1
|
Liu X, Wang M, Xu B, Ma X, Jiang Y, Huang H, Shi Z, Wu H, Wu Z, Guo S, Zhao J, Zhao J, Li X, Liang L, Guo Z, Shi L, Sun C, Wang N. Discovery and identification of semaphorin 4D as a bioindicator of high fracture incidence in type 2 diabetic mice with glucose control. J Adv Res 2025:S2090-1232(25)00174-2. [PMID: 40073972 DOI: 10.1016/j.jare.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION Bone fracture is increasing in patients with type 2 diabetes mellitus (T2DM) due to skeletal fragility. Most antidiabetics are expected to reduce the incidence of fracture in patients with T2DM, however the results are disappointing. Metformin and GLP-1 receptor agonists have a neutral or minor positive effect in reducing fractures. OBJECTIVES We aim to reveal the mechanism of fracture in patients with T2DM treated with metformin or exendin-4, explore the key regulators responsible for bone fragility in T2DM. METHODS Trabecular and cortical masses in mice with T2DM were analyzed using micro-computed tomography. Biomechanical strength of bone was determined according to three-point bending, and the expression of bone-associated factors was examined with enzyme-linked immunosorbent assays. Important proteins and miRNAs were identified using proteomics analysis and deep screening analysis. Lastly, immunoprecipitation-mass spectrometry and dual-luciferase reporter analysis were used to identify key molecular signals. RESULTS We found that sermaphorin 4D (Sema4D) is the key regulator of bone fragility in T2DM. Exendin-4 increased the biomechanical properties of bone by decreasing serum Sema4D levels, and metformin has little effect on Sema4D. Anti-sema4D treatment could improve bone strength in T2DM mice compared with metformin or exendin-4. The biomechanical properties of bone were comparable between anti-Sema 4D and the combination of metformin and exendin-4. Exendin-4 promoted osteogenesis of BMSCs by activating CRMP2 to reverse the effect of sema4D. Metformin increased miR-140-3p levels, which decreased plexin B1 expression in bone mesenchymal stem cells. Metformin increased the effect of exendin-4 with more GLP-1 receptor expression to increase the biomechanical strength of bone via miR-140-3p-STAT3-miR-3657 signaling. CONCLUSION Blood glucose level is not the major factor contributing to impairment in bone remodeling. Sema4D is responsible for the increase in the incidence of bone fractures in T2DM. Accordingly, we proposed an effective therapeutic strategy to eliminate the effect of sema4D.
Collapse
Affiliation(s)
- Xuanchen Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, China; Department of Nutrition, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Mo Wang
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Bin Xu
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Xue Ma
- Department of Pharmacology, School of Pharmacy, Air Force Military Medical University, Xi'an 710032 Shaanxi, China
| | - Yangzi Jiang
- School of Biomedical Sciences, Faculty of Medicine, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China, Hong Kong Special Administrative Region
| | - Hai Huang
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Zengzeng Shi
- Department of Gynecology and Obstetrics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Hao Wu
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Zhigang Wu
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Shuo Guo
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Jungang Zhao
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Jian Zhao
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Xiaokang Li
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Li Liang
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Zheng Guo
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China
| | - Lei Shi
- Department of Orthopaedics, First Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China.
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Ning Wang
- Department of Orthopaedics, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038 Shaanxi, China.
| |
Collapse
|
2
|
He Y, Song W, Deng Y, Lin X, Gao Z, Ma P. Liraglutide promotes osteogenic differentiation of mesenchymal stem cells by inhibiting M1 macrophage polarization and CXCL9 release in vitro. Mol Cell Endocrinol 2025; 597:112441. [PMID: 39706561 DOI: 10.1016/j.mce.2024.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
As a GLP-1 receptor agonist widely used in treating type 2 diabetes, liraglutide shows potential applications in bone tissue engineering. This study investigated liraglutide's direct effects on rat bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation and its regulatory mechanism through macrophage polarization. Results showed that liraglutide significantly enhanced BMSC migration and osteogenic differentiation. Additionally, liraglutide markedly inhibited M1 macrophage polarization induced by LPS and IFN-γ, reducing inflammatory factors CXCL9 and TNF-α secretion, possibly by partially reversing M1 macrophage regulatory signals (AMPK and NF-κB pathways). Compared to M1 macrophage-conditioned medium (M1-CM), conditioned medium from liraglutide-treated macrophages showed stronger promotion of BMSC osteogenic differentiation, though this effect was reversed by CXCL9 addition. The study demonstrates that liraglutide enhances BMSC osteogenic capacity both directly and by inhibiting M1 macrophage polarization and CXCL9 secretion, offering a new therapeutic option for severe bone defects with inflammatory responses.
Collapse
Affiliation(s)
- Yilin He
- Implant Department, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tiantan Xili No.4, Dongcheng District, Beijing, 100050, China
| | - Wenpeng Song
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yinxin Deng
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, 100039, China
| | - Xiao Lin
- Implant Department, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tiantan Xili No.4, Dongcheng District, Beijing, 100050, China
| | - Zhenhua Gao
- Implant Department, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tiantan Xili No.4, Dongcheng District, Beijing, 100050, China.
| | - Pan Ma
- Implant Department, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tiantan Xili No.4, Dongcheng District, Beijing, 100050, China.
| |
Collapse
|
3
|
Lu C, Xu C, Yang J. The Beneficial Effects of GLP-1 Receptor Agonists Other than Their Anti-Diabetic and Anti-Obesity Properties. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:17. [PMID: 39858999 PMCID: PMC11767243 DOI: 10.3390/medicina61010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
As an incretin hormone, Glucagon-like peptide-1 (GLP-1) has obvious effects on blood glucose regulation and weight loss. GLP-1 receptor (GLP-1R) agonists are synthetic products that have similar effects to GLP-1 but are less prone to degradation, and they are widely used in the treatment of type 2 diabetes and obesity. In recent years, different beneficial effects of GLP-1R agonists were discovered, such as reducing ischemia-reperfusion injury, improving the function of various organs, alleviating substance use disorder, affecting tumorigenesis, regulating bone metabolism, changing gut microbiota composition, and prolonging graft survival. Therefore, GLP-1R agonists have great potential for clinical application in various diseases. Here, we briefly summarized the beneficial effects of GLP-1R agonists other than the anti-diabetic and anti-obesity effects.
Collapse
Affiliation(s)
- Chenqi Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| | - Cong Xu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| |
Collapse
|
4
|
Teng Y, Yin H, Feng R, Jiang L, Qiu W, Duan X, Wang X, Deng GM. Methotrexate inhibits glucocorticoids-induced osteoclastogenesis via activating IFN-γR/STAT1 pathway in the treatment of rheumatoid arthritis. RMD Open 2024; 10:e004886. [PMID: 39510764 PMCID: PMC11552566 DOI: 10.1136/rmdopen-2024-004886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/13/2024] [Indexed: 11/15/2024] Open
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is a chronic autoimmune disease characterised by the synovitis and bone erosion. The combination therapy of glucocorticoids (GCs) and methotrexate (MTX) is recommended in early RA management, although the precise underlying mechanism of action remains unclear. This study is aimed to clarify the mechanism of MTX in combined with GC in treating RA. METHODS GC-induced osteoporosis (GIOP) mouse model was used to investigate the bone-protective role of MTX. Lipopolysaccharide-induced arthritis mouse model was used to evaluate the anti-inflammatory effects of GCs and MTX. Functional role of MTX on osteoclastogenesis was assessed by trap staining and micro-computer tomography. Western blot, RT-qPCR and coimmunoprecipitation were used to explore the underlying mechanisms. RESULTS We demonstrate that GCs, but not MTX, rapidly inhibited synovitis in arthritis model. MTX treatment was observed to inhibit osteoclastogenesis induced by GC in vitro and mitigate bone loss attributed by GIOP. GCs were found to augment the interaction between the membrane GC receptor (mGR) and signal transducer and activator of transcription 1 (STAT1), leading to the suppression of IFN-γR/STAT1 signalling pathways. Interestingly, MTX was found to inhibit osteoclastogenesis induced by GCs through the enhancement of the A2AR and IFN-γR interaction, thereby activating the IFN-γR/STAT1 signalling cascade. Consequently, this process results in a reduction in the mGR and STAT1 interaction. CONCLUSIONS Our study provides compelling evidence that MTX can make GCs effectively to suppress synovitis and reduce bone loss induced by GCs. This sheds light on the potential mechanistic insights underlying the efficacy of GCs in conjunction with MTX for treating RA.
Collapse
Affiliation(s)
- Yao Teng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haifeng Yin
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruizhi Feng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijuan Jiang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenlin Qiu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoru Duan
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuefei Wang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guo-Min Deng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Xu Z, Zhang R, Chen H, Zhang L, Yan X, Qin Z, Cong S, Tan Z, Li T, Du M. Characterization and preparation of food-derived peptides on improving osteoporosis: A review. Food Chem X 2024; 23:101530. [PMID: 38933991 PMCID: PMC11200288 DOI: 10.1016/j.fochx.2024.101530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/18/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoporosis is a systemic bone disease characterized by reduced bone mass and deterioration of the microstructure of bone tissue, leading to an increased risk of fragility fractures and affecting human health worldwide. Food-derived peptides are widely used in functional foods due to their low toxicity, ease of digestion and absorption, and potential to improve osteoporosis. This review summarized and discussed methods of diagnosing osteoporosis, treatment approaches, specific peptides as alternatives to conventional drugs, and the laboratory preparation and identification methods of peptides. It was found that peptides interacting with RGD (arginine-glycine-aspartic acid)-binding active sites in integrin could alleviate osteoporosis, analyzed the interaction sites between these osteogenic peptides and integrin, and further discussed their effects on improving osteoporosis. These may provide new insights for rapid screening of osteogenic peptides, and provide a theoretical basis for their application in bone materials and functional foods.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Rui Zhang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Hongrui Chen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu, Sichuan 611130, China
| | - Lijuan Zhang
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Xu Yan
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Zijin Qin
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, GA 30602, USA
| | - Shuang Cong
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Tingting Li
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Ming Du
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
6
|
Bouvard B, Mabilleau G. Gut hormones and bone homeostasis: potential therapeutic implications. Nat Rev Endocrinol 2024:10.1038/s41574-024-01000-z. [PMID: 38858581 DOI: 10.1038/s41574-024-01000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
Bone resorption follows a circadian rhythm, with a marked reduction in circulating markers of resorption (such as carboxy-terminal telopeptide region of collagen type I in serum) in the postprandial period. Several gut hormones, including glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1) and GLP2, have been linked to this effect in humans and rodent models. These hormones are secreted from enteroendocrine cells in the gastrointestinal tract in response to a variety of stimuli and effect a wide range of physiological processes within and outside the gut. Single GLP1, dual GLP1-GIP or GLP1-glucagon and triple GLP1-GIP-glucagon receptor agonists have been developed for the treatment of type 2 diabetes mellitus and obesity. In addition, single GIP, GLP1 and GLP2 analogues have been investigated in preclinical studies as novel therapeutics to improve bone strength in bone fragility disorders. Dual GIP-GLP2 analogues have been developed that show therapeutic promise for bone fragility in preclinical studies and seem to exert considerable activity at the bone material level. This Review summarizes the evidence of the action of gut hormones on bone homeostasis and physiology.
Collapse
Affiliation(s)
- Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France
- CHU Angers, Service de Rhumatologie, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France.
- CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France.
| |
Collapse
|
7
|
An F, Song J, Chang W, Zhang J, Gao P, Wang Y, Xiao Z, Yan C. Research Progress on the Mechanism of the SFRP-Mediated Wnt Signalling Pathway Involved in Bone Metabolism in Osteoporosis. Mol Biotechnol 2024; 66:975-990. [PMID: 38194214 DOI: 10.1007/s12033-023-01018-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
Osteoporosis (OP) is a metabolic bone disease linked to an elevated fracture risk, primarily stemming from disruptions in bone metabolism. Present clinical treatments for OP merely alleviate symptoms. Hence, there exists a pressing need to identify novel targets for the clinical treatment of OP. Research indicates that the Wnt signalling pathway is modulated by serum-secreted frizzled-related protein 5 (SFRP5), potentially serving as a pivotal regulator in bone metabolism disorders. Moreover, studies confirm elevated SFRP5 expression in OP, with SFRP5 overexpression leading to the downregulation of Wnt and β-catenin proteins in the Wnt signalling pathway, as well as the expression of osteogenesis-related marker molecules such as RUNX2, ALP, and OPN. Conversely, the opposite has been reported when SFRP5 is knocked out, suggesting that SFRP5 may be a key factor involved in the regulation of bone metabolism via the Wnt signalling axis. However, the molecular mechanisms underlying the action of SFRP5-induced OP have yet to be comprehensively elucidated. This review focusses on the molecular structure and function of SFRP5 and the potential molecular mechanisms of the SFRP5-mediated Wnt signalling pathway involved in bone metabolism in OP, providing reasonable evidence for the targeted therapy of SFRP5 for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
8
|
Herrou J, Mabilleau G, Lecerf JM, Thomas T, Biver E, Paccou J. Narrative Review of Effects of Glucagon-Like Peptide-1 Receptor Agonists on Bone Health in People Living with Obesity. Calcif Tissue Int 2024; 114:86-97. [PMID: 37999750 DOI: 10.1007/s00223-023-01150-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/14/2023] [Indexed: 11/25/2023]
Abstract
Glucagon-like peptide-1 Receptor agonists (GLP-1Ras) such as liraglutide and semaglutide have been recently approved as medications for chronic weight management in people living with obesity (PwO); GLP-1 may enhance bone metabolism and improve bone quality. However, the effects of GLP-1Ras on skeletal health remain to be determined and that's the purpose of this narrative review. Nevertheless, bone consequences of intentional weight loss interventions in PwO are well known: (i) significant weight loss induced by caloric restriction and bariatric surgery results in accelerated bone turnover and bone loss, and (ii) unlike caloric restriction interventions, PwO experience a substantial deterioration in bone microarchitecture and strength associated with an increased risk of fracture after bariatric surgery especially malabsorptive procedures. Liraglutide seems to have a positive effect on bone material properties despite significant weight loss in several rodent models. However, most of positive effects on bone mineral density and microarchitecture were observed at concentration much higher than approved for obesity care in humans. No data have been reported in preclinical models with semaglutide. The current evidence of the effects of GLP-1Ra on bone health in PwO is limited. Indeed, studies on the use of GLP-1Ra mostly included patients with diabetes who were administered a dose used in this condition, did not have adequate bone parameters as primary endpoints, and had short follow-up periods. Further studies are needed to investigate the bone impact of GLP-1Ra, dual- and triple-receptor agonists for GLP-1, glucose-dependent insulin releasing polypeptide (GIP), and glucagon in PwO.
Collapse
Affiliation(s)
- Julia Herrou
- Service de Rhumatologie, Inserm U 1153, AP-HP Centre, Hôpital Cochin, Université de Paris, Paris, France
| | - Guillaume Mabilleau
- ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Univ Angers, Nantes Université, Angers, France
| | - Jean-Michel Lecerf
- Department of Nutrition and Physical Activity, Institut Pasteur de Lille, Lille, France
| | - Thierry Thomas
- Department of Rheumatology, Hôpital Nord, Centre Hospitalier Universitaire (CHU) Saint-Etienne, Inserm U1059, Lyon University, Saint-Etienne, France
| | - Emmanuel Biver
- Service of Bone Diseases, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Julien Paccou
- Department of Rheumatology, CHU Lille, MABlab ULR 4490, Univ. Lille, 59000, Lille, France.
| |
Collapse
|
9
|
Saleh SR, Saleh OM, El-Bessoumy AA, Sheta E, Ghareeb DA, Eweda SM. The Therapeutic Potential of Two Egyptian Plant Extracts for Mitigating Dexamethasone-Induced Osteoporosis in Rats: Nrf2/HO-1 and RANK/RANKL/OPG Signals. Antioxidants (Basel) 2024; 13:66. [PMID: 38247490 PMCID: PMC10812806 DOI: 10.3390/antiox13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
The prolonged use of exogenous glucocorticoids, such as dexamethasone (Dex), is the most prevalent secondary cause of osteoporosis, known as glucocorticoid-induced osteoporosis (GIO). The current study examined the preventative and synergistic effect of aqueous chicory extract (ACE) and ethanolic purslane extract (EPE) on GIO compared with Alendronate (ALN). The phytochemical contents, elemental analysis, antioxidant scavenging activity, and ACE and EPE combination index were evaluated. Rats were randomly divided into control, ACE, EPE, and ACE/EPE MIX groups (100 mg/kg orally), Dex group (received 1.5 mg Dex/kg, Sc), and four treated groups received ACE, EPE, ACE/EPE MIX, and ALN with Dex. The bone mineral density and content, bone index, growth, turnover, and oxidative stress were measured. The molecular analysis of RANK/RANKL/OPG and Nrf2/HO-1 pathways were also evaluated. Dex causes osteoporosis by increasing oxidative stress, decreasing antioxidant markers, reducing bone growth markers (OPG and OCN), and increasing bone turnover and resorption markers (NFATc1, RANKL, ACP, ALP, IL-6, and TNF-α). In contrast, ACE, EPE, and ACE/EPE MIX showed a prophylactic effect against Dex-induced osteoporosis by modulating the measured parameters and the histopathological architecture. In conclusion, ACE/EPE MIX exerts a powerful synergistic effect against GIO by a mode of action different from ALN.
Collapse
Affiliation(s)
- Samar R. Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Omnia M. Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Ashraf A. El-Bessoumy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21515, Egypt;
| | - Doaa A. Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Saber M. Eweda
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
10
|
You J, Xu D, Zhang C, Chen Y, Huang S, Bian H, Lv J, Chen D, Su L, Yin H, Li Y, Wang Y. Koumine inhibits RANKL-induced ubiquitination and NF-κB activation to prevent ovariectomy and aging-induced bone loss. J Cell Biochem 2024; 125:100-114. [PMID: 38031891 DOI: 10.1002/jcb.30509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/03/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Osteoporosis (OP) is a bone remodeling disease characterized by an imbalance between bone resorption and formation. Osteoclasts are the primary therapeutic targets for treating bone destruction. Koumine (KM), the most bioactive component in Gelsemium alkaloids, exhibits antitumor, immunosuppressive, anti-inflammatory, and analgesic properties. However, the effects of bone loss have not been well studied. This study conducted in vitro and in vivo verification experiments on KM. The results showed that KM inhibited bone resorption and tartrate-resistant acid phosphatase positive (TRAP+) osteoclasts development by mature osteoclasts in a dose-dependent manner. Moreover, KM prevented OVX-induced OP in vivo and potentially inhibited ubiquitination, a process closely related to various biological activities, including protein interaction, transcription, and transmembrane signal transduction regulation, especially within the nuclear factor-κB (NF-κB) pathway. Previous studies have demonstrated that several proteins ubiquitination promotes osteoclastogenesis, our study indicated that KM inhibits early NF-κB activation and receptor activator of NF-κB ligand induced ubiquitination, a critical factor in osteoclast differentiation. In conclusion, our research suggests that KM holds potential as an effective therapeutic agent for OP.
Collapse
Affiliation(s)
- Jiongming You
- Department of Orthopaedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Dingjun Xu
- Department of Orthopaedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Yilin Chen
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Song Huang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Heng Yin
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Yong Wang
- Department of Orthopaedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| |
Collapse
|
11
|
Wang Z, Du W, Han M, He L, Zhang H, Hu J, Quan R. Association between creatine phosphokinase level within normal range and bone mineral density in adolescents. Medicine (Baltimore) 2023; 102:e34724. [PMID: 37565924 PMCID: PMC10419352 DOI: 10.1097/md.0000000000034724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Currently, it is unclear whether creatine phosphokinase (CPK) affects bone mineral density (BMD) in adolescents. We sought to clarify the relationship between CPK and total BMD in adolescents aged 12 to 19 years within normal values by conducting this study. A cross-sectional study was conducted using the 2011 to 2018 National Health and Nutrition Survey data to examine 1188 males (average age, 15.2 years) and 1629 females (average age, 15.4 years). In this study, CPK was the independent variable and total BMD was the outcome variable. In addition to using multivariate linear regression models, subgroup analyses were also conducted in order to examine the relationship between CPK levels and total BMD within normal ranges. Significant positive association was observed between the CPK levels and total BMD in adolescents (model 1: 0.0003 [0.0002, 0.0004], model 2: 0.0004 [0.0003, 0.0005] and model 3: 0.0004 [0.0003, 0.0004]). After adjusting for age, gender, race/ethnicity, body mass index, dietary protein intake, dietary protein intake, dietary fiber intake, poverty to income ratio, physical activities, total cholesterol, total protein, blood urea nitrogen, phosphorus, and serum calcium, CPK levels remained significantly associated with BMD (regression coefficients for quartiles 2 to 4 vs quartile1 were 0.0002, 0.0072, and 0.0154, respectively; P for trend <.001). The association was positive even when stratified by age, gender, and race. Further, adolescents aged 16 to 19 years were more likely to report positive relationships than adolescents aged 12 to 15 years. And the phase relationship between total BMD and CPK was further enhanced in boys. The results of our study show that CPK levels within the normal range are positively associated with total BMD in adolescents aged 12 to 19 years. Additionally, CPK may be a potential biomarker of bone health among adolescents.
Collapse
Affiliation(s)
- Zhenwei Wang
- Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Weibin Du
- Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Meichun Han
- Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Lihong He
- Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University Zhoushan, Hangzhou, Zhejiang, China
| | - Jintao Hu
- Orthopedics and Traumatology Department, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Renfu Quan
- Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
12
|
Wang H, Xu W, Chen X, Mei X, Guo Z, Zhang J. LncRNA LINC00205 stimulates osteoporosis and contributes to spinal fracture through the regulation of the miR-26b-5p/KMT2C axis. BMC Musculoskelet Disord 2023; 24:262. [PMID: 37016415 PMCID: PMC10071705 DOI: 10.1186/s12891-023-06136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/05/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Osteoporosis (OP) is a common bone disease marked by decreased bone strength. Increasing evidence suggests that long non-coding RNA (lncRNAs) play important roles in the occurrence and progression of OP. This study aimed to investigate the role and mechanism of LINC00205 in the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and OP. METHODS Bone tissue samples were obtained from healthy controls and patients with osteoporosis with a spinal fracture (OP-Frx) or without a spinal fracture (OP-no-Frx). HMSCs were cultured and induced to undergo osteogenic differentiation. The expression of LINC00205, lysine (K)-specific methyltransferase 2C (KMT2C), and miR-26b-5p in bone tissues and cells was evaluated using western blotting and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The effects of LINC00205, miR-26b-5p, and KMT2C on calcium deposition, alkaline phosphatase (ALP) activity, and mRNA levels of the osteogenic differentiation marker genes [ALP, osteocalcin (OCN), and runt-related transcription factor 2 (RUNX2)] were investigated using alizarin red S staining, an ALP activity assay, and qRT-PCR, respectively. Dual-luciferase reporter assay was performed to ascertain the binding relationship between miR-26b-5p and LINC00205/KMT2C. RESULTS LINC00205 and KMT2C were upregulated in patients with OP-Frx and OP-no-Frx, whereas miR-26b-5p was downregulated. Furthermore, LINC00205 and KMT2C expression decreased, whereas that of miR-26b-5p increased over time from day 7 to 21 of the osteogenic differentiation of hMSCs. The knockdown of LINC00205 and KMT2C significantly increased ALP activity, calcium deposition, and the expression of RUNX2, ALP, and OCN. In contrast, the inhibition of miR-26b-5p yielded the opposite result. These data suggest that LINC00205 inhibits the osteogenic differentiation of hMSCs by modulating the miR-26b-5p/KMT2C signaling axis. CONCLUSION LINC00205 promotes OP and is involved in spinal fractures. LINC00205 is also a potential negative regulator of the osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Hongtao Wang
- Department of Rehabilitation Medicine, People's Hospital of Dongxihu District, No. 48 Jinbei 1St Road, Jinghe Street, Dongxihu District, Wuhan, 430040, Hubei, China
| | - Weilin Xu
- Department of Rehabilitation Medicine, People's Hospital of Dongxihu District, No. 48 Jinbei 1St Road, Jinghe Street, Dongxihu District, Wuhan, 430040, Hubei, China
| | - Xiaoqing Chen
- Department of Rehabilitation Medicine, People's Hospital of Dongxihu District, No. 48 Jinbei 1St Road, Jinghe Street, Dongxihu District, Wuhan, 430040, Hubei, China
| | - Xiongfeng Mei
- Department of Rehabilitation Medicine, People's Hospital of Dongxihu District, No. 48 Jinbei 1St Road, Jinghe Street, Dongxihu District, Wuhan, 430040, Hubei, China
| | - Zhonghua Guo
- Department of Orthopaedics, People's Hospital of Dongxihu District, Wuhan, 430040, Hubei, China
| | - Juan Zhang
- Department of Rehabilitation Medicine, People's Hospital of Dongxihu District, No. 48 Jinbei 1St Road, Jinghe Street, Dongxihu District, Wuhan, 430040, Hubei, China.
| |
Collapse
|
13
|
Mariadoss AVA, Subramanian SA, Kwon YM, Shin S, Kim SJ. Epigallocatechin gallate protects the hydrogen peroxide-induced cytotoxicity and oxidative stress in tenocytes. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
14
|
Liu H, Tian F, Hu Y, Ping S, Zhang L. Liraglutide in Combination with Insulin Has a Superior Therapeutic Effect to Either Alone on Fracture Healing in Diabetic Rats. Diabetes Metab Syndr Obes 2023; 16:1235-1245. [PMID: 37151908 PMCID: PMC10155808 DOI: 10.2147/dmso.s404392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose Fractures in patients with type 2 diabetes mellitus are at a high risk of delayed union or non-union. Previous studies have shown a protective effect of liraglutide on bone. In the present study, we aimed to investigate the effects of a combination of liraglutide and insulin on fracture healing in a rat model of diabetes and the mechanisms involved. Materials and Methods Closed femoral mid-shaft fractures were established in male Sprague-Dawley rats with or without diabetes mellitus, and the diabetic rats were administered insulin and/or liraglutide. Six weeks after femoral fracture, the femoral callus was evaluated by immunohistochemistry, histology, and micro-computed tomography. Additionally, the effects of liraglutide on high-glucose-stimulated MC3T3-E1 cells were analyzed by Western blotting. Results Micro-computed tomography and safranin O/fast green staining showed that fracture healing was delayed in the diabetic rats, and this was accompanied by much lower expression of osteogenic markers and greater osteoclast activity. However, treatment with insulin and/or liraglutide prevented these changes. Liraglutide in combination with insulin treatment resulted in lower blood glucose concentrations and significantly higher osteocalcin (OCN) and collagen I (Col I) expression six weeks following fracture. Western blot analysis showed that liraglutide prevented the low expression of the bone morphogenetic protein-2, osterix/SP7, OCN, Col I, and β-catenin in high-glucose-stimulated MC3T3-E1 cells. Conclusion These results demonstrate that insulin and/or liraglutide promotes bone fracture healing in the DF model. The combination was more effective than either single treatment, which may be because of the two drugs' additive effects on the osteogenic ability of osteoblast precursors.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Orthopedic Syrgery, The Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, People’s Republic of China
| | - Yunpeng Hu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, People’s Republic of China
| | - Shaohua Ping
- Department of Orthopedic Syrgery, The Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei, People's Republic of China
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Orthopedic Surgery, Emergency Management General Hospital, Beijing, People’s Republic of China
- Correspondence: Liu Zhang, Department of Orthopedic Surgery, Emergency Management General Hospital, Xibahenanli 29, Chaoyang dis, Beijing, 100028, People’s Republic of China, Tel +86-10-64662308, Email
| |
Collapse
|
15
|
Song P, Chen T, Rui S, Duan X, Deng B, Armstrong DG, Ma Y, Deng W. Canagliflozin promotes osteoblastic MC3T3-E1 differentiation via AMPK/RUNX2 and improves bone microarchitecture in type 2 diabetic mice. Front Endocrinol (Lausanne) 2022; 13:1081039. [PMID: 36589840 PMCID: PMC9800613 DOI: 10.3389/fendo.2022.1081039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Individuals with type 2 diabetes mellitus (T2DM) have an increased risk of bone metabolic disorders and bone fracture due to disease progression and clinical treatment. The effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors, now greatly prescribed for the treatment of T2DM, on bone metabolism is not clear. This study aimed to explore the possible influence of bone metabolic disorder and the underlying mechanism through a comparison of three different SGLT2 inhibitors (canagliflozin, dapagliflozin, and empagliflozin) in the treatment of type 2 diabetic mice. For the in vivo experiments, four groups (DM, DM+Cana, DM+Dapa, and DM+Empa) were established using micro-CT to detect the bone microarchitecture and bone-related parameters. The study results indicated that canagliflozin, but not dapagliflozin or empagliflozin, increased bone mineral density (p<0.05) and improved bone microarchitecture in type 2 diabetic mice. Furthermore, canagliflozin promoted osteoblast differentiation at a concentration of 5 μM under high glucose concentration (HG). Phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) α (Thr172) has been confirmed to activate run-related transcription factor-2 (RUNX2) to perform this function. This effect can be partially reversed by the AMPK inhibitor dorsomorphin (compound C) and strengthened by the AMPK activator acadesine (AICAR) in vitro. The level trend of RUNX2 and p-AMPK in vivo were consistent with those in vitro. This study suggested that canagliflozin played a beneficial role in bone metabolism in type 2 diabetic mice compared with dapagliflozin and empagliflozin. It provides some theoretical support for the chosen drugs, especially for patients with osteoporosis or a high risk of fracture.
Collapse
Affiliation(s)
- Peiyang Song
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Tianyi Chen
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Shunli Rui
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiaodong Duan
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bo Deng
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - David G. Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Yu Ma
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Wuquan Deng
- Department of Endocrinology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
16
|
Rong X, Kou Y, Zhang Y, Yang P, Tang R, Liu H, Li M. ED-71 Prevents Glucocorticoid-Induced Osteoporosis by Regulating Osteoblast Differentiation via Notch and Wnt/β-Catenin Pathways. Drug Des Devel Ther 2022; 16:3929-3946. [PMID: 36411860 PMCID: PMC9675334 DOI: 10.2147/dddt.s377001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/03/2022] [Indexed: 08/27/2023] Open
Abstract
PURPOSE Long-term glucocorticoid- usage can lead to glucocorticoid-induced osteoporosis (GIOP). The study focused on the preventative effects of a novel active vitamin D3 analog, eldecalcitol (ED-71), against GIOP and explored the underlying molecular mechanisms. METHODS Intraperitoneal injection of methylprednisolone (MPED) or dexamethasone (DEX) induced the GIOP model within C57BL/6 mice in vivo. Simultaneously, ED-71 was orally supplemented. Bone histological alterations, microstructure parameters, novel bone formation rates, and osteogenic factor changes were evaluated by hematoxylin-eosin (HE) staining, micro-computed tomography, calcein/tetracycline labeling, and immunohistochemical (IHC) staining. The osteogenic differentiation level and mineralization in pre-osteoblast MC3T3-E1 cells were evaluated in vitro using alkaline phosphatase (ALP) staining, alizarin red (AR) staining, quantitative polymerase chain reaction (qPCR), Western blotting, and immunofluorescence staining. RESULTS ED-71 partially prevented bone mass reduction and microstructure parameter alterations among GIOP-induced mice. Moreover, ED-71 also promoted new bone formation and osteoblast activity while inhibiting osteoclasts. In vitro, ED-71 promoted osteogenic differentiation and mineralization in DEX-treated MC3T3-E1 cells and boosted the levels of osteogenic-related factors. Additionally, GSK3-β and β-catenin expression levels were elevated after ED-71 was added to cells and were accompanied by reduced Notch expression. The Wnt signaling inhibitor XAV939 and Notch overexpression reversed the ED-71 promotional effects toward osteogenic differentiation and mineralization. CONCLUSION ED-71 prevented GIOP by enhancing osteogenic differentiation through Notch and Wnt/GSK-3β/β-catenin signaling. The results provide a novel translational direction for the clinical application of ED-71 against GIOP.
Collapse
Affiliation(s)
- Xing Rong
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
| | - Yuying Kou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
| | - Yuan Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
| | - Panpan Yang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
| | - Rong Tang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
17
|
A novel ceRNA regulatory network involving the long noncoding NEAT1, miRNA-466f-3p and its mRNA target in osteoblast autophagy and osteoporosis. J Mol Med (Berl) 2022; 100:1629-1646. [PMID: 36169673 DOI: 10.1007/s00109-022-02255-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022]
Abstract
Osteoporosis (OP) is a systemic metabolic disorder characterized by a reduction in bone tissue volume. LncRNAs have been reported to act as regulators of several human diseases. Specifically, lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) is involved in proliferation, differentiation and apoptosis in osteoclasts and bone marrow mesenchymal stem cells and regulates the occurrence and development of OP. However, the relationship between NEAT1 and osteoblast autophagy and its mechanism are still unclear. Western blotting of LC3 and P62 was used to evaluate the effect of fluid shear stress (FSS) on autophagy in MC3T3-E1 osteoblasts. Total transcriptome sequencing and bioinformatics analyses were performed on osteoblasts loaded with and without FSS. qPCR was performed to examine the expression of NEAT1 in OP bone tissues and osteoblasts. The RNA-FISH was performed to study the localization of lncRNA NEAT1 and miR-466f-3p in MC3T3-E1 osteoblasts. In vitro, western blotting, transmission electron microscopy (TEM), immunofluorescence (IF) staining and qPCR were performed to verify the biological functions of NEAT1, miR-466f-3p and HK2. Subsequently, we conducted bioinformatics analysis and dual luciferase reporter assays to identify the relationships among NEAT1, miR-466f-3p and HK2. Additionally, rescue assays were conducted on osteoblasts to clarify the regulatory network of the NEAT1/miR-466f-3p/HK2 signalling pathway. In vivo, the OVX mouse model was used to investigate the effects of si-NEAT1 on autophagy in OP mice. The distal femur and serum were collected for further micro-CT analysis, blood biochemistry, and haematoxylin-eosin and Alizarin red staining (ARS). Immunohistochemistry (IHC) was performed to assess the protein expression of LC3 and HK2. NEAT1 expression was upregulated in OP tissues and osteoblast lines exposed to FSS. Knockdown of NEAT1 inhibited autophagy in vitro and in vivo. Further studies demonstrated that NEAT1 positively regulated HK2 expression via its competing endogenous RNA effects on miR-466f-3p. Moreover, we found the NEAT1/miR-466f-3p/HK2 axis regulated autophagy in osteoblasts. Knocking down NEAT1 inhibited autophagy in osteoblasts via the miR-466f-3p/HK2 signalling pathway, which may provide new ideas for novel molecular therapeutic targets of postmenopausal OP. KEY MESSAGES: • Fluid shear stress (FSS) can promote autophagy of osteoblast and performed transcriptome sequencing. • NEAT1 is overexpressed in osteoporosis and could regulate osteoblast cells autophagy. • Knockdown of lncRNA NEAT1 inhibited osteoblast cells autophagy by sponging miRNA-466f-3p and targeting HK2 in osteoporosis.
Collapse
|
18
|
Habib SA, Kamal MM, El-Maraghy SA, Senousy MA. Exendin-4 enhances osteogenic differentiation of adipose tissue mesenchymal stem cells through the receptor activator of nuclear factor-kappa B and osteoprotegerin signaling pathway. J Cell Biochem 2022; 123:906-920. [PMID: 35338509 DOI: 10.1002/jcb.30236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
The capability of mesenchymal stem cells (MSCs) to repair bone damage and defects has long been investigated. The receptor activator of nuclear factor-kappa B (RANK), its ligand (RANKL) and the decoy receptor osteoprotegerin (OPG) axis is crucial to keep the equilibrium between osteoblastic and osteoclastic activity. Exendin-4 utilization increased bone formation and enhanced bone integrity. This study aimed to investigate the mentioned axis and determine the effect of exendin-4 upon adipose mesenchymal stem cells (Ad-MSCs) osteogenic differentiation. Ad-MSCs were isolated from rat epididymal fat, followed by characterization and then differentiation into osteocytes both in the presence or absence of exendin-4. Osteogenic differentiation was evaluated by alizarin red staining and the expression of osteogenic markers; using reverse transcriptase-quantitative polymerase chain reaction, western blotting and enzyme-linked immunoassay. MSCs derived from rat epididymal fat were isolated and characterized, along with their differentiation into osteocytes. The differentiated cells were alizarin red-stained, showing increased staining intensity upon addition of exendin-4. Moreover, the addition of exendin-4 elevated the messenger RNA expression levels of osteogenic markers; runt-related transcription factor-2 (RUNX-2), osteocalcin, and forkhead box protein O-1 while reducing the expression of the adipogenic marker peroxisome-proliferator-activated receptor-gamma. Exendin-4 addition elevated OPG levels in the supernatant of osteogenic differentiated cells. Moreover, exendin-4 elevated the protein levels of glucagon-like peptide-1 receptor and RUNX-2, while decreasing both RANK and RANKL. In conclusion, osteogenic differentiation of Ad-MSCs is associated with increased osteoblastic rather than osteoclastic activity. The findings of this study suggest that exendin-4 can enhance Ad-MSCs osteogenic differentiation partially through the RANK/RANKL/OPG axis.
Collapse
Affiliation(s)
- Sarah A Habib
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Mohamed M Kamal
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Shohda A El-Maraghy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Xavier A, Toumi H, Lespessailles E. Animal Model for Glucocorticoid Induced Osteoporosis: A Systematic Review from 2011 to 2021. Int J Mol Sci 2021; 23:377. [PMID: 35008803 PMCID: PMC8745049 DOI: 10.3390/ijms23010377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
Clinical and experimental data have shown that prolonged exposure to GCs leads to bone loss and increases fracture risk. Special attention has been given to existing emerging drugs that can prevent and treat glucocorticoid-induced osteoporosis GIOP. However, there is no consensus about the most relevant animal model treatments on GIOP. In this systematic review, we aimed to examine animal models of GIOP centering on study design, drug dose, timing and size of the experimental groups, allocation concealment, and outcome measures. The present review was written according to the PRISMA 2020 statement. Literature searches were performed in the PubMed electronic database via Mesh with the publication date set between April, 2011, and February 2021. A total of 284 full-text articles were screened and 53 were analyzed. The most common animal species used to model GIOP were rats (66%) and mice (32%). In mice studies, males (58%) were preferred and genetically modified animals accounted for 28%. Our work calls for a standardization of the establishment of the GIOP animal model with better precision for model selection. A described reporting design, conduction, and selection of outcome measures are recommended.
Collapse
Affiliation(s)
- Andy Xavier
- EA 4708 I3MTO Laboratory, Orleans University, 45067 Orleans, France; (A.X.); (H.T.)
- Translational Medicine Research Platform, PRIMMO, Regional Hospital of Orleans, 45007 Orleans, France
| | - Hechmi Toumi
- EA 4708 I3MTO Laboratory, Orleans University, 45067 Orleans, France; (A.X.); (H.T.)
- Translational Medicine Research Platform, PRIMMO, Regional Hospital of Orleans, 45007 Orleans, France
- Department Rheumatology, Regional Hospital of Orleans, 14 Avenue de L’Hopital, 45007 Orleans, France
| | - Eric Lespessailles
- EA 4708 I3MTO Laboratory, Orleans University, 45067 Orleans, France; (A.X.); (H.T.)
- Translational Medicine Research Platform, PRIMMO, Regional Hospital of Orleans, 45007 Orleans, France
- Department Rheumatology, Regional Hospital of Orleans, 14 Avenue de L’Hopital, 45007 Orleans, France
| |
Collapse
|
20
|
Hansen MS, Frost M. Alliances of the gut and bone axis. Semin Cell Dev Biol 2021; 123:74-81. [PMID: 34303607 DOI: 10.1016/j.semcdb.2021.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Gut hormones secreted from enteroendocrine cells following nutrient ingestion modulate metabolic processes including glucose homeostasis and food intake, and several of these gut hormones are involved in the regulation of the energy demanding process of bone remodelling. Here, we review the gut hormones considered or known to be involved in the gut-bone crosstalk and their role in orchestrating adaptions of bone formation and resorption as demonstrated in cellular and physiological experiments and clinical trials. Understanding the physiology and pathophysiology of the gut-bone axis may identify adverse effects of investigational drugs aimed to treat metabolic diseases such as type 2 diabetes and obesity and new therapeutic candidates for the treatment of bone diseases.
Collapse
Affiliation(s)
- Morten Steen Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark
| | - Morten Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark.
| |
Collapse
|
21
|
Xie B, Chen S, Xu Y, Han W, Hu R, Chen M, Zhang Y, Ding S. The Impact of Glucagon-Like Peptide 1 Receptor Agonists on Bone Metabolism and Its Possible Mechanisms in Osteoporosis Treatment. Front Pharmacol 2021; 12:697442. [PMID: 34220521 PMCID: PMC8243369 DOI: 10.3389/fphar.2021.697442] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus and osteoporosis are closely related and have complex influencing factors. The impact of anti-diabetic drugs on bone metabolism has received more and more attention. Type 2 diabetes mellitus (T2DM) would lead to bone fragility, high risk of fracture, poor bone repair and other bone-related diseases. Furthermore, hypoglycemic drugs used to treat T2DM may have notable detrimental effects on bones. Thus, the clinically therapeutic strategy for T2DM should not only effectively control the patient's glucose levels, but also minimize the complications of bone metabolism diseases. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are novel and promising drug for the treatment of T2DM. Some studies have found that GLP-1RAs may play an anti-osteoporotic effect by controlling blood sugar levels, promoting bone formation and inhibiting bone resorption. However, in clinical practice, the specific effects of GLP-1RA on fracture risk and osteoporosis have not been clearly defined and evidenced. This review summarizes the current research findings by which GLP-1RAs treatment of diabetic osteoporosis, postmenopausal osteoporosis and glucocorticoid-induced osteoporosis and describes possible mechanisms, such as GLP-1R/MAPK signaling pathway, GLP-1R/PI3K/AKT signaling pathway and Wnt/β-catenin pathway, that are associated with GLP-1RAs and osteoporosis. The specific role and related mechanisms of GLP-1RAs in the bone metabolism of patients with different types of osteoporosis need to be further explored and clarified.
Collapse
Affiliation(s)
- Baocheng Xie
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Shichun Chen
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yongxiang Xu
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Weichao Han
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Runkai Hu
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Minyi Chen
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yusheng Zhang
- Department of Pharmacy, The First People's Hospital of Foshan (The Affiliated Foshan Hospital of Sun Yat-Sen University), Foshan, China
| | - Shaobo Ding
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| |
Collapse
|
22
|
Mishra R, Das N, Varshney R, Juneja K, Sircar D, Roy P. Betel leaf extract and its major component hydroxychavicol promote osteogenesis and alleviate glucocorticoid-induced osteoporosis in rats. Food Funct 2021; 12:6603-6625. [PMID: 34105538 DOI: 10.1039/d0fo02619k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Piper betle leaves possess several ethnomedicinal properties and are immensely used in traditional medicinal practices in regions of Asian and African subcontinents. However, their effects in treating skeletal complications are least known. In this study, we evaluated cellular and molecular effects of betel leaf extract (BLE) and its major phytoconstituent, hydroxychavicol (HCV) in promoting osteogenesis in vitro and alleviating glucocorticoid induced osteoporosis (GIO) in vivo. Both BLE and HCV markedly stimulated osteoblast differentiation of C3H10T1/2 cells with increased expression of RUNX2 and osteopontin through the GSK-3β/β-catenin-signaling pathway. Also, oral administration of BLE and HCV in GIO rats resulted in restoration of bone mass and tissue microarchitecture. Thus, with our findings we conclude that BLE and HCV promote osteogenesis of C3H10T1/2 cells via the GSK-3β/β-catenin pathway and alleviate GIO in rats.
Collapse
Affiliation(s)
- Rutusmita Mishra
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | | | | | | | | | | |
Collapse
|
23
|
Huang C, Li R, Yang C, Ding R, Li Q, Xie D, Zhang R, Qiu Y. PAX8-AS1 knockdown facilitates cell growth and inactivates autophagy in osteoblasts via the miR-1252-5p/GNB1 axis in osteoporosis. Exp Mol Med 2021; 53:894-906. [PMID: 34012023 PMCID: PMC8178389 DOI: 10.1038/s12276-021-00621-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis (OP) is the most common systematic bone disorder among elderly individuals worldwide. Long noncoding RNAs (lncRNAs) are involved in biological processes in various human diseases. It has been previously revealed that PAX8 antisense RNA 1 (PAX8-AS1) is upregulated in OP. However, its molecular mechanism in OP remains unclear. Therefore, we specifically designed this study to determine the specific role of PAX8-AS1 in OP. We first established a rat model of OP and then detected PAX8-AS1 expression in the rats with RT-qPCR. Next, to explore the biological function of PAX8-AS1 in osteoblasts, in vitro experiments, such as Cell Counting Kit-8 (CCK-8) assays, flow cytometry, western blotting and immunofluorescence (IF) staining, were conducted. Subsequently, we performed bioinformatic analysis and luciferase reporter assays to predict and identify the relationships between microRNA 1252-5p (miR-1252-5p) and both PAX8-AS1 and G protein subunit beta 1 (GNB1). Additionally, rescue assays in osteoblasts clarified the regulatory network of the PAX8-AS1/miR-1252-5p/GNB1 axis. Finally, in vivo loss-of-function studies verified the role of PAX8-AS1 in OP progression. The results illustrated that PAX8-AS1 was upregulated in the proximal tibia of OP rats. PAX8-AS1 silencing promoted the viability and inhibited the apoptosis and autophagy of osteoblasts. PAX8-AS1 interacted with miR-1252-5p. GNB1 was negatively regulated by miR-1252-5p. In addition, the impacts of PAX8-AS1 knockdown on osteoblasts were counteracted by GNB1 overexpression. PAX8-AS1 depletion suppressed OP progression by inhibiting apoptosis and autophagy in osteoblasts. In summary, PAX8-AS1 suppressed the viability and activated the autophagy of osteoblasts via the miR-1252-5p/GNB1 axis in OP.
Collapse
Affiliation(s)
- Caiqiang Huang
- Division of Spine Surgery, Section II, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Academy of Orthopedics of Guangdong Province, Guangzhou, Guangdong, China
| | - Runguang Li
- Division of Foot and Ankle Surgery, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Academy of Orthopedics of Guangdong Province, Guangzhou, Guangdong, China
| | - Changsheng Yang
- Division of Spine Surgery, Section II, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Academy of Orthopedics of Guangdong Province, Guangzhou, Guangdong, China
| | - Rui Ding
- Division of Spine Surgery, Section II, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Academy of Orthopedics of Guangdong Province, Guangzhou, Guangdong, China
| | - Qingchu Li
- Division of Spine Surgery, Section II, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Academy of Orthopedics of Guangdong Province, Guangzhou, Guangdong, China
| | - Denghui Xie
- Division of Joint Surgery, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Academy of Orthopedics of Guangdong Province, Guangzhou, Guangdong, China
| | - Rongkai Zhang
- Division of Joint Surgery, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Academy of Orthopedics of Guangdong Province, Guangzhou, Guangdong, China
| | - Yiyan Qiu
- Division of Spine Surgery, Section II, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Academy of Orthopedics of Guangdong Province, Guangzhou, Guangdong, China.
| |
Collapse
|
24
|
Zhang Y, Li M, Liu Z, Fu Q. Arbutin ameliorates glucocorticoid-induced osteoporosis through activating autophagy in osteoblasts. Exp Biol Med (Maywood) 2021; 246:1650-1659. [PMID: 33757338 DOI: 10.1177/15353702211002136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chronic long-term glucocorticoid use causes osteoporosis partly by interrupting osteoblast homeostasis and exacerbating bone loss. Arbutin, a natural hydroquinone glycoside, has been reported to have biological activities related to the differentiation of osteoblasts and osteoclasts. However, the role and underlying mechanism of arbutin in glucocorticoid-induced osteoporosis are elusive. In this study, we demonstrated that arbutin administration ameliorated osteoporotic disorders in glucocorticoid dexamethasone (Dex)-induced mouse model, including attenuating the loss of bone mass and trabecular microstructure, promoting bone formation, suppressing bone resorption, and activating autophagy in bone tissues. Furthermore, Dex-stimulated mouse osteoblastic MC3T3-E1 cells were treated with arbutin. Arbutin treatment rescued Dex-induced repression of osteoblast differentiation and mineralization, the downregulation of osteogenic gene expression, reduced autophagic marker expression, and decreased autophagic puncta formation. The application of autophagy inhibitor 3-MA decreased autophagy, differentiation, and mineralization of MC3T3-E1 cells triggered by arbutin. Taken together, our findings suggest that arbutin treatment fends off glucocorticoid-induced osteoporosis, partly through promoting differentiation and mineralization of osteoblasts by autophagy activation.
Collapse
Affiliation(s)
- Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Mingyang Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
25
|
Sedky AA. Improvement of cognitive function, glucose and lipid homeostasis and serum osteocalcin levels by liraglutide in diabetic rats. Fundam Clin Pharmacol 2021; 35:989-1003. [PMID: 33683755 DOI: 10.1111/fcp.12664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Glucose and lipid abnormalities, oxidative stress (OXS) and reduced brain-derived neurotrophic factor (BDNF) are involved in cognitive dysfunction in diabetes. Glucagon like peptide 1 (GLP1) receptors modulate glucose and lipid metabolism, cognitive function and serum osteocalcin. On the other hand, osteocalcin modulates cognitive function and glucose and lipid metabolism. This study investigated whether the GLP 1 agonist liraglutide improves cognitive function via modulation of serum osteocalcin and glucose and lipid metabolism. METHODS Effects of 4 weeks liraglutide treatment (100 µg/Kg/d and 300 µg/Kg/d) on changes in cognitive function and bone homeostasis, induced by high fat diet/low-dose streptozotocin (HFD-STZ), were determined in rats. Cognitive function was assessed using Morris water maze (MWM) test. Serum and bone biochemical parameters were determined. RESULTS Liraglutide dose-dependently improved cognitive function in diabetic rats (reduced escape latency, and increased time spent in target quadrant in MWM test, compared to diabetic control). Glucose and lipid abnormalities and the associated changes in serum BDNF and oxidative stress makers were improved. Serum BDNF and glutathione were significantly increased, whereas malondialdehyde level was reduced. Serum osteocalcin was significantly increased and correlated with improvement in cognitive dysfunction. Serum and bone receptor activator of nuclear factor κB ligand (RANKL)/osteoprotegerin ratios were significantly reduced by liraglutide treatment. CONCLUSION Improvement of cognitive dysfunction by liraglutide involves modulation of glucose and lipid metabolism and serum osteocalcin. GLP1 agonists may provide an alternative metabolic approach for cognitive dysfunction in diabetes.
Collapse
|
26
|
Daphnetin ameliorates glucocorticoid-induced osteoporosis via activation of Wnt/GSK-3β/β-catenin signaling. Toxicol Appl Pharmacol 2020; 409:115333. [PMID: 33171191 DOI: 10.1016/j.taap.2020.115333] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Glucocorticoids have been widely used in multiple inflammatory and autoimmune diseases. However, long-term glucocorticoid therapy may result in osteoporosis. The present study aimed to evaluate the potential therapeutic effects and investigate the underlying mechanisms of Daphnetin (Daph) on glucocorticoid-induced osteoporosis (GIOP). In vivo, male Sprague Dawley rats were intramuscularly injected with dexamethasone (DEX) to induce GIOP and Daph was given intraperitoneally. Bone histological changes, mineral content, microstructure parameters and bone turnover markers were detected. Gut microbiota composition and intestinal barrier function were further assessed. In vitro, MC3T3-E1 pre-osteoblasts were treated with DEX and the abilities of Daph on osteoblast proliferation, differentiation and mineralization were assessed. A Wnt signaling inhibitor, XAV939, was added additionally to evaluate the effect of Daph on Wnt signaling. The results showed that in vivo, Daph increased the DEX-induced reduction in body weight gain, bone mineral content and microstructure parameters and restored the levels of bone turnover markers in GIOP rats. In vitro, Daph promoted osteoblast proliferation, differentiation and mineralization in DEX-treated MC3T3-E1 pre-osteoblasts. Moreover, Daph activated the Wnt/GSK-3β/β-catenin signaling pathway. XAV939 successfully abolished the beneficial effects of Daph on GIOP in vitro. Besides, Daph showed improvement on gut microbiota disorder and intestinal barrier dysfunction post GIOP. Collectively, these data demonstrated that Daph effectively ameliorates GIOP and the possible mechanism may be that Daph activated Wnt/GSK-3β/β-catenin signaling.
Collapse
|
27
|
Li Y, Zhang Y, Meng W, Li Y, Huang T, Wang D, Hu M. The Antiosteoporosis Effects of Yishen Bugu Ye Based on Its Regulation on the Differentiation of Osteoblast and Osteoclast. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9467683. [PMID: 32149147 PMCID: PMC7054773 DOI: 10.1155/2020/9467683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Yishen Bugu Ye (YSBGY), a traditional Chinese medicine comprising 12 types of medicinal herbs, is often prescribed in China to increase bone strength. In this study, the antiosteoporotic effects of YSBGY were investigated in C57BL/6 mice afflicted with dexamethasone- (Dex-) induced osteoporosis (OP). The results showed that YSBGY reduced the interstitial edema in the liver and kidney of mice with Dex-induced OP. It also increased the number of trabecular bone elements and chondrocytes in the femur, promoted cortical bone thickness and trabecular bone density, and modulated the OP-related indexes in the femur and tibia of OP mice. It also increased the serum concentrations of type I collagen, osteocalcin, osteopontin, bone morphogenetic protein-2, bone morphogenetic protein receptor type 2, C-terminal telopeptide of type I collagen, and runt-related transcription factor-2 and reduced those of tartrate-resistant acid phosphatase 5 and nuclear factor of activated T cells in these mice, suggesting that it improved osteoblast differentiation and suppressed osteoclast differentiation. The anti-inflammatory effect of YSBGY was confirmed by the increase in the serum concentrations of interleukin- (IL-) 33 and the decrease in concentrations of IL-1, IL-7, and tumor necrosis factor-α in OP mice. Furthermore, YSBGY enhanced the serum concentrations of superoxide dismutase and catalase in these mice, indicating that it also exerted antioxidative effects. This is the first study to confirm the antiosteoporotic effects of YSBGY in mice with Dex-induced OP, and it showed that these effects may be related to the YSBGY-induced modulation of the osteoblast/osteoclast balance and serum concentrations of inflammatory factors. These results provide experimental evidence supporting the use of YSBGY for supporting bone formation in the clinical setting.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiqi Meng
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yutong Li
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tao Huang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|