1
|
Tan R, Li Z, Xue Z, Li L, Chen X, Tang Z, Wei X. Identification of Topological Metal g-C 2N with High Activity and Selectivity for Versatile Oxygen Electrocatalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11882-11892. [PMID: 40333045 DOI: 10.1021/acs.langmuir.4c05171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Two-dimensional (2D) carbon nitride materials are emerging as ideal supports for single-atom catalysts (SACs) due to their excellent physicochemical stability, abundant active sites, and ample capacity for metal loading. However, their intrinsic semiconducting properties constrain electrical conductivity, thereby hindering charge transfer during catalytic processes. Herein, we propose a graphene-like 2D carbon nitride structure, g-C2N, derived from first-principles calculations and theoretical analysis. This structure is identified as a topological metal, featuring a symmetry-protected Dirac cone. Its topologically nontrivial nature is evidenced by distinct edge states, nonzero Berry curvature, and quantized Zak phase. Remarkably, g-C2N exhibits a Fermi velocity exceeding that of graphene. Furthermore, the constructed Co@C2N2 structure is identified as a highly active and selective catalyst for hydrogen peroxide (H2O2) electrosynthesis, with a low thermodynamic overpotential of 0.08 V. Additionally, the Co@C2N2-N catalyst developed through N-doping strategies demonstrates outstanding bifunctional 4e- OER/ORR activity with low overpotentials of 0.27 and 0.32 V, respectively. These findings not only broaden the scope of 2D carbon nitride materials but also offer foundational insights for the rational design of highly active catalysts for oxygen electrocatalysis.
Collapse
Affiliation(s)
- Rui Tan
- The Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province, College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China
| | - Zehou Li
- The Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province, College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China
| | - Zhe Xue
- School of Materials Science and Engineering, Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials, North University of China, Taiyuan 030051, P. R. China
| | - Longhui Li
- The Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province, College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China
| | - Xueqing Chen
- The Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province, College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China
| | - Zhenkun Tang
- The Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province, College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China
| | - Xiaolin Wei
- The Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province, College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China
| |
Collapse
|
2
|
Hossain MN, Zhang L, Neagu R, Sun S. Exploring the properties, types, and performance of atomic site catalysts in electrochemical hydrogen evolution reactions. Chem Soc Rev 2025; 54:3323-3386. [PMID: 39981628 DOI: 10.1039/d4cs00333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Atomic site catalysts (ASCs) have recently gained prominence for their potential in the electrochemical hydrogen evolution reaction (HER) due to their exceptional activity, selectivity, and stability. ASCs with individual atoms dispersed on a support material, offer expanded surface areas and increased mass efficiency. This is because each atom in these catalysts serves as an active site, which enhances their catalytic activity. This review is focused on providing a detailed analysis of ASCs in the context of the HER. It will delve into their properties, types, and performance to provide a comprehensive understanding of their role in electrochemical HER processes. The introduction part underscores HER's significance in transitioning to sustainable energy sources and emphasizes the need for innovative catalysts like ASCs. The fundamentals of the HER section emphasizes the importance of understanding the HER and highlights the key role that catalysts play in HER. The review also explores the properties of ASCs with a specific emphasis on their atomic structure and categorizes the types based on their composition and structure. Within each category of ASCs, the review discusses their potential as catalysts for the HER. The performance section focuses on a thorough evaluation of ASCs in terms of their activity, selectivity, and stability in HER. The performance section assesses ASCs in terms of activity, selectivity, and stability, delving into reaction mechanisms via experimental and theoretical approaches, including density functional theory (DFT) studies. The review concludes by addressing ASC-related challenges in HER and proposing future research directions, aiming to inspire further innovation in sustainable catalysts for electrochemical HER.
Collapse
Affiliation(s)
- M Nur Hossain
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Lei Zhang
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Roberto Neagu
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Shuhui Sun
- Institut National de la Recherche Scientifque (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| |
Collapse
|
3
|
Deng C, Zhao B, Gao PX. Hierarchically Structured Catalysts Toward Sustainable Hydrogen Economy: Electro- and Thermo-Chemical Pathways. CHEMSUSCHEM 2025; 18:e202401752. [PMID: 39420473 DOI: 10.1002/cssc.202401752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Hydrogen, as an important clean energy source, plays a more and more crucial role in decarbonizing the planet and meeting the global climate challenge due to its high energy density and zero-emission. The demand for sustainable hydrogen is increasing drastically worldwide as driven by the global shift towards low-carbon energy solutions. Thermochemical catalysis process dominates hydrogen production at scale given its relatively mature technology and commercialization status, as well as the established manufacturing infrastructure. While due to its environmentally friendly nature and growing abundant sources of renewable electricity, the electrochemical path for hydrogen production is rising as a major alternative to the thermochemical means. Nevertheless, hierarchically structured catalysts and devices have gradually taken the center stage toward replacing the traditional counterparts, especially with the rapid advancement of the design and manufacture of such ordered nanostructure assemblies toward high activity, efficient mass transport, and superb stability. In this review, the latest progress of the hierarchically structured catalysts for hydrogen production have been surveyed on electro- and thermo- chemical pathways comparatively. It covers the structure designs of atomic dispersion, nanoscale surfaces and interfaces for achieving highly active and durable catalysts, components, and devices. Both electrochemical and thermochemical approaches are reviewed in terms of the vast design details, engineered benefits, and understandings of various Pt-group metal (PGM) and non-PGM based transition metal catalysts for hydrogen production. As the growing trend, brief discussions are also presented toward the high-level assembly and manufacture of complexly structured components and devices at scale in the electrochemical and thermochemical energy systems.
Collapse
Affiliation(s)
- Chenxin Deng
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, 25 King Hill Road, Storrs, CT, 06269-3136, USA
| | - Binchao Zhao
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, 25 King Hill Road, Storrs, CT, 06269-3136, USA
| | - Pu-Xian Gao
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, 25 King Hill Road, Storrs, CT, 06269-3136, USA
| |
Collapse
|
4
|
Xue B, Zeng Q, Yu S, Su K. Theoretical Investigation of Single-Atom Catalysts for Hydrogen Evolution Reaction Based on Two-Dimensional Tetragonal V 2C 2 and V 3C 3. MATERIALS (BASEL, SWITZERLAND) 2025; 18:931. [PMID: 40077157 PMCID: PMC11901156 DOI: 10.3390/ma18050931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
Developing stable and effective catalysts for the hydrogen evolution reaction (HER) has been a long-standing pursuit. In this work, we propose a series of single-atom catalysts (SACs) by importing transition-metal atoms into the carbon and vanadium vacancies of tetragonal V2C2 and V3C3 slabs, where the transition-metal atoms refer to Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. By means of first-principles computations, the possibility of applying these SACs in HER catalysis was investigated. All the SACs are conductive, which is favorable to charge transfer during HER. The Gibbs free energy change (ΔGH*) during hydrogen adsorption was adopted to assess their catalytic ability. For the V2C2-based SACs with V, Cr, Mn, Fe, Ni, and Cu located at the carbon vacancy, excellent HER catalytic performance was achieved, with a |ΔGH*| smaller than 0.2 eV. Among the V3C3-based SACs, apart from the SAC with Mn located at the carbon vacancy, all the SACs can act as outstanding HER catalysts. According to the ΔGH*, these excellent V2C2- and V3C3-based SACs are comparable to the best-known Pt-based HER catalysts. However, it should be noted that the V2C2 and V3C3 slabs have not been successfully synthesized in the laboratory, leading to a pure investigation without practical application in this work.
Collapse
Affiliation(s)
- Bo Xue
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Qingfeng Zeng
- MSEA International Institute for Materials Genome, Langfang 065500, China; (Q.Z.); (S.Y.)
- Particle Cloud Biotechnology (Hangzhou) Co., Ltd., Hangzhou 310018, China
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shuyin Yu
- MSEA International Institute for Materials Genome, Langfang 065500, China; (Q.Z.); (S.Y.)
- Particle Cloud Biotechnology (Hangzhou) Co., Ltd., Hangzhou 310018, China
| | - Kehe Su
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
5
|
Maity S, Kolay S, Chakraborty S, Devi A, Rashi, Patra A. A comprehensive review of atomically precise metal nanoclusters with emergent photophysical properties towards diverse applications. Chem Soc Rev 2025; 54:1785-1844. [PMID: 39670813 DOI: 10.1039/d4cs00962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Atomically precise metal nanoclusters (MNCs) composed of a few to hundreds of metal atoms represent an emerging class of nanomaterials with a precise composition. With the size approaching the Fermi wavelength of electrons, their energy levels are well-separated, leading to molecule-like properties, like discrete single electronic transitions, tunable photoluminescence (PL), inherent structural anisotropy, and distinct redox behavior. Extensive synthetic efforts and electronic structure revelation have expanded applicability of MNCs in catalysis, optoelectronics, and biology. This review highlights the intriguing photophysical and electrochemical behaviors of MNCs and their regulatory parameters and applications. Initially, we present a brief discussion on the evolution of MNCs from gas-phase naked metal clusters to monolayer ligand-protected MNCs along with representative studies on their electronic structure. Due to their quantized molecular orbitals, they often exhibit PL, which can be regulated based on their capping ligands, number of atoms, crystal packing, presence of heterometal, and surrounding environment. Apart from PL, the relaxation pathways of MNCs on an ultrafast time scale have been extensively studied, which significantly differ from that of plasmonic metal nanoparticles. Moreover, their interaction with high-intensity light results in unique non-linear optical properties. The synergy between MNCs in a hierarchical self-assembled structure has been exploited to enhance their PL by precisely tuning their non-covalent interactions. Moreover, several NC-based hybrids have been designed to exhibit efficient electron or energy transfer in the photoexcited state. In the next section, we briefly focus on the redox behavior of NCs and facile electron transfer to suitable substrates, which result in enzyme-like catalytic activity. Utilizing these photophysical and electrochemical behaviors, NCs are widely employed in catalysis, optical sensing, and light-harvesting applications, which are also discussed in this review. In the final section, conclusions and open questions for the NC research community are included. This review will provide a comprehensive view of the emerging physicochemical properties of MNCs, thereby enabling an understanding for their precise modulation in future.
Collapse
Affiliation(s)
- Subarna Maity
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sarita Kolay
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Sikta Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Aarti Devi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Rashi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
6
|
Karthikraja E, Chowdhury C, Nulakani NVR, Ramanujam K, Vaidyanathan VG, Subramanian V. Transition Metal Anchored Novel Holey Boron Nitride Analogues as Single-Atom Catalysts for the Hydrogen Evolution Reaction. Chem Asian J 2025; 20:e202401256. [PMID: 39563169 DOI: 10.1002/asia.202401256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
The increasing global energy demand and environmental pollution necessitate the development of alternative, sustainable energy sources. Hydrogen production through electrochemical methods offers a carbon-free energy solution. In this study, we have designed novel boron nitride analogues (BNyne) and investigated their stability and electronic properties. Furthermore, the incorporation of transition metals (TM) at holey sites in these analogues was explored, revealing their potential as promising electrocatalysts for the hydrogen evolution reaction (HER). The inclusion of transition metals significantly enhances their structural stability and electronic properties. The TM-anchored BNynes exhibit optimal Gibbs free energy changes (ΔGH) for effective HER performance. Additionally, the favorable alignment of d-band centers near the Fermi level supports efficient hydrogen adsorption. Machine learning models, particularly the Random Forest model, have also been employed to predict ΔGH values with high accuracy, capturing the complex relationships between material properties and HER efficiency. This dual approach underscores the importance of integrating advanced computational techniques with material design to accelerate the discovery of effective HER catalysts. Our findings highlight the potential of these tailored boron nitride analogues to enhance electrocatalytic applications and improve HER efficiency.
Collapse
Affiliation(s)
- Esackraj Karthikraja
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai, 600 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chandra Chowdhury
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai, 600 020, India
| | - Naga Venkateswara Rao Nulakani
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for the Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | | | - V G Vaidyanathan
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai, 600 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | |
Collapse
|
7
|
Jo S, Shin KH, Kim E, Sohn JI. High-Entropy Oxychalcogenide for Hydrogen Spillover Enhanced Hydrogen Evolution Reaction in Proton and Anion Exchange Membrane Water Electrolyzers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411883. [PMID: 39887887 DOI: 10.1002/smll.202411883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/22/2025] [Indexed: 02/01/2025]
Abstract
The hydrogen spillover phenomenon provides an expeditious reaction pathway via hydrogen transfer from a strong H adsorption site to a weak H adsorption site, enabling a cost-efficient hydrogen evolution reaction (HER) analogous to platinum with moderate H adsorption energy. Here, a high-entropy oxychalcogenide (HEOC) comprising Co, Ni, Mo, W, O, Se, and Te is prepared by a two-step electrochemical deposition for hydrogen spillover-enhanced HER in acidic and alkaline water electrolysis. The anodic-cathodic reversal current enables the co-deposition of cations and aliovalent anions, facilitating a glass structure with multiple active sites for hydrogen spillover. The HEOC exhibits low overpotentials of 52 and 57 mV to obtain a current density of 10 mA cm-2 in acidic and alkaline media, respectively, and long-term stability for 500 h. The electrochemical and analytical approaches elucidate the hydrogen transfer toward Mo/W-O sites in both acid and alkaline HERs. Meanwhile, the other sites act as hydrogen adsorption or water dissociation-derived hydroxide adsorption sites, showing accommodable behavior in acidic and alkaline media. The HEOC exhibits a practically high current of 1 A cm-2 at cell voltages of 1.78 and 1.89 V and long-term stability for 100 h in proton and anion exchange membrane water electrolyzers, respectively.
Collapse
Affiliation(s)
- Seunghwan Jo
- Department of Physics, Dongguk University, Seoul, 04620, Republic of Korea
| | - Ki Hoon Shin
- Department of Physics, Dongguk University, Seoul, 04620, Republic of Korea
| | - Eunmin Kim
- Department of Physics, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jung Inn Sohn
- Department of Physics, Dongguk University, Seoul, 04620, Republic of Korea
| |
Collapse
|
8
|
Zhao J, Kou M, Yuan Q, Yuan Y, Zhao J. Hydrogen Spillover-Bridged Interfacial Water Activation of WC x and Hydrogen Recombination of Ru as Dual Active Sites for Accelerating Electrocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406022. [PMID: 39479728 DOI: 10.1002/smll.202406022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/25/2024] [Indexed: 01/11/2025]
Abstract
Tungsten carbide (WCx) is a promising alternative to platinum catalysts for hydrogen evolution reaction (HER). However, strong tungsten-hydrogen bond hinders hydrogen desorption while favoring H+ reduction, thus limiting HER kinetics. Inspired by the phenomenon of hydrogen spillover in heterogeneous catalysis, a ruthenium (Ru) doped-driven activated hydrogen migration from WCx surface to Ru is reported. This approach achieved high activity with an ultralow overpotential of 9.0 mV at 10 mA·cm-2 and superior stability at an industrial-grade current density of 1.0 A·cm-2 @ 1.65 V. In situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and operando electrochemical impedance spectra revealed that this exceptional hydrogen production-which surpasses that of previously reported Pt/C catalysts-is attributable to the outstanding ability of WCx to induce water dissociation and hydrogen spillover from WCx to Ru surface. During the HER process, the rigid interfacial water network negatively affected the HER efficiency under alkaline conditions. The WCx sites disrupted this rigid structure, facilitating the contact between activated hydrogen (H*) and WCx sites. Subsequently, H* migrates to Ru surface, where hydrogen recombination occurs to produce H2. This work paves a new avenue for the construction of coupled catalysts at the atomic scale to facilitate HER electrocatalysis.
Collapse
Affiliation(s)
- Jiamin Zhao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Meimei Kou
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Qing Yuan
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Ying Yuan
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Jinsheng Zhao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| |
Collapse
|
9
|
Zhao Y, Wu X, Wang H, Ma M, Tian J, Wang X. Phosphorus Regulates Coordination Number and Electronegativity of Cobalt Atomic Sites Triggering Efficient Photocatalytic Water Splitting. NANO LETTERS 2024; 24:16175-16183. [PMID: 39652167 DOI: 10.1021/acs.nanolett.4c05201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Optimizing the local electronic structure of a single-atom catalyst (SAC) is crucial for efficient photocatalytic hydrogen evolution reactions. This study synthesized a Co-P4/g-C3N4 heterostructure by selective phosphidation of the Co metal-organic framework/graphitic carbon nitride (Co-MOF/g-C3N4), converting the Co-O6 configuration into a highly electronegative, coordinatively unsaturated Co-P4 configuration anchored to a carbon matrix. P-doping induces strong charge redistribution, shifting the d-band center toward the Fermi level, transforming the Co sites from an electron-deficient state to an electron-rich state, and resulting in a significant reduction in the free energy barrier for HER to -0.08 eV. The Co-P4/g-C3N4 heterostructure demonstrated a HER rate of 13.51 mmol g-1 h-1, approximately 4.82-8.35 times greater than those of photocatalysts loaded with noble metals. The apparent quantum efficiency (AQE) was 28.45% at 380 nm. The synergistic effect of the low coordination number and high electronegativity metal sites significantly enhances the photocatalytic HER performance.
Collapse
Affiliation(s)
- Yuqi Zhao
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xi Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hengliang Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Ming Ma
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xin Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
10
|
Pahuja M, Dastider SG, Jyoti, Alam K, Rani S, Das S, Urkude R, Afshan M, Rani D, Chaudhary N, Siddiqui SA, Riyajuddin SK, Ghosh R, Mondal K, Ghosh K. Harvesting Green Hydrogen from the Deep Blue: Seawater-Compatible SnSe-P Decorated Graphene-CNTs Based Electrocatalyst Under Universal pH. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406113. [PMID: 39279593 DOI: 10.1002/smll.202406113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/26/2024] [Indexed: 09/18/2024]
Abstract
Fabrication of cost-effective and robust metal-based electrocatalysts for hydrogen evolution reactions (HER) across the entire pH range has garnered significant attention in harvesting renewable energy. Herein, the fabrication of 3D high-surface Ni Foam-Graphene-Carbon Nanotubes (NGC) decorated with phosphorous-inserted tin selenide (SnSe-P) showcases unprecedented HER activity with minimal overpotentials across all pH ranges (52 mV in acidic, 93 mV in basic, and 198 mV in neutral conditions@10 mA cm-2) and stability at 1 A cm-2 for 72 h. The as-designed catalyst shows a low overpotential of 122 mV@10 mA cm-2 in alkaline seawater, achieved through controlled electronic distribution on Sn site after incorporation of P in NGC-SnSe-P. A stable cell voltage of 1.56 V@10 mA cm⁻2 is achieved for prolonged time in 1 m KOH toward overall water electrolysis. Experimental and theoretical investigation reveals that the insertion of P in layered SnSe enables s orbitals of H* and p orbitals of Sn to interact, favoring the adsorption of the H* intermediate. A renewable approach is adopted by using silicon solar cells (η = 10.66%) to power up the electrolyzer, yielding a solar-to-hydrogen (STH) conversion efficiency of 7.70% in 1 m KOH and 5.65% in alkaline seawater, aiming toward green hydrogen production.
Collapse
Affiliation(s)
- Mansi Pahuja
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | | | - Jyoti
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Kehkashan Alam
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Seema Rani
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Subhabrata Das
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Rajashri Urkude
- Beamline Development & Application Section, Bhabha Atomic Research Center, Trombay, Mumbai, 400085, India
| | - Mohd Afshan
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Daya Rani
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Nikita Chaudhary
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Shumile Ahmed Siddiqui
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - S K Riyajuddin
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Rishita Ghosh
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Krishnakanta Mondal
- Department of Physics and Astrophysics, University of Delhi, New Delhi, 110007, India
| | - Kaushik Ghosh
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| |
Collapse
|
11
|
Li X, Lu G, Wang T, Yang JY, Herrendorf T, Schwiderowski P, Schulwitz J, Chen P, Kleist W, Zhao G, Muhler M, Peng B. Efficient Atomically Dispersed Co/N-C Catalysts for Formic Acid Dehydrogenation and Transfer Hydrodeoxygenation of Vanillin. CHEMSUSCHEM 2024; 17:e202300871. [PMID: 38546156 DOI: 10.1002/cssc.202300871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/28/2024] [Indexed: 11/26/2024]
Abstract
Atomically dispersed catalysts have gained considerable attention due to their unique properties and high efficiency in various catalytic reactions. Herein, a series of Co/N-doped carbon (N-C) catalysts was prepared using a metal-lignin coordination strategy and employed in formic acid dehydrogenation (FAD) and hydrodeoxygenation (HDO) of vanillin. The atomically dispersed Co/N-C catalysts showed outstanding activity, acid resistance, and long-term stability in FAD. The improved activity and stability may be attributed to the high dispersion of Co species, increased surface area, and strong Co-N interactions. XPS and XAS characterization revealed the formation of Co-N3 centers, which are assumed to be the active sites. In addition, DFT calculations demonstrated that the adsorption of formic acid on single-atom Co was stronger than that on Co13 clusters, which may explain the high catalytic activity. The Co/N-C catalyst also showed promising performance in the transfer HDO of vanillin with formic acid, without any external additional molecular H2.
Collapse
Affiliation(s)
- Xiaoyu Li
- Laboratory of Industrial Chemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Guilong Lu
- Laboratory of Industrial Chemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Tianyu Wang
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, China
| | - Jia-Yue Yang
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, China
| | - Tim Herrendorf
- Department of Chemistry, RPTU Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | | | - Jonas Schulwitz
- Laboratory of Industrial Chemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Wolfgang Kleist
- Department of Chemistry, RPTU Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
| | - Guixia Zhao
- College of Environmental Science and Engineering, North China Electric Power University, 102206, Beijing, P. R. China
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Ruhr University Bochum, 44780, Bochum, Germany
- Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim a. d. Ruhr, Germany
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr University Bochum, 44780, Bochum, Germany
- Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim a. d. Ruhr, Germany
| |
Collapse
|
12
|
Liu T, Chen C, Pu Z, Huang Q, Zhang X, Al-Enizi AM, Nafady A, Huang S, Chen D, Mu S. Non-Noble-Metal-Based Electrocatalysts for Acidic Oxygen Evolution Reaction: Recent Progress, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405399. [PMID: 39183523 DOI: 10.1002/smll.202405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Indexed: 08/27/2024]
Abstract
The oxygen evolution reaction (OER) plays a pivotal role in diverse renewable energy storage and conversion technologies, including water electrolysis, electrochemical CO2 reduction, nitrogen fixation, and metal-air batteries. Among various water electrolysis techniques, proton exchange membrane (PEM)-based water electrolysis devices offer numerous advantages, including high current densities, exceptional chemical stability, excellent proton conductivity, and high-purity H2. Nevertheless, the prohibitive cost associated with Ir/Ru-based OER electrocatalysts poses a significant barrier to the broad-scale application of PEM-based water splitting. Consequently, it is crucial to advance the development of non-noble metal OER catalysis substance with high acid-activity and stability, thereby fostering their widespread integration into PEM water electrolyzers (PEMWEs). In this review, a comprehensive analysis of the acidic OER mechanism, encompassing the adsorbate evolution mechanism (AEM), lattice oxygen mechanism (LOM) and oxide path mechanism (OPM) is offered. Subsequently, a systematic summary of recently reported noble-metal-free catalysts including transition metal-based, carbon-based and other types of catalysts is provided. Additionally, a comprehensive compilation of in situ/operando characterization techniques is provided, serving as invaluable tools for furnishing experimental evidence to comprehend the catalytic mechanism. Finally, the present challenges and future research directions concerning precious-metal-free acidic OER are comprehensively summarized and discussed in this review.
Collapse
Affiliation(s)
- Tingting Liu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Chen Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Zonghua Pu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shengyun Huang
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
13
|
Song T, Cai X, Zhu Y. Hydrogen production catalysed by atomically precise metal clusters. NANOSCALE 2024; 16:13834-13846. [PMID: 38979742 DOI: 10.1039/d4nr01835d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Atomically precise metal clusters that possess the exact atom number, definitive composition, and tunable geometric and electronic structures have emerged as ideal model catalysts for many important chemical processes. Recently, metal clusters have been widely used as excellent catalysts for hydrogen production to explore the relationship between the structure and catalytic properties at the atomic level. In this review, we systematically summarize the significant developments concerning metal clusters as electrocatalysts and photocatalysts for hydrogen generation. This review also puts forward the challenges and perspectives of atomically precise metal clusters in electrocatalysis and photocatalysis in the hope of providing a valuable reference for the rational design of high-performance catalysts for hydrogen production.
Collapse
Affiliation(s)
- Tongxin Song
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
14
|
Gao X, Chen Y, Wang Y, Zhao L, Zhao X, Du J, Wu H, Chen A. Next-Generation Green Hydrogen: Progress and Perspective from Electricity, Catalyst to Electrolyte in Electrocatalytic Water Splitting. NANO-MICRO LETTERS 2024; 16:237. [PMID: 38967856 PMCID: PMC11226619 DOI: 10.1007/s40820-024-01424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 07/06/2024]
Abstract
Green hydrogen from electrolysis of water has attracted widespread attention as a renewable power source. Among several hydrogen production methods, it has become the most promising technology. However, there is no large-scale renewable hydrogen production system currently that can compete with conventional fossil fuel hydrogen production. Renewable energy electrocatalytic water splitting is an ideal production technology with environmental cleanliness protection and good hydrogen purity, which meet the requirements of future development. This review summarizes and introduces the current status of hydrogen production by water splitting from three aspects: electricity, catalyst and electrolyte. In particular, the present situation and the latest progress of the key sources of power, catalytic materials and electrolyzers for electrocatalytic water splitting are introduced. Finally, the problems of hydrogen generation from electrolytic water splitting and directions of next-generation green hydrogen in the future are discussed and outlooked. It is expected that this review will have an important impact on the field of hydrogen production from water.
Collapse
Affiliation(s)
- Xueqing Gao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yutong Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yujun Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Luyao Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Xingyuan Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Haixia Wu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
15
|
Matsoso JB, Antonatos N, Dekanovský L, Lontio Fomekong R, Elliot JD, Gianolio D, Mazánek V, Journet C, Sofer Z. Enhancing Nitrogen Reduction Reaction through Formation of 2 D/2D Hybrid Heterostructures of MoS 2@rGO. ACS APPLIED MATERIALS & INTERFACES 2024; 16:24514-24524. [PMID: 38687904 PMCID: PMC11103663 DOI: 10.1021/acsami.4c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Given the challenging task of constructing an efficient nitrogen reduction reaction (NRR) electrocatalyst with enhanced ambient condition performance, properties such as high specific surface area, fast electron transfer, and design of the catalyst surface constitute a group of key factors to be taken into consideration to guarantee outstanding catalytic performance and durability. Thereof, this work investigates the contribution of the 2D/2D heterojunction interface between MoS2 and reduced graphene oxide (rGO) on the electrocatalytic synthesis of NH3 in an alkaline media. The results revealed remarkable NRR performance on the MoS2@rGO 2D/2D hybrid electrocatalyst, characterized by a high NRR sensitivity (faradaic efficiency) of 34.7% with an NH3 yield rate of 3.98 ± 0.19 mg h-1 cm-2 at an overpotential of -0.3 V vs RHE in 0.1 M KOH solution. The hybrid electrocatalysts also exhibited selectivity for NH3 synthesis against the production of the hydrazine (N2H4) byproduct, hindrance of the competitive hydrogen evolution reaction (HER), and good durability over an operation period of 8 h. In hindsight, the study presented a low-cost and highly efficient catalyst design for achieving enhanced ammonia synthesis in alkaline media via the formation of defect-rich ultrathin MoS2@rGO nanostructures, consisting predominantly of an HER-hindering hexagonal 2H-MoS2 phase.
Collapse
Affiliation(s)
- Joyce B. Matsoso
- Department
of Inorganic Chemistry, University of Chemistry
and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic
- Laboratoire
des Multimatériaux et Interfaces, UMR CNRS 5615, Univ-Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, Cedex, France
| | - Nikolas Antonatos
- Department
of Inorganic Chemistry, University of Chemistry
and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic
- Department
of Semiconductor Materials Engineering, Faculty of Fundamental Problems
of Technology, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Lukáš Dekanovský
- Department
of Inorganic Chemistry, University of Chemistry
and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Roussin Lontio Fomekong
- Department
of Inorganic Chemistry, University of Chemistry
and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Joshua D. Elliot
- Diamond
Light Source, Diamond House, Harwell Science and Innovation Park, Didcot OX11 0DE, Oxfordshire, U.K.
| | - Diego Gianolio
- Diamond
Light Source, Diamond House, Harwell Science and Innovation Park, Didcot OX11 0DE, Oxfordshire, U.K.
| | - Vlastimil Mazánek
- Department
of Inorganic Chemistry, University of Chemistry
and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Catherine Journet
- Laboratoire
des Multimatériaux et Interfaces, UMR CNRS 5615, Univ-Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, Cedex, France
| | - Zdeněk Sofer
- Department
of Inorganic Chemistry, University of Chemistry
and Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
16
|
Niu X, Geng H, Lv Z, Wei J, Xu D, Chen W. A nitrogen-doped carbon nanosheet composited platinum-cobalt single atom alloy catalyst for effective hydrogen evolution reaction. Chem Commun (Camb) 2024; 60:5189-5192. [PMID: 38647349 DOI: 10.1039/d4cc00265b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
An electrocatalyst with ultra-small PtCo single atom alloy species evenly dispersed on nitrogen-doped ultra-thin carbon nanosheets (PtCo SAA/NC) was designed. The introduction of single-atom Pt not only maximizes the atomic utilization efficiency of Pt species, but also synergistically enhances the charge transfer characteristics of Co cluster surfaces, thereby increasing the migration and evolution rate of hydrogen ions. The PtCo SAA/NC catalyst exhibits a Tafel slope of 42 mV dec-1 and a low overpotential of 45 mV at 10 mA cm-2 in 0.5 M H2SO4 solution.
Collapse
Affiliation(s)
- Xudong Niu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China.
| | - Huilong Geng
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhengyu Lv
- China Association of Circular Economy, Beijing 100037, China
| | - Jian Wei
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100083, China.
| | - Dongyao Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China.
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
17
|
Ren Y, Wang J, Zhang M, Wang Y, Cao Y, Kim DH, Liu Y, Lin Z. Strategies Toward High Selectivity, Activity, and Stability of Single-Atom Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308213. [PMID: 38183335 DOI: 10.1002/smll.202308213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Indexed: 01/08/2024]
Abstract
Single-atom catalysts (SACs) hold immense promise in facilitating the rational use of metal resources and achieving atomic economy due to their exceptional atom-utilization efficiency and distinct characteristics. Despite the growing interest in SACs, only limited reviews have holistically summarized their advancements centering on performance metrics. In this review, first, a thorough overview on the research progress in SACs is presented from a performance perspective and the strategies, advancements, and intriguing approaches employed to enhance the critical attributes in SACs are discussed. Subsequently, a comprehensive summary and critical analysis of the electrochemical applications of SACs are provided, with a particular focus on their efficacy in the oxygen reduction reaction , oxygen evolution reaction, hydrogen evolution reaction , CO2 reduction reaction, and N2 reduction reaction . Finally, the outline future research directions on SACs by concentrating on performance-driven investigation, where potential areas for improvement are identified and promising avenues for further study are highlighted, addressing challenges to unlock the full potential of SACs as high-performance catalysts.
Collapse
Affiliation(s)
- Yujing Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jinyong Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuqing Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuan Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Dong Ha Kim
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| |
Collapse
|
18
|
Kazemi A, Manteghi F, Tehrani Z. Metal Electrocatalysts for Hydrogen Production in Water Splitting. ACS OMEGA 2024; 9:7310-7335. [PMID: 38405471 PMCID: PMC10882616 DOI: 10.1021/acsomega.3c07911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
The rising demand for fossil fuels and the resulting pollution have raised environmental concerns about energy production. Undoubtedly, hydrogen is the best candidate for producing clean and sustainable energy now and in the future. Water splitting is a promising and efficient process for hydrogen production, where catalysts play a key role in the hydrogen evolution reaction (HER). HER electrocatalysis can be well performed by Pt with a low overpotential close to zero and a Tafel slope of about 30 mV dec-1. However, the main challenge in expanding the hydrogen production process is using efficient and inexpensive catalysts. Due to electrocatalytic activity and electrochemical stability, transition metal compounds are the best options for HER electrocatalysts. This study will focus on analyzing the current situation and recent advances in the design and development of nanostructured electrocatalysts for noble and non-noble metals in HER electrocatalysis. In general, strategies including doping, crystallization control, structural engineering, carbon nanomaterials, and increasing active sites by changing morphology are helpful to improve HER performance. Finally, the challenges and future perspectives in designing functional and stable electrocatalysts for HER in efficient hydrogen production from water-splitting electrolysis will be described.
Collapse
Affiliation(s)
- Amir Kazemi
- Research
Laboratory of Inorganic Chemistry and Environment, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Faranak Manteghi
- Research
Laboratory of Inorganic Chemistry and Environment, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Zari Tehrani
- The
Future Manufacturing Research Institute, Faculty of Science and Engineering, Swansea University, SA1 8EN Swansea, United Kingdom
| |
Collapse
|
19
|
Jiang Y, Fu H, Liang Z, Zhang Q, Du Y. Rare earth oxide based electrocatalysts: synthesis, properties and applications. Chem Soc Rev 2024; 53:714-763. [PMID: 38105711 DOI: 10.1039/d3cs00708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As an important strategic resource, rare earths (REs) constitute 17 elements in the periodic table, namely 15 lanthanides (Ln) (La-Lu, atomic numbers from 57 to 71), scandium (Sc, atomic number 21) and yttrium (Y, atomic number 39). In the field of catalysis, the localization and incomplete filling of 4f electrons endow REs with unique physical and chemical properties, including rich electronic energy level structures, variable coordination numbers, etc., making them have great potential in electrocatalysis. Among various RE catalytic materials, rare earth oxide (REO)-based electrocatalysts exhibit excellent performances in electrocatalytic reactions due to their simple preparation process and strong structural variability. At the same time, the electronic orbital structure of REs exhibits excellent electron transfer ability, which can reduce the band gap and energy barrier values of rate-determining steps, further accelerating the electron transfer in the electrocatalytic reaction process; however, there is a lack of systematic review of recent advances in REO-based electrocatalysis. This review systematically summarizes the synthesis, properties and applications of REO-based nanocatalysts and discusses their applications in electrocatalysis in detail. It includes the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), methanol oxidation reaction (MOR), nitrogen reduction reaction (NRR) and other electrocatalytic reactions and further discusses the catalytic mechanism of REs in the above reactions. This review provides a timely and comprehensive summary of the current progress in the application of RE-based nanomaterials in electrocatalytic reactions and provides reasonable prospects for future electrocatalytic applications of REO-based materials.
Collapse
Affiliation(s)
- Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
20
|
Wang M, Hu Y, Pu J, Zi Y, Huang W. Emerging Xene-Based Single-Atom Catalysts: Theory, Synthesis, and Catalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303492. [PMID: 37328779 DOI: 10.1002/adma.202303492] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the emergence of novel 2D monoelemental materials (Xenes), e.g., graphdiyne, borophene, phosphorene, antimonene, bismuthene, and stanene, has exhibited unprecedented potentials for their versatile applications as well as addressing new discoveries in fundamental science. Owing to their unique physicochemical, optical, and electronic properties, emerging Xenes have been regarded as promising candidates in the community of single-atom catalysts (SACs) as single-atom active sites or support matrixes for significant improvement in intrinsic activity and selectivity. In order to comprehensively understand the relationships between the structure and property of Xene-based SACs, this review represents a comprehensive summary from theoretical predictions to experimental investigations. Firstly, theoretical calculations regarding both the anchoring of Xene-based single-atom active sites on versatile support matrixes and doping/substituting heteroatoms at Xene-based support matrixes are briefly summarized. Secondly, controlled synthesis and precise characterization are presented for Xene-based SACs. Finally, current challenges and future opportunities for the development of Xene-based SACs are highlighted.
Collapse
Affiliation(s)
- Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yi Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Junmei Pu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| |
Collapse
|
21
|
Jeskey J, Ding Y, Chen Y, Hood ZD, Sterbinsky GE, Jaroniec M, Xia Y. Single-Atom Catalysts for Selective Oxygen Reduction: Transition Metals in Uniform Carbon Nanospheres with High Loadings. JACS AU 2023; 3:3227-3236. [PMID: 38034958 PMCID: PMC10685421 DOI: 10.1021/jacsau.3c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Transition metal single-atom catalysts (SACs) in uniform carbon nanospheres have gained tremendous interest as electrocatalysts owing to their low cost, high activity, and excellent selectivity. However, their preparation typically involves complicated multistep processes that are not practical for industrial use. Herein, we report a facile one-pot method to produce atomically isolated metal atoms with high loadings in uniform carbon nanospheres without any templates or postsynthesis modifications. Specifically, we use a chemical confinement strategy to suppress the formation of metal nanoparticles by introducing ethylenediaminetetraacetic acid (EDTA) as a molecular barrier to spatially isolate the metal atoms and thus generate SACs. To demonstrate the versatility of this synthetic method, we produced SACs from multiple transition metals, including Fe, Co, Cu, and Ni, with loadings as high as 3.87 wt %. Among these catalytic materials, the Fe-based SACs showed remarkable catalytic activity toward the oxygen reduction reaction (ORR), achieving an onset and half-wave potential of 1.00 and 0.831 VRHE, respectively, comparable to that of commercial 20 wt % Pt/C. Significantly, we were able to steer the ORR selectivity toward either energy generation or hydrogen peroxide production by simply changing the transition metal in the EDTA-based precursor.
Collapse
Affiliation(s)
- Jacob Jeskey
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Yong Ding
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yidan Chen
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zachary D. Hood
- Applied
Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - George E. Sterbinsky
- Advanced
Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Mietek Jaroniec
- Department
of Chemistry and Biochemistry, Kent State
University, Kent, Ohio 44242, United States
| | - Younan Xia
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- The Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
22
|
Chen X, Zhang Y, Chen C, Li H, Lin Y, Yu K, Nan C, Chen C. Atomically Dispersed Ruthenium Catalysts with Open Hollow Structure for Lithium-Oxygen Batteries. NANO-MICRO LETTERS 2023; 16:27. [PMID: 37989893 PMCID: PMC10663429 DOI: 10.1007/s40820-023-01240-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/05/2023] [Indexed: 11/23/2023]
Abstract
Lithium-oxygen battery with ultra-high theoretical energy density is considered a highly competitive next-generation energy storage device, but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present. Here, we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure (h-RuNC) for Lithium-oxygen battery. On one hand, the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products, thereby greatly enhancing the redox kinetics. On the other hand, the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules. Therefore, the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability, ultimately achieving a high-performance lithium-oxygen battery.
Collapse
Affiliation(s)
- Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yu Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Chang Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Huinan Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yuran Lin
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Ke Yu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Caiyun Nan
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
23
|
Chen Y, Xia M, Zhou C, Zhang Y, Zhou C, Xu F, Feng B, Wang X, Yang L, Hu Z, Wu Q. Hierarchical Dual Single-Atom Catalysts with Coupled CoN 4 and NiN 4 Moieties for Industrial-Level CO 2 Electroreduction to Syngas. ACS NANO 2023; 17:22095-22105. [PMID: 37916602 DOI: 10.1021/acsnano.3c09102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Renewable-driven electrochemical CO2 reduction reaction (CO2RR) to syngas is an encouraging alternative strategy to traditional fossil fuel-based syngas production, and the development of industrial-level electrocatalysts is vital. Herein, based on theoretical optimization of metal species, hierarchical CoxNi1-x-N-C dual single-atom catalyst (DSAC) with individual NiN4 (CO preferential) and CoN4 (H2 preferential) moieties was constructed by a two-step pyrolysis route. The Co0.5Ni0.5-N-C exhibits a stable CO Faradaic efficiency of 50 ± 5% and an industrial-level current density of 101-365 mA cm-2 in an ultrawide potential window of -0.5 to -1.1 V. The CO/H2 ratio of syngas can be conveniently tuned by regulating the Co/Ni ratio. The coupled effect of NiN4 and CoN4 moieties under a local high-pH microenvironment is responsible for the regulation of the CO/H2 selectivity and yield for the CoxNi1-x-N-C catalyst, which is not present in the mixed Co-N-C and Ni-N-C catalyst. This study provides a promising DSAC strategy for achieving industrial-level syngas production via CO2RR.
Collapse
Affiliation(s)
- Yiqun Chen
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Minqi Xia
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cao Zhou
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Changkai Zhou
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fengfei Xu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Biao Feng
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
Han J, Gu Y, Yang C, Meng L, Ding R, Wang Y, Shi K, Yao H. Single-atom nanozymes: classification, regulation strategy, and safety concerns. J Mater Chem B 2023; 11:9840-9866. [PMID: 37822275 DOI: 10.1039/d3tb01644g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Nanozymes, nanomaterials possessing enzymatic activity, have been studied extensively by researchers. However, their complex composition, low density of active sites, and inadequate substrate selectivity have hindered the maturation and widespread acceptance of nanozymes. Single-atom nanozymes (SAzymes) with atomically dispersed active sites are leading the field of catalysis due to their exceptional performance. The maximum utilization rate of atoms, low cost, well-defined coordination structure, and active sites are the most prominent advantages of SAzymes that researchers favor. This review systematically categorizes SAzymes based on their support type and describes their specific applications. Additionally, we discuss regulation strategies for SAzyme activity and provide a comprehensive summary of biosafety challenges associated with these enzymes.
Collapse
Affiliation(s)
- Jiping Han
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Yaohua Gu
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Changyi Yang
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Lingchen Meng
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Runmei Ding
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Yifan Wang
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Keren Shi
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Huiqin Yao
- College of public health, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
25
|
Srivastava RR, Gautam D, Sahu R, Shukla PK, Mukherjee B, Srivastava A. Mechanistic insights on Bi-potentiodynamic control towards atomistic synthesis of electrocatalysts for hydrogen evolution reaction. Sci Rep 2023; 13:16433. [PMID: 37777645 PMCID: PMC10542813 DOI: 10.1038/s41598-023-43301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023] Open
Abstract
Herein, electrochemically assisted dissolution-deposition (EADD) is utilized over a three-electrode assembly to prepare an electrocatalyst for hydrogen evolution reaction (HER). Cyclic voltammetry is performed to yield atomistic loading of platinum (Pt) over SnS2 nanostructures via Pt dissolution from the counter electrode (CE). Astonishingly, the working electrode (WE) swept at 50 mV/s is found to compel Pt CE to experience 1000-3000 mV/s. The effect of different potential scan rates at the WE have provided insight into the change in Pt dissolution and its deposition behaviour over SnS2 in three electrode assembly. However, uncontrolled overpotentials at CE in a three-electrode assembly made Pt dissolution-deposition behavior complex. Here, for the first time, we have demonstrated bi-potentiodynamic control for dissolution deposition of Pt in four-electrode assembly over Nickel (Ni) foam. The dual cyclic voltammetry is applied to achieve better control and efficiency of the EADD process, engendering it as a pragmatically versatile and scalable synthesis technique.
Collapse
Affiliation(s)
- Rohit Ranjan Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Divyansh Gautam
- Department of Metallurgical Engineering, Indian Institute of Technology-BHU, Varanasi, 221005, India
| | - Rajib Sahu
- Max-Planck-Institut für Eisenforschung, 40237, Düsseldorf, Germany
| | - P K Shukla
- Vindhya Institute of Technology and Science, Satna, MP, 485001, India
| | - Bratindranath Mukherjee
- Department of Metallurgical Engineering, Indian Institute of Technology-BHU, Varanasi, 221005, India
| | - Anchal Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
26
|
Tong Y, Zhang Z, Hou Y, Yan L, Chen X, Zhang H, Wang X, Li Y. Recent progress of molybdenum carbide based electrocatalysts for electrocatalytic hydrogen evolution reaction. NANOSCALE 2023; 15:14717-14736. [PMID: 37655752 DOI: 10.1039/d3nr02511j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Electrocatalytic hydrogen evolution reaction (HER) is one of the most promising and clean strategies to prepare hydrogen on a large scale. Nevertheless, the efficiency of HER is greatly restricted by the large overpotential at the anode, and it is necessary to develop low cost electrocatalysts with excellent performance and stability. Molybdenum carbide has shown great potential in the field of HER due to its unique electronic structure and physical and chemical properties. In this paper, the current progress of molybdenum carbide-based catalysts for HER is summarized. The influence of phase structure, nanostructure, heterostructure and heteroatoms doping on its catalytic performance is discussed in detail. Especially, the catalytic mechanisms are analyzed according to structural characterization and theoretical calculation results. Finally, the challenges and prospects for the further development of molybdenum carbide-based catalysts for HER are put forward to guide the progress of this field.
Collapse
Affiliation(s)
- Yuping Tong
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China.
| | - Zhuo Zhang
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China.
| | - Yuxin Hou
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China.
| | - Liang Yan
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China.
| | - Xi Chen
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China.
| | - Hailong Zhang
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China.
| | - Xiao Wang
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China.
| | - Yanqiang Li
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China.
| |
Collapse
|
27
|
Zhang F, Ji R, Zhu X, Li H, Wang Y, Wang J, Wang F, Lan H. Strain-Regulated Pt-NiO@Ni Sub-Micron Particles Achieving Bifunctional Electrocatalysis for Zinc-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301640. [PMID: 37093205 DOI: 10.1002/smll.202301640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/25/2023] [Indexed: 05/03/2023]
Abstract
Highly active bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) have always been the key factors to affect the performance of zinc-air batteries. However, integrating the independent reaction sites of ORR and OER in a catalyst remains a major challenge. Herein, a collaborative strategy based on defect induction and doping is proposed to prepare the strain-regulated Pt-NiO@Ni sub-micron particles (Pt-NiO@Ni SP). Benefiting from the synergistic effect of tensile strain and Pt-doped, the metallic Ni-based sub-micron particles with tensile strain as the catalyst carriers can effectively optimize the electronic distribution of atomic structures in Pt and NiO on the surface of particles, leading to reduce the energy barrier of intermediates for ORR and OER. Consequently, the Pt-NiO@Ni SP exhibits outstanding bifunctional catalytic activity with the ΔE index of 0.65 V under a low Pt loading, outperforming that of the benchmark Pt/C+IrO2 catalysts (0.76 V). Impressively, the Pt-NiO@Ni SP-based liquid zinc-air battery develops a high open-circuit potential (1.47 V), excellent energy density (188.2 mW cm-2 ), and favorable cyclic charge-discharge cycling durability (200 h at 20 mA cm-2 ). This work provides an innovative avenue for the rational construction of highly active bifunctional electrocatalysts for practical applications.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| | - Renjie Ji
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Xiaoyang Zhu
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| | - Hongke Li
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| | - Yating Wang
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Jingpeng Wang
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| | - Fei Wang
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| | - Hongbo Lan
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| |
Collapse
|
28
|
Tang P, Huang PY, Swallow JEN, Wang C, Gianolio D, Guo H, Warner JH, Weatherup RS, Pasta M. Structure-Property Relationship of Defect-Trapped Pt Single-Site Electrocatalysts for the Hydrogen Evolution Reaction. ACS Catal 2023; 13:9558-9566. [PMID: 37497376 PMCID: PMC10367054 DOI: 10.1021/acscatal.3c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/15/2023] [Indexed: 07/28/2023]
Abstract
Single-site catalysts (SSCs) have attracted significant research interest due to their high metal atom utilization. Platinum single sites trapped in the defects of carbon substrates (trapped Pt-SSCs) have been proposed as efficient and stable electrocatalysts for the hydrogen evolution reaction (HER). However, the correlation between Pt bonding environment, its evolution during operation, and catalytic activity is still unclear. Here, a trapped Pt-SSC is synthesized by pyrolysis of H2PtCl6 chemisorbed on a polyaniline substrate. In situ heated scanning transmission electron microscopy and temperature-dependent X-ray photoelectron spectroscopy clarify the thermally induced structural evolution of Pt during pyrolysis. The results show that the nitrogen in polyaniline coordinates with Pt ions and atomically disperses them before pyrolysis and traps Pt sites at pyridinic N defects generated during the substrate graphitization. Operando X-ray absorption spectroscopy confirms that the trapped Pt-SSC is stable at the HER working potentials but with inferior electrocatalytic activity compared with metallic Pt nanoparticles. First principle calculations suggest that the inferior activity of trapped Pt-SSCs is due to their unfavorable hydrogen chemisorption energy relative to metallic Pt(111) surfaces. These results further the understanding of the structure-property relationship in trapped Pt-SSCs and motivate a detailed techno-economic analysis to evaluate their commercial applicability.
Collapse
Affiliation(s)
- Peng Tang
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Po-Yuan Huang
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Jack E. N. Swallow
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Chenbo Wang
- Oxford
Suzhou Centre for Advanced Research, 388 Ruoshui Road, Suzhou 215123, Jiangsu Province, P. R. China
| | - Diego Gianolio
- Diamond
Light Source Ltd., Harwell Science and Innovation
Campus, Chilton, Didcot, OX11 0DE, U.K.
| | - Hua Guo
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Jamie H. Warner
- Materials
Graduate Program, Texas Materials Institute, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas, 78712, United States
- Walker
Department of Mechanical Engineering, The
University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas, 78712, United States
| | - Robert S. Weatherup
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Mauro Pasta
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
- Oxford
Suzhou Centre for Advanced Research, 388 Ruoshui Road, Suzhou 215123, Jiangsu Province, P. R. China
| |
Collapse
|
29
|
Machín A, Cotto M, Ducongé J, Márquez F. Artificial Photosynthesis: Current Advancements and Future Prospects. Biomimetics (Basel) 2023; 8:298. [PMID: 37504186 PMCID: PMC10807655 DOI: 10.3390/biomimetics8030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Artificial photosynthesis is a technology with immense potential that aims to emulate the natural photosynthetic process. The process of natural photosynthesis involves the conversion of solar energy into chemical energy, which is stored in organic compounds. Catalysis is an essential aspect of artificial photosynthesis, as it facilitates the reactions that convert solar energy into chemical energy. In this review, we aim to provide an extensive overview of recent developments in the field of artificial photosynthesis by catalysis. We will discuss the various catalyst types used in artificial photosynthesis, including homogeneous catalysts, heterogeneous catalysts, and biocatalysts. Additionally, we will explore the different strategies employed to enhance the efficiency and selectivity of catalytic reactions, such as the utilization of nanomaterials, photoelectrochemical cells, and molecular engineering. Lastly, we will examine the challenges and opportunities of this technology as well as its potential applications in areas such as renewable energy, carbon capture and utilization, and sustainable agriculture. This review aims to provide a comprehensive and critical analysis of state-of-the-art methods in artificial photosynthesis by catalysis, as well as to identify key research directions for future advancements in this field.
Collapse
Affiliation(s)
- Abniel Machín
- Divisionof Natural Sciences and Technology, Universidad Ana G. Méndez-Cupey Campus, San Juan, PR 00926, USA
| | - María Cotto
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA; (M.C.); (J.D.)
| | - José Ducongé
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA; (M.C.); (J.D.)
| | - Francisco Márquez
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA; (M.C.); (J.D.)
| |
Collapse
|
30
|
Ding L, Xie Z, Yu S, Wang W, Terekhov AY, Canfield BK, Capuano CB, Keane A, Ayers K, Cullen DA, Zhang FY. Electrochemically Grown Ultrathin Platinum Nanosheet Electrodes with Ultralow Loadings for Energy-Saving and Industrial-Level Hydrogen Evolution. NANO-MICRO LETTERS 2023; 15:144. [PMID: 37269447 PMCID: PMC10239421 DOI: 10.1007/s40820-023-01117-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 06/05/2023]
Abstract
Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings, high catalyst utilization and facile fabrication are urgently needed to enable cost-effective, green hydrogen production via proton exchange membrane electrolyzer cells (PEMECs). Herein, benefitting from a thin seeding layer, bottom-up grown ultrathin Pt nanosheets (Pt-NSs) were first deposited on thin Ti substrates for PEMECs via a fast, template- and surfactant-free electrochemical growth process at room temperature, showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies. Combined with an anode-only Nafion 117 catalyst-coated membrane (CCM), the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm-2 demonstrates superior cell performance to the commercial CCM (3.0 mgPt cm-2), achieving 99.5% catalyst savings and more than 237-fold higher catalyst utilization. The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction. Overall, this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.
Collapse
Affiliation(s)
- Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Alexander Y Terekhov
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Brian K Canfield
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | | | - Alex Keane
- Nel Hydrogen, Wallingford, CT, 06492, USA
| | | | - David A Cullen
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA.
| |
Collapse
|
31
|
Xie X, Zhu M, Xiao F, Xiang Y, Zhong H, Ao Z, Huang H. Double-Confined Ultrafine Cobalt Clusters for Efficient Peroxide Activation. JACS AU 2023; 3:1496-1506. [PMID: 37234109 PMCID: PMC10207103 DOI: 10.1021/jacsau.3c00147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
The construction of highly active catalysts presents great prospects, while it is a challenge for peroxide activation in advanced oxidation processes (AOPs). Herein, we facilely developed ultrafine Co clusters confined in mesoporous silica nanospheres containing N-doped carbon (NC) dots (termed as Co/NC@mSiO2) via a double-confinement strategy. Compared with the unconfined counterpart, Co/NC@mSiO2 exhibited unprecedented catalytic activity and durability for removal of various organic pollutants even in extremely acidic and alkaline environments (pH from 2 to 11) with very low Co ion leaching. Experiments and density functional theory (DFT) calculations proved that Co/NC@mSiO2 possessed strong peroxymonosulphate (PMS) adsorption and charge transfer capability, enabling the efficient O-O bond dissociation of PMS to HO• and SO4•- radicals. The strong interaction between Co clusters and mSiO2 containing NC dots contributed to excellent pollutant degradation performances by optimizing the electronic structures of Co clusters. This work represents a fundamental breakthrough in the design and understanding of the double-confined catalysts for peroxide activation.
Collapse
Affiliation(s)
- Xiaowen Xie
- School
of Environmental Science and Engineering, Sun Yat-Sen University, 132 East Waihuan Road, Guangzhou 510000, P. R. China
| | - Mingshan Zhu
- Guangdong
Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510000, P. R. China
| | - Fei Xiao
- School
of Environmental Science and Engineering, Sun Yat-Sen University, 132 East Waihuan Road, Guangzhou 510000, P. R. China
| | - Yongjie Xiang
- School
of Environmental Science and Engineering, Sun Yat-Sen University, 132 East Waihuan Road, Guangzhou 510000, P. R. China
| | - Huanran Zhong
- School
of Environmental Science and Engineering, Sun Yat-Sen University, 132 East Waihuan Road, Guangzhou 510000, P. R. China
| | - Zhimin Ao
- Advanced
Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Haibao Huang
- School
of Environmental Science and Engineering, Sun Yat-Sen University, 132 East Waihuan Road, Guangzhou 510000, P. R. China
| |
Collapse
|
32
|
Jawhari AH, Hasan N. Nanocomposite Electrocatalysts for Hydrogen Evolution Reactions (HERs) for Sustainable and Efficient Hydrogen Energy-Future Prospects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3760. [PMID: 37241385 PMCID: PMC10220912 DOI: 10.3390/ma16103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Hydrogen is considered a good clean and renewable energy substitute for fossil fuels. The major obstacle facing hydrogen energy is its efficacy in meeting its commercial-scale demand. One of the most promising pathways for efficient hydrogen production is through water-splitting electrolysis. This requires the development of active, stable, and low-cost catalysts or electrocatalysts to achieve optimized electrocatalytic hydrogen production from water splitting. The objective of this review is to survey the activity, stability, and efficiency of various electrocatalysts involved in water splitting. The status quo of noble-metal- and non-noble-metal-based nano-electrocatalysts has been specifically discussed. Various composites and nanocomposite electrocatalysts that have significantly impacted electrocatalytic HERs have been discussed. New strategies and insights in exploring nanocomposite-based electrocatalysts and utilizing other new age nanomaterial options that will profoundly enhance the electrocatalytic activity and stability of HERs have been highlighted. Recommendations on future directions and deliberations for extrapolating information have been projected.
Collapse
Affiliation(s)
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
33
|
Meng Y, Huang H, Zhang Y, Cao Y, Lu H, Li X. Recent advances in the theoretical studies on the electrocatalytic CO2 reduction based on single and double atoms. Front Chem 2023; 11:1172146. [PMID: 37056353 PMCID: PMC10086683 DOI: 10.3389/fchem.2023.1172146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Excess of carbon dioxide (CO2) in the atmosphere poses a significant threat to the global climate. Therefore, the electrocatalytic carbon dioxide reduction reaction (CO2RR) is important to reduce the burden on the environment and provide possibilities for developing new energy sources. However, highly active and selective catalysts are needed to effectively catalyze product synthesis with high adhesion value. Single-atom catalysts (SACs) and double-atom catalysts (DACs) have attracted much attention in the field of electrocatalysis due to their high activity, strong selectivity, and high atomic utilization. This review summarized the research progress of electrocatalytic CO2RR related to different types of SACs and DACs. The emphasis was laid on the catalytic reaction mechanism of SACs and DACs using the theoretical calculation method. Furthermore, the influences of solvation and electrode potential were studied to simulate the real electrochemical environment to bridge the gap between experiments and computations. Finally, the current challenges and future development prospects were summarized and prospected for CO2RR to lay the foundation for the theoretical research of SACs and DACs in other aspects.
Collapse
Affiliation(s)
- Yuxiao Meng
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Hongjie Huang
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - You Zhang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yongyong Cao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| | - Hanfeng Lu
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| | - Xi Li
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| |
Collapse
|
34
|
Huo J, Cao X, Tian Y, Li L, Qu J, Xie Y, Nie X, Zhao Y, Zhang J, Liu H. Atomically dispersed Mn atoms coordinated with N and O within an N-doped porous carbon framework for boosted oxygen reduction catalysis. NANOSCALE 2023; 15:5448-5457. [PMID: 36852590 DOI: 10.1039/d2nr06096e] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing efficient and robust catalysts to replace Pt group metals for the oxygen reduction reaction (ORR) is conducive to achieving highly efficient energy conversion. Here, we develop a general ion exchange strategy to construct highly efficient ORR catalysts consisting of various atomically dispersed metal atoms anchored on N-doped porous carbon (M-SAs/NC) to investigate the atomic structure-catalytic activity relationship. The structure characterization results demonstrated that the achieved atomic structure varied due to the presence of different metal centers. Mn-SAs/NC consists of MnN3O1 centers, in which the Mn single atoms are stabilized by 3 N and 1 O. In contrast, the center metals in Fe-/Co-/Cu single-atom catalysts are coordinated by merely N atoms. Mn-SAs/NC delivers superior performance for the ORR with a half-wave potential (E1/2) of 0.91 V vs. RHE in 0.1 M KOH solution, outperforming that of the commercial Pt/C catalyst and the control Fe-/Co-/Cu single-atom catalysts. Furthermore, Mn-SAs/NC also shows excellent methanol tolerance and stability up to 5000 cycles. Density functional theory (DFT) calculations reveal that Mn single atom catalysts with MnN3O1 centers contributed to the superior ORR performance with lower energy barriers and optimized adsorption capacity of intermediates. These findings provide insights into the design and development of specific coordinated structures of atomically dispersed catalysts to facilitate the practical applications of energy conversion.
Collapse
Affiliation(s)
- Juanjuan Huo
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Xianjun Cao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Yaping Tian
- KeWen College, JiangSu Normal University, XuZhou, Jiangsu 221000, China
| | - Lu Li
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Junpeng Qu
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Yuhan Xie
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia.
| | - Xinming Nie
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Yufei Zhao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Jinqiang Zhang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Hao Liu
- State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai 200444, China
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia.
| |
Collapse
|
35
|
Barrio J, Pedersen A, Favero S, Luo H, Wang M, Sarma SC, Feng J, Ngoc LTT, Kellner S, Li AY, Jorge Sobrido AB, Titirici MM. Bioinspired and Bioderived Aqueous Electrocatalysis. Chem Rev 2023; 123:2311-2348. [PMID: 36354420 PMCID: PMC9999430 DOI: 10.1021/acs.chemrev.2c00429] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/12/2022]
Abstract
The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.
Collapse
Affiliation(s)
- Jesús Barrio
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Angus Pedersen
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Hui Luo
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Mengnan Wang
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Saurav Ch. Sarma
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Jingyu Feng
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Linh Tran Thi Ngoc
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Simon Kellner
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Alain You Li
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Ana Belén Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
Katahira, Aobaku, Sendai, Miyagi980-8577, Japan
| |
Collapse
|
36
|
Yang M, Shi B, Tang Y, Lu H, Wang G, Zhang S, Sarwar MT, Tang A, Fu L, Wu M, Yang H. Interfacial Chemical Bond Modulation of Co 3(PO 4) 2-MoO 3-x Heterostructures for Alkaline Water/Seawater Splitting. Inorg Chem 2023; 62:2838-2847. [PMID: 36709429 DOI: 10.1021/acs.inorgchem.2c04181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The development of a high current density with high energy conversion efficiency electrocatalyst is vital for large-scale industrial application of alkaline water splitting, particularly seawater splitting. Herein, we design a self-supporting Co3(PO4)2-MoO3-x/CoMoO4/NF superaerophobic electrode with a three-dimensional structure for high-performance hydrogen evolution reaction (HER) by a reasonable devise of possible "Co-O-Mo hybridization" on the interface. The "Co-O-Mo hybridization" interfaces induce charge transfer and generation of fresh oxygen vacancy active sites. Consequently, the unique heterostructures greatly facilitate the dissociation process of H2O molecules and enable efficient hydrogen spillover, leading to excellent HER performance with ultralow overpotentials (76 and 130 mV at 100 and 500 mA cm-2) and long-term durability of 100 h in an alkaline electrolyte. Theoretical calculations reveal that the Co3(PO4)2-MoO3-x/CoMoO4/NF promotes the adsorption/dissociation process of H2O molecules to play a crucial role in improving the stability and activity of HER. Our results exhibit that the HER activity of non-noble metal electrocatalysts can be greatly enhanced by rational interfacial chemical bonding to modulate the heterostructures.
Collapse
Affiliation(s)
- Mei Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Beibei Shi
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yili Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hongxiu Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Gang Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shilin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Aidong Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Liangjie Fu
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Mingjie Wu
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.,Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.,Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
37
|
Cu-doped fullerene: An efficient single-atom catalyst for CO oxidation under mild conditions. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Ding J, Yang H, Zhang S, Liu Q, Cao H, Luo J, Liu X. Advances in the Electrocatalytic Hydrogen Evolution Reaction by Metal Nanoclusters-based Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204524. [PMID: 36287086 DOI: 10.1002/smll.202204524] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Indexed: 05/27/2023]
Abstract
With the development of renewable energy systems, clean hydrogen is burgeoning as an optimal alternative to fossil fuels, in which its application is promising to retarding the global energy and environmental crisis. The hydrogen evolution reaction (HER), capable of producing high-purity hydrogen rapidly in electrocatalytic water splitting, has received much attention. Abundant research about HER has been done, focusing on advanced electrocatalyst design with high efficiency and robust stability. As potential HER catalysts, metal nanoclusters (MNCs) have been studied extensively. They are composed of several to a hundred metal atoms, with sizes being comparable to the Fermi wavelength of electrons, that is, < 2.0 nm. Different from metal atoms/nanoparticles, they exhibit unique catalytic properties due to their quantum size effect and low-coordination environment. In this review, the activity-enhancing approaches of MNCs applied in HER electrocatalysis are mainly summarized. Furthermore, recent progress in MNCs classified with different stabilization strategies, that is, the freestanding MNCs, MNCs with organic, metal and carbon supports, are introduced. Finally, the current challenges and deficiencies of these MNCs for HER are prospected.
Collapse
Affiliation(s)
- Junyang Ding
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Hui Yang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Huanqi Cao
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
39
|
Zhao D, Wang Y, Dong CL, Meng F, Huang YC, Zhang Q, Gu L, Liu L, Shen S. Electron-Deficient Zn-N 6 Configuration Enabling Polymeric Carbon Nitride for Visible-Light Photocatalytic Overall Water Splitting. NANO-MICRO LETTERS 2022; 14:223. [PMID: 36374377 PMCID: PMC9663795 DOI: 10.1007/s40820-022-00962-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/05/2022] [Indexed: 05/16/2023]
Abstract
Despite of suitable band structures for harvesting solar light and driving water redox reactions, polymeric carbon nitride (PCN) has suffered from poor charge transfer ability and sluggish surface reaction kinetics, which limit its photocatalytic activity for water splitting. Herein, atomically dispersed Zn-coordinated three-dimensional (3D) sponge-like PCN (Zn-PCN) is synthesized through a novel intermediate coordination strategy. Advanced characterizations and theoretical calculations well evidence that Zn single atoms are coordinated and stabilized on PCN in the form of Zn-N6 configuration featured with an electron-deficient state. Such an electronic configuration has been demonstrated contributive to promoted electron excitation, accelerated charge separation and transfer as well as reduced water redox barriers. Further benefited from the abundant surface active sites derived from the 3D porous structure, Zn-PCN realizes visible-light photocatalysis for overall water splitting with H2 and O2 simultaneously evolved at a stoichiometric ratio of 2:1. This work brings new insights into the design of novel single-atom photocatalysts by deepening the understanding of electronic configurations and reactive sites favorable to excellent photocatalysis for water splitting and related solar energy conversion reactions.
Collapse
Affiliation(s)
- Daming Zhao
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Yiqing Wang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan, People's Republic of China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Yu-Cheng Huang
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan, People's Republic of China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Lan Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Shaohua Shen
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
40
|
Qian C, Shao W, Zhang X, Mu X, Gu X, Yu M, Ma L, Liu S, Mu S. Competitive Coordination-Pairing between Ru Clusters and Single-Atoms for Efficient Hydrogen Evolution Reaction in Alkaline Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204155. [PMID: 36050884 DOI: 10.1002/smll.202204155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The coordination environment of Ru centers determines their catalytic performance, however, much less attention is focused on cluster-induced charge transfer in a Ru single-atom system. Herein, by density functional theory (DFT) calculations, a competitive coordination-pairing between Ru clusters (RuRu bond) and single-atoms (RuO bond) is revealed leading to the charge redistribution between Ru and O atoms in ZnFe2 O4 units which share more free electrons to participate in the hydrogen desorption process, optimizing the proton adsorption and hydrogen desorption. Thus, a clicking confinement strategy for building a competitive coordination-pairing between Ru clusters and single-atoms anchored on ZnFe2 Ox nanosheets over carbon via RuO ligand (Ru1, n -ZnFe2 Ox -C) is proposed. Benefiting from the optimized coordination effect and the electronic synergy between Ru clusters and single-atoms, such a catalyst demonstrates the excellent activity and excellent stability in alkaline and seawater media, which has exceptional hydrogen evolution reaction activity with overpotentials as low as 10.1 and 15.9 mV to reach the current density of 10 mA cm-2 in alkaline and seawater media, respectively, higher than that of commercial Pt/C catalysts as a benchmark. Furthermore, it owns remarkably outstanding mass activity, approximately 2 and 8 times higher than that of Pt catalysts in alkaline and seawater media, respectively.
Collapse
Affiliation(s)
- Chunzhu Qian
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Wenqian Shao
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Xingyue Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Xueqin Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiangyao Gu
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Min Yu
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Ligang Ma
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Suli Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
41
|
Liu Y, Chen Y, Tian Y, Sakthivel T, Liu H, Guo S, Zeng H, Dai Z. Synergizing Hydrogen Spillover and Deprotonation by the Internal Polarization Field in a MoS 2 /NiPS 3 Vertical Heterostructure for Boosted Water Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203615. [PMID: 35900215 DOI: 10.1002/adma.202203615] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen spillover (HSo) has emerged to upgrade the hydrogen evolution reaction (HER) activity of Pt-support electrocatalysts, but it is not applicable to the deprotonated oxygen evolution reaction (OER). Non-precious catalysts that can perform well in both HSo and deprotonation (DeP) are extremely desirable for a sustainable hydrogen economy. Herein, an affordable MoS2 /NiPS3 vertical heterostructure catalyst is presented to synergize HSo and DeP for efficient water electrolysis. The internal polarization field (IPF) is clarified as the driving force of HSo in HER electrocatalysis. The HSo from the MoS2 edge to NiPS3 can activate the NiPS3 basal plane to boost the HER activity of the MoS2 /NiPS3 heterostructure (112 mV vs reversible hydrogen electrode (RHE) at 10 mA cm-2 ), while for OER, the IPF in the heterostructure can facilitate the hydroxyl diffusion and render MoS2 -to-NiPS3 /P-to-S dual-pathways for DeP. As a result, the stacking of OER-inactive MoS2 on the NiPS3 surface still brings intriguing OER enhancements. With them serving as electrode couples, the overall water splitting is attested stably with a cell voltage of 1.64 V at 10 mA cm-2 . This research puts forward the IPF as the criterion in the rational design of HSo/DeP-unified non-precious catalysts for efficient water electrolysis.
Collapse
Affiliation(s)
- Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ya Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yahui Tian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Thangavel Sakthivel
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shengwu Guo
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
42
|
Liu LL, Ma MX, Xu H, Yang XY, Lu XY, Yang P, Wang H. S-doped M-N-C catalysts for the oxygen reduction reaction: Synthetic strategies, characterization, and mechanism. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Matthews T, Mashola TA, Adegoke KA, Mugadza K, Fakude CT, Adegoke OR, Adekunle AS, Ndungu P, Maxakato NW. Electrocatalytic activity on single atoms catalysts: Synthesis strategies, characterization, classification, and energy conversion applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Tran NQ, Le BTN, Le TNM, Duy LT, Phan TB, Hong Y, Truong TK, Doan TLH, Yu J, Lee H. Coupling Amorphous Ni Hydroxide Nanoparticles with Single-Atom Rh on Cu Nanowire Arrays for Highly Efficient Alkaline Seawater Electrolysis. J Phys Chem Lett 2022; 13:8192-8199. [PMID: 36005807 DOI: 10.1021/acs.jpclett.2c02132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exploring efficient catalysts for alkaline seawater electrolysis is highly desired yet challenging. Herein, coupling single-atom rhodium with amorphous nickel hydroxide nanoparticles on copper nanowire arrays is designed as a new active catalyst for the highly efficient alkaline seawater electrolysis. We found that an amorphous Ni(OH)2 nanoparticle is an effective catalyst to accelerate the water dissociation step. In contrast, the single-atom rhodium is an active site for adsorbed hydrogen recombination to generate H2. The NiRh-Cu NA/CF catalyst shows superior electrocatalytic activity toward HER, surpassing a benchmark Pt@C. In detail, the NiRh-Cu NA/CF catalyst exhibits HER overpotentials as low as 12 and 21 mV with a current density of 10 mA cm-2 in fresh water and seawater, respectively. At high current density, the NiRh-Cu NA/CF catalyst also exhibits an outstanding performance, where 300 mA cm-2 can be obtained at an overpotential of 155 mV and shows a slight fluctuation in the current density over 30 h.
Collapse
Affiliation(s)
- Ngoc Quang Tran
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Bao Thu Nguyen Le
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
- Department of Mathematics and Physics, University of Information Technology, Ho Chi Minh City 700000, Viet Nam
| | - Thong Nguyen-Minh Le
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Le Thai Duy
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Korea
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Yeseul Hong
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Thuy-Kieu Truong
- Institute of Physics, National Institute of Applied Mechanics and Information, Vietnam Academy of Science and Technology, Ho Chi Minh 710116, Viet Nam
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Jianmin Yu
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Hyoyoung Lee
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Creative Research Institute, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
45
|
Narendra Kumar AV, Muthu Prabhu S, Shin WS, Yadav KK, Ahn Y, Abdellattif MH, Jeon BH. Prospects of non-noble metal single atoms embedded in two-dimensional (2D) carbon and non-carbon-based structures in electrocatalytic applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Khan K, Tareen AK, Iqbal M, Zhang Y, Mahmood A, Mahmood N, Yin J, Khatoon R, Zhang H. Recent advance in MXenes: New horizons in electrocatalysis and environmental remediation technologies. PROG SOLID STATE CH 2022. [DOI: 10.1016/j.progsolidstchem.2022.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
47
|
Wang M, Sun K, Mi W, Feng C, Guan Z, Liu Y, Pan Y. Interfacial Water Activation by Single-Atom Co–N 3 Sites Coupled with Encapsulated Co Nanocrystals for Accelerating Electrocatalytic Hydrogen Evolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Minmin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Kaian Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Wanliang Mi
- Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China
| | - Chao Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Zekun Guan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
48
|
Hiragond CB, Powar NS, Lee J, In SI. Single-Atom Catalysts (SACs) for Photocatalytic CO 2 Reduction with H 2 O: Activity, Product Selectivity, Stability, and Surface Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201428. [PMID: 35695355 DOI: 10.1002/smll.202201428] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/14/2022] [Indexed: 06/15/2023]
Abstract
In recent years, single-atom catalysts (SACs) have attracted the interest of researchers owing to their suitability for various catalytic applications. For instance, their optoelectronic features, site-specific activity, and cost-effectiveness make SACs ideal for photocatalytic CO2 reduction. The activity, product selectivity, and photostability of SACs depend on various factors such as the nature of the metal/support material, the interaction between the metal atoms and support, light-harvesting ability, charge separation behavior, CO2 adsorption ability, active sites, and defects. Consequently, it is necessary to investigate these factors in depth to elucidate the working principle(s) of SACs for catalytic applications. Herein, the recent progress in the development of SACs for photocatalytic CO2 reduction with H2 O is reviewed. First, a brief overview of CO2 photoreduction and SACs for CO2 conversion is provided. Several synthesis strategies and useful techniques for characterizing SACs employed in heterogeneous catalysis are then described. Next, the challenges of SACs for photocatalytic CO2 reduction and related optimization strategies, in terms of activity, product selectivity, and stability, are explored. The progress in the development of noble metal- and transition metal-based SACs and dual-SACs for photocatalytic CO2 reduction is discussed. Finally, the prospects of SACs for CO2 reduction are considered.
Collapse
Affiliation(s)
- Chaitanya B Hiragond
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Niket S Powar
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Junho Lee
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Su-Il In
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| |
Collapse
|
49
|
Abstract
Hydrogen (H2) has emerged as a sustainable energy carrier capable of replacing/complementing the global carbon-based energy matrix. Although studies in this area have often focused on the fundamental understanding of catalytic processes and the demonstration of their activities towards different strategies, much effort is still needed to develop high-performance technologies and advanced materials to accomplish widespread utilization. The main goal of this review is to discuss the recent contributions in the H2 production field by employing nanomaterials with well-defined and controllable physicochemical features. Nanoengineering approaches at the sub-nano or atomic scale are especially interesting, as they allow us to unravel how activity varies as a function of these parameters (shape, size, composition, structure, electronic, and support interaction) and obtain insights into structure–performance relationships in the field of H2 production, allowing not only the optimization of performances but also enabling the rational design of nanocatalysts with desired activities and selectivity for H2 production. Herein, we start with a brief description of preparing such materials, emphasizing the importance of accomplishing the physicochemical control of nanostructures. The review finally culminates in the leading technologies for H2 production, identifying the promising applications of controlled nanomaterials.
Collapse
|
50
|
Zhang Y, Xu J, Zhou J, Wang L. Metal-organic framework-derived multifunctional photocatalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63934-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|