1
|
Nguyen AT, Kim HK. Recent Developments in PET and SPECT Radiotracers as Radiopharmaceuticals for Hypoxia Tumors. Pharmaceutics 2023; 15:1840. [PMID: 37514026 PMCID: PMC10385036 DOI: 10.3390/pharmaceutics15071840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Hypoxia, a deficiency in the levels of oxygen, is a common feature of most solid tumors and induces many characteristics of cancer. Hypoxia is associated with metastases and strong resistance to radio- and chemotherapy, and can decrease the accuracy of cancer prognosis. Non-invasive imaging methods such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using hypoxia-targeting radiopharmaceuticals have been used for the detection and therapy of tumor hypoxia. Nitroimidazoles are bioreducible moieties that can be selectively reduced under hypoxic conditions covalently bind to intracellular macromolecules, and are trapped within hypoxic cells and tissues. Recently, there has been a strong motivation to develop PET and SPECT radiotracers as radiopharmaceuticals containing nitroimidazole moieties for the visualization and treatment of hypoxic tumors. In this review, we summarize the development of some novel PET and SPECT radiotracers as radiopharmaceuticals containing nitroimidazoles, as well as their physicochemical properties, in vitro cellular uptake values, in vivo biodistribution, and PET/SPECT imaging results.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
2
|
Bloux H, Dahiya A, Hébert A, Fabis F, Schoenebeck F, Cailly T. Base-Mediated Radio-Iodination of Arenes by Using Organosilane and Organogermane as Radiolabelling Precursors. Chemistry 2023; 29:e202203366. [PMID: 36607172 DOI: 10.1002/chem.202203366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/07/2023]
Abstract
The radio-iodination of arenes is investigated from organosilane and organogermane precursors using ipso-electrophilic halogenation (IEH). Discovery of a mild base mediated process allows radio-iodination in HFIP (1,1,1,3,3,3-hexafluoro-2-propanol) of either aryl silane or germane, with germanes being more reactive. Clinical potential of arylgermanes as radio-iodination precursors is demonstrated through the labelling of [125 I]IMTO (iodometomidate) and [125 I]MIBG (meta-iodobenzylguanidine) thus offering an alternative to radio-iododestannylation processes using non-toxic precursors.
Collapse
Affiliation(s)
- Hugo Bloux
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 14000, Caen, France
| | - Amit Dahiya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Alexandra Hébert
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 14000, Caen, France
| | - Frédéric Fabis
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 14000, Caen, France
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Cailly
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 14000, Caen, France.,IMOGERE, Normandie Univ, UNICAEN, 14000, Caen, France.,Department of Nuclear Medicine, CHU Côte de Nacre, 14000, Caen, France.,Institut Blood and Brain @Caen-Normandie (BB@C), Boulevard Henri Becquerel, 14074, Caen, France
| |
Collapse
|
3
|
Positron Emission Tomography Radiopharmaceuticals in Differentiated Thyroid Cancer. Molecules 2022; 27:molecules27154936. [PMID: 35956886 PMCID: PMC9370596 DOI: 10.3390/molecules27154936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Differentiated thyroid cancer (DTC), arising from thyroid follicular epithelial cells, is the most common type of thyroid cancer. Despite the well-known utilization of radioiodine treatment in DTC, i.e., iodine-131, radioiodine imaging in DTC is typically performed with iodine-123 and iodine-131, with the current hybrid scanner performing single photon emission tomography/computed tomography (SPECT/CT). Positron emission tomography/computed tomography (PET/CT) provides superior visualization and quantification of functions at the molecular level; thus, lesion assessment can be improved compared to that of SPECT/CT. Various types of cancer, including radioiodine-refractory DTC, can be detected by 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), the most well-known and widely used PET radiopharmaceutical. Several other PET radiopharmaceuticals have been developed, although some are limited in availability despite their potential clinical utilizations. This article aims to summarize PET radiopharmaceuticals in DTC, focusing on molecular pathways and applications.
Collapse
|
4
|
[ 124I]IBETA: A New Aβ Plaque Positron Emission Tomography Imaging Agent for Alzheimer's Disease. Molecules 2022; 27:molecules27144552. [PMID: 35889425 PMCID: PMC9319930 DOI: 10.3390/molecules27144552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Several fluorine-18-labeled PET β-amyloid (Aβ) plaque radiotracers for Alzheimer’s disease (AD) are in clinical use. However, no radioiodinated imaging agent for Aβ plaques has been successfully moved forward for either single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging. Radioiodinated pyridyl benzofuran derivatives for the SPECT imaging of Aβ plaques using iodine-123 and iodine-125 are being pursued. In this study, we assess the iodine-124 radioiodinated pyridyl benzofuran derivative 5-(5-[124I]iodobenzofuran-2-yl)-N,N-dimethylpyridin-2-amine ([124I]IBETA) (Ki = 2.36 nM) for utilization in PET imaging for Aβ plaques. We report our findings on the radioiododestannylation reaction used to prepare [124/125I]IBETA and evaluate its binding to Aβ plaques in a 5 × FAD mouse model and postmortem human AD brain. Both [125I]IBETA and [124I]IBETA are produced in >25% radiochemical yield and >85% radiochemical purity. The in vitro binding of [125I]IBETA and [124I]IBETA in transgenic 5 × FAD mouse model for Aβ plaques was high in the frontal cortex, anterior cingulate, thalamus, and hippocampus, which are regions of high Aβ accumulation, with very little binding in the cerebellum (ratio of brain regions to cerebellum was >5). The in vitro binding of [125I]IBETA and [124I]IBETA in postmortem human AD brains was higher in gray matter containing Aβ plaques compared to white matter (ratio of gray to white matter was >5). Anti-Aβ immunostaining strongly correlated with [124/125I]IBETA regional binding in both the 5 × FAD mouse and postmortem AD human brains. The binding of [124/125I]IBETA in 5 × FAD mouse and postmortem human AD brains was displaced by the known Aβ plaque imaging agent, Flotaza. Preliminary PET/CT studies of [124I]IBETA in the 5 × FAD mouse model suggested [124I]IBETA was relatively stable in vivo with a greater localization of [124I]IBETA in the brain regions with a high concentration of Aβ plaques. Some deiodination was observed at later time points. Therefore, [124I]IBETA may potentially be a useful PET radioligand for Aβ plaques in brain studies.
Collapse
|
5
|
Abstract
Renal cell carcinoma (RCC) is the sixth most common cancer among men and the ninth among women, and its prognosis is closely correlated with metastasis. Targeted therapy and immunotherapy are the main adjuvant treatments for advanced RCC and require early diagnosis, precise assessment, and prediction of the therapeutic responses. Current conventional imaging methods of RCC only provide structural information rather than biological processes. Noninvasive diagnostic tools are therefore needed to image RCC early and accurately at the molecular level. Nuclear medicine imaging combines the high sensitivity of radionuclides with the high resolution of structural imaging to visualize the metabolic processes and specific targets of RCC for more accurate and reliable diagnosis, staging, prognosis prediction, and response assessment. This review summarizes the most recent applications of nuclear medicine receptor imaging and metabolic imaging in RCC and highlights future development perspectives in the field.
Collapse
Affiliation(s)
- Qianyun Wu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| |
Collapse
|
6
|
George KJH, Borjian S, Cross MC, Hicks JW, Schaffer P, Kovacs MS. Expanding the PET radioisotope universe utilizing solid targets on small medical cyclotrons. RSC Adv 2021; 11:31098-31123. [PMID: 35498914 PMCID: PMC9041346 DOI: 10.1039/d1ra04480j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
Molecular imaging with medical radioisotopes enables the minimally-invasive monitoring of aberrant biochemical, cellular and tissue-level processes in living subjects. The approach requires the administration of radiotracers composed of radioisotopes attached to bioactive molecules, the pairing of which considers several aspects of the radioisotope in addition to the biological behavior of the targeting molecule to which it is attached. With the advent of modern cellular and biochemical techniques, there has been a virtual explosion in potential disease recognition antigens as well as targeting moieties, which has subsequently opened new applications for a host of emerging radioisotopes with well-matched properties. Additionally, the global radioisotope production landscape has changed rapidly, with reactor-based production and its long-defined, large-scale centralized manufacturing and distribution paradigm shifting to include the manufacture and distribution of many radioisotopes via a worldwide fleet of cyclotrons now in operation. Cyclotron-based radioisotope production has become more prevalent given the commercial availability of instruments, coupled with the introduction of new target hardware, process automation and target manufacturing methods. These advances enable sustained, higher-power irradiation of solid targets that allow hospital-based radiopharmacies to produce a suite of radioisotopes that drive research, clinical trials, and ultimately clinical care. Over the years, several different radioisotopes have been investigated and/or selected for radiolabeling due to favorable decay characteristics (i.e. a suitable half-life, high probability of positron decay, etc.), well-elucidated chemistry, and a feasible production framework. However, longer-lived radioisotopes have surged in popularity given recent regulatory approvals and incorporation of radiopharmaceuticals into patient management within the medical community. This review focuses on the applications, nuclear properties, and production and purification methods for some of the most frequently used/emerging positron-emitting, solid-target-produced radioisotopes that can be manufactured using small-to-medium size cyclotrons (≤24 MeV).
Collapse
Affiliation(s)
- K J H George
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| | - S Borjian
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
| | - M C Cross
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
| | - J W Hicks
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| | - P Schaffer
- Life Sciences, TRIUMF 4004 Wesbrook Mall Vancouver BC V6T 2A3 Canada
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
- Radiology, University of British Columbia 2775 Laurel St Vancouver BC V5Z 1M9 Canada
- Chemistry, Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - M S Kovacs
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
- Medical Imaging, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| |
Collapse
|
7
|
Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021; 92:241-269. [PMID: 32900582 DOI: 10.1016/j.nucmedbio.2020.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Positron-emission-tomography (PET) has become an indispensable diagnostic tool in modern nuclear medicine. Its outstanding molecular imaging features allow repetitive studies on one individual and with high sensitivity, though no interference. Rather few positron-emitters with near favourable physical properties, i.e. carbon-11 and fluorine-18, furnished most studies in the beginning, preferably if covalently bound as isotopic label of small molecules. With the advancement of PET-devices the scope of in vivo research in life sciences and especially that of medical applications expanded, and other than "standard" PET-nuclides received increasing significance, like the radiometals copper-64 and gallium-68. Especially during the last decades, positron-emitters of other chemical elements have gotten into the focus of interest, concomitant with the technical advancements in imaging and radionuclide production. With known nuclear imaging properties and main production methods of emerging positron-emitters their usefulness for medical application is promising and even proven for several ones already. Unfortunate decay properties could be corrected for, and β+-emitters, especially with a longer half-life, provided new possibilities for application where slower processes are of importance. Further on, (bio)chemical features of positron-emitters of other elements, among there many metals, not only expanded the field of classical clinical investigations, but also opened up new fields of application. Appropriately labelled peptides, proteins and nanoparticles lend itself as newer probes for PET-imaging, e.g. in theragnostic or PET/MR hybrid imaging. Furthermore, the potential of non-destructive in-vivo imaging with positron-emission-tomography directs the view on further areas of life sciences. Thus, exploiting the excellent methodology for basic research on molecular biochemical functions and processes is increasingly encouraged as well in areas outside of health, such as plant and environmental sciences.
Collapse
Affiliation(s)
- Heinz H Coenen
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
8
|
Burianova V, Kalinin S, Supuran CT, Krasavin M. Radiotracers for positron emission tomography (PET) targeting tumour-associated carbonic anhydrase isoforms. Eur J Med Chem 2020; 213:113046. [PMID: 33303236 DOI: 10.1016/j.ejmech.2020.113046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
The tumour-associated, cell membrane-bound isoforms IX and XII of human carbonic anhydrase (CA, EC 4.2.1.1) are overexpressed in cancer cells contributing to the hypoxic tumour pH/metabolism regulating machinery and as thus, can serve as markers of malignant neoplastic tissue. Inhibitors of CAs can be employed both for the treatment of hypoxic tumours and in the design of radiotracers for positron emission tomography and imaging of such cancers. The present review provides a comprehensive summary of the progress achieved to-date in the field of developing PET-tracers based on monoclonal antibodies, biomolecules, and small-molecule ligands of CA IX and XII.
Collapse
Affiliation(s)
- Valeria Burianova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Stanislav Kalinin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Claudiu T Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy.
| | - Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
9
|
Guarra F, Terenzi A, Pirker C, Passannante R, Baier D, Zangrando E, Gómez‐Vallejo V, Biver T, Gabbiani C, Berger W, Llop J, Salassa L. 124 I Radiolabeling of a Au III -NHC Complex for In Vivo Biodistribution Studies. Angew Chem Int Ed Engl 2020; 59:17130-17136. [PMID: 32633820 PMCID: PMC7540067 DOI: 10.1002/anie.202008046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 12/02/2022]
Abstract
AuIII complexes with N-heterocyclic carbene (NHC) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Reported herein is the synthesis of new AuIII -NHC complexes by direct oxidation with radioactive [124 I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET). While in vitro analyses provide direct evidence for the importance of AuIII -to-AuI reduction to achieve full anticancer activity, in vivo studies reveal that a fraction of the AuIII -NHC prodrug is not immediately reduced after administration but able to reach the major organs before metabolic activation.
Collapse
Affiliation(s)
- Federica Guarra
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 1356124PisaItaly
| | - Alessio Terenzi
- Donostia International Physics CenterPaseo M. Lardizabal 420018DonostiaSpain
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of PalermoViale delle Scienze, Ed. 1790128PalermoItaly
| | - Christine Pirker
- Department of Medicine IInstitute of Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8a1090ViennaAustria
| | - Rossana Passannante
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 18220014DonostiaSpain
| | - Dina Baier
- Department of Medicine IInstitute of Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8a1090ViennaAustria
- Institute of Inorganic ChemistryFaculty of Chemistry University of ViennaWaehringerstrasse 421090ViennaAustria
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical SciencesUniversity of Triestevia Giorgieri 134127TriesteItaly
| | - Vanessa Gómez‐Vallejo
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 18220014DonostiaSpain
| | - Tarita Biver
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 1356124PisaItaly
- Department of PharmacyUniversity of Pisavia Bonanno 656126PisaItaly
| | - Chiara Gabbiani
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia G. Moruzzi 1356124PisaItaly
| | - Walter Berger
- Department of Medicine IInstitute of Cancer Research and Comprehensive Cancer CenterMedical University ViennaBorschkegasse 8a1090ViennaAustria
| | - Jordi Llop
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 18220014DonostiaSpain
| | - Luca Salassa
- Donostia International Physics CenterPaseo M. Lardizabal 420018DonostiaSpain
- Kimika FakultateaEuskal Herriko UnibertsitateaUPV/EHU20080DonostiaSpain
- IkerbasqueBasque Foundation for Science48013BilbaoSpain
| |
Collapse
|
10
|
Guarra F, Terenzi A, Pirker C, Passannante R, Baier D, Zangrando E, Gómez‐Vallejo V, Biver T, Gabbiani C, Berger W, Llop J, Salassa L. 124
I Radiolabeling of a Au
III
‐NHC Complex for In Vivo Biodistribution Studies. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Federica Guarra
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Alessio Terenzi
- Donostia International Physics Center Paseo M. Lardizabal 4 20018 Donostia Spain
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies University of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Christine Pirker
- Department of Medicine I Institute of Cancer Research and Comprehensive Cancer Center Medical University Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Rossana Passannante
- CIC biomaGUNE Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia Spain
| | - Dina Baier
- Department of Medicine I Institute of Cancer Research and Comprehensive Cancer Center Medical University Vienna Borschkegasse 8a 1090 Vienna Austria
- Institute of Inorganic Chemistry Faculty of Chemistry University of Vienna Waehringerstrasse 42 1090 Vienna Austria
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences University of Trieste via Giorgieri 1 34127 Trieste Italy
| | - Vanessa Gómez‐Vallejo
- CIC biomaGUNE Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia Spain
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
- Department of Pharmacy University of Pisa via Bonanno 6 56126 Pisa Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Walter Berger
- Department of Medicine I Institute of Cancer Research and Comprehensive Cancer Center Medical University Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Jordi Llop
- CIC biomaGUNE Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 20014 Donostia Spain
| | - Luca Salassa
- Donostia International Physics Center Paseo M. Lardizabal 4 20018 Donostia Spain
- Kimika Fakultatea Euskal Herriko Unibertsitatea UPV/EHU 20080 Donostia Spain
- Ikerbasque Basque Foundation for Science 48013 Bilbao Spain
| |
Collapse
|
11
|
Shapovalova M, Lee JK, Li Y, Vander Griend DJ, Coleman IM, Nelson PS, Dehm SM, LeBeau AM. PEG10 Promoter-Driven Expression of Reporter Genes Enables Molecular Imaging of Lethal Prostate Cancer. Cancer Res 2019; 79:5668-5680. [PMID: 31530569 DOI: 10.1158/0008-5472.can-19-2181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
The retrotransposon-derived paternally expressed gene 10 (PEG10) protein is ordinarily expressed at high levels in the placenta. Recently, it was discovered that PEG10 isoforms promote the progression of prostate cancer to a highly lethal androgen receptor (AR)-negative phenotype. The presence of PEG10 in other subtypes of prostate cancer has not been explored and a utility for PEG10 overexpression has not been developed. Here, we found that in addition to AR-null disease, PEG10 was also expressed in prostate cancer with constitutively active AR-splice variants. A molecular genetic imaging strategy for noninvasive imaging of AR-splice variant prostate cancer was developed by utilizing the cancer specificity of the PEG10 promoter to drive the expression of reporter genes. Plasmid insertion of a PEG10 promoter sequence optimized for enhanced output upstream of a reporter gene allowed detection of prostate cancer by near-infrared and positron emission tomography imaging after systemic administration of the plasmid in vivo. PEG10 expressing subcutaneous xenograft and intratibial tumor models were imaged by both modalities using this molecular genetic imaging strategy. This study demonstrates a preclinical proof-of-concept that the PEG10 promoter is a powerful and specific tool that can be utilized for noninvasive detection of aggressive prostate cancer subtypes. SIGNIFICANCE: PEG10 is expressed by prostate cancer with constitutively active AR-splice variants that can be exploited for noninvasive molecular imaging of this aggressive prostate cancer subytpe.
Collapse
Affiliation(s)
- Mariya Shapovalova
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - John K Lee
- Division of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yingming Li
- Department of Laboratory Medicine and Pathology, Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Donald J Vander Griend
- Department of Laboratory Medicine and Pathology, Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Ilsa M Coleman
- Division of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Peter S Nelson
- Division of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Scott M Dehm
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Aaron M LeBeau
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota.
| |
Collapse
|
12
|
Zhang P, Zhuang R, Wang X, Liu H, Li J, Su X, Chen X, Zhang X. Highly Efficient and Stable Strain-Release Radioiodination for Thiol Chemoselective Bioconjugation. Bioconjug Chem 2018; 29:467-472. [PMID: 29376327 DOI: 10.1021/acs.bioconjchem.7b00790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a novel thiol selective radioiodination method based on strain-release reaction. A new heterobifunctional radioiodination agent which has very good thiol selectivity and excellent stability with high radiolabeling yield was synthesized, characterized, and applied successfully for thiol-contained peptide labeling.
Collapse
Affiliation(s)
- Pu Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen 361102, China
| | - Rongqiang Zhuang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen 361102, China
| | - Xiangyu Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen 361102, China
| | - Huanhuan Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen 361102, China
| | - Jindian Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen 361102, China
| | - Xinhui Su
- Zhongshan Hospital Affiliated of Xiamen University , Xiamen 361004, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (USA) , Bethesda, Maryland 20892, United States
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen 361102, China
| |
Collapse
|
13
|
Pace L, Klain M, Tagliabue L, Storto G. The current and evolving role of FDG–PET/CT in personalized iodine-131 therapy of differentiated thyroid cancer. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0254-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|