1
|
Nishikori A, Nishimura MF, Tomida S, Chijimatsu R, Ueta H, Lai YC, Kawahara Y, Takeda Y, Ochi S, Haratake T, Ennishi D, Nakamura N, Momose S, Sato Y. Transcriptome analysis of the cytokine storm-related genes among the subtypes of idiopathic multicentric Castleman disease. J Clin Exp Hematop 2024; 64:297-306. [PMID: 39462545 PMCID: PMC11786152 DOI: 10.3960/jslrt.24061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
Idiopathic multicentric Castleman disease (iMCD) is a type of Castleman disease unrelated to the Kaposi sarcoma-associated herpesvirus/human herpesvirus type 8 (KSHV/HHV8) infection. Presently, iMCD is classified into iMCD-IPL (idiopathic plasmacytic lymphadenopathy), iMCD-TAFRO (thrombocytopenia, anasarca, fever, reticulin fibrosis/renal insufficiency, and organomegaly), and iMCD-NOS (not otherwise specified). The most common treatment for iMCD is using IL-6 inhibitors; however, some patients resist IL-6 inhibitors, especially for iMCD-TAFRO/NOS. Nevertheless, since serum IL-6 levels are not significantly different between the iMCD-IPL and iMCD-TAFRO/NOS cases, cytokines other than IL-6 may be responsible for the differences in pathogenesis. Herein, we performed a transcriptome analysis of cytokine storm-related genes and examined the differences between iMCD-IPL and iMCD-TAFRO/NOS. The results demonstrated that counts per million of STAT2, IL1R1, IL1RAP, IL33, TAFAIP1, and VEGFA (P < 0.001); STAT3, JAK2, MAPK8, IL17RA, IL18, TAFAIP2, TAFAIP3, PDGFA, VEGFC, CXCL10, CCL4, and CXCL13 (P < 0.01); and STAT1, STAT6, JAK1, MAPK1, MAPK3, MAPK6, MAPK7, MAPK9, MAPK10, MAPK11, MAPK12, MAPK14, NFKB1, NFKBIA, NFKBIB, NFKBIZ, MTOR, IL10RB, IL12RB2, IL18BP, TAFAIP6, TNFAIP8L1, TNFAIP8L3, CSF2RBP1, PDGFB, PDGFC, and CXCL9 (P < 0.05) were significantly increased in iMCD-TAFRO/NOS. Particularly, upregulated IL33 expression was demonstrated for the first time in iMCD-TAFRO/NOS. Thus, inflammatory signaling, such as JAK-STAT and MAPK, may be enhanced in iMCD-TAFRO/NOS and may be a cytokine storm.
Collapse
|
2
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Maiahy TJ, Alexiou A, Mukerjee N, Batiha GES. Prostaglandins and non-steroidal anti-inflammatory drugs in Covid-19. Biotechnol Genet Eng Rev 2024; 40:3305-3325. [PMID: 36098621 DOI: 10.1080/02648725.2022.2122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022]
Abstract
In response to different viral infections, including SARS-CoV-2 infection, pro-inflammatory, anti-inflammatory cytokines, and bioactive lipids are released from infected and immune cells. One of the most critical bioactive lipids is prostaglandins (PGs) which favor perseverance of inflammation leading to chronic inflammation as PGs act as cytokine amplifiers. PGs trigger the release of pro-inflammatory cytokines, activate Th cells, recruit immune cells, and increase the expression of pro-inflammatory genes. Therefore, PGs may induce acute and chronic inflammations in various inflammatory disorders and viral infections like SARS-CoV-2. PGs are mainly inhibited by non-steroidal anti-inflammatory drugs (NSAIDs) by blocking cyclooxygenase enzymes (COXs), which involve PG synthesis. NSAIDs reduce inflammation by selective or non-selective blocking activity of COX2 or COX1/2, respectively. In the Covid-19 era, there is a tremendous controversy regarding the use of NSAIDs in the management of SARS-CoV-2 infection. As well, the possible role of PGs in the pathogenesis of SARS-CoV-2 infection is not well-defined. Thus, the objective of the present study is to review the potential role of PGs and NSAIDs in Covid-19 in a narrative review regarding the preponderance of assorted views.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Thabat J Al-Maiahy
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira
| | - Athanasios Alexiou
- Department Of Gynecology and Obstetrics, College of Medicine, Al-Mustansiriyah University, aghdad, Iraq
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
| | - Nobendu Mukerjee
- AFNP Med, Wien, Austria
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal, India
| | - Gaber El-Saber Batiha
- Department of Health Sciences, Novel Global Community Educational Foundation, Heber-sham, Australia
| |
Collapse
|
3
|
de Souza Goncalves B, Sangani D, Nayyar A, Puri R, Irtiza M, Nayyar A, Khalyfa A, Sodhi K, Pillai SS. COVID-19-Associated Sepsis: Potential Role of Phytochemicals as Functional Foods and Nutraceuticals. Int J Mol Sci 2024; 25:8481. [PMID: 39126050 PMCID: PMC11312872 DOI: 10.3390/ijms25158481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The acute manifestations of coronavirus disease 2019 (COVID-19) exhibit the hallmarks of sepsis-associated complications that reflect multiple organ failure. The inflammatory cytokine storm accompanied by an imbalance in the pro-inflammatory and anti-inflammatory host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to severe and critical septic shock. The sepsis signature in severely afflicted COVID-19 patients includes cellular reprogramming and organ dysfunction that leads to high mortality rates, emphasizing the importance of improved clinical care and advanced therapeutic interventions for sepsis associated with COVID-19. Phytochemicals of functional foods and nutraceutical importance have an incredible impact on the healthcare system, which includes the prevention and/or treatment of chronic diseases. Hence, in the present review, we aim to explore the pathogenesis of sepsis associated with COVID-19 that disrupts the physiological homeostasis of the body, resulting in severe organ damage. Furthermore, we have summarized the diverse pharmacological properties of some potent phytochemicals, which can be used as functional foods as well as nutraceuticals against sepsis-associated complications of SARS-CoV-2 infection. The phytochemicals explored in this article include quercetin, curcumin, luteolin, apigenin, resveratrol, and naringenin, which are the major phytoconstituents of our daily food intake. We have compiled the findings from various studies, including clinical trials in humans, to explore more into the therapeutic potential of each phytochemical against sepsis and COVID-19, which highlights their possible importance in sepsis-associated COVID-19 pathogenesis. We conclude that our review will open a new research avenue for exploring phytochemical-derived therapeutic agents for preventing or treating the life-threatening complications of sepsis associated with COVID-19.
Collapse
Affiliation(s)
- Bruno de Souza Goncalves
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Darshan Sangani
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Aleen Nayyar
- Department of Medicine, Sharif Medical and Dental College, Lahore 55150, Pakistan;
| | - Raghav Puri
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Mahir Irtiza
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Asma Nayyar
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Abdelnaby Khalyfa
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Komal Sodhi
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Sneha S. Pillai
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| |
Collapse
|
4
|
Anton DB, de Lima JC, Dahmer BR, Camini AM, Goettert MI, Timmers LFSM. Taming the storm: potential anti-inflammatory compounds targeting SARS-CoV-2 MPro. Inflammopharmacology 2024:10.1007/s10787-024-01525-9. [PMID: 39048773 DOI: 10.1007/s10787-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In severe COVID-19 cases, an exacerbated inflammatory response triggers a cytokine storm that can worsen the prognosis. Compounds with both antiviral and anti-inflammatory activities show promise as candidates for COVID-19 therapy, as they potentially act against the SARS-CoV-2 infection regardless of the disease stage. One of the most attractive drug targets among coronaviruses is the main protease (MPro). This enzyme is crucial for cleaving polyproteins into non-structural proteins required for viral replication. The aim of this review was to identify SARS-CoV-2 MPro inhibitors with both antiviral and anti-inflammatory properties. The interactions of the compounds within the SARS-CoV-2 MPro binding site were analyzed through molecular docking when data from crystallographic structures were unavailable. 18 compounds were selected and classified into five different superclasses. Five of them exhibit high potency against MPro: GC-376, baicalein, naringenin, heparin, and carmofur, with IC50 values below 0.2 μM. The MPro inhibitors selected have the potential to alleviate lung edema and decrease cytokine release. These molecules mainly target three critical inflammatory pathways: NF-κB, JAK/STAT, and MAPK, all previously associated with COVID-19 pathogenesis. The structures of the compounds occupy the S1/S2 substrate binding subsite of the MPro. They interact with residues from the catalytic dyad (His41 and Cys145) and/or with the oxyanion hole (Gly143, Ser144, and Cys145), which are pivotal for substrate recognition. The MPro SARS-CoV-2 inhibitors with potential anti-inflammatory activities present here could be optimized for maximum efficacy and safety and be explored as potential treatment of both mild and severe COVID-19.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Jeferson Camargo de Lima
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Bruno Rampanelli Dahmer
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Ana Micaela Camini
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Marcia Inês Goettert
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Luis Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
| |
Collapse
|
5
|
Moreno E, Ciordia S, Fátima SM, Jiménez D, Martínez-Sanz J, Vizcarra P, Ron R, Sánchez-Conde M, Bargiela R, Sanchez-Carrillo S, Moreno S, Corrales F, Ferrer M, Serrano-Villar S. Proteomic snapshot of saliva samples predicts new pathways implicated in SARS-CoV-2 pathogenesis. Clin Proteomics 2024; 21:37. [PMID: 38778280 PMCID: PMC11112864 DOI: 10.1186/s12014-024-09482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Information on the microbiome's human pathways and active members that can affect SARS-CoV-2 susceptibility and pathogenesis in the salivary proteome is very scarce. Here, we studied a unique collection of samples harvested from April to June 2020 from unvaccinated patients. METHODS We compared 10 infected and hospitalized patients with severe (n = 5) and moderate (n = 5) coronavirus disease (COVID-19) with 10 uninfected individuals, including non-COVID-19 but susceptible individuals (n = 5) and non-COVID-19 and nonsusceptible healthcare workers with repeated high-risk exposures (n = 5). RESULTS By performing high-throughput proteomic profiling in saliva samples, we detected 226 unique differentially expressed (DE) human proteins between groups (q-value ≤ 0.05) out of 3376 unambiguously identified proteins (false discovery rate ≤ 1%). Major differences were observed between the non-COVID-19 and nonsusceptible groups. Bioinformatics analysis of DE proteins revealed human proteomic signatures related to inflammatory responses, central cellular processes, and antiviral activity associated with the saliva of SARS-CoV-2-infected patients (p-value ≤ 0.0004). Discriminatory biomarker signatures from human saliva include cystatins, protective molecules present in the oral cavity, calprotectins, involved in cell cycle progression, and histones, related to nucleosome functions. The expression levels of two human proteins related to protein transport in the cytoplasm, DYNC1 (p-value, 0.0021) and MAPRE1 (p-value, 0.047), correlated with angiotensin-converting enzyme 2 (ACE2) plasma activity. Finally, the proteomes of microorganisms present in the saliva samples showed 4 main microbial functional features related to ribosome functioning that were overrepresented in the infected group. CONCLUSION Our study explores potential candidates involved in pathways implicated in SARS-CoV-2 susceptibility, although further studies in larger cohorts will be necessary.
Collapse
Affiliation(s)
- Elena Moreno
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, 28049, Madrid, Spain
| | - Santos Milhano Fátima
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, 28049, Madrid, Spain
| | - Daniel Jiménez
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
| | - Javier Martínez-Sanz
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pilar Vizcarra
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Raquel Ron
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Matilde Sánchez-Conde
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Rafael Bargiela
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Sergio Sanchez-Carrillo
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049, Madrid, Spain
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, 28049, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Facultad de Medicina, Universidad de Alcalá de Henares, 28801, Alcalá de Henares, Madrid, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, 28049, Madrid, Spain
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
6
|
Yu JT, Fan S, Li XY, Hou R, Hu XW, Wang JN, Shan RR, Dong ZH, Xie MM, Dong YH, Shen XY, Jin J, Wen JG, Liu MM, Wang W, Meng XM. Novel insights into STAT3 in renal diseases. Biomed Pharmacother 2023; 165:115166. [PMID: 37473682 DOI: 10.1016/j.biopha.2023.115166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a cell-signal transcription factor that has attracted considerable attention in recent years. The stimulation of cytokines and growth factors can result in the transcription of a wide range of genes that are crucial for several cellular biological processes involved in pro- and anti-inflammatory responses. STAT3 has attracted considerable interest as a result of a recent upsurge in study because of their role in directing the innate immune response and sustaining inflammatory pathways, which is a key feature in the pathogenesis of many diseases, including renal disorders. Several pathological conditions which may involve STAT3 include diabetic nephropathy, acute kidney injury, lupus nephritis, polycystic kidney disease, and renal cell carcinoma. STAT3 is expressed in various renal tissues under these pathological conditions. To better understand the role of STAT3 in the kidney and provide a theoretical foundation for STAT3-targeted therapy for renal disorders, this review covers the current work on the activities of STAT3 and its mechanisms in the pathophysiological processes of various types of renal diseases.
Collapse
Affiliation(s)
- Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shuai Fan
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032 China; Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032 China
| | - Xiang-Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rui Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Wei Hu
- Department of Clinical Pharmacy, Anhui Provincial Children's Hospital, Hefei 230051, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Run-Run Shan
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Ze-Hui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Man-Man Xie
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Wang
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032 China; Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032 China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
7
|
Nakazawa D, Takeda Y, Kanda M, Tomaru U, Ogawa H, Kudo T, Shiratori-Aso S, Watanabe-Kusunoki K, Ueda Y, Miyoshi A, Hattanda F, Nishio S, Uozumi R, Ishizu A, Atsumi T. Inhibition of Toll-like receptor 4 and Interleukin-1 receptor prevent SARS-CoV-2 mediated kidney injury. Cell Death Discov 2023; 9:293. [PMID: 37563112 PMCID: PMC10415265 DOI: 10.1038/s41420-023-01584-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/28/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Acute kidney injury (AKI) is a common and severe complication of the coronavirus disease 2019 (COVID-19). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly affects the glomerular and tubular epithelial cells to induce AKI; however, its pathophysiology remains unclear. Here, we explored the underlying mechanisms and therapeutic targets of renal involvement in COVID-19. We developed an in vitro human kidney cellular model, including immortalized tubular epithelial and endothelial cell lines, demonstrating that SARS-CoV-2 directly triggers cell death. To identify the molecular targets in the process of SARS-CoV-2-mediated cell injury, we performed transcriptional analysis using RNA sequencing. Tubular epithelial cells were more prone to dying by SARS-CoV-2 than endothelial cells; however, SARS-CoV-2 did not replicate in renal cells, distinct from VeroE6/transmembrane protease serine 2 cells. Transcriptomic analysis revealed increased inflammatory and immune-related gene expression levels in renal cells incubated with SARS-CoV-2. Toll-like receptor (TLR) 3 in renal cells recognized viral RNA and underwent cell death. Furthermore, analysis of upstream regulators identified several key transcriptional regulators. Among them, inhibition of the interleukin-1 receptor (IL-1R) and TLR4 pathways protects tubular epithelial and endothelial cells from injury via regulation of the signal transducer and activator of transcription protein-3/nuclear factor-kB pathway. Our results reveal that SARS-CoV-2 directly injures renal cells via the proinflammatory response without viral replication, and that IL-1R and TLR4 may be used as therapeutic targets for SARS-CoV-2 mediated kidney injury.
Collapse
Affiliation(s)
- Daigo Nakazawa
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Masatoshi Kanda
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University, Sapporo, Japan
| | - Utano Tomaru
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Takashi Kudo
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoka Shiratori-Aso
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kanako Watanabe-Kusunoki
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yusho Ueda
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Atsuko Miyoshi
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Fumihiko Hattanda
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Saori Nishio
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Uozumi
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Akihiro Ishizu
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Wang Y, Li P, Lavrijsen M, Rottier RJ, den Hoed CM, Bruno MJ, Kamar N, Peppelenbosch MP, de Vries AC, Pan Q. Immunosuppressants exert differential effects on pan-coronavirus infection and distinct combinatory antiviral activity with molnupiravir and nirmatrelvir. United European Gastroenterol J 2023; 11:431-447. [PMID: 37226653 PMCID: PMC10256998 DOI: 10.1002/ueg2.12417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Immunocompromised populations, such as organ transplant recipients and patients with inflammatory bowel disease (IBD) receiving immunosuppressive/immunomodulatory medications, may be more susceptible to coronavirus infections. However, little is known about how immunosuppressants affect coronavirus replication and their combinational effects with antiviral drugs. OBJECTIVE This study aims to profile the effects of immunosuppressants and the combination of immunosuppressants with oral antiviral drugs molnupiravir and nirmatrelvir on pan-coronavirus infection in cell and human airway organoids (hAOs) culture models. METHODS Different coronaviruses (including wild type, delta and omicron variants of SARS-CoV-2, and NL63, 229E and OC43 seasonal coronaviruses) were used in lung cell lines and hAOs models. The effects of immunosuppressants were tested. RESULTS Dexamethasone and 5-aminosalicylic acid moderately stimulated the replication of different coronaviruses. Mycophenolic acid (MPA), 6-thioguanine (6-TG), tofacitinib and filgotinib treatment dose-dependently inhibited viral replication of all tested coronaviruses in both cell lines and hAOs. The half maximum effective concentration (EC50) of tofacitinib against SARS-CoV-2 was 0.62 μM and the half maximum cytotoxic concentration (CC50) was above 30 μM, which resulted in a selective index (SI) of about 50. The anti-coronavirus effect of the JAK inhibitors tofacitinib and filgotinib is dependent on the inhibition of STAT3 phosphorylation. Combinations of MPA, 6-TG, tofacitinib, and filgotinib with the oral antiviral drugs molnupiravir or nirmatrelvir exerted an additive or synergistic antiviral activity. CONCLUSIONS Different immunosuppressants have distinct effects on coronavirus replication, with 6-TG, MPA, tofacitinib and filgotinib possessing pan-coronavirus antiviral activity. The combinations of MPA, 6-TG, tofacitinib and filgotinib with antiviral drugs exerted an additive or synergistic antiviral activity. Thus, these findings provide an important reference for optimal management of immunocompromised patients infected with coronaviruses.
Collapse
Affiliation(s)
- Yining Wang
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Pengfei Li
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Marla Lavrijsen
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Robbert J. Rottier
- Department of Pediatric SurgeryErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
- Department of Cell BiologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Caroline M. den Hoed
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
- Erasmus MC Transplant InstituteErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Marco J. Bruno
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Nassim Kamar
- Department of NephrologyDialysis and Organ TransplantationCHU RangueilINSERM UMR 1291Toulouse Institute for Infectious and Inflammatory Disease (Infinity)University Paul SabatierToulouseFrance
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Annemarie C. de Vries
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
- Erasmus MC Transplant InstituteErasmus MC‐University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
9
|
Cai H, Chen Y, Feng Y, Asadi M, Kaufman L, Lee K, Kehrer T, Miorin L, Garcia-Sastre A, Gusella GL, Gu L, Ni Z, Mou S, He JC, Zhou W. SARS-CoV-2 viral protein ORF3A injures renal tubules by interacting with TRIM59 to induce STAT3 activation. Mol Ther 2023; 31:774-787. [PMID: 36523164 PMCID: PMC9750503 DOI: 10.1016/j.ymthe.2022.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/22/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury occurs frequently in COVID-19 patients infected by the coronavirus SARS-CoV-2, and infection of kidney cells by this virus has been reported. However, little is known about the direct impact of the SARS-CoV-2 infection upon the renal tubular cells. We report that SARS-CoV-2 activated signal transducer and activator of transcription 3 (STAT3) signaling and caused cellular injury in the human renal tubular cell line. Mechanistically, the viral protein ORF3A of SARS-CoV-2 augmented both NF-κB and STAT3 signaling and increased the expression of kidney injury molecule 1. SARS-CoV-2 infection or expression of ORF3A alone elevated the protein level of tripartite motif-containing protein 59 (TRIM59), an E3 ubiquitin ligase, which interacts with both ORF3A and STAT3. The excessive TRIM59 in turn dissociated the phosphatase TCPTP from binding to STAT3 and hence inhibited the dephosphorylation of STAT3, leading to persistent STAT3 activation. Consistently, ORF3A induced renal injury in zebrafish and mice. In addition, expression of TRIM59 was elevated in the kidney autopsies of COVID-19 patients with acute kidney injury. Thus, the aberrant activation of STAT3 signaling by TRIM59 plays a significant role in the renal tubular cell injury caused by SARS-CoV-2, which suggests a potential targeted therapy for the renal complications of COVID-19.
Collapse
Affiliation(s)
- Hong Cai
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Chen
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Feng
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Morad Asadi
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lewis Kaufman
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - G Luca Gusella
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Leyi Gu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Jiao Tong University School of Medicine, Shanghai, China.
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Weibin Zhou
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
10
|
He S, He L, Yan F, Li J, Liao X, Ling M, Jing R, Pan L. Identification of hub genes associated with acute kidney injury induced by renal ischemia-reperfusion injury in mice. Front Physiol 2022; 13:951855. [PMID: 36246123 PMCID: PMC9557154 DOI: 10.3389/fphys.2022.951855] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Acute kidney injury (AKI) is a severe clinical syndrome, and ischemia-reperfusion injury is an important cause of acute kidney injury. The aim of the present study was to investigate the related genes and pathways in the mouse model of acute kidney injury induced by ischemia-reperfusion injury (IRI-AKI). Method: Two public datasets (GSE39548 and GSE131288) originating from the NCBI Gene Expression Omnibus (GEO) database were analyzed using the R software limma package, and differentially expressed genes (DEGs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genomes (KEGG) and gene set enrichment analysis (GSEA) were performed using the differentially expressed genes. Furthermore, a protein-protein interaction (PPI) network was constructed to investigate hub genes, and transcription factor (TF)-hub gene and miRNA-hub gene networks were constructed. Drugs and molecular compounds that could interact with hub genes were predicted using the DGIdb. Result: A total of 323 common differentially expressed genes were identified in the renal ischemia-reperfusion injury group compared with the control group. Among these, 260 differentially expressed genes were upregulated and 66 differentially expressed genes were downregulated. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes analysis results showed that these common differentially expressed genes were enriched in positive regulation of cytokine production, muscle tissue development, and other biological processes, indicating that they were involved in mitogen-activated protein kinase (MAPK), PI3K-Akt, TNF, apoptosis, and Epstein-Barr virus infection signaling pathways. Protein-protein interaction analysis showed 10 hub genes, namely, Jun, Stat3, MYC, Cdkn1a, Hif1a, FOS, Atf3, Mdm2, Egr1, and Ddit3. Using the STRUST database, starBase database, and DGIdb database, it was predicted that 34 transcription factors, 161 mi-RNAs, and 299 drugs or molecular compounds might interact with hub genes. Conclusion: Our findings may provide novel potential biomarkers and insights into the pathogenesis of ischemia-reperfusion injury-acute kidney injury through a comprehensive analysis of Gene Expression Omnibus data, which may provide a reliable basis for early diagnosis and treatment of ischemia-reperfusion injury-acute kidney injury.
Collapse
Affiliation(s)
- Sheng He
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Engineering Research Center for Tissue and Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Department of Anesthesiology, The First Affiliated Hospital of Southern China University, Hengyang, China
| | - Lili He
- Department of Anesthesiology, The Second Affiliated Hospital of Southern China University, Hengyang, China
| | - Fangran Yan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Junda Li
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoting Liao
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Maoyao Ling
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ren Jing
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Engineering Research Center for Tissue and Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| |
Collapse
|
11
|
Khezri MR, Nazari-Khanamiri F, Mohammadi T, Moloodsouri D, Ghasemnejad-Berenji M. Potential effects of icariin, the Epimedium-derived bioactive compound in the treatment of COVID-19: a hypothesis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1019-1027. [PMID: 35657423 PMCID: PMC9163523 DOI: 10.1007/s00210-022-02262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/28/2022] [Indexed: 11/01/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected the world's health systems for more than two years. This disease causes a high mortality rate followed by cytokine storm-induced oxidative stress and acute respiratory distress syndrome (ARDS). Therefore, many drugs have been considered with emphasis on their anti-inflammatory and antioxidant effects in controlling the consequences of SARS-CoV-2 infection. Icariin is a major bioactive pharmaceutical compound derived from Epimedium plants, which is known due to its anti-inflammatory and antioxidant effects. Additionally, the protective effects of icariin have been studied in different pathologies through modulating intracellular pathways. In addition to the potential effect of this compound on inflammation and oxidative stress caused by SARS-CoV-2 infection, it appears to interfere with intracellular pathways involved in viral entry into the cell. Therefore, this paper aims to review the molecular mechanisms of anti-inflammatory and antioxidant properties of icariin, and hypothesizes its potential to inhibit SARS-CoV-2 entry into host cells through modulating the intracellular pathways.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fereshteh Nazari-Khanamiri
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Tooba Mohammadi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Donya Moloodsouri
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
12
|
Interleukin-6-Production Is Responsible for Induction of Hepatic Synthesis of Several Chemokines as Acute-Phase Mediators in Two Animal Models: Possible Significance for Interpretation of Laboratory Changes in Severely Ill Patients. BIOLOGY 2022; 11:biology11030470. [PMID: 35336843 PMCID: PMC8945369 DOI: 10.3390/biology11030470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/23/2022]
Abstract
Simple Summary The release of acute-phase proteins and cytokine storms are considered critical parameters for the progression of COVID-19 disease. The increase in the serum levels of cytokines such as IL6 and IL8 observed in patients primarily infected with the SARS-CoV-2 virus has been used to determine the severity of clinical conditions resulting from infection and for prognostic purposes. Animal models have been used to understand the mechanisms of the changes in homeostasis observed under pathological conditions. In the present study, we therefore report the changes in serum levels and hepatic gene expression of cytokines and chemokines in two different animal models of acute-phase responses. The acute-phase response is a transient emergency response aimed at preserving life and bringing about the changes necessary to reduce and repair tissue damage after the removal of damaging noxious agents. Our data suggest that the liver may be responsible for the increase in the serum levels of cytokines and chemokines as part of the body’s defense response to tissue damage. It is therefore doubtful that inhibiting this response at any stage after infection could improve the prognosis of patients. These results may help to interpret the laboratory changes observed in critically ill patients, as may be the case following SARS-CoV-2 infection. Abstract A mild to moderate increase in acute-phase proteins (APPs) and a decrease in serum albumin levels are detected in hospitalized COVID-19 patients. A similar trend is also observed for acute-phase cytokines (APC), mainly IL6, besides chemokines (e.g., CXCL8 and CCL2). However, the source of the chemokines in these patients at different stages of disease remains to be elucidated. We investigated hepatic gene expression of CXC- and CC-chemokines in a model of a localized extrahepatic aseptic abscess and in a model of septicemia produced by the intramuscular injection of turpentine oil (TO) into each hindlimb or lipopolysaccharide (LPS) intraperitoneally (i.p.) in rats and mice (wild-type (WT) and IL6-KO). Together with a striking increase in the serum IL6 level, strong serum CXCL2 and CXCL8 concentrations were detected. Correspondingly, rapid (2 h) upregulation of CXCL1, CXCL2, CXCL5, and CXCL8 was observed in rat liver after intramuscular TO injection. The induction of the gene expression of CXCL1 and CXCL8 was the fastest and strongest. The hepatic CXC-chemokines behaved like positive APPs that depend on IL6 production by activated macrophages recruited to extrahepatic damaged tissue. Chemokine upregulation was greatly reduced in IL6-KO mice. However, IL6 was dispensable in the LPS–APR model, as massive induction of hepatic chemokines studied was measured in IL6-KO mice.
Collapse
|
13
|
Barilli A, Visigalli R, Ferrari F, Bianchi MG, Dall’Asta V, Rotoli BM. Immune-Mediated Inflammatory Responses of Alveolar Epithelial Cells: Implications for COVID-19 Lung Pathology. Biomedicines 2022; 10:biomedicines10030618. [PMID: 35327420 PMCID: PMC8945544 DOI: 10.3390/biomedicines10030618] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 02/07/2023] Open
Abstract
Background. Clinical and experimental evidence point to a dysregulated immune response caused by SARS-CoV-2 as the primary mechanism of lung disease in COVID-19. However, the pathogenic mechanisms underlying COVID-19-associated ARDS (Acute Respiratory Distress Syndrome) remain incompletely understood. This study aims to explore the inflammatory responses of alveolar epithelial cells to either the spike S1 protein or to a mixture of cytokines secreted by S1-activated macrophages. Methods and Results. The exposure of alveolar A549 cells to supernatants from spike-activated macrophages caused a further release of inflammatory mediators, with IL-8 reaching massive concentrations. The investigation of the molecular pathways indicated that NF-kB is involved in the transcription of IP-10 and RANTES, while STATs drive the expression of all the cytokines/chemokines tested, with the exception of IL-8 which is regulated by AP-1. Cytokines/chemokines produced by spike-activated macrophages are also likely responsible for the observed dysfunction of barrier integrity in Human Alveolar Epithelial Lentivirus-immortalized cells (hAELVi), as demonstrated by an increased permeability of the monolayers to mannitol, a marked decrease of TEER and a disorganization of claudin-7 distribution. Conclusion. Upon exposure to supernatants from S1-activated macrophages, A549 cells act both as targets and sources of cytokines/chemokines, suggesting that alveolar epithelium along with activated macrophages may orchestrate lung inflammation and contribute to alveolar injury, a hallmark of ARDS.
Collapse
|