1
|
Xie J, Li B, He C, Yang S, Yang S, Sun P, Zhu G, Wang J. The mechanism underlying of Zuoguiyin on liver and kidney in D-gal-induced subacute aging female rats: A perspective on SIRT1-PPARγ pathway regulation of oxidative stress, inflammation and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119811. [PMID: 40239881 DOI: 10.1016/j.jep.2025.119811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aging is a complex biological metabolic process. Traditional Chinese Medicine (TCM) theory posits that deficiencies in the liver and kidneys in women is closely associated with aging. Zuoguiyin (ZGY), originating from the Jing Yue Quan Shu (A.D. 1624), is renowned for its efficacy in nourishing Yin and tonifying the kidneys. Pharmacological studies have confirmed that ZGY could enhance liver and kidney functions in aging females, but its molecular mechanisms remain unclear. AIM OF THE STUDY This study aims to investigate the effects and potential mechanisms of ZGY on the liver and kidneys in female subacute aging model rats. MATERIALS AND METHODS A combination of network pharmacology and animal experiments was employed to identify the active components and potential targets of ZGY. A subacute aging model was established in female rats using D-galactose (D-gal) injection. After intervention with ZGY, its effects and mechanisms on the liver and kidney were evaluated using behavioral tests, ELISA, H&E staining, immunohistochemistry, Western blot analysis, and molecular docking. RESULTS Network pharmacology analysis indicated that the effects of ZGY on subacute aging female rats might be associated with the regulation of oxidative stress and inflammatory responses via the sirtuin 1 (SIRT1)- peroxisome proliferator-activated receptor gamma (PPARγ) pathway. Compared to female subacute aging model rats, ZGY significantly improved behaviors in model rats. It notably reduced levels of MDA, NF-κB, and IL-6 in serum, liver, and kidney tissues, while increasing the levels of SOD, CAT, and IL-10. Furthermore, ZGY enhanced liver and kidney functions, alleviated pathological damage to these organs, decreased BAX expression, increased Bcl-2 expression, and inhibited apoptosis in liver and kidney cells. Western blot analysis further validated that ZGY activates the expression of proteins in the SIRT1-PPARγ pathway. Molecular docking implicated that 65 enter blood components of ZGY might be the active components. CONCLUSION This study reveals that ZGY exerts positive effects on the liver and kidney in D-gal-induced subacute aging female rats. Its mechanisms are associated with the activation of the SIRT1-PPARγ pathway, which regulates oxidative stress, inflammation, and apoptotic pathways.
Collapse
Affiliation(s)
- Jingru Xie
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China.
| | - Baobao Li
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Cunbao He
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Shubin Yang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Shaojie Yang
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China.
| | - Peiyang Sun
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China.
| | - Guoqi Zhu
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Jingji Wang
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China.
| |
Collapse
|
2
|
Leventoğlu E, Bakkaloğlu SA. A new era in the treatment of kidney diseases: NLRP3 inflammasome and cytokine-targeted therapies. Pediatr Nephrol 2025; 40:1515-1521. [PMID: 39485496 DOI: 10.1007/s00467-024-06578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024]
Abstract
The kidneys are crucial for filtering blood, managing overall body water, electrolyte, and acid-base balance, and regulating blood pressure. They remove metabolic waste products, toxins, and drugs. In addition, they limit inflammation by clearing cytokines and reduce immune cell activation by removing bacterial components. Dendritic cells (DCs) in the kidney maintain peripheral tolerance. About 85% of filtered water is reabsorbed by the proximal tubule, exposing distal nephron cells to high concentrations of low molecular weight antigens. These antigens are captured by DCs, helping to inactivate potentially autoreactive T cells and maintain tolerance to circulating antigens. In kidney failure, immune function is severely compromised due to the retention of toxins and cytokines, which activate immune cells and increase systemic inflammation. The kidneys are also vulnerable to immune-mediated diseases. Loss of immune homeostasis, characterized by over- or under-activity of the immune response, can adversely affect kidney function. With advances in immunology and cellular biology, biologic therapies targeting various pathways involved in the pathophysiology of kidney diseases are being developed. In this review, the immunologic aspects of kidney diseases and focus on cytokine-based therapies that may hold promise for the treatment of kidney diseases in the future will be presented.
Collapse
Affiliation(s)
- Emre Leventoğlu
- Department of Pediatric Nephrology, Konya City Hospital, Konya, Turkey.
| | - Sevcan A Bakkaloğlu
- Faculty of Medicine, Department of Pediatric Nephrology, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Phillips PCA, de Sousa Loreto Aresta Branco M, Cliff CL, Ward JK, Squires PE, Hills CE. Targeting senescence to prevent diabetic kidney disease: Exploring molecular mechanisms and potential therapeutic targets for disease management. Diabet Med 2025; 42:e15408. [PMID: 38995865 PMCID: PMC11733669 DOI: 10.1111/dme.15408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND/AIMS As a microvascular complication, diabetic kidney disease is the leading cause of chronic kidney disease and end-stage renal disease worldwide. While the underlying pathophysiology driving transition of diabetic kidney disease to renal failure is yet to be fully understood, recent studies suggest that cellular senescence is central in disease development and progression. Consequently, understanding the molecular mechanisms which initiate and drive senescence in response to the diabetic milieu is crucial in developing targeted therapies that halt progression of renal disease. METHODS To understand the mechanistic pathways underpinning cellular senescence in the context of diabetic kidney disease, we reviewed the literature using PubMed for English language articles that contained key words related to senescence, inflammation, fibrosis, senescence-associated secretory phenotype (SASP), autophagy, and diabetes. RESULTS Aberrant accumulation of metabolically active senescent cells is a notable event in the progression of diabetic kidney disease. Through autocrine- and paracrine-mediated mechanisms, resident senescent cells potentiate inflammation and fibrosis through increased expression and secretion of pro-inflammatory cytokines, chemoattractants, recruitment of immune cells, myofibroblast activation, and extracellular matrix remodelling. Compounds that eliminate senescent cells and/or target the SASP - including senolytic and senomorphics drugs - demonstrate promising results in reducing the senescent cell burden and associated pro-inflammatory effect. CONCLUSIONS Here we evidence the link between senescence and diabetic kidney disease and highlight underlying molecular mechanisms and potential therapeutic targets that could be exploited to delay disease progression and improve outcomes for individuals with the disease. Trials are now required to translate their therapeutic potential to a clinical setting.
Collapse
Affiliation(s)
| | | | | | - Joanna Kate Ward
- Joseph Banks Laboratories, College of Health and ScienceLincolnUK
| | | | | |
Collapse
|
4
|
Zhang JN, Gong R, Lu BT, Wang YQ, Chong Y, Wang XT, Lai QQ, Cao YH, Zhao MY. Integrated Analysis of Gene Expression and Immune Cell Infiltration Reveals Dysregulated Genes and miRNAs in Acute Kidney Injury. Mol Biotechnol 2024:10.1007/s12033-024-01344-x. [PMID: 39661223 DOI: 10.1007/s12033-024-01344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Acute Kidney Injury (AKI) is a multifaceted condition characterised by rapid deterioration of renal function, often precipitated by diverse etiologies. A comprehensive understanding of the molecular underpinnings of AKI is pivotal for identifying potential diagnostic markers and therapeutic targets. This study utilised bioinformatics to elucidate gene expression and immune infiltration in AKI. Publicly available mRNA and miRNA datasets were harnessed to discern differentially expressed genes (DEGs) and miRNAs in AKI. The CIBERSORT algorithm was employed to quantify immune cell infiltration in AKI samples. Functional enrichment analyses were conducted to unravel the implicated biological processes. Furthermore, the expression of identified genes and miRNAs was validated by quantitative real-time PCR in an AKI model. Our study revealed significant dysregulation of three genes (Aspn, Clec2h, Tmigd1) and two miRNAs (mmu-miR-21a-3p, mmu-miR-223-3p) in AKI, each with p < 0.0001. These molecular markers are implicated in immune responses, tissue remodelling, and inflammation. We observed notable disturbances in specific immune cells, including activated and immature dendritic cells, M1 macrophages, and subsets of T cells (Treg, Th1, Th17). These alterations correlated significantly with AKI pathology, with dendritic cells and M1 macrophages showing p < 0.01, and T cell subsets demonstrating p < 0.05. These results highlight the intricate involvement of the immune system in AKI and indicate significant enrichment of pathways related to immune response, inflammation, and tissue remodelling, pointing to their pivotal roles in AKI pathophysiology. Our study underscored the significance of immune cell infiltration and dysregulated gene and miRNA expression in AKI. The identified genes (Clec2h, Aspn, and Tmigd1) and miRNAs (mmu-miR-21a-3p and mmu-miR-223-3p) offer potential diagnostic markers and therapeutic avenues for AKI. Subsequent investigations targeting these genes and miRNAs, along with the elucidated pathways, may augment the clinical management and outcomes for AKI patients.
Collapse
Affiliation(s)
- Jian-Nan Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Rui Gong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430022, China
| | - Bai-Tao Lu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Yi-Qi Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Yang Chong
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Xin-Tong Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Qi-Qi Lai
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Yan-Hui Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China.
| | - Ming-Yan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
5
|
Zhou WJ, Liang W, Hu MX, Ma YK, Yu S, Jin C, Li JQ, Wang C, Wang CZ, Gong P, Wu QQ, Wu CG, Wang YP, Liu TT. Qingshen granules inhibits dendritic cell glycolipid metabolism to alleviate renal fibrosis via PI3K-AKT-mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156148. [PMID: 39426254 DOI: 10.1016/j.phymed.2024.156148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/27/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Qingshen exhibits anti-inflammatory and immunoregulation effects to renal damage. Dendritic cells (DCs) play a critical role in regulating the pathologic inflammatory environment in renal fibrosis (RF). PURPOSE To investigate the immune modulation mechanism of qingshen granule (QSG) in RF, particularly focusing on the role of DCs. METHODS/STUDY DESIGN Adenine-induced RF animal models were used to study the pharmacological effects of QSG and the immune cells differentiation and function. Glucose uptake, non-esterified fatty acids secretion, mitochondrial membrane potential (MMP) detection, and qPCR were used to explore the effect of QSG to glucose and lipid metabolism in DCs and T cells. The effect of QSG to PI3K-AKT-mTOR axis and the modulation of mTOR to PD-L1 were explored by co-culture experiments, co-immunoprecipitation and western blot assays. The interaction of DCs/CD8+T cells and renal tubular epithelial cells (RTECs) was investigated to demonstrate the direct action and/or the immune-mediated regulation of QSG to RF. The components of QSG in the serum were determined by HPLC. And the effect of active ingredients and formula to DCs and T cells was analyzed by cell experiments in vitro. RESULTS QSG reduced nephritic histopathological damage and suppressed the release of proinflammatory cytokines in adenine-induced RF mice. Of note, QSG decreased the levels of CD86, MHC-II, and CCR7 on DCs, while, increased PD-L1 expression on DCs in RF. The results demonstrated that QSG promoted the maturation and inhibited the migration of DCs, and QSG decreased the antigen presenting of DCs to T cells. Additionally, QSG reduced the MMP and glucose/lipid utilization ratio in DCs. QSG also down-regulated the level of targeted metabolic genes included glucose transporter 1 (Glut1), sterol-regulatory element-binding protein 1 (Srebp1), acetyl-CoA carboxylase alpha (Acaca), phosphomevalonate kinase (Pmvk), and up-regulated sirtuin2 (Sirt2) in DCs. In terms of mechanism, QSG inhibited the metabolism-related PI3K-AKT-mTOR pathway, followed by regulating the interaction of mTOR with PD-L1 to enhance the membrane stability of PD-L1. Besides, HPLC analysis identified five active ingredients in QSG. The specific anti-inflammatory and immunosuppressive actions of these ingredients were found to be weaker than QSG as a whole. Finally, inhibiting DC function by QSG disrupted the communication among DCs, T cells, and RTECs. This disruption was associated with low expression of α-smooth muscle actin (α-SMA) and collagen type I (Col-I) in the kidney. CONCLUSIONS QSG inhibits DC metabolism and function via the PI3K-AKT-mTOR pathway to alleviate RF. The study highlights the importance of the specific composition of the formula in targeting DC-mediated immune regulation.
Collapse
Affiliation(s)
- Wen-Jing Zhou
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Wei Liang
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Meng-Xue Hu
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Yu-Kun Ma
- Department of Pharmacy, the 902nd Hospital of the PLA Joint Logistics Support Force, Bengbu, China
| | - Shen Yu
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Chao Jin
- Department of Pharmacy, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Qi Li
- School of Pharmacy, South-Central Minzu University, Wuhan, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, the Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Chang-Zhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Peng Gong
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Qian-Qian Wu
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Chen-Gui Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.
| | - Yi-Ping Wang
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| | - Ting-Ting Liu
- School of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China.
| |
Collapse
|
6
|
Tang Y, Jiang J, Zhao Y, Du D. Aging and chronic kidney disease: epidemiology, therapy, management and the role of immunity. Clin Kidney J 2024; 17:sfae235. [PMID: 40034487 PMCID: PMC11873799 DOI: 10.1093/ckj/sfae235] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Indexed: 03/05/2025] Open
Abstract
Chronic kidney disease (CKD) is now an unquestionable progressive condition that affects more than 10% of the general population worldwide, and has emerged as one of the most important causes of global mortality. It is clear that the prevalence of CKD among the aging population is significantly elevated. It involves a broad range of complex and poorly understood concerns in older adults such as frailty, malnutrition, sarcopenia, and even cognitive and mental dysfunction. In kidneys, renal function such as glomerular filtration, urine concentration and dilution, and homeostasis of sodium and potassium, can be influenced by the aging process. In addition, it is worth noting that CKD and end-stage kidney disease patients often have accompanying activation of immune system and inflammation, involving both the innate and adaptive immune system. Based on this background, in this review article we attempt to summarize the epidemiological characteristics of CKD in the aging population, discuss the immunological mechanisms in aging-related CKD, and furnish the reader with processes for the therapy and management of elderly patients with CKD.
Collapse
Affiliation(s)
- Yukun Tang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences; Wuhan, China
| | - Jipin Jiang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences; Wuhan, China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences; Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Dunfeng Du
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences; Wuhan, China
| |
Collapse
|
7
|
Sehgal R, Markov Y, Qin C, Meer M, Hadley C, Shadyab AH, Casanova R, Manson JE, Bhatti P, Crimmins EM, Hägg S, Assimes TL, Whitsel EA, Higgins-Chen AT, Levine M. Systems Age: A single blood methylation test to quantify aging heterogeneity across 11 physiological systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.13.548904. [PMID: 37503069 PMCID: PMC10370047 DOI: 10.1101/2023.07.13.548904] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Individuals, organs, tissues, and cells age in diverse ways throughout the lifespan. Epigenetic clocks attempt to quantify differential aging between individuals, but they typically summarize aging as a single measure, ignoring within-person heterogeneity. Our aim was to develop novel systems-based methylation clocks that, when assessed in blood, capture aging in distinct physiological systems. We combined supervised and unsupervised machine learning methods to link DNA methylation, system-specific clinical chemistry and functional measures, and mortality risk. This yielded a panel of 11 system-specific scores- Heart, Lung, Kidney, Liver, Brain, Immune, Inflammatory, Blood, Musculoskeletal, Hormone, and Metabolic. Each system score predicted a wide variety of outcomes, aging phenotypes, and conditions specific to the respective system. We also combined the system scores into a composite Systems Age clock that is predictive of aging across physiological systems in an unbiased manner. Finally, we showed that the system scores clustered individuals into unique aging subtypes that had different patterns of age-related disease and decline. Overall, our biological systems based epigenetic framework captures aging in multiple physiological systems using a single blood draw and assay and may inform the development of more personalized clinical approaches for improving age-related quality of life.
Collapse
|
8
|
Lee TH, Chen JJ, Wu CY, Lin TY, Hung SC, Yang HY. Immunosenescence, gut dysbiosis, and chronic kidney disease: Interplay and implications for clinical management. Biomed J 2024; 47:100638. [PMID: 37524304 PMCID: PMC10979181 DOI: 10.1016/j.bj.2023.100638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Immunosenescence refers to the immune system changes observed in individuals over 50 years old, characterized by diminished immune response and chronic inflammation. Recent investigations have highlighted similar immune alterations in patients with reduced kidney function. The immune system and kidney function have been found to be closely interconnected. Studies have shown that as kidney function declines, both innate and adaptive immunity are affected. Chronic kidney disease (CKD) patients exhibit decreased levels of naive and regular T cells, as well as naive and memory B cells, while memory T cell counts increase. Furthermore, research suggests that CKD and end-stage kidney disease (ESKD) patients experience early thymic dysfunction and heightened homeostatic proliferation of naive T cells. In addition to reduced thymic T cell production, CKD patients display shorter telomeres in both CD4+ and CD8+ T cells. Declining kidney function induces uremic conditions, which alter the intestinal metabolic environment and promote pathogen overgrowth while reducing diversity. This dysbiosis-driven imbalance in the gut microbiota can result in elevated production of uremic toxins, which, in turn, enter the systemic circulation due to compromised gut barrier function under uremic conditions. The accumulation of gut-derived uremic toxins exacerbates local and systemic kidney inflammation. Immune-mediated kidney damage occurs due to the activation of immune cells in the intestine as a consequence of dysbiosis, leading to the production of cytokines and soluble urokinase-type plasminogen activator receptor (suPAR), thereby contributing to kidney inflammation. In this review, we delve into the fundamental mechanisms of immunosenescence in CKD, encompassing alterations in adaptive immunity, gut dysbiosis, and an overview of the clinical findings pertaining to immunosenescence.
Collapse
Affiliation(s)
- Tao Han Lee
- Nephrology Department, Chansn Hospital, Taoyuan, Taiwan
| | - Jia-Jin Chen
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, And Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Yun Lin
- Division of Nephrology, Taipei Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi University, Taipei, Taiwan
| | - Szu-Chun Hung
- Division of Nephrology, Taipei Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi University, Taipei, Taiwan.
| | - Huang-Yu Yang
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
9
|
Wang Q, Liu Y, Zhang Y, Zhang S, Zhao M, Peng Z, Xu H, Huang H. Characterization of macrophages in ischemia-reperfusion injury-induced acute kidney injury based on single-cell RNA-Seq and bulk RNA-Seq analysis. Int Immunopharmacol 2024; 130:111754. [PMID: 38428147 DOI: 10.1016/j.intimp.2024.111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Acute kidney injury (AKI) is a complex disease, with macrophages playing a vital role in its progression. However, the mechanism of macrophage function remains unclear and strategies targeting macrophages in AKI are controversial. To address this issue, we used single-cell RNA-seq analysis to identify macrophage sub-types involved in ischemia-reperfusion-induced AKI, and then screened for associated hub genes using intersecting bulk RNA-seq data. The single-cell and bulk RNA-seq datasets were obtained from the Gene Expression Omnibus (GEO) database. Screening of differentially-expressed genes (DEGs) and pseudo-bulk DEG analyses were used to identify common hub genes. Pseudotime and trajectory analyses were performed to investigate the progression of cell differentiation. CellChat analysis was performed to reveal the crosstalk between cell clusters. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to identify enriched pathways in the cell clusters. Immunofluorescence and RT-PCR were preformed to validate the expression of the identified hub genes. Four hub genes, Vim, S100a6, Ier3, and Ccr1, were identified in the infiltrated macrophages between normal samples and those 3 days after ischemia-reperfusion renal injury (IRI); all were associated with the progression of IRI-induced AKI. Increased expression of Vim, S100a6, Ier3, and Ccr1 in infiltrated macrophages may be associated with inflammatory responses and may mediate crosstalk between macrophages and renal tubular epithelial cells under IRI conditions. Our results reveal that Ier3 may be critical in AKI, and that Vim, S100a6, Ier3, and Ccr1 may act as novel biomarkers and potential therapeutic targets for IRI-induced AKI.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuxing Liu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Siyuan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meifang Zhao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| | - Hui Xu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| | - Hao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.
| |
Collapse
|
10
|
Zeng J, Zhang Y, Huang C. Macrophages polarization in renal inflammation and fibrosis animal models (Review). Mol Med Rep 2024; 29:29. [PMID: 38131228 PMCID: PMC10784723 DOI: 10.3892/mmr.2023.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/01/2023] [Indexed: 12/23/2023] Open
Abstract
Chronic kidney disease (CKD) is a significant public health concern. Renal fibrosis is the final common pathway in the progression of kidney diseases, irrespective of the initial injury. Substantial evidence underscores the pivotal role of renal inflammation in the genesis of renal fibrosis. The presence of macrophages within normal renal tissue is significantly increased within diseased renal tissue, indicative of their crucial regulatory function in inflammation and fibrosis. Macrophages manifest a high degree of heterogeneity, exhibiting distinct phenotypic and functional traits in response to diverse stimuli within the local microenvironment in various types of kidney diseases. Broadly, macrophages are categorized into two principal groups: Classically activated, designated as M1 macrophages and alternatively activated, designated as M2 macrophages. A number of experimental models are widely used to study the underlying mechanisms driving renal inflammation and fibrosis progression. The present review delineated the phenotypic and functional attributes of macrophages present in diverse induced models, analyzing their disposition in relation to M1 and M2 polarization states.
Collapse
Affiliation(s)
- Ji Zeng
- Department of Pharmacy, Ma'anshan City Hospital of Traditional Chinese Medicine, Ma'anshan, Anhui 243000, P.R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
11
|
Karasawa T, Sato R, Imaizumi T, Fujita M, Aizawa T, Tsugawa K, Mattinzoli D, Kawaguchi S, Seya K, Terui K, Joh K, Tanaka H. Expression of interferon-stimulated gene 20 (ISG20), an antiviral effector protein, in glomerular endothelial cells: possible involvement of ISG20 in lupus nephritis. Ren Fail 2023; 45:2224890. [PMID: 37340981 PMCID: PMC10286675 DOI: 10.1080/0886022x.2023.2224890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND In addition to regulating the antiviral response, increased expression of Toll-like receptor 3 (TLR3) in resident renal cells plays a role in developing some forms of glomerulonephritis. TLR3 activation leads to type I interferon (IFN) production, which induces the expression of IFN-stimulated genes (ISGs). However, the role of ISG20 expression in resident renal cells remains unclear. METHODS Cultured normal human glomerular endothelial cells (GECs) were treated with polyinosinic-polycytidylic acid (poly IC), Escherichia coli lipopolysaccharide (LPS), R848, and CpG (TLR3, TLR4, TLR7, and TLR9 agonists, respectively). The mRNA levels of ISG20, CX3CL1/fractalkine, and CXCL10/IP-10 were measured by quantitative reverse transcription-polymerase chain reaction. ISG20 protein expression was assessed by Western blotting. RNA interference was used to knockdown IFN-β and ISG20 expression. CX3CL1 protein levels were assessed by enzyme-linked immunosorbent assay. We performed immunofluorescence to examine endothelial ISG20 expression in biopsy specimens from patients with lupus nephritis (LN). RESULTS In GECs, the expression of ISG20 mRNA and protein was increased by polyIC, not by LPS, R848, or CpG treatment. Moreover, ISG20 knockdown prevented poly IC-induced CX3CL1 expression but had no effect on CXCL10 expression. Intense endothelial ISG20 immunoreactivity was observed in biopsy specimens obtained from patients with proliferative LN. CONCLUSION In GECs, ISG20 was regulated via TLR3 but not via TLR4, TLR7, or TLR9 signaling. Moreover, ISG20 was involved in regulating CX3CL1 production. In addition to regulating antiviral innate immunity, ISG20 may act as a mediator of CX3CL1 production, thereby inducing glomerular inflammation, particularly in patients with LN.
Collapse
Affiliation(s)
- Takao Karasawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Aomori, Japan
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Riko Sato
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Aomori, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Masashi Fujita
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Aomori, Japan
| | - Tomomi Aizawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Aomori, Japan
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Aomori, Japan
| | - Deborah Mattinzoli
- Renal Research Laboratory, Fondazione D’Amico per la Ricerca sulle Malattie Renali & Fondazione IRCCS Ca’, Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Shogo Kawaguchi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Aomori, Japan
| | - Kensuke Joh
- Department of Pathology, The Jikei Medical University, Tokyo, Japan
| | - Hiroshi Tanaka
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Aomori, Japan
- Department of School Health Science, Hirosaki University, Hirosaki, Aomori Japan
| |
Collapse
|
12
|
Wyczanska M, Rohling J, Keller U, Benz MR, Kirschning C, Lange-Sperandio B. TLR2 mediates renal apoptosis in neonatal mice subjected experimentally to obstructive nephropathy. PLoS One 2023; 18:e0294142. [PMID: 38015955 PMCID: PMC10684073 DOI: 10.1371/journal.pone.0294142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023] Open
Abstract
Urinary tract obstruction during renal development leads to inflammation, tubular apoptosis, and interstitial fibrosis. Toll like receptors (TLRs) expressed on leukocytes, myofibroblasts and renal cells play a central role in acute inflammation. TLR2 is activated by endogenous danger signals in the kidney; its contribution to renal injury in early life is still a controversial topic. We analyzed TLR2 for a potential role in the neonatal mouse model of congenital obstructive nephropathy. Inborn obstructive nephropathies are a leading cause of end-stage kidney disease in children. Thus, newborn Tlr2-/- and wild type (WT) C57BL/6 mice were subjected to complete unilateral ureteral obstruction (UUO) or sham-operation on the 2nd day of life. The neonatal kidneys were harvested and analyzed at days 7 and 14 of life. Relative expression levels of TLR2, caspase-8, Bcl-2, Bax, GSDMD, GSDME, HMGB1, TNF, galectin-3, α-SMA, MMP-2, and TGF-β proteins were quantified semi-quantitatively by immunoblot analyses. Tubular apoptosis, proliferation, macrophage- and T-cell infiltration, tubular atrophy, and interstitial fibrosis were analyzed immunohistochemically. Neonatal Tlr2-/- mice kidneys exhibited less tubular and interstitial apoptosis as compared to those of WT C57BL/6 mice after UUO. UUO induced neonatally did trigger pyroptosis in kidneys, however to similar degrees in Tlr2-/- and WT mice. Also, tubular atrophy, interstitial fibrosis, tubular proliferation, as well as macrophage and T-cell infiltration were unremarkable. We conclude that while TLR2 mediates apoptosis in the kidneys of neonatal mice subjected to UUO, leukocyte recruitment, interstitial fibrosis, and consequent neonatal obstructive nephropathy might lack a TLR2 involvement.
Collapse
Affiliation(s)
- Maja Wyczanska
- Department of Pediatrics, Dr. v. Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Jana Rohling
- Department of Pediatrics, Dr. v. Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Ursula Keller
- Department of Pediatrics, Dr. v. Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Bärbel Lange-Sperandio
- Department of Pediatrics, Dr. v. Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
13
|
Plonsky-Toder M, Magen D, Pollack S. Innate Immunity and CKD: Is There a Significant Association? Cells 2023; 12:2714. [PMID: 38067142 PMCID: PMC10705738 DOI: 10.3390/cells12232714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic kidney disease (CKD) constitutes a worldwide epidemic, affecting approximately 10% of the global population, and imposes significant medical, psychological, and financial burdens on society. Individuals with CKD often face elevated morbidity and mortality rates, mainly due to premature cardiovascular events. Chronic inflammation has been shown to play a significant role in the progression of CKD, as well as in the acceleration of CKD-related complications, including atherosclerosis, cardiovascular disease (CVD), protein-energy wasting, and the aging process. Over the past two decades, a substantial body of evidence has emerged, identifying chronic inflammation as a central element of the uremic phenotype. Chronic inflammation has been shown to play a significant role in the progression of CKD, as well as in the acceleration of CKD-related complications in dialysis patients, including atherosclerosis, CVD, protein-energy wasting, and the aging process. Remarkably, chronic inflammation also impacts patients with CKD who have not yet required renal replacement therapy. While extensive research has been conducted on the involvement of both the adaptive and innate immune systems in the pathogenesis of CKD-related complications, this wealth of data has not yet yielded well-established, effective treatments to counteract this ongoing pathological process. In the following review, we will examine the established components of the innate immune system known to be activated in CKD and provide an overview of the current therapeutic approaches designed to mitigate CKD-related chronic inflammation.
Collapse
Affiliation(s)
- Moran Plonsky-Toder
- Pediatric Nephrology Institution, Rambam Health Care Campus, Haifa 3109601, Israel
- Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa 3109601, Israel
| | - Daniella Magen
- Pediatric Nephrology Institution, Rambam Health Care Campus, Haifa 3109601, Israel
- Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa 3109601, Israel
| | - Shirley Pollack
- Pediatric Nephrology Institution, Rambam Health Care Campus, Haifa 3109601, Israel
- Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa 3109601, Israel
| |
Collapse
|
14
|
Qu L, Jiao B. The Interplay between Immune and Metabolic Pathways in Kidney Disease. Cells 2023; 12:1584. [PMID: 37371054 PMCID: PMC10296595 DOI: 10.3390/cells12121584] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney disease is a significant health problem worldwide, affecting an estimated 10% of the global population. Kidney disease encompasses a diverse group of disorders that vary in their underlying pathophysiology, clinical presentation, and outcomes. These disorders include acute kidney injury (AKI), chronic kidney disease (CKD), glomerulonephritis, nephrotic syndrome, polycystic kidney disease, diabetic kidney disease, and many others. Despite their distinct etiologies, these disorders share a common feature of immune system dysregulation and metabolic disturbances. The immune system and metabolic pathways are intimately connected and interact to modulate the pathogenesis of kidney diseases. The dysregulation of immune responses in kidney diseases includes a complex interplay between various immune cell types, including resident and infiltrating immune cells, cytokines, chemokines, and complement factors. These immune factors can trigger and perpetuate kidney inflammation, causing renal tissue injury and progressive fibrosis. In addition, metabolic pathways play critical roles in the pathogenesis of kidney diseases, including glucose and lipid metabolism, oxidative stress, mitochondrial dysfunction, and altered nutrient sensing. Dysregulation of these metabolic pathways contributes to the progression of kidney disease by inducing renal tubular injury, apoptosis, and fibrosis. Recent studies have provided insights into the intricate interplay between immune and metabolic pathways in kidney diseases, revealing novel therapeutic targets for the prevention and treatment of kidney diseases. Potential therapeutic strategies include modulating immune responses through targeting key immune factors or inhibiting pro-inflammatory signaling pathways, improving mitochondrial function, and targeting nutrient-sensing pathways, such as mTOR, AMPK, and SIRT1. This review highlights the importance of the interplay between immune and metabolic pathways in kidney diseases and the potential therapeutic implications of targeting these pathways.
Collapse
Affiliation(s)
- Lili Qu
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| | - Baihai Jiao
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| |
Collapse
|
15
|
Franzin R, Stasi A, Caggiano G, Squiccimarro E, Losappio V, Fiorentino M, Alfieri C, Stallone G, Gesualdo L, Castellano G. Enhancing Immune Protection in Hemodialysis Patients: Role of the Polymethyl Methacrylate Membrane. Blood Purif 2023; 52 Suppl 1:49-61. [PMID: 37075738 PMCID: PMC10210079 DOI: 10.1159/000529971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/07/2023] [Indexed: 04/21/2023]
Abstract
End-stage renal disease (ESRD) is characterized by deep disorders in both innate and adaptive immune systems that imply unbalance deactivation and immunosuppression. The central, widely recognized factors responsible for this immune dysregulation are uremia, uremic toxin retention, hemodialysis membrane biocompatibility, and related cardiovascular complications. Recently, several studies strengthened the concept that dialysis membranes are not considered as a simple diffusive/adsorptive device but as a platform to personalize a dialysis approach to improve the quality of life of ESRD patients. Therefore, understanding of the molecules associated with altered immune response is crucial and could lead to therapeutically intervention or adaptation of the dialysis procedure itself for the management of immunological dysfunction of ESRD patients. The polymethyl methacrylate (PMMA)-based membrane is characterized by a symmetrical structure with large-sized pores, providing a better hydrophobic and cationic adsorption capacity compared to the other synthetic membranes. Together with hydrophobic interactions, the high adsorption rate of cytokines (i.e., IL-6) can also be enhanced by the size of nano-pores placed on the membrane surface. PMMA membranes exhibit adsorptive properties for a large amount of uremic toxins including p-cresol and indoxyl sulfate, as well as β2-microglobulin characterized by higher molecular weight, maintaining the diffusive clearance of small molecules like urea with a great biocompatibility. Besides exerting a strong anti-inflammatory effects in line with the improvement of immune responses in patients undergoing dialysis, PMMA also plays a role in modulating adaptive immune response, i.e., can clear blood from soluble CD40, a natural antagonist of the CD40/CD40L signaling that acts inhibiting immunoglobulin production by B cells. This review provides an overview of the main concepts and current understanding of immune dysfunction in hemodialysis and summarizes the recent findings regarding PMMA-based dialysis as potential strategy to restore immune balance in ESRD patients.
Collapse
Affiliation(s)
- Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Gianvito Caggiano
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Elena Squiccimarro
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Vincenzo Losappio
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Carlo Alfieri
- Unit of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| |
Collapse
|
16
|
Bajwa S, Luebbe A, Vo NDN, Piskor EM, Kosan C, Wolf G, Loeffler I. RAGE is a critical factor of sex-based differences in age-induced kidney damage. Front Physiol 2023; 14:1154551. [PMID: 37064891 PMCID: PMC10090518 DOI: 10.3389/fphys.2023.1154551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: Advanced glycation end products (AGEs) are a heterogeneous group of molecules with potential pathophysiological effects on the kidneys. Fibrosis together with the accumulation of AGEs has been investigated for its contribution to age-related decline in renal function. AGEs mediate their effects in large parts through their interactions with the receptor for AGEs (RAGE). RAGE is a transmembrane protein that belongs to the immunoglobulin superfamily and has the ability to interact with multiple pro-inflammatory/pro-oxidative ligands. The role of RAGE in aging kidneys has not been fully characterized, especially for sex-based differences. Methods: Therefore, we analyzed constitutive RAGE knockout (KO) mice in an age- and sex-dependent manner. Paraffin-embedded kidney sections were used for histological analysis and protein expression of fibrosis and damage markers. RNA expression analysis from the kidney cortex was done by qPCR for AGE receptors, kidney damage, and early inflammation/fibrosis factors. FACS analysis was used for immune cell profiling of the kidneys. Results: Histological analysis revealed enhanced infiltration of immune cells (positive for B220) in aged (>70 weeks old) KO mice in both sexes. FACS analysis revealed a similar pattern of enhanced B-1a cells in aged KO mice. There was an age-based increase in pro-fibrotic and pro-inflammatory markers (IL-6, TNF, TGF-β1, and SNAIL1) in KO male mice that presumably contributed to renal fibrosis and renal damage (glomerular and tubular). In fact, in KO mice, there was an age-dependent increase in renal damage (assessed by NGAL and KIM1) that was accompanied by increased fibrosis (assessed by CTGF). This effect was more pronounced in male KO mice than in the female KO mice. In contrast to the KO animals, no significant increase in damage markers was detectable in wild-type animals at the age examined (>70 weeks old). Moreover, there is an age-based increase in AGEs and scavenger receptor MSR-A2 in the kidneys. Discussion: Our data suggest that the loss of the clearance receptor RAGE in male animals further accelerates age-dependent renal damage; this could be in part due to an increase in AGEs load during aging and the absence of protective female hormones. By contrast, in females, RAGE expression seems to play only a minor role when compared to tissue pathology.
Collapse
Affiliation(s)
- Seerat Bajwa
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Alexander Luebbe
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Ngoc Dong Nhi Vo
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Eva-Maria Piskor
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University, Jena, Germany
| | - Christian Kosan
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University, Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Ivonne Loeffler
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| |
Collapse
|
17
|
González-Cuadrado C, Caro-Espada PJ, Chivite-Lacaba M, Utrero-Rico A, Lozano-Yuste C, Gutierrez-Solis E, Morales E, Sandino-Pérez J, Gil-Etayo FJ, Allende-Martínez L, Laguna-Goya R, Paz-Artal E. Hemodialysis-Associated Immune Dysregulation in SARS-CoV-2-Infected End-Stage Renal Disease Patients. Int J Mol Sci 2023; 24:ijms24021712. [PMID: 36675231 PMCID: PMC9865754 DOI: 10.3390/ijms24021712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Patients on hemodialysis show dysregulated immunity, basal hyperinflammation and a marked vulnerability to COVID-19. We evaluated the immune profile in COVID-19 hemodialysis patients and the changes associated with clinical deterioration after the hemodialysis session. Recruited patients included eight hemodialysis subjects with active, PCR-confirmed SARS-CoV-2 infection, five uninfected hemodialysis patients and five healthy controls. In SARS-CoV-2-infected hemodialysis patients TNF-α, IL-6 and IL-8 were particularly increased. Lymphopenia was mostly due to reduction in CD4+ T, B and central memory CD8+ T cells. There was a predominance of classical and intermediate monocytes with reduced HLA-DR expression and enhanced production of pro-inflammatory molecules. Immune parameters were analysed pre- and post-hemodialysis in three patients with COVID-19 symptoms worsening after the hemodialysis session. There was a higher than 2.5-fold increase in GM-CSF, IFN-γ, IL-1β, IL-2, IL-6, IL-17A and IL-21 in serum, and augmentation of monocytes-derived TNF-α, IL-1β and IL-8 and CXCL10 (p < 0.05). In conclusion, COVID-19 in hemodialysis patients associates with alteration of lymphocyte subsets, increasing of pro-inflammatory cytokines and monocyte activation. The observed worsening during the hemodialysis session in some patients was accompanied by augmentation of particular inflammatory cytokines, which might suggest biomarkers and therapeutic targets to prevent or mitigate the hemodialysis-related deterioration during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Cecilia González-Cuadrado
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Correspondence: (C.G.-C.); (E.P.-A.); Tel.: +34-628-502-629 (C.G.-C.)
| | | | - Marta Chivite-Lacaba
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Alberto Utrero-Rico
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Claudia Lozano-Yuste
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | | | - Enrique Morales
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Justo Sandino-Pérez
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Francisco Javier Gil-Etayo
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, 28009 Madrid, Spain
| | - Luis Allende-Martínez
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, 28009 Madrid, Spain
| | - Rocio Laguna-Goya
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (C.G.-C.); (E.P.-A.); Tel.: +34-628-502-629 (C.G.-C.)
| |
Collapse
|
18
|
McGovern KE, Sonar SA, Watanabe M, Coplen CP, Bradshaw CM, Nikolich JŽ. The aging of the immune system and its implications for transplantation. GeroScience 2023:10.1007/s11357-022-00720-2. [PMID: 36626019 PMCID: PMC9838392 DOI: 10.1007/s11357-022-00720-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
By the last third of life, most mammals, including humans, exhibit a decline in immune cell numbers, immune organ structure, and immune defense of the organism, commonly known as immunosenescence. This decline leads to clinical manifestations of increased susceptibility to infections, particularly those caused by emerging and reemerging microorganisms, which can reach staggering levels-infection with SARS-CoV-2 has been 270-fold more lethal to older adults over 80 years of age, compared to their 18-39-year-old counterparts. However, while this would be expected to be beneficial to situations where hyporeactivity of the immune system may be desirable, this is not always the case. Here, we discuss the cellular and molecular underpinnings of immunosenescence as they pertain to outcomes of solid organ and hematopoietic transplantation.
Collapse
Affiliation(s)
- Kathryn E McGovern
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Sandip A Sonar
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Makiko Watanabe
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Christopher P Coplen
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Christine M Bradshaw
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Janko Ž Nikolich
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA.
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA.
- BIO5 Institute, University of Arizona, Tucson, AZ, USA.
- The Aegis Consortium for Pandemic-free Future, University of Arizona Health Sciences, University of Arizona, Tucson, 85719, USA.
| |
Collapse
|
19
|
Cai Q, Sun Z, Xu S, Jiao X, Guo S, Li Y, Wu H, Yu X. Disulfiram ameliorates ischemia/reperfusion-induced acute kidney injury by suppressing the caspase-11-GSDMD pathway. Ren Fail 2022; 44:1169-1181. [PMID: 35837696 PMCID: PMC9291718 DOI: 10.1080/0886022x.2022.2098764] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Acute kidney injury (AKI) is a serious condition with high mortality. The most common cause is kidney ischemia/reperfusion (IR) injury, which is thought to be closely related to pyroptosis. Disulfiram is a well-known alcohol abuse drug, and recent studies have shown its ability to mitigate pyroptosis in mouse macrophages. This study investigated whether disulfiram could improve IR-induced AKI and elucidated the possible molecular mechanism. We generated an IR model in mouse kidneys and a hypoxia/reoxygenation (HR) injury model with murine tubular epithelial cells (MTECs). The results showed that IR caused renal dysfunction in mice and triggered pyroptosis in renal tubular epithelial cells, and disulfiram improved renal impairment after IR. The expression of proteins associated with the classical pyroptosis pathway (Nucleotide-binding oligomeric domain (NOD)-like receptor protein 3 (NLRP3), apoptosis-related specific protein (ASC), caspase-1, N-GSDMD) and nonclassical pyroptosis pathway (caspase-11, N-GSDMD) were upregulated after IR. Disulfiram blocked the upregulation of nonclassical but not all classical pyroptosis pathway proteins (NLRP3 and ASC), suggesting that disulfiram might reduce pyroptosis by inhibiting the caspase-11-GSDMD pathway. In vitro, HR increased intracellular ROS levels, the positive rate of PI staining and LDH levels in MTECs, all of which were reversed by disulfiram pretreatment. Furthermore, we performed a computer simulation of the TIR domain of TLR4 using homology modeling and identified a small molecular binding energy between disulfiram and the TIR domain. We concluded that disulfiram might inhibit pyroptosis by antagonizing TLR4 and inhibiting the caspase-11-GSDMD pathway.
Collapse
Affiliation(s)
- Qiaoting Cai
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Zhaoxing Sun
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Sujuan Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Xiaoyan Jiao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Shulan Guo
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Yingxiang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Huan Wu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center for Kidney, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purifcation, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China
| |
Collapse
|
20
|
Chi M, Tian Z, Ma K, Li Y, Wang L, Nasser MI, Liu C. The diseased kidney: aging and senescent immunology. IMMUNITY & AGEING 2022; 19:58. [PMCID: PMC9666969 DOI: 10.1186/s12979-022-00313-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022]
Abstract
AbstractImmunosenescence is the deterioration of the innate and adaptive immune systems associated with aging and is primarily characterized by a reduction in T cell production and accumulation of atypical subsets. Age-related immunological dysfunction leads to impaired immune protection and persistent low-grade chronic inflammation, resulting in a decreased vaccination response and increased vulnerability to infection, cancer, cardiovascular disease, and autoimmune disease in the elderly. As the elderly constitute a growing proportion of the population with renal disease, immunosenescence is a normal aging process that is prevalent among older people. In addition, immunosenescence seems to be more pronounced in patients with kidney diseases than in healthy controls, as shown by severe chronic inflammation, accumulation of immune cells with the senescent phenotype (CD28− T cells, CD14+CD16+ monocytes), and proinflammatory cytokine production. Immunosenescence inhibits immunological clearance and renal tissue regeneration, thereby increasing the risk of permanent renal damage, infection, and cardiovascular events in patients with kidney disease, lowering the prognosis, and even influencing the efficacy of renal replacement treatment. Biological drugs (senomorphics and senolytics) target the aging immune system and exert renoprotective effects. This review aims to emphasize the features of immunosenescence and its influence on kidney diseases and immunotherapy, highlighting the future directions of kidney disease treatment using senescence-focused techniques.
Collapse
|
21
|
The Role of Innate Immune Cells in the Prediction of Early Renal Allograft Injury Following Kidney Transplantation. J Clin Med 2022; 11:jcm11206148. [PMID: 36294469 PMCID: PMC9605224 DOI: 10.3390/jcm11206148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/24/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Despite recent advances and refinements in perioperative management of kidney transplantation (KT), early renal graft injury (eRGI) remains a critical problem with serious impairment of graft function as well as short- and long-term outcome. Serial monitoring of peripheral blood innate immune cells might be a useful tool in predicting post-transplant eRGI and graft outcome after KT. Methods: In this prospective study, medical data of 50 consecutive patients undergoing KT at the University Hospital of Leipzig were analyzed starting at the day of KT until day 10 after the transplantation. The main outcome parameter was the occurrence of eRGI and other outcome parameters associated with graft function/outcome. eRGI was defined as graft-related complications and clinical signs of renal IRI (ischemia reperfusion injury), such as acute tubular necrosis (ATN), delayed graft function (DGF), initial nonfunction (INF) and graft rejection within 3 months following KT. Typical innate immune cells including neutrophils, natural killer (NK) cells, monocytes, basophils and dendritic cells (myeloid, plasmacytoid) were measured in all patients in peripheral blood at day 0, 1, 3, 7 and 10 after the transplantation. Receiver operating characteristics (ROC) curves were performed to assess their predictive value for eRGI. Cutoff levels were calculated with the Youden index. Significant diagnostic immunological cutoffs and other prognostic clinical factors were tested in a multivariate logistic regression model. Results: Of the 50 included patients, 23 patients developed eRGI. Mean levels of neutrophils and monocytes were significantly higher on most days in the eRGI group compared to the non-eRGI group after transplantation, whereas a significant decrease in NK cell count, basophil levels and DC counts could be found between baseline and postoperative course. ROC analysis indicated that monocytes levels on POD 7 (AUC: 0.91) and NK cell levels on POD 7 (AUC: 0.92) were highly predictive for eRGI after KT. Multivariable analysis identified recipient age (OR 1.53 (95% CI: 1.003−2.350), p = 0.040), recipient body mass index > 25 kg/m2 (OR 5.6 (95% CI: 1.36−23.9), p = 0.015), recipient cardiovascular disease (OR 8.17 (95% CI: 1.28−52.16), p = 0.026), donor age (OR 1.068 (95% CI: 1.011−1.128), p = 0.027), <0.010), deceased-donor transplantation (OR 2.18 (95% CI: 1.091−4.112), p = 0.027) and cold ischemia time (CIT) of the renal graft (OR 1.005 (95% CI: 1.001−1.01), p = 0.019) as clinically relevant prognostic factors associated with increased eRGI following KT. Further, neutrophils > 9.4 × 103/μL on POD 7 (OR 16.1 (95% CI: 1.31−195.6), p = 0.031), monocytes > 1150 cells/ul on POD 7 (OR 7.81 (95% CI: 1.97−63.18), p = 0.048), NK cells < 125 cells/μL on POD 3 (OR 6.97 (95% CI: 3.81−12.7), p < 0.01), basophils < 18.1 cells/μL on POD 10 (OR 3.45 (95% CI: 1.37−12.3), p = 0.02) and mDC < 4.7 cells/μL on POD 7 (OR 11.68 (95% CI: 1.85−73.4), p < 0.01) were revealed as independent biochemical predictive variables for eRGI after KT. Conclusions: We show that the combined measurement of immunological innate variables (NK cells and monocytes on POD 7) and specific clinical factors such as prolonged CIT, increased donor and recipient age and morbidity together with deceased-donor transplantation were significant and specific predictors of eRGI following KT. We suggest that intensified monitoring of these parameters might be a helpful clinical tool in identifying patients at a higher risk of postoperative complication after KT and may therefore help to detect and—by diligent clinical management—even prevent deteriorated outcome due to IRI and eRGI after KT.
Collapse
|
22
|
Du L, Zhang Y, Ji S, Wang L, Zhao X, Yan S, Xiao X, Li S. Mechanisms of Zhenwu decoction for the treatment of renal fibrosis at various stages: What is the role of Corynebacterium? Front Microbiol 2022; 13:913465. [PMID: 36147851 PMCID: PMC9485941 DOI: 10.3389/fmicb.2022.913465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/11/2022] [Indexed: 12/05/2022] Open
Abstract
Many studies demonstrated that Zhenwu decoction (ZWD) is effective in the treatment of kidney fibrosis, whereas the mechanism remains unclear. In this work, a microbiomics-based strategy was used to investigate the mechanism of protective effects of ZWD on kidney fibrosis. Unilateral ureteral obstruction was used to replicate a rat model of renal fibrosis, and rats were divided into prophylactic, early, and progression stages according to the timing of administration. Feces was collected to perform microbiota evaluation by high-throughput 16S DNA sequencing. The results indicated that Corynebacterium, Alistipes, Dorea, and Lactonifactor were highlighted as key targeted flora of ZWD in the treatment of renal fibrosis, and their biological functions were related to inflammation, immunity, and renal excretion. Especially, Corynebacterium presented a significant positive correlation with the concentration of Cys-C, Scr, and BUN. The studies on the changes in inflammatory cytokines (INF-γ, IL-1β, IL-4, and TNF-α) and immunoglobulin (IgA, IgM, and IgG) confirmed the beneficial effects of ZWD on kidney fibrosis. Therefore, this study confirmed the protective effect of ZWD against renal fibrosis at various disease stages, and its mechanism was associated with re-establishing dysbiosis of the intestinal microbiota, reducing inflammation, as well as regulating immune functions. In particular, Corynebacterium may be a key flora in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Lijing Du
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yiping Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuai Ji
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Leqi Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Shikai Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xue Xiao
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Xue Xiao,
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
- Shasha Li,
| |
Collapse
|
23
|
Yanai K, Kaneko S, Ishii H, Aomatsu A, Hirai K, Ookawara S, Morishita Y. MicroRNA Expression Profiling in Age-Dependent Renal Impairment. Front Med (Lausanne) 2022; 9:849075. [PMID: 35646947 PMCID: PMC9140741 DOI: 10.3389/fmed.2022.849075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAge-dependent renal impairment contributes to renal dysfunction in both the general population and young and middle-aged patients with renal diseases. Pathological changes in age-dependent renal impairment include glomerulosclerosis and tubulointerstitial fibrosis. The molecules involved in age-dependent renal impairment are not fully elucidated. MicroRNA (miRNA) species were reported to modulate various renal diseases, but the miRNA species involved in age-dependent renal impairment are unclear. Here, we investigated miRNAs in age-dependent renal impairment, and we evaluated their potential as biomarkers and therapeutic targets.MethodsWe conducted an initial microarray profiling analysis to screen miRNAs whose expression levels changed in kidneys of senescence-accelerated resistant (SAMR1)-10-week-old (wk) mice and SAMR1-50wk mice and senescence-accelerated prone (SAMP1)-10wk mice and SAMP1-50wk mice. We then evaluated the expressions of differentially expressed miRNAs in serum from 13 older patients (>65 years old) with age-dependent renal impairment (estimated glomerular filtration ratio <60 mL/min/1.73 m2) by a quantitative real-time polymerase chain reaction (qRT-PCR) and compared the expressions with those of age-matched subjects with normal renal function. We also administered miRNA mimics or inhibitors (5 nmol) with a non-viral vector (polyethylenimine nanoparticles: PEI-NPs) to SAMP1-20wk mice to investigate the therapeutic effects.ResultsThe qRT-PCR revealed a specific miRNA (miRNA-503-5p) whose level was significantly changed in SAMP1-50wk mouse kidneys in comparison to the controls. The expression level of miRNA-503-5p was upregulated in the serum of the 13 patients with age-dependent renal impairment compared to the age-matched subjects with normal renal function. The administration of a miRNA-503-5p-inhibitor with PEI-NPs decreased the miRNA-503-5p expression levels, resulting in the inhibition of renal fibrosis in mice via an inhibition of a pro-fibrotic signaling pathway and a suppression of glomerulosclerosis in mice by inhibiting intrinsic signaling pathways.ConclusionThe serum levels of miRNA-503-5p were decreased in patients with age-dependent renal impairment. However, inhibition of miRNA-503-5p had no effect on age-dependent renal impairment, although inhibition of miRNA-503-5p had therapeutic effects on renal fibrosis and glomerulosclerosis in an in vivo animal model. These results indicate that miRNA-503-5p might be related to age-dependent renal impairment.
Collapse
Affiliation(s)
- Katsunori Yanai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Shohei Kaneko
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Hiroki Ishii
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Akinori Aomatsu
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
- Division of Intensive Care Unit, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Keiji Hirai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
- *Correspondence: Yoshiyuki Morishita
| |
Collapse
|