1
|
Burada E, Roșu MM, Sandu RE, Burada F, Cucu MG, Streață I, Petre-Mandache B, Popescu-Hobeanu G, Cara ML, Țucă AM, Pinoșanu E, Albu CV. miR-499a rs3746444 A>G Polymorphism Is Correlated with Type 2 Diabetes Mellitus and Diabetic Polyneuropathy in a Romanian Cohort: A Preliminary Study. Genes (Basel) 2023; 14:1543. [PMID: 37628595 PMCID: PMC10454730 DOI: 10.3390/genes14081543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a common metabolic disorder that results from complex interactions of both environmental and genetic factors. Many single nucleotide polymorphisms (SNPs), including noncoding RNA genes, have been investigated for their association with susceptibility to T2DM and its complications, with little evidence available regarding Caucasians. The aim of the present study was to establish whether four miRNA SNPs (miR-27a rs895819 T>C, miR-146a rs2910164 G>C, miR-196a2 rs11614913 C>T, and miR-499a rs3746444 A>G) are correlated with susceptibility to T2DM and/or diabetic polyneuropathy (DPN) in a Romanian population. A total of 167 adult T2DM patients and 324 age- and sex-matched healthy controls were included in our study. miRNA SNPs were detected by real-time PCR using a TaqMan genotyping assay. A significant association with T2DM was observed only for the miR-499a rs3746444 A>G SNP in all the tested models, and the frequencies of both the miR-499a rs3746444 AG and the GG genotypes were higher in the T2DM patients compared to the controls. No correlation was observed for the miR-27a rs895819 T>C, miR-146a rs2910164 G>C, or miR-196a2 rs11614913 C>T SNPs in any genetic model. When we assessed the association of these SNPs with DPN separately, we found a positive association for the miR-499a rs3746444 SNP in both codominant and dominant models (OR 6.47, 95% CI: 1.71-24.47; OR 2.30, 95% CI: 1.23-4.29, respectively). In conclusion, this study shows that miR-499a rs3746444 A>G may influence both T2DM and DPN susceptibility, with carriers of the GG genotype and the G allele being at an increased risk in the Romanian population.
Collapse
Affiliation(s)
- Emilia Burada
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (E.B.); (A.-M.Ț.)
- Department of Neurology, Clinical Hospital of Neuropsychiatry Craiova, 200473 Craiova, Romania; (R.E.S.); (E.P.); (C.V.A.)
| | - Maria-Magdalena Roșu
- Department of Diabetes, Nutrition and Metabolic Diseases, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania;
| | - Raluca Elena Sandu
- Department of Neurology, Clinical Hospital of Neuropsychiatry Craiova, 200473 Craiova, Romania; (R.E.S.); (E.P.); (C.V.A.)
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Florin Burada
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (M.G.C.); (I.S.); (B.P.-M.); (G.P.-H.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Mihai Gabriel Cucu
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (M.G.C.); (I.S.); (B.P.-M.); (G.P.-H.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Ioana Streață
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (M.G.C.); (I.S.); (B.P.-M.); (G.P.-H.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Bianca Petre-Mandache
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (M.G.C.); (I.S.); (B.P.-M.); (G.P.-H.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Gabriela Popescu-Hobeanu
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (M.G.C.); (I.S.); (B.P.-M.); (G.P.-H.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Monica-Laura Cara
- Department of Public Health, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Anca-Maria Țucă
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (E.B.); (A.-M.Ț.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Elena Pinoșanu
- Department of Neurology, Clinical Hospital of Neuropsychiatry Craiova, 200473 Craiova, Romania; (R.E.S.); (E.P.); (C.V.A.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carmen Valeria Albu
- Department of Neurology, Clinical Hospital of Neuropsychiatry Craiova, 200473 Craiova, Romania; (R.E.S.); (E.P.); (C.V.A.)
- Department of Neurology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
2
|
Ghaffari M, Razi S, Zalpoor H, Nabi-Afjadi M, Mohebichamkhorami F, Zali H. Association of MicroRNA-146a with Type 1 and 2 Diabetes and their Related Complications. J Diabetes Res 2023; 2023:2587104. [PMID: 36911496 PMCID: PMC10005876 DOI: 10.1155/2023/2587104] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 03/06/2023] Open
Abstract
Most medical investigations have found a reduced blood level of miR-146a in type 2 diabetes (T2D) patients, suggesting an important role for miR-146a (microRNA-146a) in the etiology of diabetes mellitus (DM) and its consequences. Furthermore, injection of miR-146a mimic has been confirmed to alleviate diabetes mellitus in diabetic animal models. In this line, deregulation of miR-146a expression has been linked to the progression of nephropathy, neuropathy, wound healing, olfactory dysfunction, cardiovascular disorders, and retinopathy in diabetic patients. In this review, besides a comprehensive review of the function of miR-146a in DM, we discussed new findings on type 1 (T1MD) and type 2 (T2DM) diabetes mellitus, highlighting the discrepancies between clinical and preclinical investigations and elucidating the biological pathways regulated through miR-146a in DM-affected tissues.
Collapse
Affiliation(s)
- Mahyar Ghaffari
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehram, Iran
| |
Collapse
|
3
|
Szydełko J, Matyjaszek-Matuszek B. MicroRNAs as Biomarkers for Coronary Artery Disease Related to Type 2 Diabetes Mellitus-From Pathogenesis to Potential Clinical Application. Int J Mol Sci 2022; 24:ijms24010616. [PMID: 36614057 PMCID: PMC9820734 DOI: 10.3390/ijms24010616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with still growing incidence among adults and young people worldwide. Patients with T2DM are more susceptible to developing coronary artery disease (CAD) than non-diabetic individuals. The currently used diagnostic methods do not ensure the detection of CAD at an early stage. Thus, extensive research on non-invasive, blood-based biomarkers is necessary to avoid life-threatening events. MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that are stable in human body fluids and easily detectable. A number of reports have highlighted that the aberrant expression of miRNAs may impair the diversity of signaling pathways underlying the pathophysiology of atherosclerosis, which is a key player linking T2DM with CAD. The preclinical evidence suggests the atheroprotective and atherogenic influence of miRNAs on every step of T2DM-induced atherogenesis, including endothelial dysfunction, endothelial to mesenchymal transition, macrophage activation, vascular smooth muscle cells proliferation/migration, platelet hyperactivity, and calcification. Among the 122 analyzed miRNAs, 14 top miRNAs appear to be the most consistently dysregulated in T2DM and CAD, whereas 10 miRNAs are altered in T2DM, CAD, and T2DM-CAD patients. This up-to-date overview aims to discuss the role of miRNAs in the development of diabetic CAD, emphasizing their potential clinical usefulness as novel, non-invasive biomarkers and therapeutic targets for T2DM individuals with a predisposition to undergo CAD.
Collapse
|
4
|
Mortazavi-Jahromi SS, Aslani M. Dysregulated miRNAs network in the critical COVID-19: An important clue for uncontrolled immunothrombosis/thromboinflammation. Int Immunopharmacol 2022; 110:109040. [PMID: 35839566 PMCID: PMC9271492 DOI: 10.1016/j.intimp.2022.109040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Known as a pivotal immunohemostatic response, immunothrombosis is activated to restrict the diffusion of pathogens. This beneficial intravascular defensive mechanism represents the close interaction between the immune and coagulation systems. However, its uncontrolled form can be life-threatening to patients with the critical coronavirus disease 2019 (COVID-19). Hyperinflammation and ensuing cytokine storm underlie the activation of the coagulation system, something which results in the provocation of more immune-inflammatory responses by the thrombotic mediators. This vicious cycle causes grave clinical complications and higher risks of mortality. Classified as an evolutionarily conserved family of the small non-coding RNAs, microRNAs (miRNAs) serve as the fine-tuners of genes expression and play a key role in balancing the pro/anticoagulant and pro-/anti-inflammatory factors maintaining homeostasis. Therefore, any deviation from their optimal expression levels or efficient functions can lead to severe complications. Despite their extensive effects on the molecules and processes involved in uncontrolled immunothrombosis, some genetic agents and uncontrolled immunothrombosis-induced interfering factors (e.g., miRNA-single nucleotide polymorphysms (miR-SNPs), the complement system components, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, and reactive oxygen species (ROS)) have apparently disrupted their expressions/functions. This review study aims to give an overview of the role of miRNAs in the context of uncontrolled immunothrombosis/thromboinflammation accompanied by some presumptive interfering factors affecting their expressions/functions in the critical COVID-19. Detecting, monitoring, and resolving these interfering agents mafy facilitate the design and development of the novel miRNAs-based therapeutic approaches to the reduction of complications incidence and mortality in patients with the critical COVID-19.
Collapse
Affiliation(s)
- Seyed Shahabeddin Mortazavi-Jahromi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran.
| | - Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Assessment of Association between miR-146a Polymorphisms and Expression of miR-146a, TRAF-6, and IRAK-1 Genes in Patients with Brucellosis. Mol Biol Rep 2022; 49:1995-2002. [PMID: 34981334 DOI: 10.1007/s11033-021-07014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Brucellosis is a major zoonosis all over the world. MicroRNAs are significant gene expression regulators and could be involved during the infections and also genetic alterations in the miRNAs sequence can affect primary miRNAs and precursor miRNAs processing and thus alter miRNAs expression. Current research studied the impact of the miR-146a polymorphism on miR-146a, TRAF-6, and IRAK-1 genes expression in patients with brucellosis illness. METHODS AND RESULTS In this research, 25 patients with brucellosis and 25 healthy participants with determined genotypes for miR-SNP rs2910164 and miR-SNP rs57095329 were recruited. IRAK-1, TRAF-6, and miR-146a expressions in peripheral blood mononuclear cells (PBMCs) were specified by quantitative real- time PCR (qRT-PCR). Moreover, interleukin-1β (IL-1β) and tumor necrosis factor- alpha (TNF-α) serum levels were assessed by a sandwich enzyme-linked immunosorbent assay (ELISA) technique. There was no significant difference in the expression level of miR-146a, IRAK-1, and TRAF-6, among the patients with brucellosis and control group. TRAF-6 PBMCs expression levels in the distinctive genotypes of rs2910164 were significantly observed in patients (P = 0.048). No significant distinctions were found in miR-146a, IRAK-1, and TRAF-6 expression levels and among the rs57095329 different genotypes in brucellosis patients and controls. Meanwhile, no significant relationship was found between the rs2910164 and rs57095329 genotypes and the serum level of cytokines mentioned between the two groups. We did not find any association between expression of TRAF-6, miR-146a, and IRAK-1 in PBMCs, and cytokines serum levels with two single nucleotide polymorphisms (SNPs) in miR-146a. CONCLUSIONS To the best of writers' knowledge, this research is the first one evaluating the probable link between the miR-146a rs2910164 and rs57095329 variant with miRNAs, relevant cytokine levels, and target genes in brucellosis.
Collapse
|
6
|
Chang WW, Wen LY, Zhang L, Tong X, Jin YL, Chen GM. Association of rs2910164 in miR-146a with type 2 diabetes mellitus: A case-control and meta-analysis study. Front Endocrinol (Lausanne) 2022; 13:961635. [PMID: 36237193 PMCID: PMC9551998 DOI: 10.3389/fendo.2022.961635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Several studies have shown that miR-146a rs2910164 (C > G) is associated with type 2 diabetes mellitus (T2DM) susceptibility, but the results are still controversial. This study is divided into two parts, and one is to explore the relationship between miR-146a rs2910164 polymorphism and the genetic susceptibility of T2DM in Chinese Han population. Second, a meta-analysis on the basis of a larger sample size was used to determine whether this is a susceptibility gene for T2DM. METHODS A case-control study including 574 T2DM patients and 596 controls was used to evaluate the association of miR-146a rs2910164 polymorphism with the risk of T2DM in Chinese Han People. Then, we systematically searched studies investigating the correlation between miR-146a rs2910164 polymorphism and T2DM susceptibility published before April 2022 from PubMed, Web of Science, Wanfang, and China National Knowledge Infrastructure database, and a meta-analysis including six studies was carried out. The results were expressed by odds ratio (OR) and its 95% confidence interval (95% CI). RESULTS In a case-control study, we found that there were no statistical differences in genotype frequencies between T2DM and control group. Subgroup analysis showed that, compared with the CC genotype, CG + GG genotype was associated with a decreased risk of T2DM in the subgroup of individuals ≥ 65 years old (OR = 0.75; 95% CI: 0.58-0.98; P adjusted = 0.032) and BMI < 18.5 (OR = 0.16; 95% CI: 0.03-0.89; P adjusted = 0.037). In overall meta-analysis, significant heterogeneity was detected. No significant association between miR-146a rs2910164 polymorphism and T2DM was observed in all genetic models under random effects models. Subgroup analysis revealed that there was a significant difference in genotype frequencies between the T2DM and control group in recessive model (CC vs. CG + GG: OR = 1.79; 95% CI: 1.08-2.96; PQ = 0.307, I 2 = 4.0%) and homozygote model (CC vs. GG: OR = 1.79; 95% CI: 1.07-3.00; PQ = 0.216, I 2 = 34.7%) in Caucasians. CONCLUSION The results of our study demonstrate that the miR-146a rs2910164 polymorphism might have ethnicity-dependent effects in T2DM and may be related to T2DM susceptibility in Caucasians.
Collapse
Affiliation(s)
- Wei-Wei Chang
- Department of Epidemiology and Health statistics, School of Public Health, Wannan Medical College, Wuhu, China
| | - Li-Ying Wen
- Department of Epidemiology and Health statistics, School of Public Health, Wannan Medical College, Wuhu, China
| | - Liu Zhang
- Department of Hospital Infection Management Office, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, China
| | - Xin Tong
- Department of Epidemiology and Health statistics, School of Public Health, Wannan Medical College, Wuhu, China
| | - Yue-Long Jin
- Department of Epidemiology and Health statistics, School of Public Health, Wannan Medical College, Wuhu, China
- *Correspondence: Gui-Mei Chen, ; Yue-Long Jin,
| | - Gui-Mei Chen
- School of Health management, Anhui Medical University, Hefei, China
- *Correspondence: Gui-Mei Chen, ; Yue-Long Jin,
| |
Collapse
|
7
|
Chhichholiya Y, Suryan AK, Suman P, Munshi A, Singh S. SNPs in miRNAs and Target Sequences: Role in Cancer and Diabetes. Front Genet 2021; 12:793523. [PMID: 34925466 PMCID: PMC8673831 DOI: 10.3389/fgene.2021.793523] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022] Open
Abstract
miRNAs are fascinating molecular players for gene regulation as individual miRNA can control multiple targets and a single target can be regulated by multiple miRNAs. Loss of miRNA regulated gene expression is often reported to be implicated in various human diseases like diabetes and cancer. Recently, geneticists across the world started reporting single nucleotide polymorphism (SNPs) in seed sequences of miRNAs. Similarly, SNPs are also reported in various target sequences of these miRNAs. Both the scenarios lead to dysregulated gene expression which may result in the progression of diseases. In the present paper, we explore SNPs in various miRNAs and their target sequences reported in various human cancers as well as diabetes. Similarly, we also present evidence of these mutations in various other human diseases.
Collapse
Affiliation(s)
- Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Aman Kumar Suryan
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Prabhat Suman
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| |
Collapse
|
8
|
Olivieri F, Prattichizzo F, Giuliani A, Matacchione G, Rippo MR, Sabbatinelli J, Bonafè M. miR-21 and miR-146a: The microRNAs of inflammaging and age-related diseases. Ageing Res Rev 2021; 70:101374. [PMID: 34082077 DOI: 10.1016/j.arr.2021.101374] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The first paper on "inflammaging" published in 2001 paved the way for a unifying theory on how and why aging turns out to be the main risk factor for the development of the most common age-related diseases (ARDs). The most exciting challenge on this topic was explaining how systemic inflammation steeps up with age and why it shows different rates among individuals of the same chronological age. The "epigenetic revolution" in the past twenty years conveyed that the assessment of the individual genetic make-up is not enough to depict the trajectories of age-related inflammation. Accordingly, others and we have been focusing on the role of non-coding RNA, i.e. microRNAs (miRNAs), in inflammaging. The results obtained in the latest 10 years underpinned the key role of a miRNA subset that we have called inflammamiRs, owing to their ability to master (NF-κB)-driven inflammatory pathways. In this review, we will focus on two inflammamiRs, i.e. miR-21-5p and miR-146a-5p, which target a variety of molecules belonging to the NF-κB/NLRP3 pathways. The interplay between miR-146a-5p and IL-6 in the context of aging and ARDs will also be highlighted. We will also provide the most relevant evidence suggesting that circulating inflammamiRs, along with IL-6, can measure the degree of inflammaging.
Collapse
|
9
|
Tonyan ZN, Nasykhova YA, Mikhailova AA, Glotov AS. MicroRNAs as Potential Biomarkers of Type 2 Diabetes Mellitus. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421060107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
MicroRNA Sequences Modulated by Beta Cell Lipid Metabolism: Implications for Type 2 Diabetes Mellitus. BIOLOGY 2021; 10:biology10060534. [PMID: 34203703 PMCID: PMC8232095 DOI: 10.3390/biology10060534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Alterations in lipid metabolism within beta cells and islets contributes to dysfunction and apoptosis of beta cells, leading to loss of insulin secretion and the onset of type 2 diabetes. Over the last decade, there has been an explosion of interest in understanding the landscape of gene expression which influences beta cell function, including the importance of small non-coding microRNA sequences in this context. This review sought to identify the microRNA sequences regulated by metabolic challenges in beta cells and islets, their targets, highlight their function and assess their possible relevance as biomarkers of disease progression in diabetic individuals. Predictive analysis was used to explore networks of genes targeted by these microRNA sequences, which may offer new therapeutic strategies to protect beta cell function and delay the onset of type 2 diabetes.
Collapse
|
11
|
Massignam ET, Dieter C, Pellenz FM, Assmann TS, Crispim D. Involvement of miR-126 rs4636297 and miR-146a rs2910164 polymorphisms in the susceptibility for diabetic retinopathy: a case-control study in a type 1 diabetes population. Acta Ophthalmol 2021; 99:e461-e469. [PMID: 33124182 DOI: 10.1111/aos.14638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. MiRNA-126 and miRNA-146a have been described as having abnormal expressions in diabetic retinopathy (DR) patients. Polymorphisms in genes codifying miRNAs (miRSNPs) may alter the expression of the corresponding miRNA and, thus, interfere with susceptibility to DR. Therefore, miRSNPs in miR-126 and miR-146a genes could be associated with DR susceptibility. The purpose of this study was to investigate the association between miR-126 rs4636297 (G/A) and miR-146a rs2910164 (G/C) miRSNPs and DR. METHODS This case-control study included 195 type 1 diabetes mellitus (T1DM) patients with DR (cases) and 215 patients without DR and with ≥10 years of T1DM (controls). MiRSNPs were genotyped by real-time PCR. RESULTS Genotype distributions of two analysed miRSNPs were in Hardy-Weinberg equilibrium in controls (p > 0.050). Frequencies of the miR-126 rs4636297 miRSNP were not significantly different between case and control groups (p = 0.169). However, after adjustment for age, glycated haemoglobin, triglycerides, estimated glomerular filtration rate and ethnicity, the A allele of this miRSNP was associated with protection for DR under additive [OR: 0.444 (95% CI: 0.211-0.936), p = 0.033] and dominant [OR: 0.512 (95% CI: 0.303-0.865), p = 0.012] inheritance models. Genotype and allele frequencies of miR-146a rs2910164 miRSNP did not differ between groups (p = 0.368 and p = 0.957), and this polymorphism was not associated with DR when assuming different inheritance models. CONCLUSION Our results suggest an association between the A allele of miR-126 rs4636297 miRSNP and protection for DR in a Southern Brazilian population.
Collapse
Affiliation(s)
- Eloísa Toscan Massignam
- Endocrine Division Hospital de Clínicas de Porto Alegre Porto Alegre Brazil
- Graduate Program in Medical Sciences: Endocrinology Faculty of Medicine Department of Internal Medicine Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Cristine Dieter
- Endocrine Division Hospital de Clínicas de Porto Alegre Porto Alegre Brazil
- Graduate Program in Medical Sciences: Endocrinology Faculty of Medicine Department of Internal Medicine Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Felipe Mateus Pellenz
- Endocrine Division Hospital de Clínicas de Porto Alegre Porto Alegre Brazil
- Graduate Program in Medical Sciences: Endocrinology Faculty of Medicine Department of Internal Medicine Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Taís Silveira Assmann
- Endocrine Division Hospital de Clínicas de Porto Alegre Porto Alegre Brazil
- Graduate Program in Medical Sciences: Endocrinology Faculty of Medicine Department of Internal Medicine Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Daisy Crispim
- Endocrine Division Hospital de Clínicas de Porto Alegre Porto Alegre Brazil
- Graduate Program in Medical Sciences: Endocrinology Faculty of Medicine Department of Internal Medicine Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
12
|
Association between microRNA-146a, -499a and -196a-2 SNPs and non-small cell lung cancer: a case-control study involving 2249 subjects. Biosci Rep 2021; 41:227816. [PMID: 33554246 PMCID: PMC7890400 DOI: 10.1042/bsr20201158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/15/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNA (miR) acts as a negative regulator of gene expression. Many literatures have suggested that miRs may be involved in the process of cell proliferation, inflammation, oxidative stress, energy metabolism and epithelial–mesenchymal transition. Thus, miRs may be implicated in the occurrence of non-small cell lung cancer (NSCLC). In the current investigation, we included 2249 subjects (1193 NSCLC patients and 1056 controls) and designed a study to identify the relationship of miR-146a rs2910164 C/G, -499a rs3746444 A/G and -196a-2 rs11614913 T/C with the risk of NSCLC. The risk factors (e.g., body mass index (BMI), sex, smoking, drinking and age) was used to adjust the odds ratios (ORs) and 95% confidence intervals (CIs). After conducting a power value assessment, we did not confirm that the miR-single nucleotide polymorphisms (SNPs) genotypic distributions were different in NSCLC cases and controls. However, the association of miR-196a-2 rs11614913 with a decreased risk of NSCLC was identified in the female subgroup (adjusted P=0.005, power = 0.809 for TC vs. TT, and adjusted P=0.004, power = 0.849 for CC/TC vs. TT). In addition, gene–gene interaction analysis showed that rs11614913 TC/3746444 AA and rs11614913 CC/rs3746444 AA could also reduce the susceptibility to NSCLC (rs11614913 TC/rs3746444 AA vs. rs11614913 TT/rs3746444 AA, P=0.001, power = 0.912 and rs11614913 CC/rs3746444 AA vs. rs11614913 TT/rs3746444 AA, P=0.003, power = 0.836). In conclusion, in overall comparisons, we did not confirm that the rs2910164, rs3746444, and rs11614913 SNPs genotypic distributions were different in NSCLC cases and controls. However, this case–control study demonstrates that miR-196a-2 rs11614913 may be a protective factor for the development of NSCLC among female patients.
Collapse
|
13
|
Franceschi C, Garagnani P, Olivieri F, Salvioli S, Giuliani C. The Contextualized Genetics of Human Longevity: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:968-979. [PMID: 32130932 DOI: 10.1016/j.jacc.2019.12.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
The genetics of human longevity has long been studied, and in this regard, centenarians represent a very informative model. Centenarians are characterized by 2 main features: 1) the capability to avoid or postpone the major age-related diseases; and 2) a high level of heterogeneity of their phenotype. The first suggests that longevity and resistance to diseases are mediated by shared mechanisms, the latter that many strategies can be used to become long lived, likely as a result of variable genome-environment interactions. The authors suggest that the complexity of genome-environment interactions must be considered within an evolutionary and ecological perspective and that the concept of "risk allele" is highly context dependent, changing with age, time, and geography. Genes involved in both longevity and cardiovascular diseases, taken as a paradigmatic example of age-related diseases, as well as other emerging topics in genetics of longevity, such as micro-ribonucleic acid (miRNA) genetics, polygenic risk scores, environmental pollutants, and somatic mutations are discussed.
Collapse
Affiliation(s)
- Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Department of Applied Mathematics, Institute of Information Technology, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod-National Research University, Nizhny Novgorod, Russia.
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Regenerative Therapy, IRCCS INRCA, Ancona, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
14
|
Le CT, Nguyen TL, Nguyen TD, Nguyen TA. Human disease-associated single nucleotide polymorphism changes the orientation of DROSHA on pri-mir-146a. RNA (NEW YORK, N.Y.) 2020; 26:1777-1786. [PMID: 32994184 PMCID: PMC7668254 DOI: 10.1261/rna.077487.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/25/2020] [Indexed: 06/04/2023]
Abstract
The Microprocessor complex of DROSHA and DGCR8 initiates the biosynthesis of microRNAs (miRNAs) by processing primary miRNAs (pri-miRNAs). The Microprocessor can be oriented on pri-miRNAs in opposite directions to generate productive and unproductive cleavages at their basal and apical junctions, respectively. However, only the productive cleavage gives rise to miRNAs. A single nucleotide polymorphism (SNP, rs2910164) in pri-mir-146a is associated with various human diseases. Although this SNP was found to reduce the expression of miRNA, it is still not known if it affects the activity of the Microprocessor directly, and how it functions. In this study, we revealed that the SNP creates an unexpected mGHG motif at the apical junction of pri-mir-146a. This mGHG motif interacts with the double-stranded RNA-binding domain (dsRBD) of DROSHA, switching its orientation on pri-mir-146a from the basal to the apical junction. As a result, the SNP facilitates Microprocessor to cleave SNP-pri-mir-146a at its unproductive sites. Our findings help to elucidate the molecular mechanism that explains how the disease-associated SNP modulates the biogenesis of pri-mir-146a and thereby affects its cellular functions.
Collapse
Affiliation(s)
- Cong Truc Le
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Thuy Linh Nguyen
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Trung Duc Nguyen
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tuan Anh Nguyen
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
15
|
Alipoor SD, Adcock IM, Tabarsi P, Folkerts G, Mortaz E. MiRNAs in tuberculosis: Their decisive role in the fate of TB. Eur J Pharmacol 2020; 886:173529. [PMID: 32919937 DOI: 10.1016/j.ejphar.2020.173529] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Abstract
Tuberculosis (TB) is one of the most lethal global infectious diseases. Despite the availability of much higher levels of technology in health and medicine, tuberculosis still remains a serious global health problem. Mycobacterium tuberculosis has the capacity for prolonged survival inside macrophages by exploiting host metabolic and energy pathways and perturbing autophagy and apoptosis of infected cells. The mechanism(s) underlying this process are not completely understood but evidence suggests that mycobacteria subvert the host miRNA network to enable mycobacterial survival. We present here a comprehensive review on the role of miRNAs in TB immune escape mechanisms and the potential for miRNA-based TB therapeutics. Further validation studies are required to (i) elucidate the precise effect of TB on host miRNAs, (ii) determine the inhibition of mycobacterial burden using miRNA-based therapies and (iii) identify novel miRNA biomarkers that may prove useful in TB diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Shamila D Alipoor
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Cheng L, Zhou M, Zhang D, Chen B. Association of miR-146a polymorphism rs2910164 and type 2 diabetes risk: a meta-analysis. J Int Med Res 2020; 48:300060520931313. [PMID: 32812451 PMCID: PMC7441291 DOI: 10.1177/0300060520931313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Circulating miR-146a is aberrantly expressed in patients with type 2 diabetes (T2D), probably resulting from gene polymorphisms. However, the role of polymorphism rs2910164 in T2D pathogenesis remains controversial. Thus, we designed a meta-analysis to investigate the association between rs2910164 and T2D. METHODS PubMed and Embase were searched for eligible papers in English published through September 2, 2019. Random or fixed effect models were used to determine risk estimates according to heterogeneities. RESULTS Four studies, involving 2,069 patients and 1,950 controls, were included. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were used to pool the effect size. The pooled ORs and 95% CIs were 1.501 (0.887-2.541), 1.102 (0.931-1.304), 1.276 (0.900-1.811), 1.204 (0.878-1.652), 1.238 (0.880-1.740), and 1.350 (0.904-2.016) under the homozygote, heterozygote (CG vs. GG and CC vs. CG), dominant, allele, and recessive models, respectively. Heterogeneity was detected in most genetic models, with subgroup analyses performed by ethnicity, genotyping method, and disease duration. The co-dominant model was determined to be the most appropriate genetic model. CONCLUSIONS Our findings suggested that polymorphism rs2910164 is not correlated with T2D susceptibility. However, the results should be interpreted with caution because of confounding factors.
Collapse
Affiliation(s)
- Liqing Cheng
- Department of Endocrinology and Metabolism, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Zhou
- Department of Urology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongmei Zhang
- Department of Dermatology, Chongqing MyLike Plastic Surgery Hospital, Chongqing, China
| | - Bing Chen
- Department of Endocrinology and Metabolism, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
17
|
Gholami M, Asgarbeik S, Razi F, Esfahani EN, Zoughi M, Vahidi A, Larijani B, Amoli MM. Association of microRNA gene polymorphisms with Type 2 diabetes mellitus: A systematic review and meta-analysis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:56. [PMID: 33088293 PMCID: PMC7554443 DOI: 10.4103/jrms.jrms_751_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/22/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a metabolic disorder with growing prevalence and increasing economic burden. Based on the role of genetics and epigenetic factors on T2DM, we aimed to carry a systematic review and meta-analysis for all miRNA gene polymorphisms and risk of T2DM. Materials and Methods: A computerized literature search was carried out on PubMed, Web of Science, Scopus, Embase, as well as references of relevant review/meta-analysis. Key search terms were “Diabetes Mellitus, Type 2,” “MicroRNAs,” and “Polymorphism, Single Nucleotide.” All types of observational studies from January 1, 1992, to November 30, 2019, were included, without language restriction. Data analysis was performed using R programming language (3.5.2). Level of heterogeneity was obtained by Cochran's Q test (P < 0.05), and subgroup analysis was performed based on ethnicity. Results: Thirty-two polymorphisms from fifteen articles were included. Meta-analysis was carried out based on minor allele frequencies. Seven studies with 2193 cases and 3963 controls were included for rs2910164 polymorphism. In subgroup analysis, there were significant results in Caucasian population in dominant model (odds ratio [OR] =1.12; 95% confidence interval [CI]: 0.83–1.51), homozygote model (OR = 1.78; 95% CI: 1.06–3.00), heterozygote model (OR = 1.77; 95% CI: 1.03–3.05), and recessive model (OR = 1.78; 95% CI: 1.07–2.96). Four studies with 2085 cases and 1933 controls were included for rs895819 polymorphism. Overall, there was no significant result for association with rs895819, but subgroup analysis revealed that minor allele significantly decreased the risk of T2DM in Caucasians by recessive model (OR = 0.34; 95% CI: 0.18–0.66), dominant model (OR = 0.70; 95% CI: 0.52–0.94), homozygote model (OR = 0.32; 95% CI: 0.16–0.62), heterozygote model (OR = 0.37; 95% CI: 0.19–0.74), allelic model (OR = 0.67; 95% CI: 0.52–0.85). Conclusion: The minor allele of rs2910164 may increase the risk of T2DM by leading to lower level of miR-146a. In contrast, minor allele of rs895819 may decrease the risk of T2DM by leading to higher level of miR-27a.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Asgarbeik
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Zoughi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Vahidi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mohammad Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Analysis of 75 Candidate SNPs Associated With Acute Rejection in Kidney Transplant Recipients: Validation of rs2910164 in MicroRNA MIR146A. Transplantation 2020; 103:1591-1602. [PMID: 30801535 PMCID: PMC6913779 DOI: 10.1097/tp.0000000000002659] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Identifying kidney allograft recipients who are predisposed to acute rejection (AR) could allow for optimization of clinical treatment to avoid rejection and prolong graft survival. It has been hypothesized that a part of this predisposition is caused by the inheritance of specific genetic variants. There are many publications reporting a statistically significant association between a genetic variant, usually in the form of a single-nucleotide polymorphism (SNP), and AR. However, there are additional publications reporting a lack of this association when a different cohort of recipients is analyzed for the same single-nucleotide polymorphism. METHODS In this report, we attempted to validate 75 common genetic variants, which have been previously reported to be associated with AR, using a large kidney allograft recipient cohort of 2390 European Americans and 482 African Americans. RESULTS Of those variants tested, only 1 variant, rs2910164, which alters the expression of the microRNA MIR146A, was found to exhibit a significant association within the African American cohort. Suggestive variants were found in the genes CTLA and TLR4. CONCLUSIONS Our results show that most variants previously reported to be associated with AR were not validated in our cohort. This shows the importance of validation when reporting the associations with complex clinical outcomes such as AR. Additional work will need to be done to understand the role of MIR146A in the risk of AR in kidney allograft recipients.
Collapse
|
19
|
Papathanasiou I, Mourmoura E, Balis C, Tsezou A. Impact of miR-SNP rs2910164 on miR-146a expression in osteoarthritic chondrocytes. Adv Med Sci 2020; 65:78-85. [PMID: 31918067 DOI: 10.1016/j.advms.2019.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/04/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE MiR-146a acts as a negative inflammatory mediator in different diseases and has been implicated in osteoarthritis (OA) pathogenesis. In our study, we investigated the association between miR-SNP rs2910164 and OA susceptibility and its role on the expression of miR-146a, inflammatory and catabolic mediators in osteoarthritic chondrocytes. MATERIALS AND METHODS Genetic association analysis was performed in 1688 knee OA patients and healthy individuals of Greek origin. Genomic DNA was extracted from blood and genotyped for rs2910164 (G > C) using Restriction-Fragment Length Polymorphism (RFLP). Total RNA was extracted from chondrocytes of 18 OA patients and miR-146a, IL-1 Receptor-Associated Kinase 1 (IRAK-1), TNF Receptor-Associated Factor 6 (TRAF-6), A Disintegrin and Metalloproteinase with Thrombospondin Motifs 5 (ADAMTS-5), Matrix Metalloproteinase-13 (MMP-13), Interleukin-6 (IL-6), Interleukin-1 Beta (IL-1β) and Tumor Necrosis Factor-Alpha (TNF-α) expression was evaluated using quantitative Real-Time PCR (qRT-PCR). RESULTS OA patients carrying rs2910164-GC and CC genotypes did not have an increased risk for OA development compared to GG genotype carriers. MiR-146a expression in OA chondrocytes was significantly lower in patients with rs2910164-GC genotype than in the GG carriers. OA patients carrying the rs2910164-GC genotype in their chondrocytes exhibited increased IRAK-1, TRAF-6, MMP-13, IL-1β and IL-6 expression levels compared with rs2910164-GG carriers. CONCLUSION We demonstrate, for the first time, that miR-SNP rs2910164 in miR-146a gene is associated with reduced miR-146a and increased inflammatory and catabolic mediators' expression in OA chondrocytes. Our data imply that genetic variations in miRNAs linked to OA pathogenesis may regulate their expression levels, suggesting new therapeutic strategies for patients with cartilage diseases.
Collapse
|
20
|
Emamgholipour S, Ebrahimi R, Bahiraee A, Niazpour F, Meshkani R. Acetylation and insulin resistance: a focus on metabolic and mitogenic cascades of insulin signaling. Crit Rev Clin Lab Sci 2020:1-19. [DOI: 10.1080/10408363.2019.1699498] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farshad Niazpour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Li XY, Chen K, Lv ZT. APRISMA-compliant systematic review and meta-analysis determining the association of miRNA polymorphisms and risk of congenital heart disease. Medicine (Baltimore) 2019; 98:e17653. [PMID: 31702616 PMCID: PMC6855655 DOI: 10.1097/md.0000000000017653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Recent genetic association studies showed conflicting results on the relationship of miRNA single-nucleotide polymorphisms (SNPs) and congenital heart disease (CHD) risk. The purpose of the present systematic review was to collect the current available evidences to evaluate the association between miRNA polymorphisms and CHD risk. METHODS Four electronic databases including PubMed, EMBASE, ISI Web of Science, and CENTRAL were extensively searched for relevant studies published before February, 2019. Observational studies determining the association between miRNA polymorphisms and risk of CHD were included. Risk of bias was evaluated using the Newcastle-Ottawa Scale by 2 independent researchers. Major characteristics of each study and estimation of effect size of individual locus polymorphism were summarized. In addition, meta-analysis was performed to quantify the associations between miRNA polymorphisms and CHD risk. RESULTS Nine studies containing 6502 CHD patients and 6969 healthy controls were included in this systematic review. Ten loci in 9 miRNAs were reported. Only rs11614913 in miR-196a2 was determined to have significant associations with CHD susceptibility, which was supported by meta-analysis (CC vs CT+TT: odds ratio 1.54, 95% confidence interval 1.30, 1.82; P < .00001). A strong evidence indicated lack of association between rs2910164 in miR-146a and CHD. Limited or conflicting evidences were found for the associations of the other variants (rs11134527, rs139365823, rs76987351, rs3746444, rs4938723, rs2292832, rs41291957, rs895819) and risk of CHD. CONCLUSIONS Locus polymorphisms in miRNAs are not generally associated with CHD. Only rs11614913 was found to have significant associations with CHD. Further studies will be needed, using larger populations of different ethnicities, to obtain a better understanding of these associations.
Collapse
Affiliation(s)
- Xing-Yan Li
- Department of Orthopedics, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
| | - Kun Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui
| | - Zheng-Tao Lv
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Chen X, Wang W, Li R, Yu J, Gao L. Association between polymorphisms in microRNAs and susceptibility to diabetes mellitus: A meta-analysis. Medicine (Baltimore) 2019; 98:e17519. [PMID: 31689753 PMCID: PMC6946283 DOI: 10.1097/md.0000000000017519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Accumulated evidence has indicated the associations between single-nucleotide polymorphisms (SNPs) in microRNAs (miRNAs) and the susceptibility to diabetes mellitus (DM), but the conclusions remain controversial. This study was to investigate the true contribution of miRNA SNPs to the risk of DM by using a meta-analysis of all the published studies. METHODS Relevant studies were identified in the databases of PubMed and the Cochrane Library databases. The strength of associations between miRNA polymorphisms and DM risk was assessed by odds ratios (ORs) and 95% confidence intervals (95% CIs) under five genetic models using the STATA software. RESULTS Six studies, containing 2773 cases and 2632 controls, were enrolled, 5 of which evaluated miR-146a (rs2910164), 4 for miR-27a (rs895819), and 3 for miR-124 (rs531564) and 2 for miR-375 (rs6715345), miR-128a (rs11888095), miR-194a (rs3820455). The meta-analysis indicated that the G allele or GG genotype of miR-146a rs2910164 was associated with a significantly increased risk for DM compared with C allele or GC/CC genotype in Latin American population; CC genotype of miR-27a rs895819 polymorphism was associated with a significantly decreased risk for DM in Asian population compared with the TT genotype; patients carrying with CC genotype of miR-124 rs531564 had a lower probability to develop DM regardless of ethnicity; no associations were identified between polymorphisms in miR-375, miR-128a, miR-194a and the susceptibility to DM. CONCLUSION Our study suggests that miR-146a/miR-27a and miR-124 polymorphisms may be ethnicity-dependent or -independent susceptibility factors to DM, respectively.
Collapse
Affiliation(s)
- Xi Chen
- Endocrine Metabolic Disease Section
| | - Wenjing Wang
- Anorectal Department, the Affiliated Hospital to Changchun University of Chinese Medicine
| | - Ruien Li
- Endocrine Metabolic Disease Section
| | - Jing Yu
- Endocrine Metabolic Disease Section
| | - Lei Gao
- College of Basic Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| |
Collapse
|
23
|
Yarahmadi S, Abdolvahabi Z, Hesari Z, Tavakoli-Yaraki M, Yousefi Z, Seiri P, Hosseinkhani S, Nourbakhsh M. Inhibition of sirtuin 1 deacetylase by miR-211-5p provides a mechanism for the induction of cell death in breast cancer cells. Gene 2019; 711:143939. [PMID: 31220581 DOI: 10.1016/j.gene.2019.06.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/06/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022]
Abstract
Sirtuin 1 is one of the regulators of cell growth and survival and its inhibition is suggested as a suitable mechanism to overcome breast cancer development. In this study we explored the role of miR-211-5p in SIRT1/p53 pathway and its influence on breast cancer cell viability and apoptosis. Cells were transfected with miR-211-5p mimic and inhibitor to modulate cellular miR-211-5p levels in breast cancer cell lines, MDA-MB-231 and MCF-7. Gene expression of miR-211-5p and SIRT1 were measured with real-time PCR. SIRT1 protein level and the acetylation of p53 as well as SIRT1 activity were evaluated by Western blotting and fluorometry, respectively. In order to explore the direct attachment of miR-211-5p to the 3'-UTR of SIRT1 mRNA, luciferase reporter assay was applied. Cell viability in response to miR-211-5p was studied by MTT assay and apoptosis was assessed by annexin V labeling followed by flow cytometry. Results showed that SIRT1 gene and protein expression were inhibited by miR-211-5p and the 3'-UTR of SIRT1 was found to be directly targeted by miR-211-5p. Inhibition of SIRT1 expression resulted in its reduced activity. Up-regulation of miR-211-5p was also followed by a significant decline in the acetylation status of p53 which was associated with remarkable decreased cell viability and induction of apoptosis in breast cancer cells. Antisense oligonucleotide of miR-211-5p acted as its inhibitor and exerted opposite effects both on SIRT1 expression and cell apoptosis. In conclusion, inhibition of SIRT1 by miR-211-5p could effectively reduce breast cancer cell survival and cause cell death and therefore might be considered a seemly mechanism for designing anticancer therapies.
Collapse
Affiliation(s)
- Sahar Yarahmadi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Abdolvahabi
- Department of Biochemistry and Genetics, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Laboratory Science, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeynab Yousefi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Seiri
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Ghasemi H, Sabati Z, Ghaedi H, Salehi Z, Alipoor B. Circular RNAs in β-cell function and type 2 diabetes-related complications: a potential diagnostic and therapeutic approach. Mol Biol Rep 2019; 46:5631-5643. [PMID: 31302804 DOI: 10.1007/s11033-019-04937-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
Recent investigations have indicated that altered expression of non-coding RNAs (ncRNAs) could be associated with human diseases such as type 2 diabetes (T2D). Circular RNAs (circRNAs) are a new discovered class of ncRNAs with unique structural characteristics that involved in several molecular and cellular functions. Exploring of the circulating circRNAs as a reliable non-invasive biomarker for monitoring and diagnosing of human diseases has grown significantly. However, the molecular functions and clinical relevance of circRNAs are not yet well clarified in T2D. Accordingly, in this review, the involvement of circRNAs in the β-cell function and T2D-related complications is highlighted. The study also shed light on the possibility of using circRNAs as a biomarker for T2D diagnosis.
Collapse
Affiliation(s)
- Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Zolfaghar Sabati
- Student Research Committee, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zaker Salehi
- Department of Radiation Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
25
|
Bastami M, Choupani J, Saadatian Z, Zununi Vahed S, Mansoori Y, Daraei A, Samadi Kafil H, Masotti A, Nariman-Saleh-Fam Z. miRNA Polymorphisms and Risk of Cardio-Cerebrovascular Diseases: A Systematic Review and Meta-Analysis. Int J Mol Sci 2019; 20:ijms20020293. [PMID: 30642078 PMCID: PMC6359604 DOI: 10.3390/ijms20020293] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/31/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
Recently extensive focus has been concentrated on the role of miRNAs in the initiation and progression of cardio-cerebrovascular diseases (CCDs) which constitute a range of conditions including cardiovascular diseases (CVDs, especially coronary artery disease (CAD)), congenital heart disease (CHD) and cerebrovascular diseases (CBVDs, especially the ischemic stroke (IS)). An increasing number of studies are evaluating the association between different miRNA polymorphisms and risk of CCDs, but results have been inconclusive. This study represents a comprehensive systematic review and meta-analysis of the association between miRNA polymorphisms and risk of CCDs. PubMed, Embase, Scopus, and Web of Science were queried to identify eligible articles. Odds ratios and 95% confidence intervals were used to assess the association of miRNA polymorphisms with CCD susceptibility. A total of 51 eligible articles evaluating the association of 31 miRNA polymorphisms were identified. Meta-analysis was performed for six miRNA polymorphisms. miR-146a rs2910164 (30 studies: 13,186 cases/14,497 controls), miR-149 rs2292832 (Nine studies: 4116 cases/3511 controls), miR-149 rs71428439 (Three studies: 1556 cases/1567 controls), miR-196a2 rs11614913 (20 studies: 10,144 cases/10,433 controls), miR-218 rs11134527 (Three studies: 2,322 cases/2,754 controls) were not associated with overall CCD. miR-499 rs3746444 was associated with CCD (20 studies: 9564 cases/8876 controls). In the subgroups, rs2910164 and rs3746444 were only associated with CVDs, especially CAD. In conclusion, the results support the existence of a role for miR-146a rs2910164 and miR-499 rs3746444 in determining susceptibility to CCDs, especially CAD.
Collapse
Affiliation(s)
- Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran.
| | - Jalal Choupani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran.
| | - Zahra Saadatian
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran.
| | - Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran.
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran.
| | - Abdolreza Daraei
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol 4617647745, Iran.
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran.
| | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, Viale di San Paolo 15, 00146 Rome, Italy.
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz 5138663134, Iran.
| |
Collapse
|
26
|
Singer JW, Fleischman A, Al-Fayoumi S, Mascarenhas JO, Yu Q, Agarwal A. Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy. Oncotarget 2018; 9:33416-33439. [PMID: 30279971 PMCID: PMC6161786 DOI: 10.18632/oncotarget.26058] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
Interleukin-1 receptor-associated kinases (IRAK1, IRAK2, IRAK3 [IRAK-M], and IRAK4) are serine-threonine kinases involved in toll-like receptor and interleukin-1 signaling pathways, through which they regulate innate immunity and inflammation. Evidence exists that IRAKs play key roles in the pathophysiologies of cancers, and metabolic and inflammatory diseases, and that IRAK inhibition has potential therapeutic benefits. Molecules capable of selectively interfering with IRAK function and expression have been reported, paving the way for the clinical evaluation of IRAK inhibition. Herein, we focus on IRAK1, review its structure and physiological roles, and summarize emerging data for IRAK1 inhibitors in preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Angela Fleischman
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | | | - John O. Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qiang Yu
- Genome Institute of Singapore, Singapore, SG, Singapore
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|