1
|
Yin D, Wu X, Chen X, Chen JL, Xia X, Wang J, Chen X, Zhu XM. Enhanced anticancer effect of carfilzomib by codelivery of calcium peroxide nanoparticles targeting endoplasmic reticulum stress. Mater Today Bio 2025; 32:101649. [PMID: 40160245 PMCID: PMC11953955 DOI: 10.1016/j.mtbio.2025.101649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/15/2025] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
Encouraged by the clinical success of proteasome inhibitors treating hematological malignancy, continuous efforts are being made to improve their efficacy and expand their applications to solid tumor therapy. In this study, liposomes were used to encapsulate the proteasome inhibitor carfilzomib (CFZ) and calcium peroxide (CaO2) nanoparticles for effective combination therapy targeting the interplay between calcium overload and oxidative stress. Low-dose CaO2 synergistically enhances the anticancer effect of CFZ in the human glioblastoma U-87 MG cells. The reactive oxygen species (ROS) generation and glutathione depletion by low-dose CaO2 complement CFZ-induced ubiquitinated protein accumulation further triggering endoplasmic reticulum (ER) stress leading to calcium overload and mitochondrial dysfunction. The liposome-based codelivery system is capable of transporting CFZ and CaO2 simultaneously to the tumor, and results in a superior antitumor effect in U-87 MG tumor-bearing mice compared with monotherapy. Taken together, CaO2 holds great potential to sensitize proteasome inhibitors in the treatment of solid tumors, and this work also presents a new combination therapy strategy targeting the crosstalk between proteasome inhibitors and oxidative stress for future cancer therapy.
Collapse
Affiliation(s)
- Dan Yin
- State Key Laboratory of Quality Research in Chinese Medicines & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| | - Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicines & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| | - Xu Chen
- State Key Laboratory of Quality Research in Chinese Medicines & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| | - Jian-Li Chen
- State Key Laboratory of Quality Research in Chinese Medicines & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicines & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
- Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Zhuhai, Guangdong, 519099, China
| |
Collapse
|
2
|
Zheng H, Chen K, Dun Y, Xu Y, Zhou A, Ge H, Yang Y, Ning X. Harnessing Nature's ingenuity to engineer butterfly-wing-inspired photoactive nanofiber patches for advanced postoperative tumor treatment. Biomaterials 2025; 314:122808. [PMID: 39270626 DOI: 10.1016/j.biomaterials.2024.122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Postoperative tumor treatment necessitates a delicate balance between eliminating residual tumor cells and promoting surgical wound healing. Addressing this challenge, we harness the innovation and elegance of nature's ingenuity to develop a butterfly-wing-inspired photoactive nanofiber patch (WingPatch), aimed at advancing postoperative care. WingPatch is fabricated using a sophisticated combination of electrostatic spinning and spraying techniques, incorporating black rice powder (BRP) and konjac glucomannan (KGM) into a corn-derived polylactic acid (PLA) nanofiber matrix. This fabrication process yields a paclitaxel-infused porous nanofiber architecture that mirrors the delicate patterns of butterfly wings. Meanwhile, all-natural composites have been selected for their strategic roles in postoperative recovery. BRP offers the dual benefits of photothermal therapy and antibacterial properties, while KGM enhances both antibacterial effectiveness and tissue regeneration. Responsive to near-infrared light, WingPatch ensures robust tissue adhesion and initiates combined photothermal and chemotherapeutic actions to effectively destroy residual tumor cells. Crucially, it simultaneously prevents infections and promotes wound healing throughout the treatment process. Its effectiveness has been confirmed by animal studies, and WingPatch significantly improves treatment outcomes in both breast and liver tumor models. Thus, WingPatch exemplifies our dedication to leveraging natural world's intricate patterns and inventiveness to propel postoperative care forward.
Collapse
Affiliation(s)
- Hao Zheng
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Yitong Dun
- International Department of Jinling High School Hexi Campus, Nanjing, 210019, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.
| | - Haixiong Ge
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.
| | - Youwen Yang
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang, 330013, China.
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
3
|
Xu R, Wang S, Guo Q, Zhong R, Chen X, Xia X. Anti-Tumor Strategies of Photothermal Therapy Combined with Other Therapies Using Nanoplatforms. Pharmaceutics 2025; 17:306. [PMID: 40142970 PMCID: PMC11944535 DOI: 10.3390/pharmaceutics17030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/02/2025] [Accepted: 02/15/2025] [Indexed: 03/28/2025] Open
Abstract
Conventional cancer treatments often have complications and serious side effects, with limited improvements in 5-year survival and quality of life. Photothermal therapy (PTT) employs materials that convert light to heat when exposed to near-infrared light to raise the temperature of the tumor site to directly ablate tumor cells, induce immunogenic cell death, and improve the tumor microenvironment. This therapy has several benefits, including minimal invasiveness, high efficacy, reduced side effects, and robust targeting capabilities. Beyond just photothermal conversion materials, nanoplatforms significantly contribute to PTT by supplying effective photothermal conversion materials and bolstering tumor targeting to amplify anti-tumor effects. However, the anti-tumor effects of PTT alone are ultimately limited and often need to be combined with other therapies. This narrative review describes the recent progress of PTT combined with chemotherapy, radiotherapy, photodynamic therapy, immunotherapy, gene therapy, gas therapy, chemodynamic therapy, photoacoustic imaging, starvation therapy, and multimodal therapy. Studies have shown that combining PTT with other treatments can improve efficacy, reduce side effects, and overcome drug resistance. Despite the encouraging results, challenges such as optimizing treatment protocols, addressing tumor heterogeneity, and overcoming biological barriers remain. This paper highlights the potential for personalized, multimodal approaches to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Rubing Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China (Q.G.)
| | - Shengmei Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Qiuyan Guo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China (Q.G.)
| | - Ruqian Zhong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China (Q.G.)
| | - Xi Chen
- Hunan Provincial Center for Drug Evaluation and Adverse Reaction Monitoring, Changsha 410013, China;
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China (Q.G.)
| |
Collapse
|
4
|
Xu YN, Bai X, Chen JL, Wu X, Yin D, Yuan G, Dai R, Zhu XM, Wang J. Tracing Sentinel Lymph Nodes and Inhibiting Lymphatic Metastasis with TiN Nanobipyramids Through Photothermal Therapy. Int J Nanomedicine 2024; 19:13579-13592. [PMID: 39720216 PMCID: PMC11668323 DOI: 10.2147/ijn.s488480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
Background The lymphatic system is the major route of cancer metastasis, and sentinel lymph nodes (SLNs) are the first station for the spread of cancer cells. Accurate identification of SLNs by tracers during surgery is crucial for SLN biopsy and lymphadenectomy. However, conventional monomodal tracers such as blue dyes and carbon nanoparticles often induce a misjudgment of SLNs and thus are still unsatisfying for clinical applications. In addition, SLN imaging agents with therapeutic capabilities to achieve perfect theranostics have been less exploited. Purpose Titanium nitride (TiN) nanostructures have the advantages of high stability and low cost and show superior plasmonic properties over both the visible and near-infrared (NIR) regions. Herein we report on the synthesis of TiN nanobipyramids (NBPs) with large sizes for multimodal SLN mapping. Methods A hydrothermal method and post nitridation treatment were used to prepare the TiN NBPs. Bright- and dark-field imaging of SLNs with TiN NBPs were performed. The effect of TiN NBP size on SLN tracing was studied. The effect of TiN NBP-based photothermal ablation of SLNs combined with removal of primary tumors on pulmonary metastasis was studied. Results The TiN NBPs with dual bright- and dark-field imaging functions show high drainage in lymph nodes and thus can act as a potential substitute for SLN tracing. Moreover, owing to the superior plasmonic properties of TiN nanostructures, the produced TiN NBPs show a high photothermal conversion efficiency under 1064 nm laser irradiation. TiN NBP-based photothermal ablation of metastatic LNs in the second NIR window (NIR-II) combined with surgical removal of primary tumors shows remarkable inhibition of pulmonary metastasis. Conclusion This study not only demonstrates TiN NBPs as a new tracer for SLN mapping, but also presents a strategy for the photothermal ablation of lymph nodes in NIR-II for the inhibition of lymphatic metastasis.
Collapse
Affiliation(s)
- Yan-Neng Xu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, 999078, People’s Republic of China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, People’s Republic of China
| | - Jian-Li Chen
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, 030006, People’s Republic of China
| | - Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, 999078, People’s Republic of China
| | - Dan Yin
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, 999078, People’s Republic of China
| | - Gang Yuan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, 999078, People’s Republic of China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, 999078, People’s Republic of China
- Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Zhuhai, Guangdong, 519099, People’s Republic of China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, People’s Republic of China
| |
Collapse
|
5
|
Man X, Li W, Zhu M, Li S, Xu G, Zhang Z, Liang H, Yang F. Rational Design of a Hetero-multinuclear Gadolinium(III)-Copper(II) Complex: Integrating Magnetic Resonance Imaging, Photoacoustic Imaging, Mild Photothermal Therapy, Chemotherapy and Immunotherapy of Cancer. J Med Chem 2024; 67:15606-15619. [PMID: 39143701 DOI: 10.1021/acs.jmedchem.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
For more accurate diagnosis and effective treatment of cancer, we proposed to develop a hetero-multinuclear metal complex based on the property of apoferritin (AFt) for targeting tumor theranostics by integrating dual-modality imaging diagnosis and multimodality therapy. To this end, we rational designed and synthesized a trinuclear Gd(III)-Cu(II) thiosemicarbazone complex (Gd-2Cu) and then constructed a Gd-2Cu@AFt nanoparticle (NP) delivery system. Gd-2Cu/Gd-2Cu@AFt NPs not only had significant T1-weighted magnetic resonance imaging and photoacoustic imaging of the tumor but also effectively inhibited tumor growth through a combination of mild photothermal therapy, chemotherapy, and immunotherapy. Gd-2Cu@AFt NPs optimized the behavior of imaging diagnosis and therapy of Gd-2Cu, improved its targeting ability, and reduced the side effects in vivo. Besides, we revealed and clarified the anticancer mechanism of Gd-2Cu: interrupting energy metabolism of the tumor cell, inducing apoptosis of the tumor cell, and activating a systemic immune response by inducing immunogenic cell death of cancer cells.
Collapse
Affiliation(s)
- Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
6
|
Li J, Yang D, Lyu W, Yuan Y, Han X, Yue W, Jiang J, Xiao Y, Fang Z, Lu X, Wang W, Huang W. A Bioinspired Photosensitizer Performs Tumor Thermoresistance Reversion to Optimize the Atraumatic Mild-Hyperthermia Photothermal Therapy for Breast Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405890. [PMID: 39045923 DOI: 10.1002/adma.202405890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Mild-hyperthermia photothermal therapy (mPTT) has therapeutic potential with minimized damage to normal tissues. However, the poorly vascularized tumor area severely hampers the penetration of photothermal agents (PTAs), resulting in their heterogeneous distribution and the subsequent heterogeneous local temperature during mPTT. The presence of regions below the therapeutic 42 °C threshold can lead to incomplete tumor ablation and potential recurrence. Additionally, tumor anti-apoptosis and cytoprotection pathways, particularly activated thermoresistance, can nullify mild hyperthermia-induced tumor damage. Therefore, a bioinspired photosensitizer decorated with leucine to form biomimetic nanoclusters (CP-PLeu nanoparticles (NPs)) aimed at achieving rapid and homogeneous accumulation in tumors, is introduced. Moreover, CP-PLeu exhibits photodynamic effects that reverse tumor thermoresistance and physiological repair mechanisms, thereby inhibiting tumor resistance to hyperthermia. With the addition of NIR-II laser irradiation, CP-PLeu optimizes the therapeutic efficacy of mPTT and contributes to a minimally invasive therapeutic process for breast cancer. This therapeutic strategy, utilizing a biomimetic photosensitizer for homogeneous distribution of therapeutic temperature and photoactivated reversal of tumor thermoresistance, successfully achieves efficient breast tumor inhibition through an atraumatic mPTT process.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211800, China
| | - Die Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211800, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yan Yuan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211800, China
| | - Xiao Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211800, China
| | - Weiqing Yue
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211800, China
| | - Jian Jiang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211800, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhijie Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211800, China
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211800, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, 450001, P. R. China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211800, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
7
|
Gong H, Liu L, Zhou J, Li H, Qiu J, Cheng W. Smart chitosan-based microgels for enhanced photothermal-assisted antibacterial activity. Int J Biol Macromol 2023; 252:126389. [PMID: 37611687 DOI: 10.1016/j.ijbiomac.2023.126389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/14/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
During recent years, antibiotic-resistant bacteria have rapidly emerged owing to the irrational use of antibiotics, rendering a global problem. Currently, few studies introduce customized antibacterial nanoplatforms to overcome antibiotic-resistance according to specific characteristic of bacteria, rather than abuse of antibiotic. Herein, with regard to personalized antibacterial nanoplatform, we design a novel antibiotic delivery nanocarrier composed of polyaniline-grafted-chitosan, presenting pH-responsive, conductive, photothermal, and biodegradable properties. After treatment with divalent anion (SO42-), the negatively charged nanocarriers are obtained for improving the loading efficacy of cationic vancomycin. Meanwhile, the controlled vancomycin release is achieved by lysozyme-triggered degradation of the nanocarrier. With the assistance of photothermal effect, the photothermal-assisted antibacterial effect of the nanocarriers have been effectively enhanced rather than that of a single antibacterial effect of vancomycin. Owing to the low heat resistance of Escherichia coli, photothermal effect can break the antibiotic-resistant bacteria membrane to render the convenient antibiotic entry, leading to the improved antibacterial efficacy. Therefore, the customization of a photothermal-assisted antibacterial on account of the characteristic of specific bacteria can definitely expand our arsenal for enhancing the antibacterial effect against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Hao Gong
- Department of Emergency, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Li Liu
- The People's Hospital of Suzhou New District, Suzhou 215129, China
| | - Jieru Zhou
- Department of Obstetrics and Gynecology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Helin Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jiaxing Qiu
- Shanghai TCM-Integrated Hospital, Shanghai 200082, China.
| | - Weini Cheng
- Department of Infectious Diseases, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
8
|
Zhu M, Man X, Tongfu Y, Li W, Li S, Xu G, Zhang Z, Liang H, Yang F. Developing a Hetero-Trinuclear Erbium(III)-Copper(II) Complex Based on Apoferritin: Targeted Photoacoustic Imaging and Multimodality Therapy of Tumor. J Med Chem 2023; 66:15424-15436. [PMID: 37956097 DOI: 10.1021/acs.jmedchem.3c01583] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
For the integration of targeted diagnosis and treatment of tumor, we innovatively designed and synthesized a single-molecule hetero-multinuclear Er(III)-Cu(II) complex (ErCu2) and then constructed an ErCu2@apoferritin (AFt) nanoparticle (NP) delivery system. ErCu2 and ErCu2@AFt NPs not only provided an evident photoacoustic imaging (PAI) signal of the tumor but also effectively inhibited tumor growth by integrating photothermal therapy, chemotherapy, and immunotherapy. ErCu2@AFt NPs improved the targeting ability and decreased the systemic toxicity of ErCu2 in vivo. Furthermore, we confirmed that ErCu2 and ErCu2@AFt NPs inhibited tumor growth by inducing apoptosis and autophagy of tumor cells and activating the immune system. The study not only provides a novel strategy to develop therapeutic metal agents but also reveals their potential for targeted accurate diagnosis and multimodality therapy of cancer.
Collapse
Affiliation(s)
- Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Yang Tongfu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
9
|
Dar MS, Tabish TA, Thorat ND, Swati G, Sahu NK. Photothermal therapy using graphene quantum dots. APL Bioeng 2023; 7:031502. [PMID: 37614868 PMCID: PMC10444203 DOI: 10.1063/5.0160324] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
The rapid development of powerful anti-oncology medicines have been possible because of advances in nanomedicine. Photothermal therapy (PTT) is a type of treatment wherein nanomaterials absorb the laser energy and convert it into localized heat, thereby causing apoptosis and tumor eradication. PTT is more precise, less hazardous, and easy-to-control in comparison to other interventions such as chemotherapy, photodynamic therapy, and radiation therapy. Over the past decade, various nanomaterials for PTT applications have been reviewed; however, a comprehensive study of graphene quantum dots (GQDs) has been scantly reported. GQDs have received huge attention in healthcare technologies owing to their various excellent properties, such as high water solubility, chemical stability, good biocompatibility, and low toxicity. Motivated by the fascinating scientific discoveries and promising contributions of GQDs to the field of biomedicine, we present a comprehensive overview of recent progress in GQDs for PTT. This review summarizes the properties and synthesis strategies of GQDs including top-down and bottom-up approaches followed by their applications in PTT (alone and in combination with other treatment modalities such as chemotherapy, photodynamic therapy, immunotherapy, and radiotherapy). Furthermore, we also focus on the systematic study of in vitro and in vivo toxicities of GQDs triggered by PTT. Moreover, an overview of PTT along with the synergetic application used with GQDs for tumor eradication are discussed in detail. Finally, directions, possibilities, and limitations are described to encourage more research, which will lead to new treatments and better health care and bring people closer to the peak of human well-being.
Collapse
Affiliation(s)
| | - Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Nanasaheb D. Thorat
- Nuffield Department of Women's and Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - G. Swati
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
10
|
Chen JL, Wu X, Yin D, Jia XH, Chen X, Gu ZY, Zhu XM. Autophagy inhibitors for cancer therapy: Small molecules and nanomedicines. Pharmacol Ther 2023; 249:108485. [PMID: 37406740 DOI: 10.1016/j.pharmthera.2023.108485] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Autophagy is a conserved process in which the cytosolic materials are degraded and eventually recycled for cellular metabolism to maintain homeostasis. The dichotomous role of autophagy in pathogenesis is complicated. Accumulating reports have suggested that cytoprotective autophagy is responsible for tumor growth and progression. Autophagy inhibitors, such as chloroquine (CQ) and hydroxychloroquine (HCQ), are promising for treating malignancies or overcoming drug resistance in chemotherapy. With the rapid development of nanotechnology, nanomaterials also show autophagy-inhibitory effects or are reported as the carriers delivering autophagy inhibitors. In this review, we summarize the small-molecule compounds and nanomaterials inhibiting autophagic flux as well as the mechanisms involved. The nanocarrier-based drug delivery systems for autophagy inhibitors and their distinct advantages are also described. The progress of autophagy inhibitors for clinical applications is finally introduced, and their future perspectives are discussed.
Collapse
Affiliation(s)
- Jian-Li Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Dan Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xiao-Hui Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Ze-Yun Gu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China.
| |
Collapse
|
11
|
Yuan G, Xu Y, Bai X, Wang W, Wu X, Chen J, Li J, Jia X, Gu Z, Zhang X, Hu W, Wang J, Liu Y, Zhu XM. Autophagy-Targeted Calcium Phosphate Nanoparticles Enable Transarterial Chemoembolization for Enhanced Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11431-11443. [PMID: 36848495 DOI: 10.1021/acsami.2c18267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transarterial chemoembolization (TACE) is commonly used for treating advanced hepatocellular carcinoma (HCC). However, the instability of lipiodol-drug emulsion and the altered tumor microenvironment (TME, such as hypoxia-induced autophagy) postembolization are responsible for the unsatisfactory therapeutic outcomes. Herein, pH-responsive poly(acrylic acid)/calcium phosphate nanoparticles (PAA/CaP NPs) were synthesized and used as the carrier of epirubicin (EPI) to enhance the efficacy of TACE therapy through autophagy inhibition. PAA/CaP NPs have a high loading capacity of EPI and a sensitive drug release behavior under acidic conditions. Moreover, PAA/CaP NPs block autophagy through the dramatic increase of intracellular Ca2+ content, which synergistically enhances the toxicity of EPI. TACE with EPI-loaded PAA/CaP NPs dispersed in lipiodol shows an obvious enhanced therapeutic outcome compared to the treatment with EPI-lipiodol emulsion in an orthotopic rabbit liver cancer model. This study not only develops a new delivery system for TACE but also provides a promising strategy targeting autophagy inhibition to improve the therapeutic effect of TACE for the HCC treatment.
Collapse
Affiliation(s)
- Gang Yuan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Department of Interventional Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Yanneng Xu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Department of Interventional Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Weiming Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Jianli Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Jie Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Xiaohui Jia
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Zeyun Gu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Xun Zhang
- Department of Interventional Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Wei Hu
- Department of Interventional Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| |
Collapse
|
12
|
Wu X, Wang L, Xu YN, Chen JL, Luo KQ, Yuan MH, Li J, Yuan G, Gu ZY, Jia XH, Chen X, Zhu XM, Jiang R. Chemo-Phototherapy with Carfilzomib-Encapsulated TiN Nanoshells Suppressing Tumor Growth and Lymphatic Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200522. [PMID: 35748183 DOI: 10.1002/smll.202200522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The design of nanomedicine for cancer therapy, especially the treatment of tumor metastasis has received great attention. Proteasome inhibition is accepted as a new strategy for cancer therapy. Despite being a big breakthrough in multiple myeloma therapy, carfilzomib (CFZ), a second-in-class proteasome inhibitor is still unsatisfactory for solid tumor and metastasis therapy. In this study, hollow titanium nitride (TiN) nanoshells are synthesized as a drug carrier of CFZ. The TiN nanoshells have a high loading capacity of CFZ, and their intrinsic inhibitory effect on autophagy synergistically enhances the activity of CFZ. Due to an excellent photothermal conversion efficiency in the second near-infrared (NIR-II) region, TiN nanoshell-based photothermal therapy further induces a synergistic anticancer effect. In vivo study demonstrates that TiN nanoshells readily drain into the lymph nodes, which are responsible for tumor lymphatic metastasis. The CFZ-loaded TiN nanoshell-based chemo-photothermal therapy combined with surgery offers a remarkable therapeutic outcome in greatly inhibiting further metastatic spread of cancer cells. These findings suggest that TiN nanoshells act as an efficient carrier of CFZ for realizing enhanced outcomes for proteasome inhibitor-based cancer therapy, and this work also presents a "combined chemo-phototherapy assisted surgery" strategy, promising for future cancer treatment.
Collapse
Affiliation(s)
- Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau S.A.R., 999078, China
| | - Le Wang
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yan-Neng Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau S.A.R., 999078, China
- Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000, China
| | - Jian-Li Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau S.A.R., 999078, China
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R., 999078, China
| | - Ming-Heng Yuan
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R., 999078, China
| | - Jie Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau S.A.R., 999078, China
| | - Gang Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau S.A.R., 999078, China
- Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000, China
| | - Ze-Yun Gu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau S.A.R., 999078, China
| | - Xiao-Hui Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau S.A.R., 999078, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau S.A.R., 999078, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau S.A.R., 999078, China
| | - Ruibin Jiang
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
13
|
Intracellular delivery and photothermal therapeutic effects of polyhistidine peptide-modified gold nanoparticles. J Biotechnol 2022; 354:34-44. [PMID: 35724765 DOI: 10.1016/j.jbiotec.2022.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022]
Abstract
Gold nanoparticles (AuNPs) are widely used as an agent in photothermal therapy (PTT) against various cancers. However, a drug delivery system (DDS) is required for effective PTT using AuNPs as AuNPs accumulate passively in tumors. In the present study, we used polyhistidine peptide, a novel cell-penetrating peptide, which is efficiently internalized into tumor cells, as a DDS carrier for PTT using AuNPs. Polyhistidine peptide-modified AuNPs are efficiently internalized into RERF-LC-AI human lung squamous cancer cells and localized to the intracellular lysosome, which is based on the nature of the polyhistidine peptide. Furthermore, the polyhistidine peptide-modified AuNPs inhibited proliferation of RERF-LC-AI cells in a polyhistidine peptide modification-dependent manner under 660 nm laser irradiation. Quantitative real-time PCR showed increased expression levels of an apoptosis-related gene (bax) and heat stress-related gene (hsp70) in RERF-LC-AI cells treated with polyhistidine peptide-modified AuNPs and laser. Our findings highlight the efficacy of AuNPs modified with H16 peptide in PTT.
Collapse
|
14
|
Zhou J, Wang L, Peng C, Peng F. Co-Targeting Tumor Angiogenesis and Immunosuppressive Tumor Microenvironment: A Perspective in Ethnopharmacology. Front Pharmacol 2022; 13:886198. [PMID: 35784750 PMCID: PMC9242535 DOI: 10.3389/fphar.2022.886198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor angiogenesis is one of the most important processes of cancer deterioration via nurturing an immunosuppressive tumor environment (TME). Targeting tumor angiogenesis has been widely accepted as a cancer intervention approach, which is also synergistically associated with immune therapy. However, drug resistance is the biggest challenge of anti-angiogenesis therapy, which affects the outcomes of anti-angiogeneic agents, and even combined with immunotherapy. Here, emerging targets and representative candidate molecules from ethnopharmacology (including traditional Chinese medicine, TCM) have been focused, and they have been proved to regulate tumor angiogenesis. Further investigations on derivatives and delivery systems of these molecules will provide a comprehensive landscape in preclinical studies. More importantly, the molecule library of ethnopharmacology meets the viability for targeting angiogenesis and TME simultaneously, which is attributed to the pleiotropy of pro-angiogenic factors (such as VEGF) toward cancer cells, endothelial cells, and immune cells. We primarily shed light on the potentiality of ethnopharmacology against tumor angiogenesis, particularly TCM. More research studies concerning the crosstalk between angiogenesis and TME remodeling from the perspective of botanical medicine are awaited.
Collapse
Affiliation(s)
- Jianbo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| |
Collapse
|
15
|
Xu Q, Li D, Zhou H, Chen B, Wang J, Wang SB, Chen A, Jiang N. MnO 2-coated porous Pt@CeO 2 core-shell nanostructures for photoacoustic imaging-guided tri-modal cancer therapy. NANOSCALE 2021; 13:16499-16508. [PMID: 34585196 DOI: 10.1039/d1nr03246a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We describe the synthesis of MnO2-coated porous Pt@CeO2 core-shell nanostructures (Pt@CeO2@MnO2) as a new theranostic nano-platform. The porous Pt cores endow the core-shell nanostructures with high photothermal conversion efficiency (80%) in the near-infrared region, allowing for photothermal therapy (PTT) and photoacoustic imaging (PA) of tumors. The combination of the Pt core and porous CeO2 interlayer enhances the separation of photo-generated electrons and holes, which is beneficial for the generation of singlet oxygen. With the porous structures of the cores and interlayers, the Pt@CeO2@MnO2 nanostructures are further loaded with an anti-cancer drug (doxorubicin, DOX). The degradation of the MnO2 shell in the tumor microenvironment (TME) can generate O2 for enhanced photodynamic therapy (PDT) and simultaneously trigger DOX release. PA imaging shows good accumulation and retention of DOX-loaded Pt@CeO2@MnO2 in tumors, which guides precise laser irradiation to initiate combined PTT and PDT. The synergistic PTT/PDT/chemotherapy demonstrated by DOX-loaded Pt@CeO2@MnO2 yields remarkable therapeutic outcomes in vitro and in vivo. Taken together, our DOX-loaded Pt@CeO2@MnO2 provides a new avenue for designing high-performance nano-platforms for imaging and therapeutics.
Collapse
Affiliation(s)
- Qing Xu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Danyang Li
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Haijun Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Biaoqi Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, P. R. China
| | - Junlei Wang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, P. R. China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, P. R. China
| | - Nina Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, P. R. China
| |
Collapse
|
16
|
Kumar AVP, Dubey SK, Tiwari S, Puri A, Hejmady S, Gorain B, Kesharwani P. Recent advances in nanoparticles mediated photothermal therapy induced tumor regression. Int J Pharm 2021; 606:120848. [PMID: 34216762 DOI: 10.1016/j.ijpharm.2021.120848] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022]
Abstract
Photothermal therapy (PTT) is a minimally invasive procedure for treating cancer. The two significant prerequisites of PTT are the photothermal therapeutic agent (PTA) and near-infrared radiation (NIR). The PTA absorbs NIR, causing hyperthermia in the malignant cells. This increased temperature at the tumor microenvironment finally results in tumor cell damage. Nanoparticles play a crucial role in PTT, aiding in the passive and active targeting of the PTA to the tumor microenvironment. Through enhanced permeation and retention effect and surface-engineering, specific targeting could be achieved. This novel delivery tool provides the advantages of changing the shape, size, and surface attributes of the carriers containing PTAs, which might facilitate tumor regression significantly. Further, inclusion of surface engineering of nanoparticles is facilitated through ligating ligands specific to overexpressed receptors on the cancer cell surface. Thus, transforming nanoparticles grants the ability to combine different treatment strategies with PTT to enhance cancer treatment. This review emphasizes properties of PTAs, conjugated biomolecules of PTAs, and the combinatorial techniques for a better therapeutic effect of PTT using the nanoparticle platform.
Collapse
Affiliation(s)
- Achalla Vaishnav Pavan Kumar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sunil K Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow 226002, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Siddhanth Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
17
|
Yoo SW, Oh G, Ahn JC, Chung E. Non-Oncologic Applications of Nanomedicine-Based Phototherapy. Biomedicines 2021; 9:113. [PMID: 33504015 PMCID: PMC7911939 DOI: 10.3390/biomedicines9020113] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Phototherapy is widely applied to various human diseases. Nanomedicine-based phototherapy can be classified into photodynamic therapy (PDT) and photothermal therapy (PTT). Activated photosensitizer kills the target cells by generating radicals or reactive oxygen species in PDT while generating heat in PTT. Both PDT and PTT have been employed for treating various diseases, from preclinical to randomized controlled clinical trials. However, there are still hurdles to overcome before entering clinical practice. This review provides an overview of nanomedicine-based phototherapy, especially in non-oncologic diseases. Multiple clinical trials were undertaken to prove the therapeutic efficacy of PDT in dermatologic, ophthalmologic, cardiovascular, and dental diseases. Preclinical studies showed the feasibility of PDT in neurologic, gastrointestinal, respiratory, and musculoskeletal diseases. A few clinical studies of PTT were tried in atherosclerosis and dry eye syndrome. Although most studies have shown promising results, there have been limitations in specificity, targeting efficiency, and tissue penetration using phototherapy. Recently, nanomaterials have shown promising results to overcome these limitations. With advanced technology, nanomedicine-based phototherapy holds great potential for broader clinical practice.
Collapse
Affiliation(s)
- Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Jeollanam-do 58128, Korea;
| | - Gyungseok Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| | - Jin Chul Ahn
- Medical Laser Research Center and Department of Biomedical Science, Dankook University, Cheonan 31116, Korea;
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
18
|
Xu C, Pu K. Second near-infrared photothermal materials for combinational nanotheranostics. Chem Soc Rev 2021; 50:1111-1137. [DOI: 10.1039/d0cs00664e] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes the recent development of second near-infrared photothermal combinational nanotheranostics for cancer, infectious diseases and regenerative medicine.
Collapse
Affiliation(s)
- Cheng Xu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
| |
Collapse
|
19
|
Zhang S, Jin L, Liu J, Liu Y, Zhang T, Zhao Y, Yin N, Niu R, Li X, Xue D, Song S, Wang Y, Zhang H. Boosting Chemodynamic Therapy by the Synergistic Effect of Co-Catalyze and Photothermal Effect Triggered by the Second Near-Infrared Light. NANO-MICRO LETTERS 2020; 12:180. [PMID: 34138182 PMCID: PMC7770794 DOI: 10.1007/s40820-020-00516-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/07/2020] [Indexed: 06/12/2023]
Abstract
In spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction (i.e., chemodynamic therapy, CDT) has been attracted more attentions in recent years, the limited Fenton reaction efficiency is the important obstacle to further application in clinic. Herein, we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin (FeO/MoS2-BSA) with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared (NIR II) light. In the tumor microenvironments, the MoS2 nanosheets not only can accelerate the conversion of Fe3+ ions to Fe2+ ions by Mo4+ ions on their surface to improve Fenton reaction efficiency, but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy (PTT). Consequently, benefiting from the synergetic-enhanced CDT/PTT, the tumors are eradicated completely in vivo. This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.
Collapse
Affiliation(s)
- Songtao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), Changchun, 130022, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Longhai Jin
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), Changchun, 130022, People's Republic of China
| | - Tianqi Zhang
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), Changchun, 130022, People's Republic of China
| | - Na Yin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), Changchun, 130022, People's Republic of China
| | - Rui Niu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), Changchun, 130022, People's Republic of China
| | - Xiaoqing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), Changchun, 130022, People's Republic of China
| | - Dongzhi Xue
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), Changchun, 130022, People's Republic of China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), Changchun, 130022, People's Republic of China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), Changchun, 130022, People's Republic of China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), Changchun, 130022, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
20
|
Hasanzadeh Kafshgari M, Goldmann WH. Insights into Theranostic Properties of Titanium Dioxide for Nanomedicine. NANO-MICRO LETTERS 2020; 12:22. [PMID: 34138062 PMCID: PMC7770757 DOI: 10.1007/s40820-019-0362-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/08/2019] [Indexed: 05/02/2023]
Abstract
Titanium dioxide (TiO2) nanostructures exhibit a broad range of theranostic properties that make them attractive for biomedical applications. TiO2 nanostructures promise to improve current theranostic strategies by leveraging the enhanced quantum confinement, thermal conversion, specific surface area, and surface activity. This review highlights certain important aspects of fabrication strategies, which are employed to generate multifunctional TiO2 nanostructures, while outlining post-fabrication techniques with an emphasis on their suitability for nanomedicine. The biodistribution, toxicity, biocompatibility, cellular adhesion, and endocytosis of these nanostructures, when exposed to biological microenvironments, are examined in regard to their geometry, size, and surface chemistry. The final section focuses on recent biomedical applications of TiO2 nanostructures, specifically evaluating therapeutic delivery, photodynamic and sonodynamic therapy, bioimaging, biosensing, tissue regeneration, as well as chronic wound healing.
Collapse
Affiliation(s)
| | - Wolfgang H Goldmann
- Department of Physics, Biophysics Group, University of Erlangen-Nuremberg, 91052, Erlangen, Germany.
| |
Collapse
|