1
|
Basu R, Boguszewski CL, Kopchick JJ. Growth Hormone Action as a Target in Cancer: Significance, Mechanisms, and Possible Therapies. Endocr Rev 2025; 46:224-280. [PMID: 39657053 DOI: 10.1210/endrev/bnae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/29/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Growth hormone (GH) is a pituitary-derived endocrine hormone required for normal postnatal growth and development. Hypo- or hypersecretion of endocrine GH results in 2 pathologic conditions, namely GH deficiency (GHD) and acromegaly. Additionally, GH is also produced in nonpituitary and tumoral tissues, where it acts rather as a cellular growth factor with an autocrine/paracrine mode of action. An increasingly persuasive and large body of evidence over the last 70 years concurs that GH action is implicit in escalating several cancer-associated events, locally and systemically. This pleiotropy of GH's effects is puzzling, but the association with cancer risk automatically raises a concern for patients with acromegaly and for individuals treated with GH. By careful assessment of the available knowledge on the fundamental concepts of cancer, suggestions from epidemiological and clinical studies, and the evidence from specific reports, in this review we aimed to help clarify the distinction of endocrine vs autocrine/paracrine GH in promoting cancer and to reconcile the discrepancies between experimental and clinical data. Along this discourse, we critically weigh the targetability of GH action in cancer-first by detailing the molecular mechanisms which posit GH as a critical node in tumor circuitry; and second, by enumerating the currently available therapeutic options targeting GH action. On the basis of our discussion, we infer that a targeted intervention on GH action in the appropriate patient population can benefit a sizable subset of current cancer prognoses.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
| | - Cesar L Boguszewski
- SEMPR, Endocrine Division, Department of Internal Medicine, Federal University of Parana, Curitiba 80060-900, Brazil
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
2
|
Zhu YS, Wu J, Zhi F. Advances in conjugate drug delivery System: Opportunities and challenges. Int J Pharm 2024; 667:124867. [PMID: 39454974 DOI: 10.1016/j.ijpharm.2024.124867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Ideal drug delivery system is designed to accurately deliver the drug to its intended site. The development of conjugate drug delivery system introduces a novel pathway to precise drug delivery with advantages over traditional methods. The core of a conjugate drug delivery system comprises a molecule with two functional components, bounded by a linker structure. One component is responsible for delivering or stabilizing the conjugate, while the other is used to provide the therapeutic or diagnostic effects of the bioactivity. Conjugate drug delivery system improves patient health by maintaining the structural stability of drugs in molecular form, delivering therapeutics or diagnostic material to the target site, minimising off-target accumulation and promoting patient compliance. This system includes various types of drug conjugates that modulate drug pharmacokinetics, stability, absorption, and exposure in lesions and healthy tissues. In this review, we focus on the key characteristics and recent advances of various conjugate drug delivery systems and explore their mechanisms. We also point out the current challenges faced by conjugate drug delivery system and look forward to the future prospects.
Collapse
Affiliation(s)
- Yi-Shen Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, PuZhuNanLu No.30, Nanjing 211816, Jiangsu Province, China.
| | - Jiaqi Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, PuZhuNanLu No.30, Nanjing 211816, Jiangsu Province, China
| | - Feng Zhi
- Department of Neurosurgery, Clinical Medical Research Center, Third Affiliated Hospital of Soochow University, Juqian Road No.185, Changzhou 213000, Jiangsu Province, China
| |
Collapse
|
3
|
Grottoli S, Maffei P, Tresoldi AS, Granato S, Benedan L, Mariani P, Giustina A. Insights from an Italian Delphi panel: exploring resistance to first-generation somatostatin receptor ligands and guiding second-line medical therapies in acromegaly management. J Endocrinol Invest 2024; 47:2999-3017. [PMID: 38809458 PMCID: PMC11549125 DOI: 10.1007/s40618-024-02386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE First-line medical therapy for acromegaly management includes first-generation somatostatin receptor ligands (fgSRLs), but resistance limits their use. Despite international guidelines, the choice of second-line therapy is debated. METHODS We aim to discuss resistance to fgSRLs, identify second-line therapy determinants and assess glycemia's impact to provide valuable insights for acromegaly management in clinical practice. A group of Italian endocrinologists expert in the pituitary field participated in a two-round Delphi panel between July and September 2023. The Delphi questionnaire encompassed a total of 75 statements categorized into three sections: resistance to fgSRLs therapy and predictors of response; determinants for the selection of second-line therapy; the role of glycemia in the therapeutic management. The statements were rated on a 6-point Likert scale. RESULTS Fifty-nine (79%) statements reached a consensus. IGF-1 levels resulted central for evaluating resistance to fgSRLs, that should be defined considering also symptomatic clinical response, degree of tumor shrinkage and complications, using clinician- and patient-reported outcome tools available. Factors to be evaluated for the choice of second-line medical therapy are hyperglycemia-that should be managed as in non-acromegalic patients-tumor remnant, resistant headache and compliance. Costs do not represent a main determinant in the choice of second-line medical treatment. CONCLUSION The experts agreed on a holistic management approach to acromegaly. It is therefore necessary to choose currently available highly effective second-line medical treatment (pegvisomant and pasireotide) based on the characteristics of the patients.
Collapse
Affiliation(s)
- S Grottoli
- Department of Medical Science, Division of Endocrinology, Diabetes and Metabolism, University of Turin, Turin, Italy.
| | - P Maffei
- Department of Medicine (DIMED), 3rd Medical Clinic, Padua University Hospital, Padua, Italy
| | | | - S Granato
- Medical Department, Pfizer Italia, Rome, Italy
| | - L Benedan
- Università Milano-Bicocca, Milan, Italy
| | - P Mariani
- Università Milano-Bicocca, Milan, Italy
| | - A Giustina
- Institute of Endocrine and Metabolic Sciences, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
4
|
Pirchio R, Auriemma RS, Vergura A, Pivonello R, Colao A. Long-term pasireotide therapy in acromegaly: extensive real-life experience of a referral center. J Endocrinol Invest 2024; 47:1887-1901. [PMID: 38532073 PMCID: PMC11266387 DOI: 10.1007/s40618-023-02299-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/28/2023] [Indexed: 03/28/2024]
Abstract
PURPOSE Pasireotide is a novel therapeutic option for patients with acromegaly resistant to first-generation somatostatin receptor ligands. To date, real-life data are still scant, therefore, the aim of the current study is to evaluate the impact of long-term pasireotide therapy on disease control, pituitary tumor size, gluco-insulinemic and lipid profile in a real-life setting. METHODS Retrospective study of data prospectively collected, evaluating hormonal, tumoral, and metabolic data of 28 patients with acromegaly administered with pasireotide in a pituitary tertiary referral center. RESULTS Within the first 12 months of treatment, 70.4% of patients achieved normal IGF-I levels, which was maintained at 36-month evaluation in these responders patients. Patients who started with pasireotide 60 mg monthly exhibited significantly lower IGF-I levels after 36 months (p = 0.05) as compared to patients administered first with pasireotide 20 or 40 mg monthly. The maximal tumoral diameter was significantly decreased after 12 months of pasireotide (p < 0.001) and a further reduction was registered throughout the following months, with 41.2% of patients achieving a significant reduction (> 25% of baseline measurement) after 36 months of treatment. Fasting glucose significantly increased during the first 6 months (p < 0.001) with a gradual rise in diabetes prevalence during the following months, resulting diabetes prevalence after 36 months of pasireotide significantly increased compared to baseline (p = 0.003), although with glycated hemoglobin levels within the normal range. Diabetes was managed using oral glucose-lowering drugs or glucagon-like peptide 1 agonists, with no patient requiring insulin therapy. Pasireotide improved lipid profile, mainly during the first 12 months of treatment, by increasing HDL and decreasing triglycerides levels. CONCLUSION Pasireotide is effective and safe in the long-term. Hyperglycemia is a common event and is manageable even without insulin treatment.
Collapse
Affiliation(s)
- R Pirchio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Via S. Pansini 5, 80131, Naples, Italy
| | - R S Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Via S. Pansini 5, 80131, Naples, Italy
| | - A Vergura
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Via S. Pansini 5, 80131, Naples, Italy
| | - R Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Via S. Pansini 5, 80131, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - A Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Via S. Pansini 5, 80131, Naples, Italy.
- UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy.
| |
Collapse
|
5
|
Basu R, Kulkarni P, Swegan D, Duran-Ortiz S, Ahmad A, Caggiano LJ, Davis E, Walsh C, Brenya E, Koshal A, Brody R, Sandbhor U, Neggers SJCMM, Kopchick JJ. Growth Hormone Receptor Antagonist Markedly Improves Gemcitabine Response in a Mouse Xenograft Model of Human Pancreatic Cancer. Int J Mol Sci 2024; 25:7438. [PMID: 39000545 PMCID: PMC11242728 DOI: 10.3390/ijms25137438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Chemotherapy treatment against pancreatic ductal adenocarcinoma (PDAC) is thwarted by tumoral activation of multiple therapy resistance pathways. The growth hormone (GH)-GH receptor (GHR) pair is a covert driver of multimodal therapy resistance in cancer and is overexpressed in PDAC tumors, yet the therapeutic potential of targeting the same has not been explored. Here, we report that GHR expression is a negative prognostic factor in patients with PDAC. Combinations of gemcitabine with different GHR antagonists (GHRAs) markedly improve therapeutic outcomes in nude mice xenografts. Employing cultured cells, mouse xenografts, and analyses of the human PDAC transcriptome, we identified that attenuation of the multidrug transporter and epithelial-to-mesenchymal transition programs in the tumors underlie the observed augmentation of chemotherapy efficacy by GHRAs. Moreover, in human PDAC patients, GHR expression strongly correlates with a gene signature of tumor promotion and immune evasion, which corroborate with that in syngeneic tumors in wild-type vs. GH transgenic mice. Overall, we found that GH action in PDAC promoted a therapy-refractory gene signature in vivo, which can be effectively attenuated by GHR antagonism. Our results collectively present a proof of concept toward considering GHR antagonists to improve chemotherapeutic outcomes in the highly chemoresistant PDAC.
Collapse
MESH Headings
- Animals
- Gemcitabine
- Humans
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Mice
- Xenograft Model Antitumor Assays
- Receptors, Somatotropin/metabolism
- Receptors, Somatotropin/antagonists & inhibitors
- Receptors, Somatotropin/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Cell Line, Tumor
- Mice, Nude
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Female
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Diabetes Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Deborah Swegan
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
| | - Arshad Ahmad
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
| | - Lydia J. Caggiano
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Honors Tutorial College, Ohio University, Athens, OH 45701, USA
| | - Emily Davis
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Christopher Walsh
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
| | - Edward Brenya
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Adeel Koshal
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA;
| | - Rich Brody
- InfinixBio LLC, Columbus, OH 43212, USA; (R.B.); (U.S.)
| | - Uday Sandbhor
- InfinixBio LLC, Columbus, OH 43212, USA; (R.B.); (U.S.)
| | | | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Diabetes Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
6
|
MacFarlane J, Korbonits M. Growth hormone receptor antagonist pegvisomant and its role in the medical therapy of growth hormone excess. Best Pract Res Clin Endocrinol Metab 2024; 38:101910. [PMID: 38981769 DOI: 10.1016/j.beem.2024.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Pegvisomant is a growth-hormone (GH) receptor antagonist that prevents the formation of the active heterotrimer of the dimerised GH receptor and the GH molecule necessary for downstream signal transduction. Over the past 20 years, it has become a key therapeutic option for physicians treating syndromes of GH/IGF-1 excess. Sufficient longitudinal follow-up data suggest that it can be deemed both safe and effective. It is the drug with the greatest potential for achieving an amelioration of the biochemical effects of GH excess with a corresponding normalisation of IGF-1 levels; however, insufficient dose titration has lessened real-world therapeutic outcomes. Theoretical concerns about stimulating tumour growth have been resolved as this has not been observed, while derangement of liver enzymes and local skin-related adverse reactions may occur in a minority of the patients. It may be a particularly impactful medication for the treatment of children, young people, and those with inherited disorders of GH excess, where other treatment modalities often fail. Combination therapy of pegvisomant with first- and second-generation somatostatin receptor ligands or with dopamine agonists remains an ongoing area of interest and research. High cost remains a barrier to the use of pegvisomant in many settings.
Collapse
Affiliation(s)
- James MacFarlane
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, UK.
| | - Márta Korbonits
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
7
|
Vitali E, Grasso A, Schiavone ML, Trivellin G, Sobacchi C, Mione M, Mazziotti G, Lania A. The direct impact of pegvisomant on osteoblast functions and bone development. J Endocrinol Invest 2024; 47:1385-1394. [PMID: 38159174 DOI: 10.1007/s40618-023-02281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Acromegaly is a chronic disease characterized by growth hormone (GH) hypersecretion, usually caused by a pituitary adenoma, resulting in elevated circulating levels of insulin-like growth factor type I (IGF-I). Pegvisomant (PEG), the GH-receptor (GHR) antagonist, is used in treating acromegaly to normalize IGF-I hypersecretion. Exposure to increased levels of GH and IGF-I can cause profound alterations in bone structure that are not completely reverted by treatment of GH hypersecretion. Indeed, there is evidence that drugs used for the treatment of acromegaly might induce direct effects on skeletal health regardless of biochemical control of acromegaly. METHODS We investigated, for the first time, the effect of PEG on cell proliferation, differentiation, and mineralization in the osteoblast cell lines MC3T3-E1 and hFOB 1.19 and its potential impact on bone development in zebrafish larvae. RESULTS We observed that PEG did not affect osteoblast proliferation, apoptosis, alkaline phosphatase (ALP) activity, and mineralization. After PEG treatment, the analysis of genes related to osteoblast differentiation showed no difference in Alp, Runx2, or Opg mRNA levels in MC3T3-E1 cells. GH significantly decreased cell apoptosis (- 30 ± 11%, p < 0.001) and increased STAT3 phosphorylation; these effects were suppressed by the addition of PEG in MC3T3-E1 cells. GH and PEG did not affect Igf-I, Igfbp2, and Igfbp4 mRNA levels in MC3T3-E1 cells. Finally, PEG did not affect bone development in zebrafish larvae at 5 days post-fertilization. CONCLUSION This study provides a first evidence of the impact of PEG on osteoblast functions both in vitro and in vivo. These findings may have clinically relevant implications for the management of skeletal health in subjects with acromegaly.
Collapse
Affiliation(s)
- E Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - A Grasso
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - M L Schiavone
- IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - G Trivellin
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - C Sobacchi
- National Research Council, Institute of Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - M Mione
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - G Mazziotti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy.
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy.
| | - A Lania
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| |
Collapse
|
8
|
Pirchio R, Auriemma RS, Vergura A, Pivonello R, Colao A. Investigational drugs for the treatment of acromegaly: new agents to transform therapy. Expert Opin Investig Drugs 2024; 33:509-522. [PMID: 38651260 DOI: 10.1080/13543784.2024.2343056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Disease control is essential to decrease morbidity burden and mortality in acromegaly patients. In the last decades, the availability of new drugs increased the rate of disease control. However, up to 55% of patients remain uncontrolled despite available treatment strategies in real-world data. The reasons for this finding may include poor adherence, inadequate tolerability, therapeutic inertia, and high costs. Since acromegaly is a chronic disease and medical therapy is usually life-long, patient's adherence to treatment is fundamental in both achieving and maintaining disease control. Less invasive routes of administration could improve adherence and concur to increase disease control rate. AREAS COVERED The aim of current review is to provide a detailed update about investigational drugs for acromegaly treatment currently under investigation as paltusotine, ONO-5788, AP102, GT-02037, ISIS 766720, CAM2024, Lanreotide PRF, DP1038, MTD201, solid dose injection of octreotide. EXPERT OPINION Medical therapy of acromegaly is an evolving field. Current studies are addressing patient's need for both new molecules and less invasive routes of administration for already existing drugs. It cannot be ruled out that drugs currently used for other diseases such as cancer could be considered in the future for the treatment of acromegaly.
Collapse
Affiliation(s)
- Rosa Pirchio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Renata S Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Alice Vergura
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| |
Collapse
|
9
|
Olejarz M, Szczepanek-Parulska E, Ruchala M. Lipoprotein alterations in endocrine disorders - a review of the recent developments in the field. Front Endocrinol (Lausanne) 2024; 15:1354098. [PMID: 38628593 PMCID: PMC11018929 DOI: 10.3389/fendo.2024.1354098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Dyslipidemia is one of the most common disorders worldwide, which, if left untreated, results in a multitude of complications. Thus proper diagnostics, which includes identifying of secondary causes of dyslipidemia is crucial. Endocrine disorders are an important cause of secondary dyslipidemia. This paper aims to review the publications on lipoprotein alterations in endocrine disorders from the past two years and provide an overview of the recent discoveries in this dynamically developing and large field. Significant changes in lipoprotein serum concentrations are present in most endocrinological diseases and can be modified with proper treatment. Some lipoproteins have also been proposed as markers in some endocrine diseases, e.g., thyroid carcinoma. From the scope of endocrine disorders, the largest number of studies explored the lipoprotein changes in polycystic ovary syndrome and in women during the menopausal and peri-menopausal period. Even though the association of thyroid disorders with dyslipidemia is already well studied, new research has delivered some exciting findings about lipoprotein alterations in euthyroid patients with either positive antithyroid peroxidase antibodies or reduced sensitivity to thyroid hormones. The problem of the adverse metabolic profile, including dyslipidemia in hypoprolactinemia has been recognized. Moreover, this review describes other significant discoveries encompassing lipoprotein alterations in disorders of the adrenals, thyroid, parathyroid glands, pituitary, and gonads. The up-to-date knowledge of the influence of endocrine disorders and hormonal changes on serum lipoproteins is prudent as it can significantly impact therapeutic decisions.
Collapse
Affiliation(s)
- Michal Olejarz
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | | | |
Collapse
|
10
|
Haberbosch L, Strasburger CJ. Efficacy and Safety of Pegvisomant in the Treatment of Acromegaly. Arch Med Res 2023; 54:102884. [PMID: 37659952 DOI: 10.1016/j.arcmed.2023.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Pegvisomant, the first and currently only clinically available growth hormone receptor antagonist, is an effective therapeutic option for the medical treatment of acromegaly, a rare disorder characterized by excessive growth hormone secretion. With now over 20 years of real world experience, its safety and efficacy is well-established. However, several aspects of its clinical use are still controversially discussed. The high cost of pegvisomant has limited its use in several countries, and recent studies have reported a lower efficacy than the initial clinical trials. A reported increase in tumor volume under therapy varies between studies and has been attributed to either actual growth or re-expansion after cessation of somatostatin receptor ligand therapy. Furthermore, different combinations of pegvisomant and other therapeutic agents aiming at reduction of acromegaly disease activity have been proposed to increase or retain effectiveness while lowering side effects and cost. This review aims to assess current clinical data on the safety and efficacy of pegvisomant while also addressing controversies surrounding its use.
Collapse
Affiliation(s)
- Linus Haberbosch
- Department of Endocrinology and Metabolism, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health at Charité Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Digital Clinician Scientist Program, Berlin, Germany
| | - Christian J Strasburger
- Department of Endocrinology and Metabolism, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|