1
|
De Visscher A, Vandeput M, Vandenhaute J, Malengier-Devlies B, Bernaerts E, Ahmadzadeh K, Filtjens J, Mitera T, Berghmans N, Van den Steen PE, Friedrich C, Gasteiger G, Wouters C, Matthys P. Liver type 1 innate lymphoid cells undergo apoptosis in murine models of macrophage activation syndrome and are dispensable for disease. Eur J Immunol 2024; 54:e2451043. [PMID: 39348088 DOI: 10.1002/eji.202451043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Macrophage activation syndrome (MAS) exemplifies a severe cytokine storm disorder with liver inflammation. In the liver, classical natural killer (cNK) cells and liver-resident type 1 innate lymphoid cells (ILC1s) dominate the ILC population. Thus far, research has primarily focused on the corresponding role of cNK cells. Considering the liver inflammation and cytokine storm in MAS, liver-resident ILC1s represent an interesting population to explore due to their rapid cytokine production upon environmental triggers. By utilizing a Toll-like receptor (TLR)9- and TLR3:4-triggered MAS model, we showed that ILC1s highly produce IFN-γ and TNF-α. However, activated ILC1s undergo apoptosis and are strongly reduced in numbers, while cNK cells resist inflammation-induced apoptosis. Signs of mitochondrial stress suggest that this ILC1 apoptosis may be driven by inflammation-induced mitochondrial impairment. To study whether early induction of highly cytokine-producing ILC1s influences MAS development, we used Hobit KO mice due to their paucity of liver ILC1s but unaffected cNK cell numbers. Nevertheless, neither the severity of MAS features nor the total inflammatory cytokine levels were affected in these Hobit KO mice, indicating that ILC1s are dispensable for MAS pathogenesis. Collectively, our data demonstrate that ILC1s undergo apoptosis during TLR-triggering and are dispensable for MAS pathogenesis.
Collapse
Affiliation(s)
- Amber De Visscher
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Marte Vandeput
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Jessica Vandenhaute
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
- Centre for Reproductive Health and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Eline Bernaerts
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Jessica Filtjens
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Tania Mitera
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Christin Friedrich
- Würzburg Institute and Max Planck Research Group for Systems Immunology, Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute and Max Planck Research Group for Systems Immunology, Würzburg, Germany
| | - Carine Wouters
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
2
|
|
3
|
Minoia F, Ravelli A. Criteria for Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:59-71. [PMID: 39117808 DOI: 10.1007/978-3-031-59815-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
In the past two decades, there has been a great deal of work aimed to devise diagnostic guidelines, classification criteria, and diagnostic scores for cytokine storm syndromes (CSSs). The most notable effort has been the large-scale multinational study that led to the development of the 2016 classification criteria for macrophage activation syndrome (MAS) complicating systemic juvenile idiopathic arthritis (JIA). Future studies should scrutinize the validity of the proposed criteria, particularly in systemic JIA patients treated with biologics, in children with subtle or incomplete forms of MAS, and in patients with MAS complicating other rheumatologic disorders. More generic CSS criteria are also available but often lack sensitivity and specificity in a wide variety of patient populations and CSSs of different etiologies. The coronavirus disease 2019 (COVID-19)-related lung disease led to an evolution of the concept of a "cytokine storm." Emerging and unsolved challenges in the diagnosis of the different forms of CSSs highlight the need for diagnostic tools and well-established classification criteria to enable timely recognition and correct classification of patients.
Collapse
Affiliation(s)
- Francesca Minoia
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Angelo Ravelli
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Università degli Studi di Genova, Genoa, Italy
| |
Collapse
|
4
|
Baruah P, Patra A, Barge S, Khan MR, Mukherjee AK. Therapeutic Potential of Bioactive Compounds from Edible Mushrooms to Attenuate SARS-CoV-2 Infection and Some Complications of Coronavirus Disease (COVID-19). J Fungi (Basel) 2023; 9:897. [PMID: 37755005 PMCID: PMC10532592 DOI: 10.3390/jof9090897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a highly infectious positive RNA virus, has spread from its epicenter to other countries with increased mortality and morbidity. Its expansion has hampered humankind's social, economic, and health realms to a large extent. Globally, investigations are underway to understand the complex pathophysiology of coronavirus disease (COVID-19) induced by SARS-CoV-2. Though numerous therapeutic strategies have been introduced to combat COVID-19, none are fully proven or comprehensive, as several key issues and challenges remain unresolved. At present, natural products have gained significant momentum in treating metabolic disorders. Mushrooms have often proved to be the precursor of various therapeutic molecules or drug prototypes. The plentiful bioactive macromolecules in edible mushrooms, like polysaccharides, proteins, and other secondary metabolites (such as flavonoids, polyphenols, etc.), have been used to treat multiple diseases, including viral infections, by traditional healers and the medical fraternity. Some edible mushrooms with a high proportion of therapeutic molecules are known as medicinal mushrooms. In this review, an attempt has been made to highlight the exploration of bioactive molecules in mushrooms to combat the various pathophysiological complications of COVID-19. This review presents an in-depth and critical analysis of the current therapies against COVID-19 versus the potential of natural anti-infective, antiviral, anti-inflammatory, and antithrombotic products derived from a wide range of easily sourced mushrooms and their bioactive molecules.
Collapse
Affiliation(s)
- Paran Baruah
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
- Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Aparup Patra
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| | - Sagar Barge
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| | - Mojibur R. Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| | - Ashis K. Mukherjee
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| |
Collapse
|
5
|
Ruiz-Rodríguez JC, Plata-Menchaca EP, Chiscano-Camón L, Ruiz-Sanmartin A, Ferrer R. Blood purification in sepsis and COVID-19: what´s new in cytokine and endotoxin hemoadsorption. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2022. [PMCID: PMC8978509 DOI: 10.1186/s44158-022-00043-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sepsis and COVID-19 are two clinical conditions that can lead to a dysregulated inflammatory state causing multiorgan dysfunction, hypercytokinemia, and a high risk of death. Specific subgroups of critically ill patients with particular characteristics could benefit from rescue treatment with hemoadsorption. There is a lack of adequately designed randomized controlled trials evaluating the potential benefits of cytokine or endotoxin hemoadsorption. Critically ill COVID-19 patients with severe acute respiratory failure poorly responsive to conventional treatment could be candidates to receive cytokine hemoadsorption in the presence of high levels of interleukin 6. This treatment can also be suitable for patients with refractory septic shock and hypercytokinemia. In the context of high endotoxin activity, hemoadsorption with polymyxin B could improve clinical parameters and the prognosis of patients with refractory septic shock. Predictive enrichment, using biomarkers or other individual features, identifies potential responders to cytokine, endotoxin, or sequential hemoadsorption. Besides, recognizing the particular subsets of patients likely to respond to one or both types of hemoadsorption will aid the design of future studies that accurately validate the effectiveness of these therapies.
Collapse
|
6
|
Jouda J, Abdul Kareem Jabbar E, Salih Abdulhadi F, Atiyah Kamil Y. Assessment of some Physiological Biomarkers in COVID-19 Patients in Thi-Qar, Iraq. ARCHIVES OF RAZI INSTITUTE 2022; 77:1097-1104. [PMID: 36618280 PMCID: PMC9759240 DOI: 10.22092/ari.2022.357267.2006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/16/2022] [Indexed: 01/10/2023]
Abstract
It is believed that many biomarkers and factors could be linked to the prognosis of coronavirus disease 2019 (COVID-19). Therefore, this study aimed to evaluate the association of lactate dehydrogenase (LDH), D-Dimer, vitamin D, and ferritin statuses with the prognosis of COVID-19; moreover, it was attempted to investigate its prevalence according to age, employment status, body mass index (BMI), and place of residency in a population sample of hospitalized patients in Thi-Qar, Iraq. This study evaluated 200 COVID-19 patients and 100 controls. The BMI of all individuals was calculated, and such demographic characteristics as age, gender, place of residency, and occupational status were collected from all participants. Blood samples were taken and used to estimate D-Dimer, LDH, vitamin D, ferritin, oxygen, and pulse rate. The mean age of the patients approached the fifth decade, and 72% of the cases were more than 40 years of age. In addition, 60% of the patients were living in the countryside, and 52% of the participants were employed, compared to only 8% of the cases who were students. The BMI of the patients was obtained at 31.44±10.2 kg/m2; accordingly, 47% and 40% of the cases were obese and overweight, respectively, compared to only 12% of the patients who had normal weight (P˂0.05). There were significantly lower vitamin D levels in the patients; however, the concentrations of LDH, serum ferritin, and D-Dimer were significantly higher in the patients, compared to the control group (P˂0.05). Not only age and body weight but also employment status and place of residency maybe also the important risk factors for COVID-19 distribution. LDH, D-dimer, vitamin D, and ferritin statuses could be used as good biomarkers for this disease and its severity.
Collapse
Affiliation(s)
- J Jouda
- Department of Biology, College of Sciences, Mustansiriyah University, Baghdad, Iraq
| | - E Abdul Kareem Jabbar
- Department of Medical Basic Sciences, College of Nursing, University of Thi-Qar, Thi-Qar, Iraq
| | - F Salih Abdulhadi
- Department of Biology, College of Sciences, Mustansiriyah University, Baghdad, Iraq
| | - Y Atiyah Kamil
- Biological Health Department, Infertility Unit, Imam Hussein Teaching Hospital, Thi-Qar, Iraq
| |
Collapse
|
7
|
Köhler T, Schwier E, Praxenthaler J, Kirchner C, Henzler D, Eickmeyer C. Therapeutic Modulation of the Host Defense by Hemoadsorption with CytoSorb ®-Basics, Indications and Perspectives-A Scoping Review. Int J Mol Sci 2021; 22:12786. [PMID: 34884590 PMCID: PMC8657779 DOI: 10.3390/ijms222312786] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/08/2023] Open
Abstract
The "normal" immune response to an insult triggers a highly regulated response determined by the interaction of various immunocompetent cells with pro- and anti-inflammatory cytokines. Under pathologic conditions, the massive elevation of cytokine levels ("cytokine storm") could not be controlled until the recent development of hemoadsorption devices that are able to extract a variety of different DAMPs, PAMPs, and metabolic products from the blood. CytoSorb® has been approved for adjunctive sepsis therapy since 2011. This review aims to summarize theoretical knowledge, in vitro results, and clinical findings to provide the clinician with pragmatic guidance for daily practice. English-language and peer-reviewed literature identified by a selective literature search in PubMed and published between January 2016 and May 2021 was included. Hemoadsorption can be used successfully as adjunct to a complex therapeutic regimen for various conditions. To the contrary, this nonspecific intervention may potentially worsen patient outcomes in complex immunological processes. CytoSorb® therapy appears to be safe and useful in various diseases (e.g., rhabdomyolysis, liver failure, or intoxications) as well as in septic shock or cytokine release syndrome, although a conclusive assessment of treatment benefit is not possible and no survival benefit has yet been demonstrated in randomized controlled trials.
Collapse
Affiliation(s)
- Thomas Köhler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr University Bochum, Klinikum Herford, 32120 Herford, Germany; (E.S.); (J.P.); (D.H.); (C.E.)
| | - Elke Schwier
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr University Bochum, Klinikum Herford, 32120 Herford, Germany; (E.S.); (J.P.); (D.H.); (C.E.)
| | - Janina Praxenthaler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr University Bochum, Klinikum Herford, 32120 Herford, Germany; (E.S.); (J.P.); (D.H.); (C.E.)
| | - Carmen Kirchner
- Department of General and Visceral Surgery, Thoracic Surgery and Proctology, Ruhr University Bochum, Klinikum Herford, 32120 Herford, Germany;
| | - Dietrich Henzler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr University Bochum, Klinikum Herford, 32120 Herford, Germany; (E.S.); (J.P.); (D.H.); (C.E.)
| | - Claas Eickmeyer
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr University Bochum, Klinikum Herford, 32120 Herford, Germany; (E.S.); (J.P.); (D.H.); (C.E.)
| |
Collapse
|
8
|
Shin CH, Kim KH, Jeeva S, Kang SM. Towards Goals to Refine Prophylactic and Therapeutic Strategies Against COVID-19 Linked to Aging and Metabolic Syndrome. Cells 2021; 10:1412. [PMID: 34204163 PMCID: PMC8227274 DOI: 10.3390/cells10061412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) gave rise to the coronavirus disease 2019 (COVID-19) pandemic. A strong correlation has been demonstrated between worse COVID-19 outcomes, aging, and metabolic syndrome (MetS), which is primarily derived from obesity-induced systemic chronic low-grade inflammation with numerous complications, including type 2 diabetes mellitus (T2DM). The majority of COVID-19 deaths occurs in people over the age of 65. Individuals with MetS are inclined to manifest adverse disease consequences and mortality from COVID-19. In this review, we examine the prevalence and molecular mechanisms underlying enhanced risk of COVID-19 in elderly people and individuals with MetS. Subsequently, we discuss current progresses in treating COVID-19, including the development of new COVID-19 vaccines and antivirals, towards goals to elaborate prophylactic and therapeutic treatment options in this vulnerable population.
Collapse
Affiliation(s)
- Chong-Hyun Shin
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (K.-H.K.); (S.J.)
| | | | | | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; (K.-H.K.); (S.J.)
| |
Collapse
|
9
|
Ruiz-Rodríguez JC, Chiscano-Camón L, Palmada C, Ruiz-Sanmartin A, García-de-Acilu M, Plata-Menchaca E, Perurena-Prieto J, Hernandez-Gonzalez M, Pérez-Carrasco M, Soler-Palacin P, Ferrer R. Hemadsorption as a Treatment Option for Multisystem Inflammatory Syndrome in Children Associated With COVID-19. A Case Report. Front Immunol 2021; 12:665824. [PMID: 34140949 PMCID: PMC8204690 DOI: 10.3389/fimmu.2021.665824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022] Open
Abstract
Multisystem Inflammatory Syndrome in Children (MIS-C) associated with COVID-19 is characterized by hypercytokinemia leading to overwhelming inflammation. We describe the use of a hemadsorption device as part of the supportive treatment for cytokine storm.
Collapse
Affiliation(s)
- Juan Carlos Ruiz-Rodríguez
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Luis Chiscano-Camón
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Clara Palmada
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Adolf Ruiz-Sanmartin
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Marina García-de-Acilu
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Erika Plata-Menchaca
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Janire Perurena-Prieto
- Immunology Division, Vall d'Hebron University Hospital, Barcelona, Spain.,Diagnostic Immunology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Manuel Hernandez-Gonzalez
- Immunology Division, Vall d'Hebron University Hospital, Barcelona, Spain.,Diagnostic Immunology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Marcos Pérez-Carrasco
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ricard Ferrer
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| |
Collapse
|
10
|
Costagliola G, Spada E, Consolini R. Age-related differences in the immune response could contribute to determine the spectrum of severity of COVID-19. Immun Inflamm Dis 2021; 9:331-339. [PMID: 33566457 PMCID: PMC8014746 DOI: 10.1002/iid3.404] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/24/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), can present with a wide spectrum of severity. Elderly patients with cardiac, pulmonary and metabolic comorbidities are more likely to develop the severe manifestations of COVID-19, which are observed in less than 5% of the pediatric patients. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is able to induce an immune impairment and dysregulation, finally resulting in the massive release of inflammatory mediators, strongly contributing to the pulmonary and systemic manifestations in COVID-19. In children, the immune dysregulation following SARS-CoV-2 can also be responsible of a severe disease phenotype defined as multisystem inflammatory syndrome in children. As the immune system undergoes a complex process of maturation from birth to adult age, differences in the immune and inflammatory response could have a significant impact in determining the spectrum of severity of COVID-19. Indeed, children show a higher ability to respond to viral infections and a reduced baseline pro-inflammatory state compared with elderly patients. Age and comorbidities contribute to disease severity through immune-mediated mechanisms, since they are associated with a chronic increase of pro-inflammatory mediators, and cause an enhanced susceptibility to develop an immune dysregulation following SARS-CoV-2 infection. Also the expression of ACE2, the receptor of SARS-CoV-2, varies with age, and is linked to the immune and inflammatory response through a complex, and not completely elucidated, network. This paper reviews the peculiar immunopathogenic aspects of COVID-19, with a focus on the differences between adult and pediatric patients.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Section of Rheumatology and Clinical ImmunologyUniversity of PisaPisaItaly
| | - Erika Spada
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Section of Rheumatology and Clinical ImmunologyUniversity of PisaPisaItaly
| | - Rita Consolini
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Section of Rheumatology and Clinical ImmunologyUniversity of PisaPisaItaly
| |
Collapse
|
11
|
Costagliola G, Spada E, Consolini R. Severe COVID-19 in pediatric age: an update on the role of the anti-rheumatic agents. Pediatr Rheumatol Online J 2021; 19:68. [PMID: 33947420 PMCID: PMC8094984 DOI: 10.1186/s12969-021-00559-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND SARS-CoV-2 can induce an immune impairment and dysregulation, finally resulting in the massive release of inflammatory mediators (cytokine storm), strongly contributing to the pulmonary and systemic manifestations in severe coronavirus disease 2019 (COVID-19). As a consequence, different drugs active on the immune system have been proposed for the treatment of the disease in adults. ROLE OF THE ANTI-RHEUMATIC AGENTS IN CHILDREN Children are more likely to develop a mild disease course, as the severe form of COVID-19 is identified in less than 5% of the pediatric patients. Moreover, in children a peculiar disease phenotype, defined as multisystem inflammatory syndrome in children (MIS-C) is observed, representing the most severe expression of the inflammatory dysregulation caused by SARS-CoV-2. The limited experience with the severe pediatric COVID-19 and MIS-C does not allow conclusions about the role of the immune pharmacological approach, and therefore the treatment of these conditions represents a considerable clinical challenge. The use of chloroquine, hydroxychloroquine, and colchicine in the early disease stages is not sufficiently supported by evidence, and there is an increasing interest in the role of biologic agents, including anti-IL-1 and anti-IL-6 agents, in the prevention and treatment of the severe manifestations of COVID-19. CONCLUSION The therapeutic approach to pediatric COVID-19 is multidisciplinary, and anti-rheumatic agents have a prominent role in severe disease. This paper reviews the rationale for the use of anti-rheumatic agents in pediatric COVID-19 and MIS-C and the clinical experience with the single drugs. Finally, the areas of potential improvement in the use of anti-rheumatic agents, including the optimization of the drug choice and the timing of administration, are discussed.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Rheumatology and Clinical Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Erika Spada
- Section of Rheumatology and Clinical Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Rita Consolini
- Section of Rheumatology and Clinical Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
12
|
Pedreañez A, Mosquera-Sulbaran J, Muñoz N. SARS-CoV-2 infection represents a high risk for the elderly: analysis of pathogenesis. Arch Virol 2021; 166:1565-1574. [PMID: 33751241 PMCID: PMC7982908 DOI: 10.1007/s00705-021-05042-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/01/2021] [Indexed: 01/05/2023]
Abstract
As people get older, age-related alterations occur that lead to increased susceptibility to disease. In the current COVID-19 pandemic, older people are particularly susceptible to a SARS-CoV-2 infection developing into severe disease. The objective of this review was to examine the literature regarding factors that may explain the tendency of this population to develop severe COVID-19. Research articles considered in this review were searched for in EMBASE, PubMed, and Web of Science from December 2019 to December 2020. Citations were screened by two independent reviewers. Studies of the immune system in older individuals found alterations in both the adaptive and innate immune systems. The adaptive system is depressed in its functions, and the innate system is in a pro-inflammatory state that can lead to chronic disease. This pro-inflammatory state may be related to a severe course of disease in COVID-19. This review shows that the level of evidence supporting an association between immune alterations in the elderly and susceptibly to severe progression of SARS-CoV-2 infection is generally consistent. Preventive measures such as early antiviral treatment are of key importance for prevention of severe progression of COVID19.
Collapse
Affiliation(s)
- Adriana Pedreañez
- Escuela de Bioanálisis, Departamento de Microbiología, Cátedra de Inmunología, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.
| | - Jesus Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette". Facultad de Medicina, Universidad del Zulia,, Maracaibo, Venezuela
| | - Nelson Muñoz
- Facultad de Ciencias de la Salud, Universidad Nacional del Chimborazo, Riobamba, Ecuador
| |
Collapse
|
13
|
Bae S, Kim SR, Kim MN, Shim WJ, Park SM. Impact of cardiovascular disease and risk factors on fatal outcomes in patients with COVID-19 according to age: a systematic review and meta-analysis. Heart 2021; 107:373-380. [PMID: 33334865 PMCID: PMC7747496 DOI: 10.1136/heartjnl-2020-317901] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/22/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Previous studies that evaluated cardiovascular risk factors considered age as a potential confounder. We aimed to investigate the impact of cardiovascular disease (CVD) and its risk factors on fatal outcomes according to age in patients with COVID-19. METHODS A systematic literature review and meta-analysis was performed on data collected from PubMed and Embase databases up to 11 June 2020. All observational studies (case series or cohort studies) that assessed in-hospital patients were included, except those involving the paediatric population. Prevalence rates of comorbid diseases and clinical outcomes were stratified by mean patient age in each study (ranges: <50 years, 50-60 years and ≥60 years). The primary outcome measure was a composite fatal outcome of severe COVID-19 or death. RESULTS We included 51 studies with a total of 48 317 patients with confirmed COVID-19 infection. Overall, the relative risk of developing severe COVID-19 or death was significantly higher in patients with risk factors for CVD (hypertension: OR 2.50, 95% CI 2.15 to 2.90; diabetes: 2.25, 95% CI 1.89 to 2.69) and CVD (3.11, 95% 2.55 to 3.79). Younger patients had a lower prevalence of hypertension, diabetes and CVD compared with older patients; however, the relative risk of fatal outcomes was higher among the former. CONCLUSIONS The results of the meta-analysis suggest that CVD and its risk factors (hypertension and diabetes) were closely related to fatal outcomes in COVID-19 for patients across all ages. Although young patients had lower prevalence rates of cardiovascular comorbidities than elderly patients, relative risk of fatal outcome in young patients with hypertension, diabetes and CVD was higher than in elderly patients. PROSPERO REGISTRATION NUMBER CRD42020198152.
Collapse
Affiliation(s)
- SungA Bae
- Division of Cardiology, Korea University Anam Hospital, Seoul, Korea (the Republic of)
| | - So Ree Kim
- Division of Cardiology, Korea University Anam Hospital, Seoul, Korea (the Republic of)
| | - Mi-Na Kim
- Division of Cardiology, Korea University Anam Hospital, Seoul, Korea (the Republic of)
| | - Wan Joo Shim
- Division of Cardiology, Korea University Anam Hospital, Seoul, Korea (the Republic of)
| | - Seong-Mi Park
- Division of Cardiology, Korea University Anam Hospital, Seoul, Korea (the Republic of)
| |
Collapse
|
14
|
George JA, Mayne ES. The Novel Coronavirus and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1321:127-138. [PMID: 33656719 DOI: 10.1007/978-3-030-59261-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The SARS-CoV-2 virus which causes COVID-19 disease was initially described in the Hubei Province of China and has since spread to more than 200 countries and territories of the world. Severe cases of the disease are characterised by release of high levels of pro-inflammatory cytokines and other inflammatory mediators in a process characterised as a cytokine storm. These inflammatory mediators are associated with pathological leukocyte activation states with tissue damage. Here, we review these effects with a focus on their potential use in diagnosis, patient stratification and prognosis, as well as new drug targets.
Collapse
Affiliation(s)
- J A George
- Department of Chemical Pathology, National Health Laboratory Services and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - E S Mayne
- Department of Immunology, National Health Laboratory Services and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
15
|
Ad’hiah AH, Abdullah MH, Alsudani MY, Shnawa RMS, Al-Sa’ady AJR, Allami RH, Misha’al KI, Jassim IA, Taqi EA. Association between ABO blood groups and susceptibility to COVID-19: profile of age and gender in Iraqi patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020; 21:76. [PMID: 38624655 PMCID: PMC7744128 DOI: 10.1186/s43042-020-00115-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
Background A case-control study was performed to examine age, gender, and ABO blood groups in 1014 Iraqi hospitalized cases with Coronavirus disease 2019 (COVID-19) and 901 blood donors (control group). The infection was molecularly diagnosed by detecting coronavirus RNA in nasal swabs of patients. Results Mean age was significantly elevated in cases compared to controls (48.2 ± 13.8 vs. 29.9 ± 9.0 year; probability [p] < 0.001). Receiver operating characteristic analysis demonstrated the predictive significance of age in COVID-19 evolution (Area under curve = 0.858; 95% CI: 0.841 - 0.875; p < 0.001). Males outnumbered females in cases (60.4 vs. 39.6%) and controls (56 vs. 44%). Stratification by age group (< 30, 30 - 39, 40 - 49 and ≥ 50 years) revealed that 48.3% of cases clustered in the age group ≥ 50 years. ABO blood group analysis showed that group A was the most common among cases, while group O was the most common among controls (35.5 and 36.7%, respectively). Blood groups A (35.5 vs. 32.7; corrected p [pc] = 0.021), A+AB (46.3 vs. 41.7%; pc = 0.021) and A+B+AB (68.0 vs. 63.3%; pc = 0.007) showed significantly elevated frequencies in cases compared to controls. Logistic regression analysis estimated odds ratios (ORs) of 1.53 (95% confidence interval [CI]: 1.16 - 2.02), 1.48 (95% CI: 1.14 - 1.93) and 1.50 (95% CI: 1.17 - 1.82) for blood groups A, A+AB and A+B+AB, respectively. Blood group frequencies showed no significant differences between age groups of cases or controls. Regarding gender, male cases were marked with increased frequency of group A (39.9 vs. 28.9%) and decreased frequency of group O (25.9 vs. 41.0%) compared to female cases. Independent re-analysis of ABO blood groups in male and female cases demonstrated that group A was increased in male cases compared to male controls (39.9 vs. 33.1%; OR = 1.65; 95% CI: 1.24 - 2.21; pc = 0.006). On the contrary, no significant differences were found between females of cases and controls. Conclusions The study results indicated that blood group A may be associated with an increased risk of developing COVID-19, particularly in males.
Collapse
Affiliation(s)
- Ali H. Ad’hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Al-Jadriya, Baghdad, Iraq
| | | | - Mustafa Y. Alsudani
- Basrah Health Office, Basrah, Ministry of Health and Environment, Baghdad, Iraq
| | - Rasool M. S. Shnawa
- Alforat Hospital, Baghdad, Ministry of Health and Environment, Baghdad, Iraq
| | - Ali J. R. Al-Sa’ady
- Biotechnology Department, College of Science, University of Baghdad, Baghdad, Iraq
| | | | - Khawla I. Misha’al
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Al-Jadriya, Baghdad, Iraq
| | - Iftikhar A. Jassim
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Al-Jadriya, Baghdad, Iraq
| | - Estabraq A. Taqi
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Al-Jadriya, Baghdad, Iraq
| |
Collapse
|
16
|
Zhou X, Cheng Z, Shu D, Lin W, Ming Z, Chen W, Hu Y. Characteristics of mortal COVID-19 cases compared to the survivors. Aging (Albany NY) 2020; 12:24579-24595. [PMID: 33234724 PMCID: PMC7803528 DOI: 10.18632/aging.202216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) initially occurred in December 2019 and triggered a public health emergency. The increasing number of deaths due to this disease was of great concern. Therefore, our study aimed to explore risk factors associated with COVID-19 deaths. After having searched the PubMed, EMBASE, and CNKI for studies published as of August 10, 2020, we selected articles and extracted data. The meta-analysis was performed using Stata 16.0 software. Nineteen studies were used in our meta-analysis. The proportions of comorbidities such as diabetes, hypertension, malignancies, chronic obstructive pulmonary disease, cardio-cerebrovascular disease, and chronic liver disease were statistically significantly higher in mortal COVID-19 cases. Coagulation and inflammatory markers, such as platelet count, D-dimer, prothrombin time, C-reactive protein, procalcitonin, and interleukin 6, predicted the deterioration of the disease. In addition, extracorporeal membrane oxygenation and mechanical ventilation predicted the poor prognosis during its progression. The COVID-19 pandemic is still evolving, placing a huge burden on healthcare facilities. Certain coagulation indicators, inflammatory indicators, and comorbidities contribute to the prognosis of patients. Our study results may help clinicians optimize the treatment and ultimately reduce the mortality rate.
Collapse
Affiliation(s)
- Xianghui Zhou
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Zhipeng Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Dan Shu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenyi Lin
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Zhangyin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China.,Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.,Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, Hubei, China
| |
Collapse
|
17
|
Veldtman GR, Pirisi M, Storti E, Roomi A, Fadl-Elmula FEM, Vriz O, Bokhari S, Ammash N, Salam Y, Liu GZ, Spinelli S, Barbieri G, Hashmi S. Management principles in patients with COVID-19: perspectives from a growing global experience with emphasis on cardiovascular surveillance. Open Heart 2020; 7:openhrt-2020-001357. [PMID: 33168640 PMCID: PMC7653968 DOI: 10.1136/openhrt-2020-001357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
The COVID-19, due to SARS-CoV-2, has uncovered many real-world issues when it comes to healthcare management and has led to a widespread mortality. Observations thus far from the reports of COVID-19 have indicated that certain risk groups for example, those with pre-existing cardiovascular (CV) disease, hypertension, diabetes, chronic kidney disease and tobacco use are prone to disease development and specifically development of severe disease and possible fatality. It is increasingly evident that many CV conditions occur frequently. These include myopericarditis, acute coronary syndromes, thrombosis, arrhythmias, hypertension and heart failure. Many professional organisations and societies related to cardiology have produced guidelines or recommendations on most of the above-mentioned aspects. Given these rapid developments, the aims of this review manuscript were to summarise and integrate recent publications with newly developed guidelines and with the first-hand experience of frontline physicians and to yield a pragmatic insight and approach to CV complications of COVID-19. We emphasise on a strategic tier-based approach for initial assessment and management of COVID-19, and then delve into focused areas within CV domains, and additionally highlighting the role of point-of-care ultrasound especially lung ultrasound, echocardiography and electrocardiography, in the management of these patients. We hope this paper will serve as a useful tool in the CV management of COVID-19 for clinicians practicing in both developing and developed countries.
Collapse
Affiliation(s)
- Gruschen R Veldtman
- Adolescent and Adult Congenital Heart Disease Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Novara, Italy
| | - Enrico Storti
- Department of Critical Care, Maggiore Hospital, Lodi, Lodi, Italy
| | - Asad Roomi
- Department of Cardiology, Prince Sultan Cardiac Center, Riyadh, Riyadh, Saudi Arabia
| | - Fadl Elmula M Fadl-Elmula
- Cardiology, Heart Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Riyadh, Saudi Arabia
| | - Olga Vriz
- Cardiology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | | | - Naser Ammash
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Yezan Salam
- College of Medicine, Alfaisal University, Riyadh, Riyadh Province, Saudi Arabia
| | - Guang Zong Liu
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, Harbin, China
| | - Stefano Spinelli
- Emergency Medicine Unit, Pisa University Hospital, Pisa, Toscana, Italy
| | - Greta Barbieri
- Emergency Medicine Unit, Pisa University Hospital, Pisa, Toscana, Italy
| | - Shahrukh Hashmi
- Clinical Trials Unit, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Schittek GA, Zoidl P, Eichinger M, Orlob S, Simonis H, Rief M, Metnitz P, Fellinger T, Soukup J. Adsorption therapy in critically ill with septic shock and acute kidney injury: a retrospective and prospective cohort study. Ann Intensive Care 2020; 10:154. [PMID: 33206229 PMCID: PMC7672170 DOI: 10.1186/s13613-020-00772-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background Haemoadsorption has been described as an effective way to control increased pro- and anti-inflammatory mediators (“cytokine storm”) in septic shock patients. No prospective or randomised clinical study has yet confirmed these results. However, no study has yet prospectively specifically investigated patients in severe septic shock with sepsis-associated acute kidney injury (SA-AKI). Therefore, we aimed to examine whether haemoadsorption could influence intensive care unit (ICU) and hospital mortality in these patients. Furthermore, we examined the influence of haemoadsorption on length of stay in the ICU and therapeutic support. Methods Retrospective control group and prospective intervention group design in a tertiary hospital in central Europe (Germany). Intervention was the implementation of haemoadsorption for patients in septic shock with SA-AKI. 76 patients were included in this analysis. Results Severity of illness as depicted by APACHE II was higher in patients treated with haemoadsorption. Risk-adjusted ICU mortality rates (O/E ratios) did not differ significantly between the groups (0.80 vs. 0.83). We observed in patients treated with haemoadsorption a shorter LOS and shorter therapeutic support such as catecholamine dependency and duration of RRT. However, in multivariate analysis (logistic regression for mortality, competing risk for LOS), we found no significant differences between the two groups. Conclusions The implementation of haemoadsorption for patients in septic shock with acute renal failure did not lead to a reduction in ICU or hospital mortality rates. Despite univariate analysis delivering some evidence for a shorter duration of ICU-related treatments in the haemoadsorption group, these results did not remain significant in multivariate analysis. Trial registration CytoSorb® registry https://clinicaltrials.gov/ct2/show/NCT02312024. December 9, 2014. Database: https://www.cytosorb-registry.org/ (registration for content acquisition is necessary)
Collapse
Affiliation(s)
- Gregor A Schittek
- Department of Anaesthesiology and Intensive Care Medicine, Division of General Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria.
| | - Philipp Zoidl
- Department of Anaesthesiology and Intensive Care Medicine, Division of General Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Michael Eichinger
- Department of Anaesthesiology and Intensive Care Medicine, Division of General Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Simon Orlob
- Department of Anaesthesiology and Intensive Care Medicine, Division of General Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Holger Simonis
- Department of Anaesthesiology and Intensive Care Medicine, Division of General Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Martin Rief
- Department of Anaesthesiology and Intensive Care Medicine, Division of General Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Philipp Metnitz
- Department of Anaesthesiology and Intensive Care Medicine, Division of General Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Tobias Fellinger
- Austrian Centre for Documentation and Quality Assurance in Intensive Care, Vienna, Austria
| | - Jens Soukup
- Department of Anaesthesiology, Intensive and Palliative Care, Carl-Thiem-Hospital Cottbus, Cottbus, Germany
| |
Collapse
|
19
|
Molyvdas A, Matalon S. Cyclosporine: an old weapon in the fight against coronaviruses. Eur Respir J 2020; 56:2002484. [PMID: 32732332 PMCID: PMC7397953 DOI: 10.1183/13993003.02484-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Coronaviruses have been known to cause respiratory infections in humans and intestinal infections in other mammals. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is the seventh virus of the Coronaviridae family that is known to infect humans. Until 2002, four Coronaviruses infecting humans were described (HCoV-NL63, HCoV-229E, HCoV-OC43 and HKU1). These viruses caused only mild respiratory diseases in immunocompetent hosts. Since 2002, three highly pathogenic viruses from this family have been identified. SARS-CoV (also referred to as SARS-CoV-1) is an enveloped, positive-sense, single-stranded RNA virus which infects the epithelial cells within the lungs. The virus enters the host cell by binding to angiotensin-converting enzyme 2 (ACE2) [1]. It infects humans, bats and palm civets [1]. Cyclosporine inhibits the replication of coronaviruses and could potentially suppress the cytokine storm associated with coronavirus infections https://bit.ly/39x2PSt
Collapse
Affiliation(s)
- Adam Molyvdas
- Depts of Anesthesiology and Perioperative Medicine, Division of Translational and Molecular Biomedicine and Pulmonary Injury and Repair Center, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - Sadis Matalon
- Depts of Anesthesiology and Perioperative Medicine, Division of Translational and Molecular Biomedicine and Pulmonary Injury and Repair Center, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| |
Collapse
|
20
|
Hayıroğlu Mİ, Çınar T, Tekkeşin Aİ. Fibrinogen and D-dimer variances and anticoagulation recommendations in Covid-19: current literature review. ACTA ACUST UNITED AC 2020; 66:842-848. [PMID: 32696883 DOI: 10.1590/1806-9282.66.6.842] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/23/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly described virus responsible for the outbreak of the coronavirus disease 2019 (Covid-19), named by the World Health Organization (WHO) in February/2020. Patients with Covid-19 have an incidence of acute respiratory distress syndrome (ARDS) of 15.9-29% and sepsis is observed in all deceased patients. Moreover, disseminated intravascular coagulation (DIC) is one of the major underlying causes of death among these patients. In patients with DIC, there is a decrease in fibrinogen and an increase in D-dimer levels. Some studies have shown that fibrinogen and one of its end products, D-dimer, might have a predictive value for mortality in patients with non-Covid sepsis secondary to complications of DIC. Therefore, anticoagulation, considering its mortality benefits in cases of non-Covid sepsis, may also have an important role in the treatment of Covid-19. METHODS We reviewed the literature of all studies published by April 2020 on patients infected with Covid-19. Our review was limited to D-dimer and fibrinogen changes and anticoagulation recommendations. RESULTS Anticoagulation therapy can be started following the DIC diagnosis in Covid-19 patients despite the bleeding risks. In addition, the current evidence suggests a routine use of anticoagulation, particularly in patients with higher D-dimer levels (> 3.0 μg/mL). CONCLUSION Covid-19 is a systemic, hypercoagulable disease requiring more studies concerning treatment. Aanticoagulation is still an issue to be studied, but D-dimer rise and disease severity are the indicative factors to start treatment as soon as possible.
Collapse
Affiliation(s)
- Mert İlker Hayıroğlu
- Department of Cardiology, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Tufan Çınar
- Department of Cardiology, Haydarpasa Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Ahmet İlker Tekkeşin
- Department of Cardiology, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
21
|
Bhaskar S, Sinha A, Banach M, Mittoo S, Weissert R, Kass JS, Rajagopal S, Pai AR, Kutty S. Cytokine Storm in COVID-19-Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper. Front Immunol 2020; 11:1648. [PMID: 32754159 PMCID: PMC7365905 DOI: 10.3389/fimmu.2020.01648] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Cytokine storm is an acute hyperinflammatory response that may be responsible for critical illness in many conditions including viral infections, cancer, sepsis, and multi-organ failure. The phenomenon has been implicated in critically ill patients infected with SARS-CoV-2, the novel coronavirus implicated in COVID-19. Critically ill COVID-19 patients experiencing cytokine storm are believed to have a worse prognosis and increased fatality rate. In SARS-CoV-2 infected patients, cytokine storm appears important to the pathogenesis of several severe manifestations of COVID-19: acute respiratory distress syndrome, thromboembolic diseases such as acute ischemic strokes caused by large vessel occlusion and myocardial infarction, encephalitis, acute kidney injury, and vasculitis (Kawasaki-like syndrome in children and renal vasculitis in adult). Understanding the pathogenesis of cytokine storm will help unravel not only risk factors for the condition but also therapeutic strategies to modulate the immune response and deliver improved outcomes in COVID-19 patients at high risk for severe disease. In this article, we present an overview of the cytokine storm and its implications in COVID-19 settings and identify potential pathways or biomarkers that could be targeted for therapy. Leveraging expert opinion, emerging evidence, and a case-based approach, this position paper provides critical insights on cytokine storm from both a prognostic and therapeutic standpoint.
Collapse
Affiliation(s)
- Sonu Bhaskar
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- Department of Neurology & Neurophysiology, Liverpool Hospital and South Western Sydney Local Health District, Sydney, NSW, Australia
- Neurovascular Imaging Laboratory & NSW Brain Clot Bank, Ingham Institute for Applied Medical Research, The University of New South Wales, UNSW Medicine, Sydney, NSW, Australia
| | - Akansha Sinha
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- The University of New South Wales, UNSW Medicine, Sydney, NSW, Australia
| | - Maciej Banach
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Góra, Zielona Gora, Poland
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| | - Shikha Mittoo
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- Department of Rheumatology, University Health Network and The University of Toronto, Toronto, ON, Canada
| | - Robert Weissert
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Joseph S. Kass
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- Department of Neurology, Ben Taub General Hospital and Alzheimer's Disease and Memory Disorders Center, Baylor College of Medicine, Houston, TX, United States
| | - Santhosh Rajagopal
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- World Health Organisation, Country Office for India, NPSP, Madurai, India
| | - Anupama R. Pai
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- Department of Neuromicrobiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Shelby Kutty
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Immunity Sub-committee
- Department of Pediatric and Congenital Cardiology, Blalock-Taussig-Thomas Heart Center, John Hopkins Hospital, Baltimore, MD, United States
- Johns Hopkins Bloomberg School of Public Health, School of Medicine, John Hopkins University, Baltimore, MD, United States
| |
Collapse
|
22
|
Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY) 2020; 12:9959-9981. [PMID: 32470948 PMCID: PMC7288963 DOI: 10.18632/aging.103344] [Citation(s) in RCA: 637] [Impact Index Per Article: 127.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
The severity and outcome of coronavirus disease 2019 (COVID-19) largely depends on a patient's age. Adults over 65 years of age represent 80% of hospitalizations and have a 23-fold greater risk of death than those under 65. In the clinic, COVID-19 patients most commonly present with fever, cough and dyspnea, and from there the disease can progress to acute respiratory distress syndrome, lung consolidation, cytokine release syndrome, endotheliitis, coagulopathy, multiple organ failure and death. Comorbidities such as cardiovascular disease, diabetes and obesity increase the chances of fatal disease, but they alone do not explain why age is an independent risk factor. Here, we present the molecular differences between young, middle-aged and older people that may explain why COVID-19 is a mild illness in some but life-threatening in others. We also discuss several biological age clocks that could be used in conjunction with genetic tests to identify both the mechanisms of the disease and individuals most at risk. Finally, based on these mechanisms, we discuss treatments that could increase the survival of older people, not simply by inhibiting the virus, but by restoring patients' ability to clear the infection and effectively regulate immune responses.
Collapse
Affiliation(s)
- Amber L. Mueller
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| | - Maeve S. McNamara
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| | - David A. Sinclair
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| |
Collapse
|
23
|
Picchianti Diamanti A, Rosado MM, Pioli C, Sesti G, Laganà B. Cytokine Release Syndrome in COVID-19 Patients, A New Scenario for an Old Concern: The Fragile Balance between Infections and Autoimmunity. Int J Mol Sci 2020; 21:E3330. [PMID: 32397174 PMCID: PMC7247555 DOI: 10.3390/ijms21093330] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 02/08/2023] Open
Abstract
On 7 January 2020, researchers isolated and sequenced in China from patients with severe pneumonitis a novel coronavirus, then called SARS-CoV-2, which rapidly spread worldwide, becoming a global health emergency. Typical manifestations consist of flu-like symptoms such as fever, cough, fatigue, and dyspnea. However, in about 20% of patients, the infection progresses to severe interstitial pneumonia and can induce an uncontrolled host-immune response, leading to a life-threatening condition called cytokine release syndrome (CRS). CRS represents an emergency scenario of a frequent challenge, which is the complex and interwoven link between infections and autoimmunity. Indeed, treatment of CRS involves the use of both antivirals to control the underlying infection and immunosuppressive agents to dampen the aberrant pro-inflammatory response of the host. Several trials, evaluating the safety and effectiveness of immunosuppressants commonly used in rheumatic diseases, are ongoing in patients with COVID-19 and CRS, some of which are achieving promising results. However, such a use should follow a multidisciplinary approach, be accompanied by close monitoring, be tailored to patient's clinical and serological features, and be initiated at the right time to reach the best results. Autoimmune patients receiving immunosuppressants could be prone to SARS-CoV-2 infections; however, suspension of the ongoing therapy is contraindicated to avoid disease flares and a consequent increase in the infection risk.
Collapse
Affiliation(s)
- Andrea Picchianti Diamanti
- Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00182 Rome, Italy; (G.S.); (B.L.)
| | | | - Claudio Pioli
- Laboratory of Biomedical Technologies, Division of Health Protection Technologies, Ente per le Nuove Tecnologie, L’energia e l’Ambiente (ENEA), 00196 Rome, Italy;
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00182 Rome, Italy; (G.S.); (B.L.)
| | - Bruno Laganà
- Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00182 Rome, Italy; (G.S.); (B.L.)
| |
Collapse
|
24
|
Tavernier SJ, Athanasopoulos V, Verloo P, Behrens G, Staal J, Bogaert DJ, Naesens L, De Bruyne M, Van Gassen S, Parthoens E, Ellyard J, Cappello J, Morris LX, Van Gorp H, Van Isterdael G, Saeys Y, Lamkanfi M, Schelstraete P, Dehoorne J, Bordon V, Van Coster R, Lambrecht BN, Menten B, Beyaert R, Vinuesa CG, Heissmeyer V, Dullaers M, Haerynck F. A human immune dysregulation syndrome characterized by severe hyperinflammation with a homozygous nonsense Roquin-1 mutation. Nat Commun 2019; 10:4779. [PMID: 31636267 PMCID: PMC6803705 DOI: 10.1038/s41467-019-12704-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022] Open
Abstract
Hyperinflammatory syndromes are life-threatening disorders caused by overzealous immune cell activation and cytokine release, often resulting from defects in negative feedback mechanisms. In the quintessential hyperinflammatory syndrome familial hemophagocytic lymphohistiocytosis (HLH), inborn errors of cytotoxicity result in effector cell accumulation, immune dysregulation and, if untreated, tissue damage and death. Here, we describe a human case with a homozygous nonsense R688* RC3H1 mutation suffering from hyperinflammation, presenting as relapsing HLH. RC3H1 encodes Roquin-1, a posttranscriptional repressor of immune-regulatory proteins such as ICOS, OX40 and TNF. Comparing the R688* variant with the murine M199R variant reveals a phenotypic resemblance, both in immune cell activation, hypercytokinemia and disease development. Mechanistically, R688* Roquin-1 fails to localize to P-bodies and interact with the CCR4-NOT deadenylation complex, impeding mRNA decay and dysregulating cytokine production. The results from this unique case suggest that impaired Roquin-1 function provokes hyperinflammation by a failure to quench immune activation. Roquin-1 is a posttranscriptional regulator that controls the expression of many immune-related genes such as ICOS and TNFA. Here, the authors report a homozygous R688* loss of function mutation in Roquin-1 in a patient with syndromic uncontrolled hyperinflammation associated with immune cell activation and hypercytokinemia.
Collapse
Affiliation(s)
- S J Tavernier
- Primary Immune Deficiency Research Lab, Department of Internal Medicine and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,VIB Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - V Athanasopoulos
- Department of Immunology and Infectious Disease and Center for Personalised Immunology (NHMRC Centre for Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Centre for Personalised Immunology (CACPI), Shanghai Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - P Verloo
- Department of Internal Medicine and Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - G Behrens
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| | - J Staal
- VIB Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - D J Bogaert
- Primary Immune Deficiency Research Lab, Department of Internal Medicine and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Division of Pediatric Immunology and Pulmonology, Ghent University Hospital, Ghent, Belgium
| | - L Naesens
- Primary Immune Deficiency Research Lab, Department of Internal Medicine and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - M De Bruyne
- Primary Immune Deficiency Research Lab, Department of Internal Medicine and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - S Van Gassen
- VIB Center for Inflammation Research, Unit of Data Mining and Modeling for Biomedicine, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Gent, Belgium
| | - E Parthoens
- VIB Bioimaging Core, VIB Center for Inflammation Research, Ghent, Belgium
| | - J Ellyard
- Department of Immunology and Infectious Disease and Center for Personalised Immunology (NHMRC Centre for Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - J Cappello
- Department of Immunology and Infectious Disease and Center for Personalised Immunology (NHMRC Centre for Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - L X Morris
- The Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - H Van Gorp
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,VIB Center for Inflammation Research, Ghent, Belgium
| | - G Van Isterdael
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
| | - Y Saeys
- VIB Center for Inflammation Research, Unit of Data Mining and Modeling for Biomedicine, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Gent, Belgium
| | - M Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,VIB Center for Inflammation Research, Ghent, Belgium
| | - P Schelstraete
- Department of Internal Medicine and Pediatrics, Division of Pediatric Immunology and Pulmonology, Ghent University Hospital, Ghent, Belgium
| | - J Dehoorne
- Department of Internal Medicine and Pediatrics, Division of Pediatric Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - V Bordon
- Department of Internal Medicine and Pediatrics, Division of Pediatric Immunology and Pulmonology, Ghent University Hospital, Ghent, Belgium
| | - R Van Coster
- Department of Internal Medicine and Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - B N Lambrecht
- Department of Internal Medicine and Pediatrics, Division of Pulmonology, Ghent University Hospital, Ghent, Belgium.,VIB Center for Inflammation Research, Unit for Immunoregulation and Mucosal Immunology, Ghent, Belgium.,Department of Pulmonary Medicine, ErasmusMC, Rotterdam, The Netherlands
| | - B Menten
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - R Beyaert
- VIB Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - C G Vinuesa
- Department of Immunology and Infectious Disease and Center for Personalised Immunology (NHMRC Centre for Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Centre for Personalised Immunology (CACPI), Shanghai Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - V Heissmeyer
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| | - M Dullaers
- Primary Immune Deficiency Research Lab, Department of Internal Medicine and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium.,Ablynx, a Sanofi Company, Zwijnaarde, Belgium
| | - F Haerynck
- Primary Immune Deficiency Research Lab, Department of Internal Medicine and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium. .,Department of Internal Medicine and Pediatrics, Division of Pediatric Immunology and Pulmonology, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
25
|
Nieto-Ríos JF, Morales-Contreras CL, Chacón-Jaimes DC, Benavides-Henao DA, Bello-Márquez DC, Serna-Higuita LM. Linfohistiocitosis hemofagocítica en trasplante renal. IATREIA 2019. [DOI: 10.17533/udea.iatreia.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
La linfohistiocitosis hemofagocítica (LHH) posterior al trasplante renal hace referencia a un estado hiperinflamatorio grave, asociado a la activación no controlada de los linfocitos T citotóxicos y macrófagos por causa infecciosas y/o secundaria al tratamiento inmunosupresor. Las causas más prevalentes dentro de las infecciones son la histoplasmosis, la tuberculosis y las infecciones por virus herpes. Se caracteriza por fiebre, organomegalias, citopenias, hiperferritinemia, hipertrigliceridemia y/o hipofibrinogenemia; puede acompañarse con hemofagocitosis documentada en la médula ósea, el hígado u otros órganos. Su curso puede ser fulminante con progresión a falla multisistémica y la muerte.El tratamiento va enfocado a controlar tempranamente la causa desencadenante, reducir la inmunosupresión y controlar la inflamación. En pocos casos es necesario el uso de otros inmunosupresores, quimioterapia o, en situaciones muy seleccionadas, se puede requerir el trasplante de médula ósea.
Collapse
|
26
|
Zhao S, Gao N, Qi H, Chi H, Liu B, He B, Wang J, Jin Z, He X, Zheng H, Wang Z, Wang X, Jin G. Suppressive effects of sunitinib on a TLR activation-induced cytokine storm. Eur J Pharmacol 2019; 854:347-353. [DOI: 10.1016/j.ejphar.2019.04.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022]
|
27
|
Weaver LK, Minichino D, Biswas C, Chu N, Lee JJ, Bittinger K, Albeituni S, Nichols KE, Behrens EM. Microbiota-dependent signals are required to sustain TLR-mediated immune responses. JCI Insight 2019; 4:124370. [PMID: 30626747 DOI: 10.1172/jci.insight.124370] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Host-commensal interactions are critical for the generation of robust inflammatory responses, yet the mechanisms leading to this effect remain poorly understood. Using a murine model of cytokine storm, we identified that host microbiota are required to sustain systemic TLR-driven immune responses. Mice treated with broad-spectrum antibiotics or raised in germ-free conditions responded normally to an initial TLR signal but failed to sustain production of proinflammatory cytokines following administration of repeated TLR signals in vivo. Mechanistically, host microbiota primed JAK signaling in myeloid progenitors to promote TLR-enhanced myelopoiesis, which is required for the accumulation of TLR-responsive monocytes. In the absence of TLR-enhanced monocytopoiesis, antibiotic-treated mice lost their ability to respond to repeated TLR stimuli and were protected from cytokine storm-induced immunopathology. These data reveal priming of TLR-enhanced myelopoiesis as a microbiota-dependent mechanism that regulates systemic inflammatory responses and highlight a role for host commensals in the pathogenesis of cytokine storm syndromes.
Collapse
Affiliation(s)
- Lehn K Weaver
- Division of Pediatric Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Danielle Minichino
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Chhanda Biswas
- Division of Pediatric Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Niansheng Chu
- Division of Pediatric Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jung-Jin Lee
- CHOP Microbiome Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kyle Bittinger
- CHOP Microbiome Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sabrin Albeituni
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Edward M Behrens
- Division of Pediatric Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Weaver LK, Niansheng C, Behrens EM. Brief Report: Interferon-γ-Mediated Immunopathology Potentiated by Toll-Like Receptor 9 Activation in a Murine Model of Macrophage Activation Syndrome. Arthritis Rheumatol 2019; 71:161-168. [PMID: 30073799 PMCID: PMC6310087 DOI: 10.1002/art.40683] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Macrophage activation syndrome (MAS) is a life-threatening cytokine storm syndrome that occurs in patients with underlying rheumatic diseases. Preclinical and clinical data suggest that interferon-γ (IFNγ) is pathogenic in MAS, but how IFNγ may be linked to disease pathogenesis remains unknown. This study was undertaken to determine whether IFNγ signals synergize with systemic innate immune responses to drive the cytokine storm in a murine model of MAS. METHODS IFNγ-deficient mice were treated with 5 doses of the Toll-like receptor 9 (TLR-9) agonist CpG 1826, IFNγ, or a combination of the 2 stimuli over the course of 10 days. Immunopathologic features of MAS, including cytopenias, hepatitis, hepatosplenomegaly, and induction of inflammatory myelopoiesis, were assessed. Mixed bone marrow chimeras were created to determine whether TLR-9- and IFNγ receptor 1 (IFNγR1)-dependent signals induce enhanced myelopoiesis in a cell-intrinsic or cell-extrinsic manner. RESULTS IFNγ-deficient mice did not develop features of MAS when treated with repeated doses of either the TLR-9 agonist or IFNγ alone. In contrast, IFNγ-deficient mice treated with both the TLR-9 agonist and IFNγ developed cytopenias, hepatitis, and hepatosplenomegaly, reproducing major clinical features of MAS. TLR-9- and IFNγR1-dependent signals synergized to enhance myeloid progenitor cell function and induce myelopoiesis in vivo, which occurred through cell-extrinsic mechanisms and correlated with the induction of disease. CONCLUSION These findings demonstrate that TLR-9-driven signals potentiate the effects of IFNγ to initiate murine MAS, and provide evidence that induction of inflammatory myelopoiesis is a common TLR-9- and IFNγ-dependent pathway that may contribute to the pathogenesis of MAS.
Collapse
Affiliation(s)
- Lehn K. Weaver
- Division of Pediatric Rheumatology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Chu Niansheng
- Division of Pediatric Rheumatology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Edward M. Behrens
- Division of Pediatric Rheumatology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
29
|
Iseda N, Yoshizumi T, Toshima T, Morinaga A, Tomiyama T, Takahashi J, Motomura T, Mano Y, Itoh S, Harada N, Ikegami T, Soejima Y. Hemophagocytic syndrome after living donor liver transplantation: a case report with a review of the literature. Surg Case Rep 2018; 4:101. [PMID: 30159641 PMCID: PMC6115321 DOI: 10.1186/s40792-018-0505-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Background Hemophagocytic syndrome (HPS) is a rare and potentially fatal complication following liver transplantation. Case presentation A 63-year-old woman with decompensated liver cirrhosis secondary to hepatitis B virus infection underwent living donor liver transplantation using the right posterior section of her husband’s liver (graft volume, 581 g; 56.8% of the recipient’s standard liver volume). She developed small-for-size syndrome on postoperative day (POD) 7, and HPS was diagnosed on POD 12 by bone marrow aspiration (white blood cells, 300/μL; neutrophils, 30/μL). Given that she tested negative for viral (hepatitis B virus and cytomegalovirus) and bacterial infections, it was considered likely to be secondary HPS. Steroid pulse therapy was initiated, and her white blood cell count increased to 4290/μL on POD 15, indicating that her peripheral blood leukocytes had improved. There were no surgical complications, but the patient died of prolonged graft dysfunction with bacterial sepsis on POD 14. Conclusions We report a rare case of HPS occurring 2 weeks after living donor liver transplantation with a right posterior section graft, diagnosed early via bone marrow aspiration. This clinical course implies an association between HPS and graft dysfunction such as small-for-size syndrome. Further studies of the mechanism of hypercytokinemia-induced HPS are required to confirm the optimal treatment for HPS.
Collapse
Affiliation(s)
- Norifumi Iseda
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeo Toshima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Akinari Morinaga
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takahiro Tomiyama
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Junichi Takahashi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Motomura
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yohei Mano
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toru Ikegami
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuji Soejima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
30
|
Weaver LK. Combining multiple biomarkers differentiates between active SJIA, SJIA-MAS and EBV-HLH. Clin Exp Immunol 2017; 191:253-254. [PMID: 28975999 DOI: 10.1111/cei.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 11/30/2022] Open
Abstract
Cytokine storm syndromes are a clinically heterogeneous group of conditions resulting from a maladaptive host response to an inflammatory trigger. These syndromes lead to rapid progression of immune-mediated damage to healthy tissues resulting in life-threatening multi-system organ failure. Prompt recognition of disease and medical intervention to limit damage to healthy tissues is essential to prevent cytokine storm morbidity and mortality. However, the diagnosis of cytokine storm syndromes is challenging, given the clinical heterogeneity in disease presentations. Therefore, expeditious and readily available tests to diagnose disease and differentiate between the various types of cytokine storm syndromes are of clinical utility. The recently published work of Shimizu and colleagues brings us closer to making this a reality.
Collapse
Affiliation(s)
- L K Weaver
- Instructor in Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|