1
|
Penz A, Gamper J, Gallmetzer JM, Purtscher FRS, Hofer TS. Parametrization of Zirconium for DFTB3/3OB: A Pathway to Study Complex Zr-Compounds for Biomedical and Material Science Applications. J Comput Chem 2025; 46:e70140. [PMID: 40418678 DOI: 10.1002/jcc.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025]
Abstract
This work presents the extension of the semi-empirical density functional tight binding method, DFTB3, to include zirconium for biomedical and material science applications. The parametrization of Zr has been carried out in consistency with already established 3OB parameters including the elements C, H, N, O, S, P, Mg, Zn, Na, K, Ca, F, Cl, Br, and I. Zirconium-ligand association and reaction energies have been compared with results from quantum chemical calculations obtained at MP2 and DFT (PBE and B3LYP) level of theory, as well as with those from the semi-empirical methods DFTB2/PTBP and GFN2-xTB. A structural validation has been carried out on 1,897 compounds reported in the Cambridge Structural Database, revealing an average root mean square deviation comparable to that obtained at semi-empirical (DFTB2/PTBP and GFN2-xTB) level of theory and via the novel neural network potential MACE-MP-0. To provide a critical validation of the newly derived parameters, the structure of the biomedically relevant Zr-DFO complex has been evaluated with respect to a DFT (B3LYP) reference calculation. In addition, extensive DFTB3 MD simulations of the two prominent metal-organic frameworks UiO-66 and UiO-67 have been performed. The results demonstrate the applicability of the newly developed parameters for the study of zirconium-containing metal-organic frameworks, when compared to experimental measurements, as well as computational approaches.
Collapse
Affiliation(s)
- Armin Penz
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Jakob Gamper
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Josef M Gallmetzer
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Felix R S Purtscher
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Thomas S Hofer
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Steiner YTS, Zizi V, Mangoni M, Nardini P, Bani D, Bencini A, Bianchi A, Savastano M, Romano GM. Fluorescent Deferoxamine Complexes of Cu(II) and Zr(IV): Insights in the Development of Dual Imaging Probes. Chemistry 2025:e202501203. [PMID: 40342180 DOI: 10.1002/chem.202501203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/11/2025]
Abstract
Deferoxamine (DFO) is widely regarded as benchmark chelator for 89Zr(IV), a commonly used PET (positron emission tomography) tracer. We have introduced a novel fluorescent coumarin derivative of DFO (DFOKC), characterized by chelating unit and fluorophore covalently linked via a lysine molecule. This design introduces a free primary amine group, which, in perspective, can be functionalized with biological vectors, potentially improving tumor tissue selectivity. Its acid-base and metal coordination properties toward Cu(II) and Zr(IV) ions were thoroughly characterized using UV-Vis and fluorescence emission spectroscopy. DFOKC strongly coordinates both metal ions, forming somewhat more stable complexes than DFO, while retaining fluorescence emission, thus enabling dual-mode optical and PET imaging. Biodistribution assays conducted on NIH-3T3 fibroblasts, and MDA-MB-231 mammary adenocarcinoma cell lines demonstrated that the presence of primary amine groups favors Zr-DFOKC complex cell internalization via pinocytosis compared to the parent molecule DFOC, in which the fluorophore is linked to the amine group of DFO. Furthermore, crystal violet and MTT assays revealed no cytotoxic effects or mitochondrial impairment, even at concentrations higher than those typically used for radio-diagnostic applications. These results strongly support the potential of DFOKC as a versatile and promising tool for dual imaging, offering significant advantages in molecular imaging.
Collapse
Affiliation(s)
| | - Virginia Zizi
- Imaging Platform, Department of Experimental & Clinical Medicine, University of Florence, Viale G.Pieraccini 6, 50139, Florence, Italy
| | - Monica Mangoni
- Radiotherapy Unit, Department of Experimental & Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Patrizia Nardini
- Imaging Platform, Department of Experimental & Clinical Medicine, University of Florence, Viale G.Pieraccini 6, 50139, Florence, Italy
| | - Daniele Bani
- Imaging Platform, Department of Experimental & Clinical Medicine, University of Florence, Viale G.Pieraccini 6, 50139, Florence, Italy
| | - Andrea Bencini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Antonio Bianchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Matteo Savastano
- Department for the Promotion of Human Science and Quality of Life, University San Raffaele Roma, Via di Val Cannuta 247, 00166, Rome, Italy
| | - Giammarco Maria Romano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Mayegowda SB, Gadilingappa MN. Microbial Siderophores: A New Insight on Healthcare Applications. BME FRONTIERS 2025; 6:0112. [PMID: 40124737 PMCID: PMC11927942 DOI: 10.34133/bmef.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Globally, increased illness and disorders have gained importance in improvising therapeutics to help extend the lifespan of an individual. In this scenario, understanding the mechanism of bacterial pathogenicity linked to the interaction between the host and the pathogen focusing on essential metal ions is necessary. Numerous studies indicate that the severity of a disease might be due to the reduced availability of iron, linked to abnormal production or lack of acquisition systems. However, several microbes produce siderophores as virulence factors, low-molecular-weight organic compounds for acquisition of iron by iron-chelating systems. In medical applications, siderophores are employed in novel strategies in order to design effective new drugs and vaccines, targeting and delivering antibiotics to target sites in multidrug-resistant pathogens. Meanwhile, some types of siderophores are used as drug delivery modalities and antimalarial, anticancer, and antibacterial agents, for example, by employing conjugation techniques such as Trojan horse delivery. Hence, the current review integrates several applications of siderophores with an overview covering taxonomy, organisms producing iron affinity carriers, and their acquisition mechanism. This understanding may delineate newer opportunities to adapt possible therapies and/or treatments against several multidrug-resistant pathogens, representing a crucial solution for public health problems worldwide.
Collapse
|
4
|
Kumar R, Singh A, Srivastava A. Xenosiderophores: bridging the gap in microbial iron acquisition strategies. World J Microbiol Biotechnol 2025; 41:69. [PMID: 39939429 DOI: 10.1007/s11274-025-04287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Microorganisms acquire iron from surrounding environment through specific iron chelators known as siderophores that can be of self-origin or synthesized by neighboring microbes. The latter are termed as xenosiderophores. The acquired iron supports their growth, survival, and pathogenesis. Various microorganisms possess the ability to utilize xenosiderophores, a mechanism popularly termed as 'siderophore piracy' besides synthesizing their own siderophores. This adaptability allows microorganisms to conserve energy by reducing the load of siderogenesis. Owing to the presence of xenosiderophore transport machinery, these microbial systems can be used for targeting antibiotics-siderophore conjugates to control pathogenesis and combat antimicrobial resistance. This review outlines the significance of xenosiderophore utilization for growth, stress management and virulence. Siderogenesis and the molecular mechanism of its uptake by related organisms have been discussed vividly. It focuses on potential applications like disease diagnostics, drug delivery, and combating antibiotic resistance. In brief, this review highlights the importance of xenosiderophores projecting them beyond their role as mere iron chelators.
Collapse
Affiliation(s)
- Ravinsh Kumar
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Ashutosh Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Amrita Srivastava
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India.
| |
Collapse
|
5
|
Schalk IJ. Bacterial siderophores: diversity, uptake pathways and applications. Nat Rev Microbiol 2025; 23:24-40. [PMID: 39251840 DOI: 10.1038/s41579-024-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 09/11/2024]
Abstract
Iron is an essential nutrient for the growth, survival and virulence of almost all bacteria. To access iron, many bacteria produce siderophores, molecules with a high affinity for iron. Research has highlighted substantial diversity in the chemical structure of siderophores produced by bacteria, as well as remarkable variety in the molecular mechanisms involved in strategies for acquiring iron through these molecules. The metal-chelating properties of siderophores, characterized by their high affinity for iron and ability to chelate numerous other metals (albeit with lower affinity compared with iron), have also generated interest in diverse fields. Siderophores find applications in the environment, such as in bioremediation and agriculture, in which emerging and innovative strategies are being developed to address pollution and enhance nutrient availability for plants. Moreover, in medicine, siderophores could be used as a tool for novel antimicrobial therapies and medical imaging, as well as in haemochromatosis, thalassemia or cancer treatments. This Review offers insights into the diversity of siderophores, highlighting their potential applications in environmental and medical contexts.
Collapse
|
6
|
Gräff ÁT, Barry SM. Siderophores as tools and treatments. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:47. [PMID: 39649077 PMCID: PMC11621027 DOI: 10.1038/s44259-024-00053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/03/2024] [Indexed: 12/10/2024]
Abstract
In the search for iron, an essential element in many biochemical processes, microorganisms biosynthesise dedicated chelators, known as siderophores, to sequester iron from their environment and actively transport the siderophore complex into the cell. This process has been implicated in bacterial pathogenesis and exploited through siderophore-antibiotic conjugates as a method for selective antibiotic delivery. Here we review this Trojan-horse approach including design considerations and potential in diagnostics and infection imaging.
Collapse
Affiliation(s)
- Á. Tamás Gräff
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, Britannia House, London, SE1 1DB UK
| | - Sarah M. Barry
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, Britannia House, London, SE1 1DB UK
| |
Collapse
|
7
|
Kraihammer M, Petřík M, Rangger C, Gabriel M, Haas H, Nilica B, Virgolini I, Decristoforo C. Automated Production of [ 68Ga]Ga-Desferrioxamine B on Two Different Synthesis Platforms. Pharmaceutics 2024; 16:1231. [PMID: 39339267 PMCID: PMC11435116 DOI: 10.3390/pharmaceutics16091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: PET imaging of bacterial infection could potentially provide added benefits for patient care through non-invasive means. [68Ga]Ga-desferrioxamine B-a radiolabelled siderophore-shows specific uptake by human-pathogenic bacteria like Staphylococcus aureus or Pseudomonas aeruginosa and sufficient serum stability for clinical application. In this report, we present data for automated production of [68Ga]Ga-desferrioxamine B on two different cassette-based synthesis modules (Modular-Lab PharmTracer and GRP 3V) utilising commercially obtainable cassettes together with a licensed 68Ge/68Ga radionuclide generator. Methods: Quality control, including the determination of radiochemical purity, as well as a system suitability test, was set up via RP-HPLC on a C18 column. The two described production processes use an acetic acid/acetate buffer system with ascorbic acid as a radical scavenger for radiolabelling, yielding ready-to-use formulations with sufficient activity yield. Results: Batch data analysis demonstrated radiochemical purity of >95% by RP-HPLC combined with ITLC and excellent stability up to 2 h after synthesis. Specifications for routine production were set up and validated with four masterbatches for each synthesis module. Conclusions: Based on this study, an academic clinical trial for imaging of bacterial infection was initiated. Both described synthesis methods enable automated production of [68Ga]Ga-desferrioxamine B in-house with high reproducibility for clinical application.
Collapse
Affiliation(s)
- Martin Kraihammer
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
- Institute of Nuclear Medicine and Endocrinology, Kepler University Hospital, Krankenhausstrasse 9, A-4021 Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040 Linz, Austria
| | - Miloš Petřík
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, CZ-77900 Olomouc, Czech Republic
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Michael Gabriel
- Institute of Nuclear Medicine and Endocrinology, Kepler University Hospital, Krankenhausstrasse 9, A-4021 Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040 Linz, Austria
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Bernhard Nilica
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
8
|
Fanai A, Bohia B, Lalremruati F, Lalhriatpuii N, Lalrokimi, Lalmuanpuii R, Singh PK, Zothanpuia. Plant growth promoting bacteria (PGPB)-induced plant adaptations to stresses: an updated review. PeerJ 2024; 12:e17882. [PMID: 39184384 PMCID: PMC11344539 DOI: 10.7717/peerj.17882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Plants and bacteria are co-evolving and interact with one another in a continuous process. This interaction enables the plant to assimilate the nutrients and acquire protection with the help of beneficial bacteria known as plant growth-promoting bacteria (PGPB). These beneficial bacteria naturally produce bioactive compounds that can assist plants' stress tolerance. Moreover, they employ various direct and indirect processes to induce plant growth and protect plants against pathogens. The direct mechanisms involve phytohormone production, phosphate solubilization, zinc solubilization, potassium solubilization, ammonia production, and nitrogen fixation while, the production of siderophores, lytic enzymes, hydrogen cyanide, and antibiotics are included under indirect mechanisms. This property can be exploited to prepare bioformulants for biofertilizers, biopesticides, and biofungicides, which are convenient alternatives for chemical-based products to achieve sustainable agricultural practices. However, the application and importance of PGPB in sustainable agriculture are still debatable despite its immense diversity and plant growth-supporting activities. Moreover, the performance of PGPB varies greatly and is dictated by the environmental factors affecting plant growth and development. This review emphasizes the role of PGPB in plant growth-promoting activities (stress tolerance, production of bioactive compounds and phytohormones) and summarises new formulations and opportunities.
Collapse
Affiliation(s)
- Awmpuizeli Fanai
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, India
| | | | | | - Nancy Lalhriatpuii
- Department of Biotechnology/Life Sciences, Pachhunga University College, Aizawl, Mizoram, India
| | - Lalrokimi
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, India
| | | | - Prashant Kumar Singh
- Department of Biotechnology/Life Sciences, Pachhunga University College, Aizawl, Mizoram, India
| | - Zothanpuia
- Department of Biotechnology/Life Sciences, Pachhunga University College, Aizawl, Mizoram, India
| |
Collapse
|
9
|
Akter A, Firth G, Darwesh AMF, Cooper MS, Chuljerm H, Cilibrizzi A, Blower PJ, Hider RC, Lyons O, Schelenz S, Mehra V, Abbate V. [ 68Ga]Ga-Schizokinen, a Potential Radiotracer for Selective Bacterial Infection Imaging. ACS Infect Dis 2024; 10:2615-2622. [PMID: 39012184 PMCID: PMC11320569 DOI: 10.1021/acsinfecdis.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Gallium-68-labeled siderophores as radiotracers have gained interest for the development of in situ infection-specific imaging diagnostics. Here, we report radiolabeling, in vitro screening, and in vivo pharmacokinetics (PK) of gallium-68-labeled schizokinen ([68Ga]Ga-SKN) as a new potential radiotracer for imaging bacterial infections. We radiolabeled SKN with ≥95% radiochemical purity. Our in vitro studies demonstrated its hydrophilic characteristics, neutral pH stability, and short-term stability in human serum and toward transchelation. In vitro uptake of [68Ga]Ga-SKN by Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and S. epidermidis, but no uptake by Candida glabrata, C. albicans, or Aspergillus fumigatus, demonstrated its specificity to bacterial species. Whole-body [68Ga]Ga-SKN positron emission tomography (PET) combined with computerized tomography (CT) in healthy mice showed rapid renal excretion with no or minimal organ uptake. The subsequent ex vivo biodistribution resembled this fast PK with rapid renal excretion with minimal blood retention and no major organ uptake and showed some dissociation of the tracer in the urine after 60 min postinjection. These findings warrant further evaluation of [68Ga]Ga-SKN as a bacteria-specific radiotracer for infection imaging.
Collapse
Affiliation(s)
- Asma Akter
- Institute
of Pharmaceutical Science, Faculty of Life Science and Medicine, King’s College London, London SE1 9NH, United Kingdom
| | - George Firth
- School
of Biomedical Engineering and Imaging Sciences, Faculty of Life Science
and Medicine, King’s College London, London SE1 7EH, United Kingdom
| | - Afnan M. F. Darwesh
- School
of Biomedical Engineering and Imaging Sciences, Faculty of Life Science
and Medicine, King’s College London, London SE1 7EH, United Kingdom
- Department
of Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Margaret S. Cooper
- School
of Biomedical Engineering and Imaging Sciences, Faculty of Life Science
and Medicine, King’s College London, London SE1 7EH, United Kingdom
| | - Hataichanok Chuljerm
- Institute
of Pharmaceutical Science, Faculty of Life Science and Medicine, King’s College London, London SE1 9NH, United Kingdom
- School
of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Agostino Cilibrizzi
- Institute
of Pharmaceutical Science, Faculty of Life Science and Medicine, King’s College London, London SE1 9NH, United Kingdom
| | - Philip J. Blower
- School
of Biomedical Engineering and Imaging Sciences, Faculty of Life Science
and Medicine, King’s College London, London SE1 7EH, United Kingdom
| | - Robert C. Hider
- Institute
of Pharmaceutical Science, Faculty of Life Science and Medicine, King’s College London, London SE1 9NH, United Kingdom
| | - Oliver Lyons
- Department
of Surgery, University of Otago, Christchurch 8013, New Zealand
| | - Silke Schelenz
- Department
of Microbiology, Kings College Hospital
NHS Foundation Trust, London SE5 9RS, United
Kingdom
| | - Varun Mehra
- Department
of Hematology, King’s College Hospital
NHS Foundation Trust, London SE5 9RS, United
Kingdom
| | - Vincenzo Abbate
- Institute
of Pharmaceutical Science, Faculty of Life Science and Medicine, King’s College London, London SE1 9NH, United Kingdom
| |
Collapse
|
10
|
LeBlanc A, Wuest WM. Siderophores: A Case Study in Translational Chemical Biology. Biochemistry 2024; 63:1877-1891. [PMID: 39041827 PMCID: PMC11308372 DOI: 10.1021/acs.biochem.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Siderophores are metal-binding secondary metabolites that assist in iron homeostasis and have been of interest to the scientific community for the last half century. Foundational siderophore research has enabled several translational applications including siderophore-antibiotic and siderophore-peptide conjugates, identification of new antimicrobial targets, advances in disease imaging, and novel therapeutics. This review aims to connect the basic science research (biosynthesis, cellular uptake, gene regulation, and effects on homeostasis) of well-known siderophores with the successive translational application that results. Intertwined throughout are connections to the career of Christopher T. Walsh, his impact on the field of chemical biology, and the legacy of his trainees who continue to innovate.
Collapse
Affiliation(s)
- Andrew
R. LeBlanc
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| | - William M. Wuest
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Karadkhelkar NM, Gupta P, Barasa L, Chilamakuri R, Hlordzi CK, Acharekar N, Agarwal S, Chen ZS, Yoganathan S. Chemical Derivatization Leads to the Discovery Of Novel Analogs of Azotochelin, a Natural Siderophore, as Promising Anticancer Agents. ChemMedChem 2024; 19:e202300715. [PMID: 38598189 DOI: 10.1002/cmdc.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
Siderophores are structurally unique medicinal natural products and exhibit considerable therapeutic potential. Herein, we report the design and synthesis of azotochelin, a natural siderophore, and an extensive library of azotochelin analogs and their anticancer properties. We modified the carboxylic acid and the aromatic ring of azotochelin using various chemical motifs. We evaluated the cytotoxicity of the compounds against six different cancer cell lines (KB-3-1, SNB-19, MCF-7, K-562, SW-620, and NCI-H460) and a non-cancerous cell line (HEK-293). Among the twenty compounds tested, the IC50 values of nine compounds (14, 32, 35-40, and 54) were between 0.7 and 2.0 μM against a lung cancer cell line (NCI-H460). Moreover, several compounds showed good cytotoxicity profile (IC50 <10 μM) against the tested cancer cell lines. The flow cytometry analysis showed that compounds 36 and 38 induced apoptosis in NCI-H460 in a dose-dependent manner. The cell cycle analysis indicated that compounds 36 and 38 significantly arrested the cell cycle at the S phase to block cancer cell proliferation in the NCI-H460 cell line. The study has produced various novel azotochelin analogs that are potentially effective anticancer agents and lead compounds for further synthetic and medicinal chemistry exploration.
Collapse
Affiliation(s)
- Nishant M Karadkhelkar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
- Current affiliation: The Scripps Research Institute, 10550 N Torrey Pines Rd., La Jolla, CA, 92037
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Leonard Barasa
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
- Current affiliation: Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Rameswari Chilamakuri
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Christopher K Hlordzi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Nikita Acharekar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Saurabh Agarwal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| |
Collapse
|
12
|
Gomes AF, Sousa E, Resende DISP. A Practical Toolkit for the Detection, Isolation, Quantification, and Characterization of Siderophores and Metallophores in Microorganisms. ACS OMEGA 2024; 9:26863-26877. [PMID: 38947835 PMCID: PMC11209696 DOI: 10.1021/acsomega.4c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Siderophores are well-recognized low-molecular-weight compounds produced by numerous microorganisms to acquire iron from the surrounding environments. These secondary metabolites can form complexes with other metals besides iron, forming soluble metallophores; because of that, they are widely investigated in either the medicinal or environmental field. One of the bottlenecks of siderophore research is related to the identification of new siderophores from microbial sources. Herein we have compiled a comprehensive range of standard and updated methodologies that have been developed over the past few years to provide a comprehensive toolbox in this area to current researchers.
Collapse
Affiliation(s)
- Ana F.
R. Gomes
- LQOF
- Laboratório de Química Orgânica e Farmacêutica,
Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR-
Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Emília Sousa
- LQOF
- Laboratório de Química Orgânica e Farmacêutica,
Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR-
Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I. S. P. Resende
- LQOF
- Laboratório de Química Orgânica e Farmacêutica,
Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR-
Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
- ICBAS
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
13
|
Krasulova K, Neuzilova B, Dvorakova Bendova K, Novy Z, Popper M, Hajduch M, Petrik M. Preclinical characterisation of gallium-68 labeled ferrichrome siderophore stereoisomers for PET imaging applications. EJNMMI Radiopharm Chem 2024; 9:20. [PMID: 38436776 PMCID: PMC10912063 DOI: 10.1186/s41181-024-00249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Siderophores are small iron-binding molecules produced by microorganisms to facilitate iron acquisition from the environment. Radiolabelled siderophores offer a promising solution for infection imaging, as they can specifically target the pathophysiological mechanisms of pathogens. Gallium-68 can replace the iron in siderophores, enabling molecular imaging with positron emission tomography (PET). Stereospecific interactions play a crucial role in the recognition of receptors, transporters, and iron utilisation. Furthermore, these interactions have an impact on the host environment, affecting pharmacokinetics and biodistribution. This study examines the influence of siderophore stereoisomerism on imaging properties, with a focus on ferrirubin (FR) and ferrirhodin (FRH), two cis-trans isomeric siderophores of the ferrichrome type. RESULTS Tested siderophores were labelled with gallium-68 with high radiochemical purity. The resulting complexes differed in their in vitro characteristics. [68Ga]Ga-FRH showed less hydrophilic properties and higher protein binding values than [68Ga]Ga-FR. The stability studies confirmed the high radiochemical stability of both [68Ga]Ga-siderophores in all examined media. Both siderophores were found to be taken up by S. aureus, K. pneumoniae and P. aeruginosa with similar efficacy. The biodistribution tested in normal mice showed rapid renal clearance with low blood pool retention and fast clearance from examined organs for [68Ga]Ga-FR, whereas [68Ga]Ga-FRH showed moderate retention in blood, resulting in slower pharmacokinetics. PET/CT imaging of mice injected with [68Ga]Ga-FR and [68Ga]Ga-FRH confirmed findings from ex vivo biodistribution studies. In a mouse model of S. aureus myositis, both radiolabeled siderophores showed radiotracer accumulation at the site of infection. CONCLUSIONS The 68Ga-complexes of stereoisomers ferrirubin and ferrirhodin revealed different pharmacokinetic profiles. In vitro uptake was not affected by isomerism. Both compounds had uptake with the same bacterial culture with similar efficacy. PET/CT imaging showed that the [68Ga]Ga-complexes accumulate at the site of S. aureus infection, highlighting the potential of [68Ga]Ga-FR as a promising tool for infection imaging. In contrast, retention of the radioactivity in the blood was observed for [68Ga]Ga-FRH. In conclusion, the stereoisomerism of potential radiotracers should be considered, as even minor structural differences can influence their pharmacokinetics and, consequently, the results of PET imaging.
Collapse
Affiliation(s)
- Kristyna Krasulova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 5, 779 00, Olomouc, Czech Republic.
| | - Barbora Neuzilova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 5, 779 00, Olomouc, Czech Republic
| | - Katerina Dvorakova Bendova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 5, 779 00, Olomouc, Czech Republic
| | - Zbynek Novy
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 5, 779 00, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, Krizkovskeho 511/8, 779 00, Olomouc, Czech Republic
| | - Miroslav Popper
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 5, 779 00, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 5, 779 00, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, Krizkovskeho 511/8, 779 00, Olomouc, Czech Republic
- University Hospital Olomouc, I.P. Pavlova 6, 779 00, Olomouc, Czech Republic
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 5, 779 00, Olomouc, Czech Republic.
- Czech Advanced Technology and Research Institute, Palacky University, Krizkovskeho 511/8, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
14
|
Imberti C, Lok J, Coverdale JPC, Carter OWL, Fry ME, Postings ML, Kim J, Firth G, Blower PJ, Sadler PJ. Radiometal-Labeled Photoactivatable Pt(IV) Anticancer Complex for Theranostic Phototherapy. Inorg Chem 2023; 62:20745-20753. [PMID: 37643591 PMCID: PMC10731635 DOI: 10.1021/acs.inorgchem.3c02245] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 08/31/2023]
Abstract
A novel photoactivatable Pt(IV) diazido anticancer agent, Pt-succ-DFO, bearing a pendant deferoxamine (DFO) siderophore for radiometal chelation, has been synthesized for the study of its in vivo behavior with radionuclide imaging. Pt-succ-DFO complexation of Fe(III) and Ga(III) ions yielded new heterobimetallic complexes that maintain the photoactivation properties and photocytotoxicity of the parent Pt complex in human cancer cell lines. Radiolabeled Pt-succ-DFO-68Ga (t1/2 = 68 min, positron emitter) was readily prepared under mild conditions and was stable in the dark upon incubation with human serum. PET imaging of Pt-succ-DFO-68Ga in healthy mice revealed a promising biodistribution profile with rapid renal excretion and limited organ accumulation, implying that little off-target uptake is expected for this class of agents. Overall, this research provides the first in vivo imaging study of the whole-body distribution of a photoactivatable Pt(IV) azido anticancer complex and illustrates the potential of radionuclide imaging as a tool for the preclinical development of novel light-activated agents.
Collapse
Affiliation(s)
- Cinzia Imberti
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Jamie Lok
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - James P. C. Coverdale
- School
of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - Millie E. Fry
- School
of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Miles L. Postings
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Jana Kim
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, U.K.
| | - George Firth
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, U.K.
| | - Philip J. Blower
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, U.K.
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
15
|
Zhao H, Ren Y, Xie F, Dai H, Liu H, Fu C, Müller R. Nobachelins, new siderophores from Nocardiopsisbaichengensis protecting Caenorhabditiselegans from Pseudomonasaeruginosa infection. Synth Syst Biotechnol 2023; 8:640-646. [PMID: 37927895 PMCID: PMC10622741 DOI: 10.1016/j.synbio.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
The biosynthetic potential of actinobacteria to produce novel natural products is still regarded as immense. In this paper, we correlated a cryptic biosynthetic gene cluster to chemical molecules by genome mining and chemical analyses, leading to the discovery of a new group of catecholate-hydroxamate siderophores, nobachelins, from Nocardiopsisbaichengensis DSM 44845. Nobachelin biosynthesis genes are conserved in several bacteria from the family Nocardiopsidaceae. Structurally, nobachelins feature fatty-acylated hydroxy-ornithine and a rare chlorinated catecholate group. Intriguingly, nobachelins rescued Caenorhabditiselegans from Pseudomonasaeruginosa-mediated killing.
Collapse
Affiliation(s)
- Haowen Zhao
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021, Zhoushan, China
| | - Yuhao Ren
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Shanghai, China
| | - Feng Xie
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Huanqin Dai
- State Key Lab of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hongwei Liu
- State Key Lab of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
| |
Collapse
|
16
|
Le V, Thompson S, Roden E, Zahasky C. In Situ Measurements of Dynamic Bacteria Transport and Attachment in Heterogeneous Sand-Packed Columns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15588-15597. [PMID: 37782746 DOI: 10.1021/acs.est.3c02197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Prevention, mitigation, and regulation of bacterial contaminants in groundwater require a fundamental understanding of the mechanisms of transport and attachment in complex geological materials. Discrepancies in bacterial transport behaviors observed between field studies and laboratory experiments indicate an incomplete understanding of dynamic bacterial transport and immobilization processes in realistic heterogeneous geologic systems. Here, we develop a new experimental approach for in situ quantification of dynamic bacterial transport and attachment distribution in geologic media that relies on radiolabelingEscherichia coliwith positron-emitting radioisotopes and quantifying transport with three-dimensional (3D) positron emission tomography (PET) imaging. Our results indicate that the highest bacterial attachment occurred at the interfaces between sand layers oriented orthogonal to the direction of flow. The predicted bacterial attachment from a 3D numerical model matched the experimental PET results, highlighting that the experimentally observed bacterial transport behavior can be accurately captured with a distribution of a first-order irreversible attachment model. This is the first demonstration of the direct measurement of attachment coefficient distributions from bacterial transport experiments in geologic media and provides a transformational approach to better understand bacterial transport mechanisms, improve model parametrization, and accurately predict how local geologic conditions can influence bacterial fate and transport in groundwater.
Collapse
Affiliation(s)
- Vy Le
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sophia Thompson
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eric Roden
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Christopher Zahasky
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
17
|
Happacher I, Aguiar M, Yap A, Decristoforo C, Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus: impact on biotic interactions and potential translational applications. Essays Biochem 2023; 67:829-842. [PMID: 37313590 PMCID: PMC10500206 DOI: 10.1042/ebc20220252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
Iron is an essential trace element that is limiting in most habitats including hosts for fungal pathogens. Siderophores are iron-chelators synthesized by most fungal species for high-affinity uptake and intracellular handling of iron. Moreover, virtually all fungal species including those lacking siderophore biosynthesis appear to be able to utilize siderophores produced by other species. Siderophore biosynthesis has been shown to be crucial for virulence of several fungal pathogens infecting animals and plants revealing induction of this iron acquisition system during virulence, which offers translational potential of this fungal-specific system. The present article summarizes the current knowledge on the fungal siderophore system with a focus on Aspergillus fumigatus and its potential translational application including noninvasive diagnosis of fungal infections via urine samples, imaging of fungal infections via labeling of siderophores with radionuclides such as Gallium-68 for detection with positron emission tomography, conjugation of siderophores with fluorescent probes, and development of novel antifungal strategies.
Collapse
Affiliation(s)
- Isidor Happacher
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Mario Aguiar
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Annie Yap
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
18
|
Vijay K, Shibasini M, Sivasakthivelan P, Kavitha T. Microbial siderophores as molecular shuttles for metal cations: sources, sinks and application perspectives. Arch Microbiol 2023; 205:322. [PMID: 37644212 DOI: 10.1007/s00203-023-03644-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Iron is one of the highly abundant elements on the earth's crust, an essential micronutrient for a majority of life forms, and exists in two frequent oxidation states such as ferrous (Fe2+) and ferric (Fe3+). These two oxidation states are interconvertible by redox reactions and form complexes with a wide range of siderophores. At neutral pH in soil, Fe2+ is highly soluble upto 100 mM but have less biological value, whereas Fe3+ is less soluble upto 10-9 M. This reduced bioavailability of Fe3+ induces competition among microorganisms. As many microorganisms need at least 10-6 M of Fe3+ form of iron for their growth, siderophores from these microbes readily withdraw Fe3+ iron from a variety of habitats for their survival. In this review, we bring into light the several recent investigations related to diverse chemistry of microbial siderophores, mechanisms of siderophore uptake, biosynthetic gene clusters in microbial genomes, various sources of heavy metal cations in soil, siderophore-binding protein receptors and commercialisation perspectives of siderophores. Besides, this review unearths the recent advancements in the characterisation of novel siderophores and its heavy metal complexes alongside the interaction kinetics with receptors.
Collapse
Affiliation(s)
- Karuppiah Vijay
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Murugan Shibasini
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Panneerselvam Sivasakthivelan
- Department of Agricultural Microbiology, Faculty of Agriculture, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, 608 002, India
| | - Thangavel Kavitha
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|
19
|
Outzen L, Münzmay M, Frangioni JV, Maison W. Synthesis of Modular Desferrioxamine Analogues and Evaluation of Zwitterionic Derivatives for Zirconium Complexation. ChemMedChem 2023; 18:e202300112. [PMID: 37057615 DOI: 10.1002/cmdc.202300112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/15/2023]
Abstract
The natural siderophore desferrioxamine B (DFOB) has been used for targeted PET imaging with 89 Zr before. However, Zr-DFOB has a limited stability and a number of derivatives have been developed with improved chelation properties for zirconium. We describe the synthesis of pseudopeptidic analogues of DFOB with azido side chains. These are termed AZA-DFO (hexadentate) and AZA-DFO* (octadentate) and are assembled via a modular synthesis from Orn-β-Ala and Lys-β-Ala. Nine different chelators have been conjugated to zwitterionic moieties by copper-catalyzed azide-alkyne cycloaddition (CuAAC). The resulting water-soluble chelators form Zr complexes under mild conditions (room temperature for 90 min). Transchelation assays with 1000-fold excess of EDTA and 300-fold excess of DFOB revealed that a short spacing of hydroxamates in (Orn-β-Ala)3-4 leads to improved complex stability compared to a longer spacing in (Lys-β-Ala)3-4 . We found that the alignment of amide groups in the pseudopeptide backbone and the presence of zwitterionic sidechains did not compromise the stability of the Zr-complexes with our chelators. We believe that the octadentate derivative AZA-DFO* is particularly valuable for the preparation of new Zr-chelators for targeted imaging which combine tunable pharmacokinetic properties with high complex stability and fast Zr-complexation kinetics.
Collapse
Affiliation(s)
- Lasse Outzen
- Department of Chemistry, University of Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | - Moritz Münzmay
- Department of Chemistry, University of Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | | | - Wolfgang Maison
- Department of Chemistry, University of Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| |
Collapse
|
20
|
Puja H, Mislin GLA, Rigouin C. Engineering Siderophore Biosynthesis and Regulation Pathways to Increase Diversity and Availability. Biomolecules 2023; 13:959. [PMID: 37371539 PMCID: PMC10296737 DOI: 10.3390/biom13060959] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Siderophores are small metal chelators synthesized by numerous organisms to access iron. These secondary metabolites are ubiquitously present on Earth, and because their production represents the main strategy to assimilate iron, they play an important role in both positive and negative interactions between organisms. In addition, siderophores are used in biotechnology for diverse applications in medicine, agriculture and the environment. The generation of non-natural siderophore analogs provides a new opportunity to create new-to-nature chelating biomolecules that can offer new properties to expand applications. This review summarizes the main strategies of combinatorial biosynthesis that have been used to generate siderophore analogs. We first provide a brief overview of siderophore biosynthesis, followed by a description of the strategies, namely, precursor-directed biosynthesis, the design of synthetic or heterologous pathways and enzyme engineering, used in siderophore biosynthetic pathways to create diversity. In addition, this review highlights the engineering strategies that have been used to improve the production of siderophores by cells to facilitate their downstream utilization.
Collapse
Affiliation(s)
- Hélène Puja
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| | - Gaëtan L. A. Mislin
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| | - Coraline Rigouin
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| |
Collapse
|
21
|
de la Fuente MC, Ageitos L, Lages MA, Martínez-Matamoros D, Forero AM, Balado M, Lemos ML, Rodríguez J, Jiménez C. Structural Requirements for Ga 3+ Coordination in Synthetic Analogues of the Siderophore Piscibactin Deduced by Chemical Synthesis and Density Functional Theory Calculations. Inorg Chem 2023; 62:7503-7514. [PMID: 37140938 DOI: 10.1021/acs.inorgchem.3c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Stereoselective total synthesis of several analogues of piscibactin (Pcb), the siderophore produced by different pathogenic Gram-negative bacteria, was performed. The acid-sensitive α-methylthiazoline moiety was replaced by a more stable thiazole ring, differing in the configuration of the OH group at the C-13 position. The ability of these Pcb analogues to form complexes with Ga3+ as a mimic of Fe3+ showed that the configuration of the hydroxyl group at C-13 as 13S is crucial for the chelation of Ga3+ to preserve the metal coordination, while the presence of a thiazole ring instead of the α-methylthiazoline moiety does not affect such coordination. A complete 1H and 13C NMR chemical shift assignment of the diastereoisomer mixtures around C9/C10 was done for diagnostic stereochemical disposition. Additionally, density functional theory calculations were performed not only for confirming the stereochemistry of the Ga3+ complex among the six possible diastereoisomers but also for deducing the ability of these to form octahedral coordination spheres with gallium. Finally, the lack of antimicrobial activity of Pcb and Pcb thiazole analogue Ga3+ complexes against Vibrio anguillarum agrees with one of the roles of siderophores in protecting pathogens from metal ion toxicity. The efficient metal coordination shown by this scaffold suggests its possible use as a starting point for the design of new chelating agents or vectors for the development of new antibacterials that exploit the "Trojan horse" strategy using the microbial iron uptake mechanisms. The results obtained will be of great help in the development of biotechnological applications for these types of compounds.
Collapse
Affiliation(s)
- M Carmen de la Fuente
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Lucía Ageitos
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Marta A Lages
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Diana Martínez-Matamoros
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Abel M Forero
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Miguel Balado
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Manuel L Lemos
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Jaime Rodríguez
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Carlos Jiménez
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| |
Collapse
|
22
|
Musialowski M, Kowalewska Ł, Stasiuk R, Krucoń T, Debiec-Andrzejewska K. Metabolically versatile psychrotolerant Antarctic bacterium Pseudomonas sp. ANT_H12B is an efficient producer of siderophores and accompanying metabolites (SAM) useful for agricultural purposes. Microb Cell Fact 2023; 22:85. [PMID: 37120505 PMCID: PMC10149013 DOI: 10.1186/s12934-023-02105-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Bacterial siderophores are chelating compounds with the potential of application in agriculture, due to their plant growth-promoting (PGP) properties, however, high production and purification costs are limiting factors for their wider application. Cost-efficiency of the production could be increased by omitting purification processes, especially since siderophores accompanying metabolites (SAM) often also possess PGP traits. In this study, the metabolism versatility of Pseudomonas sp. ANT_H12B was used for the optimization of siderophores production and the potential of these metabolites and SAM was characterized in the context of PGP properties. RESULTS The metabolic diversity of ANT_H12B was examined through genomic analysis and phenotype microarrays. The strain was found to be able to use numerous C, N, P, and S sources, which allowed for the design of novel media suitable for efficient production of siderophores in the form of pyoverdine (223.50-512.60 μM). Moreover, depending on the culture medium, the pH of the siderophores and SAM solutions varied from acidic (pH < 5) to alkaline (pH > 8). In a germination test, siderophores and SAM were shown to have a positive effect on plants, with a significant increase in germination percentage observed in beetroot, pea, and tobacco. The PGP potential of SAM was further elucidated through GC/MS analysis, which revealed other compounds with PGP potential, such as indolic acetic acids, organic acids, fatty acids, sugars and alcohols. These compounds not only improved seed germination but could also potentially be beneficial for plant fitness and soil quality. CONCLUSIONS Pseudomonas sp. ANT_H12B was presented as an efficient producer of siderophores and SAM which exhibit PGP potential. It was also shown that omitting downstream processes could not only limit the costs of siderophores production but also improve their agricultural potential.
Collapse
Affiliation(s)
- M Musialowski
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Ł Kowalewska
- Department of Plant Anatomy and Cytology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - R Stasiuk
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - T Krucoń
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - K Debiec-Andrzejewska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
23
|
Akter A, Lyons O, Mehra V, Isenman H, Abbate V. Radiometal chelators for infection diagnostics. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 2:1058388. [PMID: 37388440 PMCID: PMC7614707 DOI: 10.3389/fnume.2022.1058388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Infection of native tissues or implanted devices is common, but clinical diagnosis is frequently difficult and currently available noninvasive tests perform poorly. Immunocompromised individuals (for example transplant recipients, or those with cancer) are at increased risk. No imaging test in clinical use can specifically identify infection, or accurately differentiate bacterial from fungal infections. Commonly used [18F]fluorodeoxyglucose (18FDG) positron emission computed tomography (PET/CT) is sensitive for infection, but limited by poor specificity because increased glucose uptake may also indicate inflammation or malignancy. Furthermore, this tracer provides no indication of the type of infective agent (bacterial, fungal, or parasitic). Imaging tools that directly and specifically target microbial pathogens are highly desirable to improve noninvasive infection diagnosis and localization. A growing field of research is exploring the utility of radiometals and their chelators (siderophores), which are small molecules that bind radiometals and form a stable complex allowing sequestration by microbes. This radiometal-chelator complex can be directed to a specific microbial target in vivo, facilitating anatomical localization by PET or single photon emission computed tomography. Additionally, bifunctional chelators can further conjugate therapeutic molecules (e.g., peptides, antibiotics, antibodies) while still bound to desired radiometals, combining specific imaging with highly targeted antimicrobial therapy. These novel therapeutics may prove a useful complement to the armamentarium in the global fight against antimicrobial resistance. This review will highlight current state of infection imaging diagnostics and their limitations, strategies to develop infection-specific diagnostics, recent advances in radiometal-based chelators for microbial infection imaging, challenges, and future directions to improve targeted diagnostics and/or therapeutics.
Collapse
Affiliation(s)
- Asma Akter
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| | - Oliver Lyons
- Vascular Endovascular and Transplant Surgery, Christchurch Public Hospital, Christchurch, New Zealand
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Varun Mehra
- Department of Hematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Heather Isenman
- Department of Infectious Diseases, General Medicine, Christchurch Hospital, Christchurch, New Zealand
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
24
|
Ankrah AO, Lawal IO, Dierckx RAJO, Sathekge MM, Glaudemans AWJM. Imaging of Invasive Fungal Infections- The Role of PET/CT. Semin Nucl Med 2023; 53:57-69. [PMID: 35933165 DOI: 10.1053/j.semnuclmed.2022.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/28/2023]
Abstract
Over the last decades, the population at risk for invasive fungal disease (IFD) has increased because of medical therapy advances and diseases compromising patients' immune systems. The high morbidity and mortality associated with invasive fungal disease in the immunocompromised present the challenge of early diagnosis of the IFD and the need to closely monitor the infection during treatment. The definitive diagnosis of invasive fungal disease based on culture or histopathological methods often has reduced diagnostic accuracy in the immunocompromised and may be very invasive. Less invasive and indirect evidence of the fungal infection by serology and imaging has been used for the early diagnosis of fungal infection before definitive results are available or when the definitive methods of diagnosis are suboptimal. Imaging in invasive fungal disease is a non-invasive biomarker that helps in the early diagnosis of invasive fungal disease but helps follow-up the infection during treatment. Different imaging modalities are used in the workup to evaluate fungal disease. The different imaging modalities have advantages and disadvantages at different sites in the body and may complement each other in the management of IFD. Positron emission tomography integrated with computed tomography with [18F]Fluorodeoxyglucose (FDG PET/CT) has helped manage IFD. The combined functional data from PET and anatomical data from the CT from almost the whole body allows noninvasive evaluation of IFD and provides a semiquantitative means of assessing therapy. FDG PET/CT adds value to anatomic-based only imaging modalities. The nonspecificity of FDG uptake has led to the evaluation of other tracers in the assessment of IFD. However, these are mainly still at the preclinical level and are yet to be translated to humans. FDG PET/CT remains the most widely evaluated radionuclide-based imaging modality in IFD management. The limitations of FDG PET/CT must be well understood, and more extensive prospective studies in uniform populations are needed to validate its role in the management of IFD that can be international guidelines.
Collapse
Affiliation(s)
- Alfred O Ankrah
- National Centre for Radiotherapy Oncology and Nuclear Medicine, Korle Bu Teaching Hospital, Accra GA, Ghana; Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa; Medical Imaging Center, University Medical Center Groningen, University of Groningen, RB Groningen, The Netherlands.
| | - Ismaheel O Lawal
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa; Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - Rudi A J O Dierckx
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, RB Groningen, The Netherlands
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Andor W J M Glaudemans
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, RB Groningen, The Netherlands
| |
Collapse
|
25
|
Aguiar M, Orasch T, Shadkchan Y, Caballero P, Pfister J, Sastré-Velásquez LE, Gsaller F, Decristoforo C, Osherov N, Haas H. Uptake of the Siderophore Triacetylfusarinine C, but Not Fusarinine C, Is Crucial for Virulence of Aspergillus fumigatus. mBio 2022; 13:e0219222. [PMID: 36125294 PMCID: PMC9600649 DOI: 10.1128/mbio.02192-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022] Open
Abstract
Siderophores play an important role in fungal virulence, serving as trackers for in vivo imaging and as biomarkers of fungal infections. However, siderophore uptake is only partially characterized. As the major cause of aspergillosis, Aspergillus fumigatus is one of the most common airborne fungal pathogens of humans. Here, we demonstrate that this mold species mediates the uptake of iron chelated by the secreted siderophores triacetylfusarinine C (TAFC) and fusarinine C by the major facilitator-type transporters MirB and MirD, respectively. In a murine aspergillosis model, MirB but not MirD was found to be crucial for virulence, indicating that TAFC-mediated uptake plays a dominant role during infection. In the absence of MirB, TAFC becomes inhibitory by decreasing iron availability because the mutant is not able to recognize iron that is chelated by TAFC. MirB-mediated transport was found to tolerate the conjugation of fluorescein isothiocyanate to triacetylfusarinine C, which might aid in the development of siderophore-based antifungals in a Trojan horse approach, particularly as the role of MirB in pathogenicity restrains its mutational inactivation. Taken together, this study identified the first eukaryotic siderophore transporter that is crucial for virulence and elucidated its translational potential as well as its evolutionary conservation. IMPORTANCE Aspergillus fumigatus is responsible for thousands of cases of invasive fungal disease annually. For iron uptake, A. fumigatus secretes so-called siderophores, which are taken up after the binding of environmental iron. Moreover, A. fumigatus can utilize siderophore types that are produced by other fungi or bacteria. Fungal siderophores raised considerable interest due to their role in virulence and their potential for the diagnosis and treatment of fungal infections. Here, we demonstrate that the siderophore transporter MirB is crucial for the virulence of A. fumigatus, which reveals that its substrate, triacetylfusarinine C, is the most important siderophore during infection. We found that in the absence of MirB, TAFC becomes inhibitory by decreasing the availability of environmental iron and that MirB-mediated transport tolerates the derivatization of its substrate, which might aid in the development of siderophore-based antifungals. This study significantly improved the understanding of fungal iron homeostasis and the role of siderophores in interactions with the host.
Collapse
Affiliation(s)
- Mario Aguiar
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Orasch
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Yana Shadkchan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel Aviv, Israel
| | - Patricia Caballero
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Joachim Pfister
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | | | - Fabio Gsaller
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel Aviv, Israel
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
Ahmed Abdelmaksoud A, Nafady A, Ezzeldin Sayed Bazeed S, Khalefa M, Elsamman MK, Abdelrhman Sayed MA, Qubaisy HM, Ghweil AA, Aref ZF. Lactoferrin versus Long-Acting Penicillin in Reducing Elevated Anti-Streptolysin O Titer in Cases of Tonsillopharyngitis. Infect Drug Resist 2022; 15:5257-5263. [PMID: 36097531 PMCID: PMC9464002 DOI: 10.2147/idr.s376401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background Beta-Hemolytic streptococci are the most frequent bacteria causing tonsillitis. Lactoferrin may play a role in the treatment of chronic tonsillitis due to its direct antimicrobial activity. Objective To assess the possible role of lactoferrin in reduction of raised serum Anti-Streptolysin O Titer (ASOT) in cases of chronic tonsillopharyngitis in comparison to long acting penicillin. Methods This study included 117 children with tonsillopharyngitis with high ASOT randomly divided into three groups; group 1 treated with lactoferrin, group 2 treated with long acting penicillin and group 3 treated with both drugs. For all patients ASOT was measured after three and six months of starting treatment. Results This study included 60 males and 57 females with the mean age (8.5 ± 2.4). There is statistically significant reduction in ASOT in all groups after three months of treatment. ASOT after 3 months was significantly lower in group1 (370±440) and group 3 (350±450) in comparison to group 2 (420±560) with p value 0.02, 0.004, respectively, with no significant difference in comparing group 1 to group 3 p value 0.4. Also, ASO titre after 6 months was significantly lower in group1 (350±420) and group 3 (340±440) in comparison to group 2 (420±550) with p value 0.02, 0.007, respectively, with no significant difference in comparing group 1 to group 3 p value 0.5. In comparing ASOT at three months and six months of treatment in the three studied groups; it decreased by 2% in group 1, and 1.6% in group 3 and no change in group 2. Conclusion Lactoferrin alone or in combination with long acting penicillin is safe and more effective than long acting penicillin alone in reducing ASOT. Treatment for six months with lactoferrin alone or in combination with long acting penicillin could offer a better response.
Collapse
Affiliation(s)
| | - Asmaa Nafady
- Clinical and Chemical Pathology, South Valley University, Qena, Egypt
| | | | | | | | | | | | - Ali A Ghweil
- Tropical Medicine and Gastroenterology, South Valley University, Qena, Egypt
| | - Zaki F Aref
- ENT, South Valley University, Qena, Egypt
- Department and Institution, ENT Department, Clinical and Chemical Chemistry Department Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
27
|
Co CM, Mulgaonkar A, Zhou N, Harris S, Öz OK, Tang L, Sun X. PET Imaging of Active Invasive Fungal Infections with d-[5- 11C]-Glutamine. ACS Infect Dis 2022; 8:1663-1673. [PMID: 35869564 DOI: 10.1021/acsinfecdis.2c00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The increasing prevalence and severity of invasive fungal infections (IFIs), especially in immunocompromised populations, has amplified the need for rapid diagnosis of fungal pathogens. Radiotracers derived from d-amino acids (DAAs) show promise as bacterial-specific positron emission tomography (PET) imaging agents due to their preferential consumption by bacteria and largely nonutilization by hosts. Unlike mammals, fungi can utilize external DAAs including d-glutamine for their growth by rapidly upregulating DAA oxidases. Additionally, glutamine is essential for fungal nitrogen assimilation, survival, and virulence. We previously validated d-[5-11C]-glutamine (d-[5-11C]-Gln) as an efficient radiotracer targeting live bacterial soft-tissue infections. Here, we further expanded this investigation to evaluate its translational potential for PET imaging of IFIs in immunocompetent mouse models subcutaneously (SubQ) and intramuscularly (IM) infected with Candida albicans (C. albicans), using its l-isomer counterpart (l-[5-11C]-Gln) as a control. Comparative studies between pathogens showed significantly (p < 0.05) higher uptake in fungi (C. albicans and C. tropicalis) versus tested bacterial species for d-[5-11C]-Gln, suggesting that it could potentially serve as a more sensitive radiotracer for detection of fungal infections. Additionally, comparative PET imaging studies in immunocompetent infected mice demonstrated significantly higher infection-to-background ratios for d- versus l-[5-11C]-Gln in both SubQ (ratio = 1.97, p = 0.043) and IM (ratio = 1.97, p = 0.028) infections. Fungal infection imaging specificity was confirmed with no significant difference observed between localized inflammation sites versus untreated muscle background (heat-killed injection site/untreated muscle: ∼1.1). Taken together, this work demonstrates the translational potential of d-[5-11C]-Gln for noninvasive PET imaging of IFIs.
Collapse
Affiliation(s)
- Cynthia M Co
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Ning Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Shelby Harris
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Orhan K Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
28
|
Abdelrahman SM, Dosoky NS, Hanora AM, Lopanik NB. Metabolomic Profiling and Molecular Networking of Nudibranch-Associated Streptomyces sp. SCSIO 001680. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144542. [PMID: 35889415 PMCID: PMC9321954 DOI: 10.3390/molecules27144542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
Abstract
Antibiotic-resistant bacteria are the primary source of one of the growing public health problems that requires global attention, indicating an urgent need for new antibiotics. Marine ecosystems are characterized by high biodiversity and are considered one of the essential sources of bioactive chemical compounds. Bacterial associates of marine invertebrates are commonly a source of active medicinal and natural products and are important sources for drug discovery. Hence, marine invertebrate-associated microbiomes are a fruitful resource for excavating novel genes and bioactive compounds. In a previous study, we isolated Streptomyces sp. SCSIO 001680, coded as strain 63, from the Red Sea nudibranch Chromodoris quadricolor, which exhibited antimicrobial and antitumor activity. In addition, this isolate harbors several natural product biosynthetic gene clusters, suggesting it has the potential to produce bioactive natural products. The present study aimed to investigate the metabolic profile of the isolated Streptomyces sp. SCSIO 001680 (strain 63) and to predict their potential role in the host’s survival. The crude metabolic extracts of strain 63 cultivated in two different media were characterized by ultra-high-performance liquid chromatography and high-resolution mass spectrometry. The metabolomics approach provided us with characteristic chemical fingerprints of the cellular processes and the relative abundance of specific compounds. The Global Products Social Molecular Networking database was used to identify the metabolites. While 434 metabolites were detected in the extracts, only a few compounds were identified based on the standards and the public spectral libraries, including desferrioxamines, marineosin A, and bisucaberin, halichoblelide, alternarin A, pachastrelloside A, streptodepsipeptide P1 1B, didemnaketal F, and alexandrolide. This finding suggests that this strain harbors several novel compounds. In addition, the metabolism of the microbiome of marine invertebrates remains poorly represented. Thus, our data constitute a valuable complement to the study of metabolism in the host microbiome.
Collapse
Affiliation(s)
- Samar M. Abdelrahman
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Department of Botany and Microbiology, Faculty of Science, Suez University, Suez 43518, Egypt
- Correspondence: ; Tel.: +20-103-015-1594
| | | | - Amro M. Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Nicole B. Lopanik
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- American Cancer Society, Atlanta, GA 30303, USA
| |
Collapse
|
29
|
Lemare M, Puja H, David SR, Mathieu S, Ihiawakrim D, Geoffroy VA, Rigouin C. Engineering siderophore production in Pseudomonas to improve asbestos weathering. Microb Biotechnol 2022; 15:2351-2363. [PMID: 35748120 PMCID: PMC9437886 DOI: 10.1111/1751-7915.14099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 05/25/2022] [Indexed: 11/01/2022] Open
Abstract
Iron plays a key role in microbial metabolism and bacteria have developed multiple siderophore-driven mechanisms due to its poor bioavailability for organisms in the environment. Iron-bearing minerals generally serve as a nutrient source to sustain bacterial growth after bioweathering. Siderophores are high-affinity ferric iron chelators, of which the biosynthesis is tightly regulated by the presence of iron. Pyoverdine-producing Pseudomonas have shown their ability to extract iron and magnesium from asbestos waste as nutrients. However, such bioweathering is rapidly limited due to repression of the pyoverdine pathway and the low bacterial requirement for iron. We developed a metabolically engineered strain of Pseudomonas aeruginosa for which pyoverdine production was no longer repressed by iron as a proof of concept. We compared siderophore-promoted dissolution of flocking asbestos waste by this optimized strain to that by the wild-type strain. Interestingly, pyoverdine production by the optimized strain was seven times higher in the presence of asbestos waste and the dissolution of magnesium and iron from the chrysotile fibres contained in flocking asbestos waste was significantly enhanced. This innovative mineral weathering process contributes to remove toxic iron from the asbestos fibres and may contribute to the development of an eco-friendly method to manage asbestos waste.
Collapse
Affiliation(s)
- Marion Lemare
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| | - Hélène Puja
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| | - Sébastien R David
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| | - Sébastien Mathieu
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| | - Dris Ihiawakrim
- Université de Strasbourg, CNRS-UMR7504, IPCMS, 23 Rue du Loess, BP, 43, 67034, Strasbourg, France
| | - Valérie A Geoffroy
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| | - Coraline Rigouin
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Bld Sébastien Brant, 67413, Illkirch, Strasbourg, France
| |
Collapse
|
30
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022. [PMID: 35672469 DOI: 10.1007/s00253-022-11995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
31
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022; 106:3985-4004. [PMID: 35672469 DOI: 10.1007/s00253-022-11995-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal. .,CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal. .,LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
32
|
Roskova Z, Skarohlid R, McGachy L. Siderophores: an alternative bioremediation strategy? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153144. [PMID: 35038542 DOI: 10.1016/j.scitotenv.2022.153144] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/15/2023]
Abstract
Siderophores are small molecular weight iron scavengers that are mainly produced by bacteria, fungi, and plants. Recently, they have attracted increasing attention because of their potential role in environmental bioremediation. Although siderophores are generally considered to exhibit high specificity for iron, they have also been reported to bind to various metal and metalloid ions. This unique ability allows siderophores to solubilise and mobilise heavy metals and metalloids from soil, thereby facilitating their bioremediation. In addition, because of their redox nature, they can mediate the production of reactive oxygen species (ROS), and thus promote the biodegradation of organic contaminants. The aim of this review is to summarise the existing knowledge on the developed strategies of siderophore-assisted bioremediation of metals, metalloids, and organic contaminants. Additionally, this review also includes the biosynthesis and classification of microbial and plant siderophores.
Collapse
Affiliation(s)
- Zuzana Roskova
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Radek Skarohlid
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Lenka McGachy
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic.
| |
Collapse
|
33
|
Pandey A, Cao M, Boros E. Tracking Uptake and Metabolism of Xenometallomycins Using a Multi-Isotope Tagging Strategy. ACS Infect Dis 2022; 8:878-888. [PMID: 35319188 DOI: 10.1021/acsinfecdis.2c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic and naturally occurring siderophores and their conjugates provide access to the bacterial cytoplasm via active membrane transport. Previously, we displaced iron with the radioactive isotope 67Ga to quantify and track in vitro and in vivo uptake and distribution of siderophore Trojan Horse antibiotic conjugates. Here, we introduce a multi-isotope tagging strategy to individually elucidate the fate of metal cargo and the ligand construct with radioisotopes 67Ga and 124I. We synthesized gallium(III) model complexes of a ciprofloxacin-functionalized linear desferrichrome (Ga-D6) and deferoxamine (Ga-D7) incorporating an iodo-tyrosine linker to enable radiolabeling using the metal-binding (67Ga) and the cargo-conjugation site (124I). Radiochemical experiments with Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa wt strains show that 67Ga-D6/D7 and Ga-D6-124I/D7-124I have comparable uptake, indicating intact complex import and siderophore-mediated uptake. In naive mice, 67Ga-D6/D7 and Ga-D6-124I/D7-124I demonstrate predominantly renal clearance; urine metabolite analysis indicates in vivo dissociation of Ga(III) is a likely mechanism of degradation for 67Ga-D6/D7 when compared to ligand radiolabeled compounds, Ga-D6-124I/D7-124I, which remain >60% intact in urine. Cumulatively, this work demonstrates that a multi-isotope tagging strategy effectively elucidates the in vitro uptake, pharmacokinetics, and in vivo stability of xenometallomycins with modular chemical structures.
Collapse
Affiliation(s)
- Apurva Pandey
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Minhua Cao
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| |
Collapse
|
34
|
Klahn P, Zscherp R, Jimidar CC. Advances in the Synthesis of Enterobactin, Artificial Analogues, and Enterobactin-Derived Antimicrobial Drug Conjugates and Imaging Tools for Infection Diagnosis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1783-0751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractIron is an essential growth factor for bacteria, but although highly abundant in nature, its bioavailability during infection in the human host or the environment is limited. Therefore, bacteria produce and secrete siderophores to ensure their supply of iron. The triscatecholate siderophore enterobactin and its glycosylated derivatives, the salmochelins, play a crucial role for iron acquisition in several bacteria. As these compounds can serve as carrier molecules for the design of antimicrobial siderophore drug conjugates as well as siderophore-derived tool compounds for the detection of infections with bacteria, their synthesis and the design of artificial analogues is of interest. In this review, we give an overview on the synthesis of enterobactin, biomimetic as well as totally artificial analogues, and related drug-conjugates covering up to 12/2021.1 Introduction2 Antibiotic Crisis and Sideromycins as Natural Templates for New Antimicrobial Drugs3 Biosynthesis of Enterobactin, Salmochelins, and Microcins4 Total Synthesis of Enterobactin and Salmochelins5 Chemoenzymatic Semi-synthesis of Salmochelins and Microcin E492m Derivatives6 Synthesis of Biomimetic Enterobactin Derivatives with Natural Tris-lactone Backbone7 Synthesis of Artificial Enterobactin Derivatives without Tris-lactone Backbone8 Conclusions
Collapse
Affiliation(s)
- Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig
- Department for Chemistry and Molecular Biology, University of Gothenburg
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig
| | | |
Collapse
|
35
|
Signore A, Conserva M, Varani M, Galli F, Lauri C, Velikyan I, Roivainen A. PET imaging of bacteria. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Trichoderma and Its Products From Laboratory to Patient Bedside in Medical Science: An Emerging Aspect. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Mular A, Shanzer A, Kozłowski H, Hubmann I, Misslinger M, Krzywik J, Decristoforo C, Gumienna-Kontecka E. Cyclic Analogs of Desferrioxamine E Siderophore for 68Ga Nuclear Imaging: Coordination Chemistry and Biological Activity in Staphylococcus aureus. Inorg Chem 2021; 60:17846-17857. [PMID: 34783539 PMCID: PMC8653149 DOI: 10.1021/acs.inorgchem.1c02453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
As multidrug-resistant
bacteria are an emerging problem and threat
to humanity, novel strategies for treatment and diagnostics are actively
sought. We aim to utilize siderophores, iron-specific strong chelating
agents produced by microbes, as gallium ion carriers for diagnosis,
applying that Fe(III) can be successfully replaced by Ga(III) without
losing biological properties of the investigated complex, which allows
molecular imaging by positron emission tomography (PET). Here, we
report synthesis, full solution chemistry, thermodynamic characterization,
and the preliminary biological evaluation of biomimetic derivatives
(FOX) of desferrioxamine E (FOXE) siderophore, radiolabeled with 68Ga for possible applications in PET imaging of S.
aureus. From a series of six biomimetic analogs, which differ
from FOXE with cycle length and position of hydroxamic and amide groups,
the highest Fe(III) and Ga(III) stability was determined for the most
FOXE alike compounds–FOX 2-4 and FOX 2-5; we have also established
the stability constant of the Ga-FOXE complex. For this purpose, spectroscopic
and potentiometric titrations, together with the Fe(III)–Ga(III)
competition method, were used. [68Ga]Ga-FOXE derivatives
uptake and microbial growth promotion studies conducted on S. aureus were efficient for compounds with a larger cavity,
i.e., FOX 2-5, 2-6, and 3-5. Even though showing low uptake values,
Fe-FOX 2-4 seems to be also a good Fe-source to support the growth
of S. aureus. Overall, proposed derivatives may hold
potential as inert and stable carrier agents for radioactive Ga(III)
ions for diagnostic medical applications or interesting starting compounds
for further modifications. In this work,
the authors have investigated a set of novel
ferrioxamine E analogs as potential Ga-68 chelators and tools for
infection imaging.
Collapse
Affiliation(s)
- Andrzej Mular
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
| | - Abraham Shanzer
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland.,Department of Health Sciences, University of Opole, 45-060 Opole, Poland
| | - Isabella Hubmann
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Matthias Misslinger
- Institute of Molecular Biology, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Julia Krzywik
- TriMen Chemicals, Piłsudskiego 141, 92-318 Łódź, Poland
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | | |
Collapse
|
38
|
Radionuclide Imaging of Invasive Fungal Disease in Immunocompromised Hosts. Diagnostics (Basel) 2021; 11:diagnostics11112057. [PMID: 34829403 PMCID: PMC8620393 DOI: 10.3390/diagnostics11112057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Invasive fungal disease (IFD) leads to increased mortality, morbidity, and costs of treatment in patients with immunosuppressive conditions. The definitive diagnosis of IFD relies on the isolation of the causative fungal agents through microscopy, culture, or nucleic acid testing in tissue samples obtained from the sites of the disease. Biopsy is not always feasible or safe to be undertaken in immunocompromised hosts at risk of IFD. Noninvasive diagnostic techniques are, therefore, needed for the diagnosis and treatment response assessment of IFD. The available techniques that identify fungal-specific antigens in biological samples for diagnosing IFD have variable sensitivity and specificity. They also have limited utility in response assessment. Imaging has, therefore, been applied for the noninvasive detection of IFD. Morphologic imaging with computed tomography (CT) and magnetic resonance imaging (MRI) is the most applied technique. These techniques are neither sufficiently sensitive nor specific for the early diagnosis of IFD. Morphologic changes evaluated by CT and MRI occur later in the disease course and during recovery after successful treatment. These modalities may, therefore, not be ideal for early diagnosis and early response to therapy determination. Radionuclide imaging allows for targeting the host response to pathogenic fungi or specific structures of the pathogen itself. This makes radionuclide imaging techniques suitable for the early diagnosis and treatment response assessment of IFD. In this review, we aimed to discuss the interplay of host immunity, immunosuppression, and the occurrence of IFD. We also discuss the currently available radionuclide probes that have been evaluated in preclinical and clinical studies for their ability to detect IFD.
Collapse
|
39
|
Moloney NM, Larkin A, Xu L, Fitzpatrick DA, Crean HL, Walshe K, Haas H, Decristoforo C, Doyle S. Generation and characterisation of a semi-synthetic siderophore-immunogen conjugate and a derivative recombinant triacetylfusarinine C-specific monoclonal antibody with fungal diagnostic application. Anal Biochem 2021; 632:114384. [PMID: 34543643 DOI: 10.1016/j.ab.2021.114384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/16/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022]
Abstract
Invasive pulmonary aspergillosis (IPA) is a severe life-threatening condition. Diagnosis of fungal disease in general, and especially that caused by Aspergillus fumigatus is problematic. A. fumigatus secretes siderophores to acquire iron during infection, which are also essential for virulence. We describe the chemoacetylation of ferrated fusarinine C to diacetylated fusarinine C (DAFC), followed by protein conjugation, which facilitated triacetylfusarinine C (TAFC)-specific monoclonal antibody production with specific recognition of the ferrated form of TAFC. A single monoclonal antibody sequence was ultimately elucidated by a combinatorial strategy involving protein LC-MS/MS, cDNA sequencing and RNAseq. The resultant murine IgG2a monoclonal antibody was secreted in, and purified from, mammalian cell culture (5 mg) and demonstrated to be highly specific for TAFC detection by competitive ELISA (detection limit: 15 nM) and in a lateral flow test system (detection limit: 3 ng), using gold nanoparticle conjugated- DAFC-bovine serum albumin for competition. Overall, this work reveals for the first time a recombinant TAFC-specific monoclonal antibody with diagnostic potential for IPA diagnosis in traditional and emerging patient groups (e.g., COVID-19) and presents a useful strategy for murine Ig sequence determination, and expression in HEK293 cells, to overcome unexpected limitations associated with aberrant or deficient murine monoclonal antibody production.
Collapse
Affiliation(s)
- Nicola M Moloney
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - Annemarie Larkin
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Linan Xu
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - David A Fitzpatrick
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - Holly L Crean
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - Kieran Walshe
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - Hubertus Haas
- Institute of Molecular Biology, Medical University Innsbruck, A-6020, Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 5, A-6020, Innsbruck, Austria
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland.
| |
Collapse
|
40
|
Rubitschung K, Sherwood A, Crisologo AP, Bhavan K, Haley RW, Wukich DK, Castellino L, Hwang H, La Fontaine J, Chhabra A, Lavery L, Öz OK. Pathophysiology and Molecular Imaging of Diabetic Foot Infections. Int J Mol Sci 2021; 22:11552. [PMID: 34768982 PMCID: PMC8584017 DOI: 10.3390/ijms222111552] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/27/2022] Open
Abstract
Diabetic foot infection is the leading cause of non-traumatic lower limb amputations worldwide. In addition, diabetes mellitus and sequela of the disease are increasing in prevalence. In 2017, 9.4% of Americans were diagnosed with diabetes mellitus (DM). The growing pervasiveness and financial implications of diabetic foot infection (DFI) indicate an acute need for improved clinical assessment and treatment. Complex pathophysiology and suboptimal specificity of current non-invasive imaging modalities have made diagnosis and treatment response challenging. Current anatomical and molecular clinical imaging strategies have mainly targeted the host's immune responses rather than the unique metabolism of the invading microorganism. Advances in imaging have the potential to reduce the impact of these problems and improve the assessment of DFI, particularly in distinguishing infection of soft tissue alone from osteomyelitis (OM). This review presents a summary of the known pathophysiology of DFI, the molecular basis of current and emerging diagnostic imaging techniques, and the mechanistic links of these imaging techniques to the pathophysiology of diabetic foot infections.
Collapse
Affiliation(s)
- Katie Rubitschung
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.R.); (A.S.); (A.C.)
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.R.); (A.S.); (A.C.)
| | - Andrew P. Crisologo
- Department of Plastic Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA;
| | - Kavita Bhavan
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.B.); (L.C.)
| | - Robert W. Haley
- Department of Internal Medicine, Epidemiology Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA;
| | - Dane K. Wukich
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA;
| | - Laila Castellino
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.B.); (L.C.)
| | - Helena Hwang
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA;
| | - Javier La Fontaine
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.L.F.); (L.L.)
| | - Avneesh Chhabra
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.R.); (A.S.); (A.C.)
| | - Lawrence Lavery
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.L.F.); (L.L.)
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.R.); (A.S.); (A.C.)
| |
Collapse
|
41
|
Rubitschung K, Sherwood A, Crisologo AP, Bhavan K, Haley RW, Wukich DK, Castellino L, Hwang H, La Fontaine J, Chhabra A, Lavery L, Öz OK. Pathophysiology and Molecular Imaging of Diabetic Foot Infections. Int J Mol Sci 2021; 22:ijms222111552. [PMID: 34768982 DOI: 10.3390/ijms222111552.pmid:34768982;pmcid:pmc8584017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 05/27/2023] Open
Abstract
Diabetic foot infection is the leading cause of non-traumatic lower limb amputations worldwide. In addition, diabetes mellitus and sequela of the disease are increasing in prevalence. In 2017, 9.4% of Americans were diagnosed with diabetes mellitus (DM). The growing pervasiveness and financial implications of diabetic foot infection (DFI) indicate an acute need for improved clinical assessment and treatment. Complex pathophysiology and suboptimal specificity of current non-invasive imaging modalities have made diagnosis and treatment response challenging. Current anatomical and molecular clinical imaging strategies have mainly targeted the host's immune responses rather than the unique metabolism of the invading microorganism. Advances in imaging have the potential to reduce the impact of these problems and improve the assessment of DFI, particularly in distinguishing infection of soft tissue alone from osteomyelitis (OM). This review presents a summary of the known pathophysiology of DFI, the molecular basis of current and emerging diagnostic imaging techniques, and the mechanistic links of these imaging techniques to the pathophysiology of diabetic foot infections.
Collapse
Affiliation(s)
- Katie Rubitschung
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Andrew P Crisologo
- Department of Plastic Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA
| | - Kavita Bhavan
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Robert W Haley
- Department of Internal Medicine, Epidemiology Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Dane K Wukich
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Laila Castellino
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Helena Hwang
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Javier La Fontaine
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Avneesh Chhabra
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Lawrence Lavery
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Orhan K Öz
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| |
Collapse
|
42
|
Aguiar M, Orasch T, Misslinger M, Dietl AM, Gsaller F, Haas H. The Siderophore Transporters Sit1 and Sit2 Are Essential for Utilization of Ferrichrome-, Ferrioxamine- and Coprogen-Type Siderophores in Aspergillus fumigatus. J Fungi (Basel) 2021; 7:768. [PMID: 34575806 PMCID: PMC8470733 DOI: 10.3390/jof7090768] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Siderophore-mediated acquisition of iron has been shown to be indispensable for the virulence of several fungal pathogens, the siderophore transporter Sit1 was found to mediate uptake of the novel antifungal drug VL-2397, and siderophores were shown to be useful as biomarkers as well as for imaging of fungal infections. However, siderophore uptake in filamentous fungi is poorly characterized. The opportunistic human pathogen Aspergillus fumigatus possesses five putative siderophore transporters. Here, we demonstrate that the siderophore transporters Sit1 and Sit2 have overlapping, as well as unique, substrate specificities. With respect to ferrichrome-type siderophores, the utilization of ferrirhodin and ferrirubin depended exclusively on Sit2, use of ferrichrome A depended mainly on Sit1, and utilization of ferrichrome, ferricrocin, and ferrichrysin was mediated by both transporters. Moreover, both Sit1 and Sit2 mediated use of the coprogen-type siderophores coprogen and coprogen B, while only Sit1 transported the bacterial ferrioxamine-type xenosiderophores ferrioxamines B, G, and E. Neither Sit1 nor Sit2 were important for the utilization of the endogenous siderophores fusarinine C and triacetylfusarinine C. Furthermore, A. fumigatus was found to lack utilization of the xenosiderophores schizokinen, basidiochrome, rhizoferrin, ornibactin, rhodotorulic acid, and enterobactin. Taken together, this study characterized siderophore use by A. fumigatus and substrate characteristics of Sit1 and Sit2.
Collapse
Affiliation(s)
| | | | | | | | | | - Hubertus Haas
- Institute of Molecular Biology/Biocenter, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (M.A.); (T.O.); (M.M.); (A.-M.D.); (F.G.)
| |
Collapse
|
43
|
Zscherp R, Coetzee J, Vornweg J, Grunenberg J, Herrmann J, Müller R, Klahn P. Biomimetic enterobactin analogue mediates iron-uptake and cargo transport into E. coli and P. aeruginosa. Chem Sci 2021; 12:10179-10190. [PMID: 34377407 PMCID: PMC8336463 DOI: 10.1039/d1sc02084f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
The design, synthesis and biological evaluation of the artificial enterobactin analogue EntKL and several fluorophore-conjugates thereof are described. EntKL provides an attachment point for cargos such as fluorophores or antimicrobial payloads. Corresponding conjugates are recognized by outer membrane siderophore receptors of Gram-negative pathogens and retain the natural hydrolyzability of the tris-lactone backbone. Initial density-functional theory (DFT) calculations of the free energies of solvation (ΔG(sol)) and relaxed Fe-O force constants of the corresponding [Fe-EntKL]3- complexes indicated a similar iron binding constant compared to natural enterobactin (Ent). The synthesis of EntKL was achieved via an iterative assembly based on a 3-hydroxylysine building block over 14 steps with an overall yield of 3%. A series of growth recovery assays under iron-limiting conditions with Escherichia coli and Pseudomonas aeruginosa mutant strains that are defective in natural siderophore synthesis revealed a potent concentration-dependent growth promoting effect of EntKL similar to natural Ent. Additionally, four cargo-conjugates differing in molecular size were able to restore growth of E. coli indicating an uptake into the cytosol. P. aeruginosa displayed a stronger uptake promiscuity as six different cargo-conjugates were found to restore growth under iron-limiting conditions. Imaging studies utilizing BODIPYFL-conjugates, demonstrated the ability of EntKL to overcome the Gram-negative outer membrane permeability barrier and thus deliver molecular cargos via the bacterial iron transport machinery of E. coli and P. aeruginosa.
Collapse
Affiliation(s)
- Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Janetta Coetzee
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Johannes Vornweg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jörg Grunenberg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jennifer Herrmann
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Rolf Müller
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| |
Collapse
|
44
|
Nosrati R, Abnous K, Alibolandi M, Mosafer J, Dehghani S, Taghdisi SM, Ramezani M. Targeted SPION siderophore conjugate loaded with doxorubicin as a theranostic agent for imaging and treatment of colon carcinoma. Sci Rep 2021; 11:13065. [PMID: 34158526 PMCID: PMC8219724 DOI: 10.1038/s41598-021-92391-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, the siderophores have opened new horizons in nanomedicine. The current study aimed to design a theranostic platform based on superparamagnetic iron oxide nanoparticles-pyoverdine (SPION/PVD) conjugates bound to MUC1 aptamer (MUC1Apt) and loaded with doxorubicin (DOX) as an anti-cancer agent. The SPION/PVD complex was covalently conjugated to MUC1Apt and loaded with DOX to prepare a targeted drug delivery system (SPION/PVD/MUC1Apt/DOX). The investigation of cellular cytotoxicity and uptake of formulations by MTT and flow cytometry in both MUC1 positive (C26) and MUC1 negative (CHO) cell lines revealed that MUC1Apt could improve both cellular uptake and toxicity in the C26 cell line. The evaluation of tumor-targeting activity by in vivo bio-distribution showed that the targeted formulation could enhance tumor inhibitory growth effect and survival rate in C26 tumor-bearing mice. Furthermore, the potential of synthesized SPION/PVD/MUC1Apt/DOX complex as diagnostic agents was investigated by magnetic resonance imaging (MRI) which improved the contrast of tumor site in MRI. Our findings confirm that aptamer-targeted PVD chelated the SPION as a diagnostic agent and loaded with DOX as a chemotherapeutic drug, would be beneficial as a novel theranostic platform.
Collapse
Affiliation(s)
- Rahim Nosrati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jafar Mosafer
- Department of Nanomedicine, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Department of Radiology, 9 Dey Educational Hospital, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Sadegh Dehghani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
Deferoxamine B: A Natural, Excellent and Versatile Metal Chelator. Molecules 2021; 26:molecules26113255. [PMID: 34071479 PMCID: PMC8198152 DOI: 10.3390/molecules26113255] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Deferoxamine B is an outstanding molecule which has been widely studied in the past decade for its ability to bind iron and many other metal ions. The versatility of this metal chelator makes it suitable for a number of medicinal and analytical applications, from the well-known iron chelation therapy to the most recent use in sensor devices. The three bidentate hydroxamic functional groups of deferoxamine B are the centerpiece of its metal binding ability, which allows the formation of stable complexes with many transition, lanthanoid and actinoid metal ions. In addition to the ferric ion, in fact, more than 20 different metal complexes of deferoxamine b have been characterized in terms of their chemical speciation in solution. In addition, the availability of a terminal amino group, most often not involved in complexation, opens the way to deferoxamine B modification and functionalization. This review aims to collect and summarize the available data concerning the complex-formation equilibria in solutions of deferoxamine B with different metal ions. A general overview of the progress of its applications over the past decade is also discussed, including the treatment of iron overload-associated diseases, its clinical use against cancer and neurodegenerative disorders and its role as a diagnostic tool.
Collapse
|
46
|
Siddiqui NA, Houson HA, Kamble NS, Blanco JR, O'Donnell RE, Hassett DJ, Lapi SE, Kotagiri N. Leveraging copper import by yersiniabactin siderophore system for targeted PET imaging of bacteria. JCI Insight 2021; 6:144880. [PMID: 34027898 PMCID: PMC8262292 DOI: 10.1172/jci.insight.144880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/21/2021] [Indexed: 12/27/2022] Open
Abstract
There is an emerging need for accurate and rapid identification of bacteria in the human body to achieve diverse biomedical objectives. Copper homeostasis is vital for the survival of bacterial species owing to the roles of the metal as a nutrient, respiratory enzyme cofactor, and a toxin. Here, we report the development of a copper-64–labeled bacterial metal chelator, yersiniabactin, to exploit a highly conserved metal acquisition pathway for noninvasive and selective imaging of bacteria. Compared with traditional techniques used to manufacture probes, our strategy simplifies the process considerably by combining the function of metal attachment and cell recognition to the same molecule. We demonstrate, for the first time to our knowledge, how a copper-64 PET probe can be used to identify specific bacterial populations, monitor antibiotic treatment outcomes, and track bacteria in diverse niches in vivo.
Collapse
Affiliation(s)
- Nabil A Siddiqui
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hailey A Houson
- Division of Advanced Medical Imaging Research, Department of Radiology and Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nitin S Kamble
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jose R Blanco
- Division of Advanced Medical Imaging Research, Department of Radiology and Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Robert E O'Donnell
- Department of Internal Medicine, Heart, Lung and Vascular Institute, and
| | - Daniel J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Suzanne E Lapi
- Division of Advanced Medical Imaging Research, Department of Radiology and Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nalinikanth Kotagiri
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
47
|
Ankrah AO, Sathekge MM, Dierckx RAJO, Glaudemans AWJM. Radionuclide Imaging of Fungal Infections and Correlation with the Host Defense Response. J Fungi (Basel) 2021; 7:jof7060407. [PMID: 34067410 PMCID: PMC8224611 DOI: 10.3390/jof7060407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
The human response to invading fungi includes a series of events that detect, kill, or clear the fungi. If the metabolic host response is unable to eliminate the fungi, an infection ensues. Some of the host response’s metabolic events to fungi can be imaged with molecules labelled with radionuclides. Several important clinical applications have been found with radiolabelled biomolecules of inflammation. 18F-fluorodeoxyglucose is the tracer that has been most widely investigated in the host defence of fungi. This tracer has added value in the early detection of infection, in staging and visualising dissemination of infection, and in monitoring antifungal treatment. Radiolabelled antimicrobial peptides showed promising results, but large prospective studies in fungal infection are lacking. Other tracers have also been used in imaging events of the host response, such as the migration of white blood cells at sites of infection, nutritional immunity in iron metabolism, and radiolabelled monoclonal antibodies. Many tracers are still at the preclinical stage. Some tracers require further studies before translation into clinical use. The application of therapeutic radionuclides offers a very promising clinical application of these tracers in managing drug-resistant fungi.
Collapse
Affiliation(s)
- Alfred O. Ankrah
- National Centre for Radiotherapy Oncology and Nuclear Medicine, Korle Bu Teaching Hospital, Accra GA-222 7974, Ghana;
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Rudi A. J. O. Dierckx
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Andor W. J. M. Glaudemans
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
- Correspondence:
| |
Collapse
|
48
|
Giddings LA, Lountos GT, Kim KW, Brockley M, Needle D, Cherry S, Tropea JE, Waugh DS. Characterization of a broadly specific cadaverine N-hydroxylase involved in desferrioxamine B biosynthesis in Streptomyces sviceus. PLoS One 2021; 16:e0248385. [PMID: 33784308 PMCID: PMC8009421 DOI: 10.1371/journal.pone.0248385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
N-hydroxylating flavin-dependent monooxygenases (FMOs) are involved in the biosynthesis of hydroxamate siderophores, playing a key role in microbial virulence. Herein, we report the first structural and kinetic characterization of a novel alkyl diamine N-hydroxylase DesB from Streptomyces sviceus (SsDesB). This enzyme catalyzes the first committed step in the biosynthesis of desferrioxamine B, a clinical drug used to treat iron overload disorders. X-ray crystal structures of the SsDesB holoenzyme with FAD and the ternary complex with bound NADP+ were solved at 2.86 Å and 2.37 Å resolution, respectively, providing a structural view of the active site environment. SsDesB crystallized as a tetramer and the structure of the individual protomers closely resembles the structures of homologous N-hydroxylating FMOs from Erwinia amylovora (DfoA), Pseudomonas aeruginosa (PvdA), and Aspergillus fumigatus (SidA). Using NADPH oxidation, oxygen consumption, and product formation assays, kinetic parameters were determined for various substrates with SsDesB. SsDesB exhibited typical saturation kinetics with substrate inhibition at high concentrations of NAD(P)H as well as cadaverine. The apparent kcat values for NADPH in steady-state NADPH oxidation and oxygen consumption assays were 0.28 ± 0.01 s-1 and 0.24 ± 0.01 s-1, respectively. However, in product formation assays used to measure the rate of N-hydroxylation, the apparent kcat for NADPH (0.034 ± 0.008 s-1) was almost 10-fold lower under saturating FAD and cadaverine concentrations, reflecting an uncoupled reaction, and the apparent NADPH KM was 33 ± 24 μM. Under saturating FAD and NADPH concentrations, the apparent kcat and KM for cadaverine in Csaky assays were 0.048 ± 0.004 s-1 and 19 ± 9 μM, respectively. SsDesB also N-hydroxylated putrescine, spermidine, and L-lysine substrates but not alkyl (di)amines that were branched or had fewer than four methylene units in an alkyl chain. These data demonstrate that SsDesB has wider substrate scope compared to other well-studied ornithine and lysine N-hydroxylases, making it an amenable biocatalyst for the production of desferrioxamine B, derivatives, and other N-substituted products.
Collapse
Affiliation(s)
- Lesley-Ann Giddings
- Department of Chemistry, Smith College, Northampton, MA, United States of America
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, VT, United States of America
| | - George T. Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Kang Woo Kim
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, VT, United States of America
| | - Matthew Brockley
- Department of Chemistry & Biochemistry, Middlebury College, Middlebury, VT, United States of America
| | - Danielle Needle
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Scott Cherry
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Joseph E. Tropea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - David S. Waugh
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| |
Collapse
|
49
|
Henneberg S, Hasenberg A, Maurer A, Neumann F, Bornemann L, Gonzalez-Menendez I, Kraus A, Hasenberg M, Thornton CR, Pichler BJ, Gunzer M, Beziere N. Antibody-guided in vivo imaging of Aspergillus fumigatus lung infections during antifungal azole treatment. Nat Commun 2021; 12:1707. [PMID: 33731708 PMCID: PMC7969596 DOI: 10.1038/s41467-021-21965-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease of immunocompromised humans, caused by the opportunistic fungal pathogen Aspergillus fumigatus. Inadequacies in current diagnostic procedures mean that early diagnosis of the disease, critical to patient survival, remains a major clinical challenge, and is leading to the empiric use of antifungal drugs and emergence of azole resistance. A non-invasive procedure that allows both unambiguous detection of IPA and its response to azole treatment is therefore needed. Here, we show that a humanised Aspergillus-specific monoclonal antibody, dual labelled with a radionuclide and fluorophore, can be used in immunoPET/MRI in vivo in a neutropenic mouse model and 3D light sheet fluorescence microscopy ex vivo in the infected mouse lungs to quantify early A. fumigatus lung infections and to monitor the efficacy of azole therapy. Our antibody-guided approach reveals that early drug intervention is critical to prevent complete invasion of the lungs by the fungus, and demonstrates the power of molecular imaging as a non-invasive procedure for tracking IPA in vivo. Invasive pulmonary aspergillosis is a life-threatening fungal lung disease devoid of specific rapid diagnosis and with limited therapeutic options. Here, the authors show how state-of-the-art imaging approaches can enable specific diagnosis and therapy monitoring of this infection.
Collapse
Affiliation(s)
- Sophie Henneberg
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Franziska Neumann
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Lea Bornemann
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | | | - Andreas Kraus
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Mike Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Christopher R Thornton
- ISCA Diagnostics Ltd. and Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany. .,Leibniz-Institut für Analytische Wissenschaften ISAS -e.V, Dortmund, Germany.
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
50
|
Swayambhu G, Bruno M, Gulick AM, Pfeifer BA. Siderophore natural products as pharmaceutical agents. Curr Opin Biotechnol 2021; 69:242-251. [PMID: 33640597 DOI: 10.1016/j.copbio.2021.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 11/27/2022]
Abstract
Siderophore natural products are characterized by an ability to tightly chelate metals. The origins of such compounds are often pathogenic microbes utilizing siderophores as virulence factors during host infection. The mechanism for siderophore formation typically involves the activity of nonribosomal peptide synthetases producing compounds across functional group classifications that include catecholate, phenolate, hydroxamate, and mixed categories. Though siderophore production has been a hallmark of pathogenicity, the evolutionarily-optimized binding abilities of siderophores suggest the possibility of re-directing the compounds towards alternative beneficial applications. In this mini-review, we will first describe siderophore formation origins before discussing alternative applications as pharmaceutical products. In so doing, we will cover examples and applications that include reducing metal overload, targeted antibiotic delivery, cancer treatment, vaccine development, and diagnostics. Included in this analysis will be a discussion on the native production hosts of siderophores and prospects for improvement in compound access through the adoption of heterologous biosynthesis.
Collapse
Affiliation(s)
- Girish Swayambhu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Michael Bruno
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Andrew M Gulick
- Department of Structural Biology, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States.
| |
Collapse
|