1
|
Tung MC, Oner M, Soong SW, Cheng PT, Li YH, Chen MC, Chou CK, Kang HY, Lin FCF, Tsai SCS, Lin H. CDK5 targets p21 CIP1 to regulate thyroid cancer cell proliferation and malignancy in patients. Mol Med Rep 2025; 32:182. [PMID: 40280108 PMCID: PMC12059462 DOI: 10.3892/mmr.2025.13547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/12/2025] [Indexed: 04/29/2025] Open
Abstract
Cyclin‑dependent kinase 5 (CDK5), known for its role in neuronal function, has emerged as a key player in cancer biology, particularly in thyroid cancer. The present study explored the interaction between CDK5 and the cyclin‑dependent kinase inhibitor p21CIP1 in thyroid cancer (TC). Bioinformatic tools and immunoprecipitation assays were used to confirm that CDK5 targets p21 for ubiquitin‑mediated degradation, reducing its stability and tumor‑suppressive effects. Data from The Cancer Genome Atlas revealed a significant inverse correlation between CDK5 and p21 expression, with higher CDK5 levels linked to increased tumor malignancy and worse survival outcomes; conversely, higher p21 expression was correlated with an improved prognosis. Immunohistochemistry analysis of TC samples further confirmed that increased CDK5 and reduced p21 expression were associated with more advanced tumor stages and aggressive phenotypes. These findings suggested that CDK5‑mediated degradation of p21 contributes to TC progression and malignancy, highlighting the potential of targeting the CDK5‑p21 axis as a therapeutic strategy for management of TC.
Collapse
Affiliation(s)
- Min-Che Tung
- Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan, R.O.C
| | - Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Shiuan-Woei Soong
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Pang-Ting Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Yu-Hsuan Li
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Mei-Chih Chen
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Chen-Kai Chou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan, R.O.C
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan 83301, Taiwan, R.O.C
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 804959, Taiwan, R.O.C
- Center for Hormone and Reproductive Medicine Research, Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
| | - Frank Cheau-Feng Lin
- School of Medicine, Chung Shan Medical University, Taichung 402367, Taiwan, R.O.C
- Department of Surgery, Chung Shan University Hospital, Taichung 402367, Taiwan, R.O.C
| | - Stella Chin-Shaw Tsai
- Department of Otolaryngology, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan, R.O.C
- College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| |
Collapse
|
2
|
Jiao X, Zhang Q, Ye G, Xing F, Xie D, Wang L. Protective effects of apricot kernel oil and metformin against BPA-induced ovarian toxicity in rat models of polycystic ovary syndrome: insights into PI3K/AKT and mitochondrial apoptosis pathways. Toxicol Res (Camb) 2025; 14:tfaf071. [PMID: 40421425 PMCID: PMC12103898 DOI: 10.1093/toxres/tfaf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
In this study, the therapeutic synergistic effects of metformin (MET) and Apricot Kernel Oil (AKO) were investigated in an animal model of bisphenol A (BPA)-induced polycystic ovary syndrome (PCOS). BPA disrupts endocrine functions and induces oxidative stress in ovarian tissues, leading to PCOS. AKO and MET target underlying mechanisms associated with PCOS, particularly those related to insulin resistance and oxidative stress, which are critical in the pathology of this condition. Antioxidant activities, total phenolic, and flavonoid contents of AKO were performed. The AKO underwent liquid chromatographic-electrospray ionization tandem mass-spectrometric (LC-ESI-MS/MS) analysis after acetonitrile treatment. PCOS was induced in adult Wistar rats by administering BPA. After 60 days, the 70 rats were divided into seven groups (n = 10/group): Normal, PCOS, MET, AKO, and co-treatment with MET and AKO. On the 22ndday of the study, serum catalase, glutathione peroxidase, superoxide dismutase activity, LH, FSH, progesterone, estrogen, and testosterone hormones alongside inflammatory cytokines (TNF-a, IL-6, CRP, and IL-1β) and nitric oxide levels were measured. Ovarian tissues were isolated for measurements of ferric reducing ability of plasma and thiobarbituric acid reactive substances levels. The expression of genes and proteins related to mitochondrial and PI3K/AKT pathways was analyzed. The results demonstrated that AKO, in synergy with MET, modulated hormone levels, reduced pro-inflammatory cytokines, and enhanced antioxidant properties. AKO, in combination with MET modulated apoptosis via mitochondrial and PI3K/AKT pathways. These findings suggest that AKO holds promise as a potential therapeutic option for women with ovulation disorders, particularly those affected by bisphenol A-induced PCOS.
Collapse
Affiliation(s)
- Xuejuan Jiao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital Bengbu Medical College, No. 287, Changhuai Road, Longzihu District, Bengbu City, Anhui Province, 233000, China
| | - Qianqian Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital Bengbu Medical College, No. 287, Changhuai Road, Longzihu District, Bengbu City, Anhui Province, 233000, China
| | - Guoliu Ye
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital Bengbu Medical College, No. 287, Changhuai Road, Longzihu District, Bengbu City, Anhui Province, 233000, China
| | - Fang Xing
- Department of Pharmacy, The First Affiliated Hospital Bengbu Medical College, No. 287, Changhuai Road, Longzihu District, Bengbu City, Anhui Province, 233000, China
| | - Dongmei Xie
- Department of Pharmacy, The First Affiliated Hospital Bengbu Medical College, No. 287, Changhuai Road, Longzihu District, Bengbu City, Anhui Province, 233000, China
| | - Liqun Wang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital Bengbu Medical College, No. 287, Changhuai Road, Longzihu District, Bengbu City, Anhui Province, 233000, China
| |
Collapse
|
3
|
Gill K, Bindal E, Garg P, Kumar D, Bhattacharyya R, Banerjee D. Exposure of Bisphenols (BPA, BPB and BPC) in HepG2 Cells Results in Lysosomal Dysfunction and Lipid Accumulation. Cell Biol Int 2025; 49:709-722. [PMID: 40099744 DOI: 10.1002/cbin.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Nonalcoholic fatty liver disease poses a significant public health concern, as do the issues surrounding plastic usage. The bisphenols are reported to cause fat accumulation in the liver. However, literature is scanty about the effect of bisphenols on lysosomes or lysosomal functions. We predicted the interaction of bisphenols with lysosomal proteins available in the online databases using in silico tools. Molecular docking revealed that chosen Bisphenols interact with critical lysosomal proteins including lipid hydrolyzing enzymes. Following exposure of BPA, BPB and BPC to HepG2 cells fat accumulation and lysosomal functions were evaluated. Exposure to BPB and BPC results intracellular fat accumulation under experimental conditions like BPA. All three Bisphenols disturb lysosomal homeostasis perhaps by different mechanisms. Overall our results suggest that Bisphenols can also cause fat accumulation in liver by disturbing lysosomal homeostasis.
Collapse
Affiliation(s)
- Kiran Gill
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Eshika Bindal
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parul Garg
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepak Kumar
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajasri Bhattacharyya
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Feijó M, Carvalho TMA, Fonseca LRS, Vaz CV, Pereira BJ, Cavaco JEB, Maia CJ, Duarte AP, Kiss-Toth E, Correia S, Socorro S. Endocrine-disrupting chemicals as prostate carcinogens. Nat Rev Urol 2025:10.1038/s41585-025-01031-9. [PMID: 40379948 DOI: 10.1038/s41585-025-01031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 05/19/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds that are ubiquitous in the environment and in daily-usage products and interfere with the normal function of the endocrine system leading to adverse health effects in humans. Exposure to these chemicals might elevate the risk of metabolic disorders, developmental and reproductive defects, and endocrine-related cancers. Prostate cancer is the most common hormone-dependent cancer in men, and the fifth leading cause of cancer-related mortality, partly owing to a lack of knowledge about the mechanisms that lead to aggressive castration-resistant forms. In addition to the dependence of early-stage prostate cancer on androgen actions, the prostate is a target of oestrogenic regulation. This hormone dependence, along with the fact that exogenous influences are major risk factors for prostate cancer, make the prostate a likely target of harmful actions from EDCs. Various sources of EDCs and their different modes of action might explain their role in prostate carcinogenesis.
Collapse
Affiliation(s)
- Mariana Feijó
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Bruno J Pereira
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- Instituto Português de Oncologia de Coimbra, Coimbra, Portugal
| | - José Eduardo B Cavaco
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cláudio J Maia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana P Duarte
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Endre Kiss-Toth
- School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Sara Correia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Sílvia Socorro
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
5
|
Alcover KC, McAdam J, Denic-Roberts H, Byrne C, Sjodin A, Davis M, Jones R, Zhang Y, Rusiecki JA. Serum concentrations of persistent endocrine-disrupting chemicals in U.S. military personnel: A comparison by race/ethnicity and sex. Int J Hyg Environ Health 2025; 265:114540. [PMID: 39978232 PMCID: PMC11884994 DOI: 10.1016/j.ijheh.2025.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/07/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
OBJECTIVES/BACKGROUND We evaluated patterns of serum concentrations of endocrine disrupting chemicals (EDCs), namely polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs), in a U.S. military sample by race/ethnicity (R/E) and sex. METHODS Twenty-three EDCs were measured in stored serum samples obtained between 1995 and 2010 for 708 service members from the Department of Defense Serum Repository. For each EDC, geometric means (GM) were estimated using log-transformed concentrations in a linear regression model, for eight combined R/E/sex groups: non-Hispanic White (NHW), non-Hispanic Black (NHB), non-Hispanic Asian (NHA), and Hispanic men and women, adjusted for age and service branch and stratified by age tertile ("younger age": 17-23, "middle age": 24-30, and "older age": 31-52 years). Comparisons were made between our military sample and the National Health and Nutrition Examination Survey (NHANES) 2003-2004 data for NHW and NHB groups. RESULTS Within our military sample, the highest PCB concentrations were among older age NHB men and women and highest OCP concentrations among older age NHB women and NHA men. PBDE concentrations were generally highest in middle age Hispanic women and NHA men, though based on small sample size. Generally, NHB men and women had higher concentrations of EDCs in both the military and NHANES. CONCLUSIONS We found patterns of elevated EDC concentrations among NHB, NHA, and Hispanic groups in the military sample and for NHB men and women in NHANES. There were no consistent patterns of higher or lower EDCs comparing the military to NHANES. Future studies of EDCs and health outcomes should stratify by R/E/sex to account for potential disparities in EDC concentrations.
Collapse
Affiliation(s)
- Karl C Alcover
- Department of Medicine, Uniformed Services University of the Health Sciences (USUHS), 4301 Jones Bridge Rd, Bethesda, MD, USA
| | - Jordan McAdam
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr, Bethesda, MD, USA; Department of Preventive Medicine and Biostatistics, USUHS, 4301 Jones Bridge Rd, Bethesda, MD, USA
| | - Hristina Denic-Roberts
- Department of Preventive Medicine and Biostatistics, USUHS, 4301 Jones Bridge Rd, Bethesda, MD, USA; Oak Ridge Institute for Science and Education (ORISE), 4692 Millenium Dr, Belcamp, MD, USA
| | - Celia Byrne
- Department of Preventive Medicine and Biostatistics, USUHS, 4301 Jones Bridge Rd, Bethesda, MD, USA
| | - Andreas Sjodin
- Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd N E, Atlanta, GA, USA
| | - Mark Davis
- Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd N E, Atlanta, GA, USA
| | - Richard Jones
- Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd N E, Atlanta, GA, USA
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, USA; Department of Cancer Prevention and Control, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jennifer A Rusiecki
- Department of Preventive Medicine and Biostatistics, USUHS, 4301 Jones Bridge Rd, Bethesda, MD, USA.
| |
Collapse
|
6
|
Spada F, Rossi RE, Modica R, Gelsomino F, Rinzivillo M, Rubino M, Pisa E, La Salvia A, Fazio N. Functioning neuroendocrine tumors (NET): Minimum requirements for a NET specialist. Cancer Treat Rev 2025; 135:102907. [PMID: 40023966 DOI: 10.1016/j.ctrv.2025.102907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
INTRODUCTION AND AIMS Functioning neuroendocrine tumors (f-NETs) represent a minority of all NETs, however their management is challenging due to the impact on patients' survival and quality of life. In addition to f-NETs, paraneoplastic syndromes (PNS) are due to substances that are not related to the primary anatomical site, they can develop in different phases of NETs evolution, and might complicate the patient's clinical course. Dedicated guidelines are still scanty. We aim to review available literature on f-NETs to propose a useful tool for clinicians in order to improve the diagnostic process and the management. METHODS Narrative review focused on f-NETs. RESULTS The most common f-NETs include insulinomas, gastrinomas and carcinoid syndrome (CS)- associated NETs. Symptoms related to hormone production may overlap with other common endocrine and gastrointestinal disorders, highlighting the pivotal role of multidisciplinary management. Somatostatin analogs (SSAs) represent the gold standard first-line treatment of most f-NETs, often followed by or combined with other treatments (surgery, liver-directed therapies, targeted therapies, peptide receptor radionuclide therapy). Paraneoplastic syndromes can develop in different phases of NET evolution and might complicate the patient's clinical course and response to therapy. CONCLUSIONS The management of hormonal syndromes is challenging and must be based on the multidisciplinary approach. Herein, we pointed out the minimal requirements for a NET specialist in the diagnosis and treatment of f-NETs. Efforts should be made to improve the awareness of functioning forms, to understand their pathogenesis and to improve their management.
Collapse
Affiliation(s)
- F Spada
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, IRCCS, Milan, Italy
| | - R E Rossi
- Gastroenterology and Endoscopy Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - R Modica
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - F Gelsomino
- Department of Oncology and Hematology, Division of Oncology, University Hospital of Modena, Modena, Italy
| | - M Rinzivillo
- Digestive Disease Unit, Sant'Andrea University Hospital, ENETS Center of Excellence, 00189 Rome, Italy
| | - M Rubino
- Onco-Endocrinology Unit, IEO European Institute of Oncology IRCCS, Milano, Italy
| | - E Pisa
- Division of Pathology and Laboratory Medicine, European Institute of Oncology, IEO, IRCCS, Milan, Italy
| | - Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), Rome, Italy
| | - N Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, IRCCS, Milan, Italy.
| |
Collapse
|
7
|
Fan T, Han T, Gu A, Jin J, Cui Q, Guo J, Zhang X, Yu H, Shi W. Novel Approach to Screen Endocrine-Disrupting Chemicals via Endocrine-Enhanced Reduced Human Transcriptome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4845-4856. [PMID: 40042996 DOI: 10.1021/acs.est.4c13159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) can interfere with multiple pathways and trigger different modes of action. Thus, the traditional EDC in vitro screening processes often require a battery of bioassays to cover multiple target pathways. Here we developed an endocrine-enhanced reduced human transcriptome (ERHT) focused on hormone receptor signaling induced by the EDCs regulating specific genes. ERHT was developed based on 1200 prioritized genes covering 110 endocrine-related biological pathways across eight potential adverse outcomes. The ability of this approach to identify EDCs was derived from machine learning of 1068 dose-dependent transcriptome profiles and enhanced by quantifying chemical-induced critical pathway responses, and thus, it demonstrated excellent classification performance (AUC = 0.84 ± 0.03) in internal cross-validation. We ultimately applied this approach to known EDCs and inactive substances to validate the reliability of this approach. Through external validation on 210 chemicals, the extrapolation accuracy exceeded 80%, demonstrating the outstanding practical performance of this approach. Meanwhile, the pathway responses induced by the same chemical were consistent with the experimental results reported by multiple sequencing platforms, highlighting the robustness of this approach. The above results demonstrate that this approach can provide novel insights for EDCs' high-throughput screening and comprehensive toxic mechanisms through biological pathways.
Collapse
Affiliation(s)
- Tianle Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tianhao Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aoran Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jinsha Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qian Cui
- Nanjing Yangtze River Delta Green Development Institute, Nanjing 210093, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| |
Collapse
|
8
|
Yu Z, Yang W, Zhang Q, Zheng M. Unveiling the impact of estrogen exposure on ovarian cancer: a comprehensive risk model and immune landscape analysis. Toxicol Mech Methods 2025; 35:279-291. [PMID: 39252197 DOI: 10.1080/15376516.2024.2402865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
This study examines the impact of estrogenic compounds like bisphenol A (BPA), estradiol (E2), and zearalenone (ZEA) on human ovarian cancer, focusing on constructing a risk model, conducting gene set variation analysis (GSVA), and evaluating immune infiltration. Differential gene expression analysis identified 980 shared differentially expressed genes (DEGs) in human ovarian cells exposed to BPA, E2, and ZEA, indicating disruptions in ribosome biogenesis and RNA processing. Using the cancer genome atlas ovarian cancer (TCGA-OV) dataset, a least absolute shrinkage and selection operator (LASSO)-based risk model was developed incorporating prognostic genes 4-hydroxyphenylpyruvate dioxygenase like (HPDL), Thy-1 cell surface antigen (THY1), and peptidase inhibitor 3 (PI3). This model effectively stratified ovarian cancer patients into high-risk and low-risk categories, showing significant differences in overall survival, disease-specific survival, and progression-free survival. GSVA analysis linked HPDL expression to pathways related to the cell cycle, DNA damage, and repair, while THY1 and PI3 were associated with apoptosis, hypoxia, and proliferation pathways. Immune infiltration analysis revealed distinct immune cell profiles for high and low-expression groups of HPDL, THY1, and PI3, indicating their influence on the tumor microenvironment. The findings demonstrate that estrogenic compounds significantly alter gene expression and oncogenic pathways in ovarian cancer. The risk model integrating HPDL, THY1, and PI3 offers a strong prognostic tool, with GSVA and immune infiltration analyses providing insights into the interplay between these genes and the tumor microenvironment, suggesting potential targets for personalized therapies.
Collapse
Affiliation(s)
- Zhongna Yu
- Department of Obstetrics and Gynaecology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Weili Yang
- Department of Obstetrics and Gynaecology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qinwei Zhang
- Department of Obstetrics and Gynaecology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Mengyu Zheng
- Department of Obstetrics and Gynaecology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
9
|
Xiong Y, Li Z, Xiong X, Luo Z, Zhong K, Hu J, Sun S, Chen C. Associations between phenol and paraben exposure and the risk of developing breast cancer in adult women: a cross-sectional study. Sci Rep 2025; 15:4038. [PMID: 39900803 PMCID: PMC11791042 DOI: 10.1038/s41598-025-88765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
Increasing evidence suggests that endocrine-disrupting chemicals (EDCs) have adverse effects on breast cancer (BC). The aim of this study was to assess the association between exposure to prevalent EDCs-phenols and parabens-and the risk of developing BC. Data on urinary bisphenol A (BPA), triclosan (TRS), benzophenone-3 (BP3), methyl paraben (MPB), ethyl paraben (EPB), propyl paraben (PPB), and butyl paraben (BUP) were obtained from the 2005-2014 National Health and Nutrition Examination Survey. A total of 4455 subjects were included in this cross-sectional study. The results from the weighted multivariable regression models indicated that exposure to elevated concentrations of TRS increased the risk of developing BC by 2.33 (Q2: 95% CI = 1.45-3.75, p < 0.001) and 1.94 times (Q3: 95% CI = 1.21-3.09, p = 0.006), respectively. The nonlinear association between TRS concentrations and the risk of developing BC was statistically significant (P nonlinear = 0.007), with the restricted cubic splines (RCS) curve exhibiting an inverted U shape. The association between TRS concentrations and the risk of developing BC was more pronounced among overweight individuals (BMI ≥ 25 kg/m2), those aged < 60 years, and white individuals. Weighted quantile sum (WQS) and Bayesian Kernel Machine Regression (BKMR) analysis revealed no significant overall association between mixtures of urinary phenol and paraben metabolites and BC risk. However, TRS exposure was the most influential, with higher TRS concentrations (both continuous and categorical) significantly associated with an increased BC risk, particularly in overweight individuals (BMI ≥ 25 kg/m2), those aged < 60 years, and white individuals.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Xiong Xiong
- Department of Information, Electronic and Bioengineering, Politecnico Di Milano., Piazza Leonardo da Vinci, 32, 20133, Milano, MI, Italy
| | - Zixuan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Kaixin Zhong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Jiawei Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China.
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
10
|
Amani AM, Abbasi M, Najdian A, Mohamadpour F, Kasaee SR, Kamyab H, Chelliapan S, Shafiee M, Tayebi L, Vaez A, Najafian A, Vafa E, Mosleh-Shirazi S. MXene-based materials for enhanced water quality: Advances in remediation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117817. [PMID: 39908870 DOI: 10.1016/j.ecoenv.2025.117817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
Two-dimensional MXenes are promising candidates for water treatment because of their large surface area (e.g., exceeding 1000 m²/g for certain structures), high electrical conductivity (e.g., >1000 S/m), hydrophilicity, and chemical stability. Their strong sorption selectivity and effective reduction capacity, exemplified by heavy metal adsorption efficiencies exceeding 95 % in several studies, coupled with facile surface modification, make them suitable for removing diverse contaminants. Applications include the removal of heavy metals (e.g., achieving >90 % removal of Pb(II)), dye removal (e.g., demonstrating >80 % removal of methylene blue), and radioactive waste elimination. Furthermore, 3D MXene architecture exhibit enhanced performance in antibacterial activities (e.g., against bacteria), desalination rejection percentage, and photocatalytic degradation of organic contaminants. However, several challenges have remained, which necessitate further investigation into toxicity (e.g., assessing effects on aquatic organisms), scalability, and cost-effectiveness of large-scale production. This review summarizes recent advancements in 3D MXene-based functional materials for wastewater treatment and water remediation, critically analyzing their both potential and limitations.
Collapse
Affiliation(s)
- Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atena Najdian
- The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farzaneh Mohamadpour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Reza Kasaee
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- UTE University, Faculty of Architecture and Urbanism, Architecture Department, TCEMC Investigation Group, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Republic of Korea.
| | - Shreeshivadasan Chelliapan
- Department of Smart Engineering and Advanced Technology, Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia.
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Institute for Engineering in Medicine, Health & Human Performance (EnMed), Batten College of Engineering and Technology, Old Dominion University, Norfolk, VA 23529, USA
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Najafian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| |
Collapse
|
11
|
Umnova NV, Myshliavkina TA, Lavrenov AR, Shelepchikov AA, Roumak VS. Environmental contamination with dioxins: experience of ecotoxicity survey and assessment using wild mammalian model (bank vole C. glareolus) inhabiting forests outside sanitary zones of municipal waste landfills. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5911-5923. [PMID: 39961927 DOI: 10.1007/s11356-025-36050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/30/2025] [Indexed: 03/18/2025]
Abstract
Dioxins are known to be toxic for biota at every dose and their long-term effects are reported for almost 50 years of investigations. Our researches of dioxin accumulation by bank voles living in the vicinity of several landfills near Moscow (landfills "Lesnaya" and "Kouchino") demonstrated the similarity of dioxin profiles in soil and animal samples, and an increase of highly toxic congeners' concentrations in the bank voles' bodies. We investigated also the probable public cancer risk resulting from the comparable lifetime exposure of the voles' population with dioxins' low doses, and our evaluation verified the hazard of cancer development supported by alterations in the ahr gene expression in the liver cells. The results of this study determined the usefulness of calculating the probability of cancer development in hypothetical residents of the area around both landfills. For the landfill "Lesnaya," the values corresponded to the level acceptable for professional groups (3.72E-04), but unacceptable for the population, whereas for residents of the area in the vicinity of the landfill "Kouchino," the level was considered to be unacceptable (1.91E-03) neither for the population nor for the professional groups. The revealed ecotoxicological situation may be quite hazardous for the population living in the area contaminated with dioxins, and the human health risks should be assessed. Thus, the prospects of the initial public health screening should consider our set of techniques used, as the effects described permit taking into account the mechanisms of interaction between the environmental factors and those determined by the characteristics of population real exposure.
Collapse
Affiliation(s)
- Nataliya V Umnova
- A.N. Severtsov Institute of Ecology and Evolution, RAS, 33, Leninsky Prospect, Moscow, 119071, Russia.
| | - Tatiyana A Myshliavkina
- A.N. Severtsov Institute of Ecology and Evolution, RAS, 33, Leninsky Prospect, Moscow, 119071, Russia
- M.V. Lomonosov Moscow State University, 1-12, Leninskie Gory, Moscow, 119991, Russia
| | - Anton R Lavrenov
- A.N. Severtsov Institute of Ecology and Evolution, RAS, 33, Leninsky Prospect, Moscow, 119071, Russia
- M.V. Lomonosov Moscow State University, 1-12, Leninskie Gory, Moscow, 119991, Russia
| | - Andrey A Shelepchikov
- A.N. Severtsov Institute of Ecology and Evolution, RAS, 33, Leninsky Prospect, Moscow, 119071, Russia
| | - Vladimir S Roumak
- A.N. Severtsov Institute of Ecology and Evolution, RAS, 33, Leninsky Prospect, Moscow, 119071, Russia
- M.V. Lomonosov Moscow State University, 1-12, Leninskie Gory, Moscow, 119991, Russia
| |
Collapse
|
12
|
Castro MED, Cunha LL, Ward LS. Narrative overview of possible preventive measures for differentiated thyroid carcinomas. Heliyon 2025; 11:e41284. [PMID: 39811343 PMCID: PMC11731471 DOI: 10.1016/j.heliyon.2024.e41284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
There is compelling evidence that although the increased availability of sensitive imaging is the main cause of the increasing incidence of differentiated thyroid cancer, particularly the papillary type, there are other factors involved. Despite the acknowledged role of genetic and certain lifestyle factors, comprehensive studies delineating the interactions between multiple risk factors and the mechanistic pathways involved are scarce. A greater understanding of both modifiable and non-modifiable risk factors for thyroid cancer is critical to prevent and manage the disease and could provide a scientific basis for future research into more appropriate lifestyles and living environments for people at high risk. We reviewed the main endogenous factors that, although considered non-modifiable, can help identify at-risk individuals. In addition, we offer a narrative review of other putative causes and make recommendations for measures to prevent the emergence of new cases of differentiated thyroid cancer.
Collapse
Affiliation(s)
- Maria Eduarda de Castro
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucas Leite Cunha
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
13
|
Praud D, Amadou A, Coudon T, Duboeuf M, Mercoeur B, Faure E, Grassot L, Danjou AM, Salizzoni P, Couvidat F, Dossus L, Severi G, Mancini FR, Fervers B. Association between chronic long-term exposure to airborne dioxins and breast cancer. Int J Hyg Environ Health 2025; 263:114489. [PMID: 39579601 DOI: 10.1016/j.ijheh.2024.114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/06/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
Breast cancer is the most common type of cancer among women. Environmental pollutants, specifically those with endocrine disrupting properties like dioxins, may impact breast cancer development. Current epidemiological studies on the association between exposure to dioxins and the risk of breast cancer show inconsistent results. To address these uncertainties, our objective was to investigate the impact of airborne dioxin exposure on breast cancer risk within the E3N cohort, encompassing 5222 cases identified during the 1990-2011 follow-up and 5222 matched controls. Airborne dioxin exposure was assessed using a Geographic Information System-based metric considering residential proximity to dioxin emitting sources, their technical characteristics, exposure duration and wind direction. Additional analyses were performed using dioxin concentrations estimated by a chemistry transport model, CHIMERE. The results suggest a slightly increased risk between cumulative dioxin exposure at the residential address and overall breast cancer risk (adjusted odds ratio (OR) = 1.03, 95% confidence interval (CI): 0.99-1.07, for a one standard deviation (SD) increment among controls (14.47 log-μg-TEQ/m2). The associations remained consistent for sources within 3, 5, and 10 km, and when restricting exposure to dioxin emissions from household waste incinerators. Similar OR estimates (OR = 1.02, 95% CI: 0.97-1.07, for a one SD increment) were obtained using the CHIMERE model. The findings of this study suggest the possibility of an increased risk of breast cancer associated with long-term residential exposure to dioxins and emphasize the importance of efforts to mitigate air pollution exposure.
Collapse
Affiliation(s)
- Delphine Praud
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Lyon, France.
| | - Amina Amadou
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Lyon, France
| | - Thomas Coudon
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Lyon, France
| | - Margaux Duboeuf
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Lyon, France
| | - Benoît Mercoeur
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Lyon, France
| | - Elodie Faure
- Paris-Saclay University, UVSQ, Inserm U1018 Unit, Gustave Roussy, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Villejuif, France
| | - Lény Grassot
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Lyon, France
| | - Aurélie Mn Danjou
- Paris Cité University, Inserm UMR1153 Epidemiology of Childhood and Adolescent Cancer, Center for Research in Epidemiology and Statistics (CRESS), Villejuif, France
| | - Pietro Salizzoni
- Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Ecully, France
| | - Florian Couvidat
- National Institute for Industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Laure Dossus
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Gianluca Severi
- Paris-Saclay University, UVSQ, Inserm U1018 Unit, Gustave Roussy, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Villejuif, France; Departement of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Italy
| | - Francesca Romana Mancini
- Paris-Saclay University, UVSQ, Inserm U1018 Unit, Gustave Roussy, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Villejuif, France
| | - Béatrice Fervers
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France; Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Lyon, France
| |
Collapse
|
14
|
Mastrorocco A, Temerario L, Vurchio V, Cotecchia S, Martino NA, Dell’Aquila ME. In Vitro Toxicity of a DEHP and Cadmium Mixture on Sheep Cumulus-Oocyte Complexes. Int J Mol Sci 2024; 26:5. [PMID: 39795862 PMCID: PMC11719533 DOI: 10.3390/ijms26010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) and Cadmium (Cd) affect female reproduction. To date, toxicological research has focused on the effects of individual contaminants, whereas living beings are exposed to mixtures. This study analyzed the effects of a DEHP/Cd mixture on nuclear and cytoplasmic maturation of sheep cumulus-oocyte complexes (COCs) compared with single compounds. COCs recovered from slaughterhouses-derived sheep ovaries were in vitro exposed to 0.5 μM DEHP, 0.1 μM Cd, or DEHP/Cd mixture at the same concentrations during 24 h of in vitro maturation (IVM). After IVM, oocyte nuclear chromatin configuration was evaluated, and bioenergetic/oxidative parameters were assessed on expanded cumulus cells (CCs) and matured oocytes (chi-square test and one-way ANOVA; p < 0.05). Under examined conditions, oocyte nuclear maturation was never impaired. However, COC bioenergetics was affected with stronger effects for the mixture than single compounds. Indeed, the percentages of matured oocytes with healthy mitochondrial distribution patterns were reduced (p < 0.001 and p < 0.05 for mixture and single compounds, respectively). Oocyte mitochondrial membrane potential, intracellular ROS levels, and mitochondria/ROS co-localization were reduced, with the same significance level, in all contaminated conditions. CCs displayed increased ROS levels only upon mixture exposure (p < 0.001). In conclusion, in vitro exposure to the DEHP/Cd mixture affected COC quality in the sheep to a greater extent than separate compounds.
Collapse
Affiliation(s)
- Antonella Mastrorocco
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (L.T.); (V.V.); (S.C.); (N.A.M.); (M.E.D.)
| | | | | | | | | | | |
Collapse
|
15
|
Johnson S, Corbin S, South C, Cawich S. The Impact of Environmental Health Determinants in Surgical Oncology. J Surg Oncol 2024; 130:1439-1446. [PMID: 39318181 DOI: 10.1002/jso.27889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
Environmental determinants of health refer to external factors in our surroundings that influence health outcomes. It is estimated that healthier environments could prevent almost one-quarter of the global burden of disease. Additionally, environmental factors, including lifestyle factors, air pollution, chemical exposures, and natural exposures, are responsible for a significant incidence of cancers and premature cancer deaths. Minority populations, low-income populations, children, and older adults are at increased risk for oncologic risks secondary to environmental factors.
Collapse
Affiliation(s)
- Shaneeta Johnson
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia, USA
- Satcher Health Leadership Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Sasha Corbin
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Chevar South
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Shamir Cawich
- Department of Surgery, University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
16
|
Hilz EN, Gillette R, Thompson LM, Crews D, Gore AC. Two Hits of EDCs Three Generations Apart: Evaluating Multigenerational Anxiety-Like Behavioral Phenotypes in Male Rats Exposed to Aroclor 1221 and Vinclozolin. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:127006. [PMID: 39739410 DOI: 10.1289/ehp15684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
BACKGROUND Increasing evidence supports an association of endocrine-disrupting chemical (EDC) exposures with adverse biological effects in humans and wildlife. Recent studies reveal that health consequences of environmental exposures may persist or emerge across generations. This creates a dual conundrum: that we are exposed to contemporary environmental chemicals overlaid upon the inheritance of our ancestors' exposure profiles. Even when legacy EDCs are phased out, they may remain relevant due to persistence in the environment together with intergenerational inheritance of their adverse biological effects. Thus, we all possess a body burden of legacy contaminants, and we are also increasingly exposed to new generations of EDCs. OBJECTIVES We assessed the effects of direct and ancestral exposures to EDCs across six generations on anxiety-like behaviors in male rats using our "two hits, three generations apart" multigenerational EDC exposure experimental model. We investigated two classes of EDCs with distinct hormonal actions and historical use-the weakly estrogenic polychlorinated biphenyl (PCB) mixture Aroclor 1221 (A1221) and the anti-androgenic fungicide vinclozolin (VIN)-in both the maternal and paternal line. We also determined if a hormonal mechanism drives these effects across generations. METHODS Rats were gestationally exposed to A1221, VIN, or vehicle [dimethyl sulfoxide (DMSO)] in the F1 generation. Three generations later, the F4 generation was given the same or a different exposure. Anxiety-like behavior was measured in the open field test, light:dark box, and elevated plus maze across generations. Serum was collected at the end of the experiment, and concentrations of estradiol and corticosterone were analyzed. RESULTS Although direct exposure did not affect behavior in F1 males, ancestral exposure to VIN decreased anxiety-like behavior in the F3 paternal line compared to vehicle. In the F4 paternal line, ancestral A1221 followed by direct exposure to VIN increased anxiety-like behavior compared to controls. In the F6 maternal line, relative to vehicle, the double ancestral hits of A1221/VIN decreased anxiety-like behavior. Serum hormones weakly predicted behavioral changes in the F4 paternal line and were modestly affected in the F4 and F6 maternal lines. DISCUSSION Our data suggest that anxiety-like behavioral phenotypes emerge transgenerationally in male rats in response to EDC exposure and that multiple hits of either the same or a different EDC can increase the impact in a lineage-specific manner. https://doi.org/10.1289/EHP15684.
Collapse
Affiliation(s)
- Emily N Hilz
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Ross Gillette
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Lindsay M Thompson
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - David Crews
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Andrea C Gore
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
17
|
Heldring M, Duijndam B, Kyriakidou A, van der Meer O, Tedeschi M, van der Laan J, van de Water B, Beltman J. Interdependency of estradiol-mediated ERα activation and subsequent PR and GREB1 induction to control cell cycle progression. Heliyon 2024; 10:e38406. [PMID: 39583845 PMCID: PMC11582769 DOI: 10.1016/j.heliyon.2024.e38406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 11/26/2024] Open
Abstract
Various groups of chemicals that we encounter in every-day life are known to disrupt the endocrine system, such as estrogen mimics that can disturb normal cellular development and homeostasis. To understand the effect of estrogen on intracellular protein dynamics and how this relates to cell proliferation, we aimed to develop a quantitative description of transcription factor complexes and their regulation of cell cycle progression in response to estrogenic stimulation. We designed a mathematical model that describes the dynamics of three proteins, GREB1, PR and TFF1, that are transcriptionally activated upon binding of 17β-estradiol (E2) to estrogen receptor alpha (ERα). Calibration of this model to imaging data monitoring the expression dynamics of these proteins in MCF7 cells suggests that transcriptional activation of GREB1 and PR depends on the association of the E2-ERα complex with both GREB1 and PR. We subsequently combined this ER signaling model with a previously published cell cycle model and compared this to quantification of cell cycle durations in MCF7 cells following nuclei tracking based on images segmented with deep neural networks. The resulting model predicts the effect of GREB1 and PR knockdown on cell cycle progression, thus providing mechanistic insight in the molecular interactions between ERα-regulated proteins and their relation to cell cycle progression. Our findings form a valuable basis to further investigate the pharmacodynamics of endocrine disrupting chemicals and their influence on cellular behavior.
Collapse
Affiliation(s)
- M.M. Heldring
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - B. Duijndam
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
- Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Graadt van Roggenweg 500, 3531 AH, Utrecht, the Netherlands
| | - A. Kyriakidou
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - O.M. van der Meer
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - M. Tedeschi
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - J.W. van der Laan
- Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Graadt van Roggenweg 500, 3531 AH, Utrecht, the Netherlands
| | - B. van de Water
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - J.B. Beltman
- Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| |
Collapse
|
18
|
Sari Erkan H, Kaska D, Kara N, Onkal Engin G. Fluoxetine removal by anodic oxidation using different anode materials and graphite cathode. ENVIRONMENTAL TECHNOLOGY 2024; 45:5674-5687. [PMID: 38234107 DOI: 10.1080/09593330.2024.2304660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Fluoxetine (FLX) is a selective serotonin reuptake inhibitor (SSRI) medication commonly used to treat mental health disorders, but it can be harmful to the environment if not properly disposed of due to incomplete metabolism. In this study, electrochemical anodic oxidation with mixed metal oxide anodes was studied as a method to remove FLX from water and wastewater. Iridium dioxide-coated titanium (Ti/IrO2) and ruthenium dioxide-coated Ti (Ti/RuO2) electrodes were found to be more effective than platinum-coated Ti (Ti/Pt) electrodes, with removal efficiencies of 91.5% and 93.9%, respectively. Optimal conditions for FLX removal were determined to be an applied current of 150 mA, initial pH of 5, and oxidation time of 120 min. The rate of FLX degradation (kFLX) for the Ti/Pt, Ti/IrO2, and Ti/RuO2 electrodes were determined to be 0.0081 min-1 (R2:0,8161), 0.0163 min-1 (R2:0,9823), and 0.0168 (R2:0,9901) min-1 for 25 mg/L initial FLX concentration, respectively. The kFLX values varied based on the initial FLX concentration and decreased as the initial FLX concentration increased. The specific energy consumption (SEC) after 120 min of operation was 51.0 kWh/m3 for the Ti/Pt electrode, 39.6 kWh/m3 for the Ti/IrO2 electrode, and 48.6 kWh/m3 for the Ti/RuO2 electrode under optimised conditions. Overall, electrochemical anodic oxidation is an effective method for removing FLX from water and wastewater, with Ti/IrO2 and Ti/RuO2 electrodes providing superior performance compared to Ti/Pt electrodes.
Collapse
Affiliation(s)
- Hanife Sari Erkan
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Deniz Kaska
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Narin Kara
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Guleda Onkal Engin
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
19
|
Pang WK, Kuznetsova E, Holota H, De Haze A, Beaudoin C, Volle DH. Understanding the role of endocrine disrupting chemicals in testicular germ cell cancer: Insights into molecular mechanisms. Mol Aspects Med 2024; 99:101307. [PMID: 39213722 DOI: 10.1016/j.mam.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/14/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review examines the complex interplay between endocrine disrupting chemicals (EDCs) and the development of testicular germ cell tumors (TGCTs). Despite the high cure rates of TGCTs, challenges in diagnosis and treatment remain, necessitating a deeper understanding of the etiology of the disease. Here, we emphasize current knowledge on the role of EDCs as potential risk factors for TGCTs, focusing on pesticides and perfluorinated and polyfluoroalkyl substances (PFAs/PFCs). Evidence suggests that EDCs disrupt endocrine pathways and induce epigenetic changes that contribute to the development of TGCTs. However, the direct link between EDCs and TGCTs remains elusive and requires further investigation of the molecular mechanisms. We also highlighted the importance of studying nuclear receptors as potential targets for understanding TGCT etiology. In addition, recent evidence implicates PFAs/PFCs in TGCT incidence, highlighting the need for further research into their impact on human health. Overall, this review provides valuable insights into the potential role of EDCs in TGCT development and suggests avenues for future research, while also highlighting how understanding their influence may pave the way for novel therapeutic approaches to improve disease management.
Collapse
Affiliation(s)
- Won-Ki Pang
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France.
| | - Ekaterina Kuznetsova
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Hélène Holota
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Angélique De Haze
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Claude Beaudoin
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - David H Volle
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
20
|
Zeng B, Wu Y, Huang Y, Colucci M, Bancaro N, Maddalena M, Valdata A, Xiong X, Su X, Zhou X, Zhang Z, Jin Y, Huang W, Bai J, Zeng Y, Zou X, Zhan Y, Deng L, Wei Q, Yang L, Alimonti A, Qi F, Qiu S. Carcinogenic health outcomes associated with endocrine disrupting chemicals exposure in humans: A wide-scope analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135067. [PMID: 38964039 DOI: 10.1016/j.jhazmat.2024.135067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are persistent and pervasive compounds that pose serious risks. Numerous studies have explored the effects of EDCs on human health, among which tumors have been the primary focus. However, because of study design flaws, lack of effective exposure levels of EDCs, and inconsistent population data and findings, it is challenging to draw clear conclusions on the effect of these compounds on tumor-related outcomes. Our study is the first to systematically integrate observational studies and randomized controlled trials from over 20 years and summarize over 300 subgroup associations. We found that most EDCs promote tumor development, and that exposure to residential environmental pollutants may be a major source of pesticide exposure. Furthermore, we found that phytoestrogens exhibit antitumor effects. The findings of this study can aid in the development of global EDCs regulatory health policies and alleviate the severe risks associated with EDCs exposure.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuwei Wu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yin Huang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Manuel Colucci
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Nicolò Bancaro
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Martino Maddalena
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Aurora Valdata
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Xingyu Xiong
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xingyang Su
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xianghong Zhou
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Zilong Zhang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuming Jin
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Weichao Huang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Jincheng Bai
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuxiao Zeng
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoli Zou
- Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, China
| | - Linghui Deng
- National Clinical Research Center of Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China; Neurodegenerative Disorders Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Qiang Wei
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Lu Yang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Fang Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Shi Qiu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China; Università della Svizzera Italiana, CH6900 Lugano, Switzerland; Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Amon M, Kek T, Klun IV. Endocrine disrupting chemicals and obesity prevention: scoping review. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:138. [PMID: 39227884 PMCID: PMC11373446 DOI: 10.1186/s41043-024-00627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/17/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Exposure to endocrine disrupting chemicals (EDCs) can result in alterations of natural hormones in the body. The aim of this review article is to highlight the knowledge about EDCs and obesity. METHODS A scoping review of the electronic literature was performed using PubMed platform for studies on EDCs and obesity published between the years 2013-2023. A total of 10 systematic reviews and meta-analysis studies met our inclusion criteria on more prominent EDCs focusing mainly on bisphenols, including parabens, triclosan, and phthalates, and their association with obesity. DESIGN Scoping review. RESULTS EDCs, mostly bisphenols and phthalates, are related to health effects, while there is less information on the impact of parabens and triclosan. A series of negative physiological effects involving obesogenic, diabetogenic, carcinogenic, and inflammatory mechanisms as well as epigenetic and microbiota modulations was related to a prolonged EDCs exposure. A more profound research of particular pollutants is required to illuminate the accelerating effects of particular EDCs, mixtures or their metabolites on the mechanism of the development of obesity. CONCLUSION Considering the characteristics of EDCs and the heterogeneity of studies, it is necessary to design specific studies of effect tracking and, in particular, education about daily preventive exposure to EDCs for the preservation of long-term public health.
Collapse
Affiliation(s)
- Mojca Amon
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000, Ljubljana, Slovenia.
| | - Tina Kek
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000, Ljubljana, Slovenia
| | - Irma Virant Klun
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
22
|
Sharma N, Kumar V, S V, Umesh M, Sharma P, Thazeem B, Kaur K, Thomas J, Pasrija R, Utreja D. Hazard identification of endocrine-disrupting carcinogens (EDCs) in relation to cancers in humans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104480. [PMID: 38825092 DOI: 10.1016/j.etap.2024.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/21/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Endocrine disrupting chemicals or carcinogens have been known for decades for their endocrine signal disruption. Endocrine disrupting chemicals are a serious concern and they have been included in the top priority toxicants and persistent organic pollutants. Therefore, researchers have been working for a long time to understand their mechanisms of interaction in different human organs. Several reports are available about the carcinogen potential of these chemicals. The presented review is an endeavor to understand the hazard identification associated with endocrine disrupting carcinogens in relation to the human body. The paper discusses the major endocrine disrupting carcinogens and their potency for carcinogenesis. It discusses human exposure, route of entry, carcinogenicity and mechanisms. In addition, the paper discusses the research gaps and bottlenecks associated with the research. Moreover, it discusses the limitations associated with the analytical techniques for detection of endocrine disrupting carcinogens.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Vinay Kumar
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India.
| | - Vimal S
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka 560029, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Basheer Thazeem
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Palakkad, Kerala 678592, India
| | - Komalpreet Kaur
- Punjab Agricultural University, Institute of Agriculture, Gurdaspur, Punjab 143521, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
23
|
Modica R, La Salvia A, Liccardi A, Cozzolino A, Di Sarno A, Russo F, Colao A, Faggiano A. Dyslipidemia, lipid-lowering agents and neuroendocrine neoplasms: new horizons. Endocrine 2024; 85:520-531. [PMID: 38509261 PMCID: PMC11291585 DOI: 10.1007/s12020-024-03767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Neuroendocrine neoplasms (NENs) are a heterogeneous group of malignancies originating from cells with a neuroendocrine phenotype. The complex relationship between lipid metabolism and cancer is gaining interest and a potential anti-cancer effect of lipid lowering agents is being considered. This review aims to discuss the current understanding and treatment of dyslipidaemia in NENs, focusing on the role of lipid lowering agents, including new therapeutic approaches, and future perspectives as possible tool in cancer prevention and tumor-growth control. METHODS We performed an electronic-based search using PubMed updated until December 2023, summarizing the available evidence both in basic and clinical research about lipid lowering agents in NENs. RESULTS Dyslipidemia is an important aspect to be considered in NENs management, although randomized studies specifically addressing this topic are lacking, unlike other cancer types. Available data mainly regard statins, and in vitro studies have demonstrated direct antitumor effects, including antiproliferative effects in some cancers, supporting possible pleiotropic effects also in NENs, but data remain conflicting. Ezetimibe, omega 3-fatty acids, fibrates and inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) may enhance the regulation of lipid homeostasis, as demonstrated in other cancers. CONCLUSIONS Targeting dyslipidemia in NENs should be part of the multidisciplinary management and an integrated approach may be the best option for both metabolic and tumor control. Whether lipid lowering agents may directly contribute to tumor control remains to be confirmed with specific studies, focusing on association with other metabolic risk, disease stage and primary site.
Collapse
Affiliation(s)
- Roberta Modica
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131, Naples, Italy.
| | - Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), 00161, Rome, Italy
| | - Alessia Liccardi
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131, Naples, Italy
| | - Alessia Cozzolino
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Antonella Di Sarno
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131, Naples, Italy
| | - Flaminia Russo
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189, Rome, Italy
| | - Annamaria Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131, Naples, Italy
- UNESCO Chair, Education for Health and Sustainable Development, Federico II University, 80131, Naples, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189, Rome, Italy
| |
Collapse
|
24
|
Luo R, Chen M, Hao S, Hun M, Luo S, Huang F, Lei Z, Zhao M. Associations of exposure to bisphenol-A or parabens with markers of liver injury/function among US adults in NHANES 2011-2016. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00704-8. [PMID: 39020160 DOI: 10.1038/s41370-024-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Bisphenol-A (BPA) and parabens are common endocrine-disrupting compounds (EDCs) that are used extensively in consumer products worldwide and are widely found in the environment. OBJECTIVE The purpose of this study was to comprehensively explore the correlations between urinary BPA/parabens levels and liver injury/function markers. METHODS In this cross-sectional study, we used National Health and Nutrition Examination Survey (NHANES) data from 2011 to 2016. The exposure variables were urinary BPA and four urinary parabens [methylparaben (MPB), ethylparaben (EPB), propylparaben (PPB), and butylparaben (BPB)], while the outcome variables were indicators of liver function/injury [alanine aminotransferase (ALT), aspartate aminotransferase (AST), AST/ ALT, albumin (ALB), total protein (TP), total bilirubin (TBIL), alkaline phosphatase (ALP), and the fibrosis-4 index (FIB-4)]. Multiple linear regression and weighted quantile sum (WQS) regression analyses were applied to explore the relationships between the individual/combined exposure variables and the liver injury/function indicators, respectively. Furthermore, stratified analysis was employed to detect the associations influenced by age and sex. RESULTS A total of 2,179 adults were eligible for the present analysis. Multivariate linear regression analysis revealed positive associations of EPB with AST, ALT, TP, and FIB-4 scores and negative associations of BPA with TP and ALB. The effects of urinary parabens on adverse outcomes in the liver (AST and ALT) were significant in the female and middle-aged subgroups. In addition, the WQS analysis revealed that the mixture of four compounds was negatively associated with ALB. BPA had the greatest effect on the serum ALB concentration (weight = 0.688). IMPACT Our present study provided novel evidence of significant associations between BPA or certain parabens and numerous markers of liver injury/function indicators. We found that higher urinary BPA concentrations were associated with worse liver function. Exposure to high EPB/PPB ratios was significantly associated with biomarkers of liver injury.
Collapse
Affiliation(s)
- Rongkun Luo
- Department of Hepatopancreatobiliary Surgery and Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingcong Chen
- Department of Hepatopancreatobiliary Surgery and Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Hao
- Department of Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Marady Hun
- Department of Hepatopancreatobiliary Surgery and Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shaobin Luo
- Department of Hepatopancreatobiliary Surgery and Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feizhou Huang
- Department of Hepatopancreatobiliary Surgery and Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhao Lei
- Department of Hepatopancreatobiliary Surgery and Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Mingyi Zhao
- Department of Hepatopancreatobiliary Surgery and Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
25
|
Ronzheimer A, Ringelmann AE, Morlock GE. Fast and sustainable planar yeast-based bioassay for endocrine disruptors in complex mixtures: Start of cell cultivation to result within one day. Talanta 2024; 272:125746. [PMID: 38447467 DOI: 10.1016/j.talanta.2024.125746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
High-performance thin-layer chromatography hyphenated with planar multiplex bioassays and high-resolution tandem mass spectrometry contributes to the non-target detection or even identification of active compounds in complex mixtures such as food, feed, cosmetics, commodities, and environmental samples. It can be used to discover previously unknown harmful or active substances in complex samples and to tentatively assign molecular formulas. This method is already faster than the commonly used in vitro assays along with liquid chromatographic separations, but overnight cell cultivation still prevents a planar bioassay from being performed within one day. There is also still potential for optimization in terms of sustainability. To achieve this, the planar bioassay protocols for the detection of androgen-like and estrogen-like compounds were harmonized. The successful minimization of the cell culture volume enabled accelerated cell cultivation, which allowed the bioassay to be performed within one day. This was considered a milestone achieved, as up to 23 samples per plate can now be analyzed from the start of cultivation to the biological endpoint on the same day. Doubling the substrate amount and increasing the pH of the silica gel layer led to a more sensitive and selective bioassay due to the enhanced fluorescence of the formed end-product. The faster and more sustainable bioassay protocol was applied to complex samples such as sunscreen and red wine to detect estrogen-like compounds. The developed method was validated by comparison with a standard method.
Collapse
Affiliation(s)
- Alisa Ronzheimer
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Anne E Ringelmann
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Gertrud E Morlock
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, Senckenbergstr. 3, 35390, Giessen, Germany.
| |
Collapse
|
26
|
Coperchini F, Greco A, Croce L, Teliti M, Calì B, Chytiris S, Magri F, Rotondi M. Do PFCAs drive the establishment of thyroid cancer microenvironment? Effects of C6O4, PFOA and PFHxA exposure in two models of human thyroid cells in primary culture. ENVIRONMENT INTERNATIONAL 2024; 187:108717. [PMID: 38728818 DOI: 10.1016/j.envint.2024.108717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Exposure to environmental pollutants is suspected to be one of the potential causes accounting for the increase in thyroid cancer (TC) incidence worldwide. Among the ubiquitous pollutants, per-polyfluoroalkyl substances (PFASs), were demonstrated to exert thyroid disrupting effects. Perfluoroalkyl carboxylates (PFCAs) represent a subgroup of PFAS and include perfluoro carboxylic acids (PFOA and PFHxA) and perfluoropolyether carboxylic acid (C6O4). The potential relationship between exposure to PFCAs and TC was not yet fully elucidated. This in vitro study investigated whether certain PFCAs (C6O4, PFOA, and PFHxA) can influence the composition of TC microenvironment. METHODS Two models of normal thyroid cells in primary cultures: Adherent (A-NHT) and Spheroids (S-NHT) were employed. A-NHT and S-NHT were exposed to C6O4, PFOA or PFHxA (0; 0.01; 0.1, 1; 10; 100; 1000 ng/mL) to assess viability (WST-1 and AV/PI assay), evaluate spherification index (SI) and volume specifically in S-NHT. CXCL8 and CCL2 (mRNA and protein), and EMT-related genes were assessed in both models after exposure to PFCAs. RESULTS PFHxA reduced the viability of both A-NHT and S-NHT. None of the PFCAs interfered with the volume or spherification process in S-NHT. CXCL8 and CCL2 mRNA and protein levels were differently up-regulated by each PFCAs, being PFOA and PFHxA the stronger inducers. Moreover, among the tested PFCAs, PFHxA induced a more consistent increase in the mRNA levels of EMT-related genes. CONCLUSIONS This is the first evaluation of the effects of exposure to PFCAs on factors potentially involved in establishing the TC microenvironment. PFHxA modulated the TC microenvironment at three levels: cell viability, pro-tumorigenic chemokines, and EMT-genes. The results provide further evidence of the pro-tumorigenic effect of PFOA. On the other hand, a marginal effect was observed for C6O4 on pro-tumorigenic chemokines.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Alessia Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Benedetto Calì
- Istituti Clinici Scientifici Maugeri IRCCS, Department of General and Minimally Invasive Surgery, Pavia, (PV) 27100, Italy
| | - Spyridon Chytiris
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100 Pavia, Italy.
| |
Collapse
|
27
|
Sangwan S, Bhattacharyya R, Banerjee D. Plastic compounds and liver diseases: Whether bisphenol A is the only culprit. Liver Int 2024; 44:1093-1105. [PMID: 38407523 DOI: 10.1111/liv.15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Plastics, while providing modern conveniences, have become an inescapable source of global concern due to their role in environmental pollution. Particularly, the focus on bisphenol A (BPA) reveals its biohazardous nature and association with liver issues, specifically steatosis. However, research indicates that BPA is just one facet of the problem, as other bisphenol analogues, microplastics, nanoplastics and additional plastic derivatives also pose potential risks. Notably, BPA is implicated in every stage of non-alcoholic fatty liver disease (NAFLD) onset and progression, surpassing hepatitis B virus as a primary cause of chronic liver disease worldwide. As plastic contamination tops the environmental contaminants list, urgent action is needed to assess causative factors and mitigate their impact. This review delves into the molecular disruptions linking plastic pollutant exposure to liver diseases, emphasizing the broader connection between plastics and the rising prevalence of NAFLD.
Collapse
Affiliation(s)
- Sonal Sangwan
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
28
|
Hong S, Kang BS, Kim O, Won S, Kim HS, Wie JH, Shin JE, Choi SK, Jo YS, Kim YH, Yang M, Kang H, Lee DW, Park IY, Park JS, Ko HS. The associations between maternal and fetal exposure to endocrine-disrupting chemicals and asymmetric fetal growth restriction: a prospective cohort study. Front Public Health 2024; 12:1351786. [PMID: 38665245 PMCID: PMC11043493 DOI: 10.3389/fpubh.2024.1351786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Recent evidence has revealed associations between endocrine-disrupting chemicals (EDCs) and placental insufficiency due to altered placental growth, syncytialization, and trophoblast invasion. However, no epidemiologic study has reported associations between exposure to EDCs and asymmetric fetal growth restriction (FGR) caused by placenta insufficiency. The aim of this study was to evaluate the association between EDC exposure and asymmetric FGR. This was a prospective cohort study including women admitted for delivery to the Maternal Fetal Center at Seoul St. Mary's Hospital between October 2021 and October 2022. Maternal urine and cord blood samples were collected, and the levels of bisphenol-A (BPA), monoethyl phthalates, and perfluorooctanoic acid in each specimen were analyzed. We investigated linear and non-linear associations between the levels of EDCs and fetal growth parameters, including the head circumference (HC)/abdominal circumference (AC) ratio as an asymmetric parameter. The levels of EDCs were compared between fetuses with and without asymmetric FGR. Of the EDCs, only the fetal levels of BPA showed a linear association with the HC/AC ratio after adjusting for confounding variables (β = 0.003, p < 0.05). When comparing the normal growth and asymmetric FGR groups, the asymmetric FGR group showed significantly higher maternal and fetal BPA levels compared to the normal growth group (maternal urine BPA, 3.99 μg/g creatinine vs. 1.71 μg/g creatinine [p < 0.05]; cord blood BPA, 1.96 μg/L vs. -0.86 μg/L [p < 0.05]). In conclusion, fetal exposure levels of BPA show linear associations with asymmetric fetal growth patterns. High maternal and fetal exposure to BPA might be associated with asymmetric FGR.
Collapse
Affiliation(s)
- Subeen Hong
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Soo Kang
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Oyoung Kim
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sangeun Won
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeon Soo Kim
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Ha Wie
- Department of Obstetrics and Gynecology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Eun Shin
- Department of Obstetrics and Gynecology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sae Kyung Choi
- Department of Obstetrics and Gynecology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yun Sung Jo
- Department of Obstetrics and Gynecology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeon Hee Kim
- Department of Obstetrics and Gynecology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mihi Yang
- College of Pharmacy, Sookmyung Women’s University, Seoul, Republic of Korea
- Goodbeing Center Co. Ltd., Seoul, Republic of Korea
| | - Huiwon Kang
- College of Pharmacy, Sookmyung Women’s University, Seoul, Republic of Korea
- Goodbeing Center Co. Ltd., Seoul, Republic of Korea
| | - Dong-Wook Lee
- Department of Occupational & Environmental Medicine, Inha University Hospital, Inha University, Incheon, Republic of Korea
| | - In Yang Park
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Sun Ko
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
29
|
Narindri Rara Winayu B, Chu FJ, Sutopo CCY, Chu H. Bioprospecting photosynthetic microorganisms for the removal of endocrine disruptor compounds. World J Microbiol Biotechnol 2024; 40:120. [PMID: 38433170 DOI: 10.1007/s11274-024-03910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Endocrine disruption compounds can be found in various daily products, like pesticides, along with cosmetic and pharmaceutical commodities. Moreover, occurrence of EDCs in the wastewater alarms the urgency for their removal before discharge owing to the harmful effect for the environment and human health. Compared to implementation of physical and chemical strategies, cultivation of photosynthetic microorganisms has been acknowledged for their high efficiency and eco-friendly process in EDCs removal along with accumulation of valuable byproducts. During the process, photosynthetic microorganisms remove EDCs via photodegradation, bio-adsorption, -accumulation, and -degradation. Regarding their high tolerance in extreme environment, photosynthetic microorganisms have high feasibility for implementation in wastewater treatment plant. However, several considerations are critical for their scaling up process. This review discussed the potency of EDCs removal by photosynthetic microorganisms and focused on the efficiency, mechanism, challenge, along with the prospect. Details on the mechanism's pathway, accumulation of valuable byproducts, and recent progress in scaling up and application in real wastewater were also projected in this review.
Collapse
Affiliation(s)
| | - Feng-Jen Chu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, Anhui, China
| | - Christoper Caesar Yudho Sutopo
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
30
|
Gaspari L, Haouzi D, Gennetier A, Granes G, Soler A, Sultan C, Paris F, Hamamah S. Transgenerational Transmission of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Effects in Human Granulosa Cells: The Role of MicroRNAs. Int J Mol Sci 2024; 25:1144. [PMID: 38256218 PMCID: PMC10816780 DOI: 10.3390/ijms25021144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) might contribute to the increase in female-specific cancers in Western countries. 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) is considered the "prototypical toxicant" to study EDCs' effects on reproductive health. Epigenetic regulation by small noncoding RNAs (sncRNAs), such as microRNAs (miRNA), is crucial for controlling cancer development. The aim of this study was to analyze transcriptional activity and sncRNA expression changes in the KGN cell line after acute (3 h) and chronic (72 h) exposure to 10 nM TCDD in order to determine whether sncRNAs' deregulation may contribute to transmitting TCDD effects to the subsequent cell generations (day 9 and day 14 after chronic exposure). Using Affymetrix GeneChip miRNA 4.0 arrays, 109 sncRNAs were found to be differentially expressed (fold change < -2 or >2; p-value < 0.05) between cells exposed or not (control) to TCDD for 3 h and 72 h and on day 9 and day 14 after chronic exposure. Ingenuity Pathway Analysis predicted that following the acute and chronic exposure of KGN cells, sncRNAs linked to cellular development, growth and proliferation were downregulated, and those linked to cancer promotion were upregulated on day 9 and day 14. These results indicated that TCDD-induced sncRNA dysregulation may have transgenerational cancer-promoting effects.
Collapse
Affiliation(s)
- Laura Gaspari
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, Hôpital Arnaud-de-Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (L.G.); (C.S.)
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, Hôpital Lapeyronie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
| | - Delphine Haouzi
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
- Département de Biologie de la Reproduction et DPI (ART/PGD), Hôpital A. de Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
| | - Aurélie Gennetier
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
| | - Gaby Granes
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
| | - Alexandra Soler
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
- Global ART Innovation Network (GAIN), 34295 Montpellier, France
| | - Charles Sultan
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, Hôpital Arnaud-de-Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (L.G.); (C.S.)
| | - Françoise Paris
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, Hôpital Arnaud-de-Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France; (L.G.); (C.S.)
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, Hôpital Lapeyronie, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
| | - Samir Hamamah
- INSERM U 1203, Développement Embryonnaire Fertilité Environnement, Université de Montpellier, INSERM, 34295 Montpellier, France (A.S.)
- Département de Biologie de la Reproduction et DPI (ART/PGD), Hôpital A. de Villeneuve, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
| |
Collapse
|
31
|
Pan J, Liu P, Yu X, Zhang Z, Liu J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 2024; 14:1324993. [PMID: 38303976 PMCID: PMC10832042 DOI: 10.3389/fendo.2023.1324993] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Reproductive system diseases pose prominent threats to human physical and mental well-being. Besides being influenced by genetic material regulation and changes in lifestyle, the occurrence of these diseases is closely connected to exposure to harmful substances in the environment. Endocrine disrupting chemicals (EDCs), characterized by hormone-like effects, have a wide range of influences on the reproductive system. EDCs are ubiquitous in the natural environment and are present in a wide range of industrial and everyday products. Currently, thousands of chemicals have been reported to exhibit endocrine effects, and this number is likely to increase as the testing for potential EDCs has not been consistently required, and obtaining data has been limited, partly due to the long latency of many diseases. The ability to avoid exposure to EDCs, especially those of artificially synthesized origin, is increasingly challenging. While EDCs can be divided into persistent and non-persistent depending on their degree of degradation, due to the recent uptick in research studies in this area, we have chosen to focus on the research pertaining to the detrimental effects on reproductive health of exposure to several EDCs that are widely encountered in daily life over the past six years, specifically bisphenol A (BPA), phthalates (PAEs), polychlorinated biphenyls (PCBs), parabens, pesticides, heavy metals, and so on. By focusing on the impact of EDCs on the hypothalamic-pituitary-gonadal (HPG) axis, which leads to the occurrence and development of reproductive system diseases, this review aims to provide new insights into the molecular mechanisms of EDCs' damage to human health and to encourage further in-depth research to clarify the potentially harmful effects of EDC exposure through various other mechanisms. Ultimately, it offers a scientific basis to enhance EDCs risk management, an endeavor of significant scientific and societal importance for safeguarding reproductive health.
Collapse
Affiliation(s)
- Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengfei Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xiao Yu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jinxing Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
32
|
Johri A, Roncati L, Lizcano F. Editorial: Endocrine disruptors and diseases of brain and mind: past and prelude. Front Endocrinol (Lausanne) 2024; 15:1362519. [PMID: 38298377 PMCID: PMC10828669 DOI: 10.3389/fendo.2024.1362519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Affiliation(s)
- Ashu Johri
- Independent Researcher, New York, NY, United States
| | - Luca Roncati
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplantation, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Fernando Lizcano
- Centro de Investigacion Biomedica (CIBUS), Doctoral program in Biosciences, Universidad de La Sabana, Chía, Cundinamarca, Colombia
| |
Collapse
|
33
|
Modica R, Liccardi A, Minotta R, Cannavale G, Benevento E, Colao A. Current understanding of pathogenetic mechanisms in neuroendocrine neoplasms. Expert Rev Endocrinol Metab 2024; 19:49-61. [PMID: 37936421 DOI: 10.1080/17446651.2023.2279540] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Despite the fact that important advances in research on neuroendocrine neoplasms (NENs) have been made, consistent data about their pathogenetic mechanism are still lacking. Furthermore, different primary sites may recognize different pathogenetic mechanisms. AREAS COVERED This review analyzes the possible biological and molecular mechanisms that may lead to NEN onset and progression in different organs. Through extensive research of the literature, risk factors including hypercholesterolemia, inflammatory bowel disease, chronic atrophic gastritis are evaluated as potential pathogenetic mechanisms. Consistent evidence is available regarding sporadic gastric NENs and MEN1 related duodenopancreatic NENs precursor lesions, and genetic-epigenetic mutations may play a pivotal role in tumor development and bone metastases onset. In lung neuroendocrine tumors (NETs), diffuse proliferation of neuroendocrine cells on the bronchial wall (DIPNECH) has been proposed as a premalignant lesion, while in lung neuroendocrine carcinoma nicotine and smoke could be responsible for carcinogenic processes. Also, rare primary NENs such as thymic (T-NENs) and Merkel cell carcinoma (MCC) have been analyzed, finding different possible pathogenetic mechanisms. EXPERT OPINION New technologies in genomics and epigenomics are bringing new light to the pathogenetic landscape of NENs, but further studies are needed to improve both prevention and treatment in these heterogeneous neoplasms.
Collapse
Affiliation(s)
- Roberta Modica
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Alessia Liccardi
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Roberto Minotta
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Giuseppe Cannavale
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Elio Benevento
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Annamaria Colao
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
- UNESCO Chair "Education for Health and Sustainable Development, " Federico II University, Naples, Italy
| |
Collapse
|
34
|
Robles-Matos N, Radaelli E, Simmons RA, Bartolomei MS. Preconception and developmental DEHP exposure alter liver metabolism in a sex-dependent manner in adult mouse offspring. Toxicology 2023; 499:153640. [PMID: 37806616 PMCID: PMC10842112 DOI: 10.1016/j.tox.2023.153640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Environmental exposure to endocrine disrupting chemicals (EDCs) during critical periods of development is associated with an increased risk of metabolic diseases, including hepatic steatosis and obesity. Di-2-ethylhexyl-phthalate (DEHP) is an EDC strongly associated with these metabolic abnormalities. DEHP developmental windows of susceptibility are unknown yet have important public health implications. The purpose of this study was to identify these windows of susceptibility and determine whether developmental DEHP exposure alters hepatic metabolism later in life. Dams were exposed to control or feed containing human exposure relevant doses of DEHP (50 μg/kg BW/d) and high dose DEHP (10 mg/kg BW/d) from preconception until weaning or only exposed to DEHP during preconception. Post-weaning, all offspring were fed a control diet throughout adulthood. Using the Metabolon Untargeted Metabolomics platform, we identified 148 significant metabolites in female adult livers that were altered by preconception-gestation-lactation DEHP exposure. We found a significant increase in the levels of acylcarnitines, diacylglycerols, sphingolipids, glutathione, purines, and pyrimidines in DEHP-exposed female livers compared to controls. These changes in fatty acid oxidation and oxidative stress-related metabolites were correlated with hepatic changes including microvesicular steatosis, hepatocyte swelling, inflammation. In contrast to females, we observed fewer metabolic alterations in male offspring, which were uniquely found in preconception-only low dose DEHP exposure group. Although we found that preconception-gestational-lactation exposure causes the most liver pathology, we surprisingly found preconception exposure linked to an abnormal liver metabolome. We also found that two doses exhibited non-monotonic DEHP-induced changes in the liver. Collectively, these findings suggest that metabolic changes in the adult liver of offspring exposed periconceptionally to DHEP depends on the timing of exposure, dose, and sex.
Collapse
Affiliation(s)
- Nicole Robles-Matos
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Enrico Radaelli
- Comparative Pathology Core, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca A Simmons
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Hilz EN, Gore AC. Endocrine-Disrupting Chemicals: Science and Policy. POLICY INSIGHTS FROM THE BEHAVIORAL AND BRAIN SCIENCES 2023; 10:142-150. [PMID: 39758979 PMCID: PMC11698485 DOI: 10.1177/23727322231196794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are chemicals that disrupt the normal functioning of endocrine system hormones, leading to a range of adverse health effects in humans and wildlife. Exposure to EDCs is ubiquitous and occurs through contaminated food and water, air, consumer products, and transfer from parents to offspring. Effective regulation has been challenging due to a limited understanding of EDCs' complex and nonlinear dose-response relationships, as well as difficulty in attributing specific health effects to individual EDC exposures in real-world scenarios. Current EDC policies face limitations in terms of the diversity and complexity of EDCs, the lack of comprehensive testing requirements, and the need for more robust regulatory frameworks that consider cumulative and mixture effects of EDCs. Understanding these aspects is crucial for developing effective and evidence-based EDC policies that can safeguard public health and the environment.
Collapse
|
36
|
Mangion J, Gruppetta M. The environmental burden on endocrine neoplasia: a review on the documented impact of endocrine disrupting chemicals. Expert Rev Endocrinol Metab 2023; 18:513-524. [PMID: 37840278 DOI: 10.1080/17446651.2023.2268215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Endocrine-disrupting chemicals (EDCs) have gained more importance in the past decade, mostly due to their role in the pathogenesis of disease, especially in carcinogenesis. However, there is limited literature on the environmental burden on some of the less common endocrine neoplasia. AREAS COVERED This review focuses on both observational and experimental studies linking exposure to EDCs and endocrine neoplasia specifically pituitary, thyroid, adrenal and neuroendocrine tumors. Following PRISMA guidelines, a search of English peer-reviewed literature was performed using Medline and Google Scholar, giving preference to recent publications. EXPERT OPINION Exposure to EDC occurs not only in the household but also at work, whether it is in the office, factory, or farm and during transport from one location to another. Many studies have evaluated the effect of single environmental agents; however, humans are rarely exposed to only one EDC. Different EDCs and different levels of exposure may interact together to provide either a synergistic and/or an antagonistic disruption on human health, and hence a complex mechanism to elucidate. The ultimate adverse effect is difficult to predict, as it is not only influenced by the degree of exposure, but also by genetics, lifestyle, comorbidities, and other stressors.
Collapse
Affiliation(s)
- Jessica Mangion
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Mater Dei Hospital, Msida, Malta
- Neuroendocrine Clinic, Department of Medicine, Mater Dei Hospital, Msida, Malta
| | - Mark Gruppetta
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Mater Dei Hospital, Msida, Malta
- Neuroendocrine Clinic, Department of Medicine, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
37
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
38
|
Modica R, Minotta R, Liccardi A, Cannavale G, Benevento E, Colao A. Evaluation of Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR) and Systemic Immune-Inflammation Index (SII) as Potential Biomarkers in Patients with Sporadic Medullary Thyroid Cancer (MTC). J Pers Med 2023; 13:953. [PMID: 37373942 DOI: 10.3390/jpm13060953] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Medullary thyroid cancer (MTC) is a rare neuroendocrine neoplasm, and calcitonin is its main biomarker. An elevated neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and systemic immune-inflammation index (SII) have been considered as negative prognostic factors in several neoplasms. The aim of this study is to evaluate the potential role of NLR, PLR and SII as biomarkers in MTC. Clinical data and tumor histological characteristics of patients with sporadic MTC, referred to the NET Unit of Federico II University of Naples (ENETS CoE) from 2012 to 2022, were retrospectively evaluated by analyzing preoperative and postoperative calcitonin, NLR, PLR and SII. We included 35 MTC patients undergoing total thyroidectomy. The mean preoperative NLR was 2.70 (±1.41, 0.93-7.98), the PLR was 121.05 (±41.9, 40.98-227.23) and SII was 597.92 (±345.58, 186.59-1628). We identified a statistically significant difference between pre- and post-thyroidectomy NLR (p = 0.02), SII (p = 0.02) and calcitonin (p = 0.0) values. No association with prognosis or tumor characteristics emerged. Elevated preoperative NLR and SII suggest a possible disease-associated inflammatory response, and their reduction after surgery may be related to debulking effects. Further studies are needed to define the role of NLR, PLR and SII as prognostic markers in MTC.
Collapse
Affiliation(s)
- Roberta Modica
- Department of Clinical Medicine and Surgery, Endocrinology, Diabetology and Andrology Unit, Federico II University of Naples, 80131 Naples, Italy
| | - Roberto Minotta
- Department of Clinical Medicine and Surgery, Endocrinology, Diabetology and Andrology Unit, Federico II University of Naples, 80131 Naples, Italy
| | - Alessia Liccardi
- Department of Clinical Medicine and Surgery, Endocrinology, Diabetology and Andrology Unit, Federico II University of Naples, 80131 Naples, Italy
| | - Giuseppe Cannavale
- Department of Clinical Medicine and Surgery, Endocrinology, Diabetology and Andrology Unit, Federico II University of Naples, 80131 Naples, Italy
| | - Elio Benevento
- Department of Clinical Medicine and Surgery, Endocrinology, Diabetology and Andrology Unit, Federico II University of Naples, 80131 Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Endocrinology, Diabetology and Andrology Unit, Federico II University of Naples, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, Federico II University of Naples, 80138 Naples, Italy
| |
Collapse
|
39
|
Araj SK, Szeleszczuk Ł. A Review on Cyclodextrins/Estrogens Inclusion Complexes. Int J Mol Sci 2023; 24:ijms24108780. [PMID: 37240133 DOI: 10.3390/ijms24108780] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
This review focuses on the methods of preparation and biological, physiochemical, and theoretical analysis of the inclusion complexes formed between estrogens and cyclodextrins (CDs). Because estrogens have a low polarity, they can interact with some cyclodextrins' hydrophobic cavities to create inclusion complexes, if their geometric properties are compatible. For the last forty years, estrogen-CD complexes have been widely applied in several fields for various objectives. For example, CDs have been used as estrogen solubilizers and absorption boosters in pharmaceutical formulations, as well as in chromatographic and electrophoretic procedures for their separation and quantification. Other applications include the removal of the endocrine disruptors from environmental materials, the preparation of the samples for mass spectrometric analysis, or solid-phase extractions based on complex formation with CDs. The aim of this review is to gather the most important outcomes from the works related to this topic, presenting the results of synthesis, in silico, in vitro, and in vivo analysis.
Collapse
Affiliation(s)
- Szymon Kamil Araj
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| |
Collapse
|
40
|
Tarhonska K, Janasik B, Roszak J, Kowalczyk K, Lesicka M, Reszka E, Wieczorek E, Braun M, Kolacinska-Wow A, Skokowski J, Kalinowski L, Jablonska E. Environmental exposure to cadmium in breast cancer - association with the Warburg effect and sensitivity to tamoxifen. Biomed Pharmacother 2023; 161:114435. [PMID: 36842352 DOI: 10.1016/j.biopha.2023.114435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
The association between cadmium and breast cancer remains unexplained due to inconsistent epidemiological data and unknown underlying mechanisms. This study aimed to assess the relationship between environmental exposure to cadmium and the Warburg effect in breast cancer and, thus, its possible interference with breast cancer treatment. The observational study in two groups of breast cancer patients indicated a positive correlation between urinary cadmium concentration and tumor expression of HIF1A (a master regulator of the Warburg effect). Further explanatory research in MCF-7 cells showed no impact of cadmium exposure on molecular and biochemical markers of the Warburg effect. However, long-term exposure to a low and environmentally relevant concentration of cadmium led to the accumulation of the metal in MCF-7 cells and decreased their sensitivity to tamoxifen. To conclude, the association between cadmium and the Warburg effect was suggested in the observational study, although not confirmed in vitro. Nevertheless, cadmium seems to interfere with tamoxifen treatment which deserves further investigation in terms of its possible implication in intrinsic resistance to hormone therapy.
Collapse
Affiliation(s)
- Kateryna Tarhonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 Sw. Teresy Street, 91-348 Lodz, Poland.
| | - Beata Janasik
- Department of Biological and Environmental Monitoring, Nofer Institute of Occupational Medicine, 8 Sw. Teresy Street, 91-348 Lodz, Poland.
| | - Joanna Roszak
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 Sw. Teresy Street, 91-348 Lodz, Poland.
| | - Kornelia Kowalczyk
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 Sw. Teresy Street, 91-348 Lodz, Poland; Proteon Pharmaceuticals S.A., 3A Tylna Street, 90-364 Lodz, Poland.
| | - Monika Lesicka
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 Sw. Teresy Street, 91-348 Lodz, Poland.
| | - Edyta Reszka
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 Sw. Teresy Street, 91-348 Lodz, Poland.
| | - Edyta Wieczorek
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 Sw. Teresy Street, 91-348 Lodz, Poland.
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 251 Pomorska Street, 92-332 Lodz, Poland.
| | - Agnieszka Kolacinska-Wow
- Department of Oncological Physiotherapy, Medical University of Lodz, 4 Paderewskiego Street, 93-513 Lodz, Poland.
| | - Jaroslaw Skokowski
- Department of Surgical Oncology, Medical University of Gdansk, 17 M. Smoluchowskiego Street, 80-952 Gdansk, Poland; Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland.
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 7 Debinki Street, 80-211 Gdansk, Poland; BioTechMed Centre/Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland.
| | - Ewa Jablonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 Sw. Teresy Street, 91-348 Lodz, Poland.
| |
Collapse
|
41
|
du Plessis M, Fourie C, Stone W, Engelbrecht AM. The impact of endocrine disrupting compounds and carcinogens in wastewater: Implications for breast cancer. Biochimie 2023; 209:103-115. [PMID: 36775066 DOI: 10.1016/j.biochi.2023.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
The incidence of breast cancer is often associated with geographic variation which indicates that a person's surrounding environment can be an important etiological factor in cancer development. Environmental risk factors can include exposure to sewage- or wastewater, which consist of a complex mixture of pathogens, mutagens and carcinogens. Wastewater contains primarily carbonaceous, nitrogenous and phosphorus compounds, however it can also contain trace amounts of chemical pollutants including toxic metal cations, hydrocarbons and pesticides. More importantly, the contamination of drinking water by wastewater is a potential source of exposure to mammary carcinogens and endocrine disrupting compounds. Organic solvents and other pollutants often found in wastewater have been detected in various tissues, including breast and adipose tissues. Furthermore, these pollutants such as phenolic compounds in some detergents and plastics, as well as parabens and pesticides can mimic estrogen. High estrogen levels are a well-established risk factor for estrogen-receptor (ER) positive breast cancer. Therefore, exposure to wastewater is a risk factor for the initiation, progression and metastasis of breast cancer. Carcinogens present in wastewater can promote tumourigenesis through various mechanisms, including the formation of DNA adducts, gene mutations and oxidative stress. Lastly, the presence of endocrine disrupting compounds in wastewater can have negative implications for ER-positive breast cancers, where these molecules can activate ERα to promote cell proliferation, survival and metastasis. As such, strategies should be implemented to limit exposure, such as providing funding into treatment technologies and implementation of regulations that limit the production and use of these potentially harmful chemicals.
Collapse
Affiliation(s)
- Manisha du Plessis
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Carla Fourie
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Wendy Stone
- Stellenbosch University Water Institute, Faculty of Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Natural Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa; African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, South Africa
| |
Collapse
|