0.05 s, P=0.42). ACTN3 RR and RX achieved better results than the ACTN3 XX group in seven continuous vertical jumps (26.57±1.59 cm vs 25.77±2.51 cm vs 22.86±1.16 cm, respectively; P=0.007 for RR vs XX and P=0.021 for RX vs XX). Conclusion: High prevalence of ACE DD and ACTN3 RX genotypes in our subjects may suggest that faster and more powerful young females tend to perform better in soccer. Nevertheless, the absence of differences in most of the physical test results indicates that different genotypes are compatible with high-level soccer performance, meaning that it is the phenotype-genotype interaction that makes a successful female soccer player. Level of Evidence I, Prognostic studies — Investigating the effect of a patient characteristic on disease outcome.
Collapse
|