1
|
Shao Z, Di K, Wei J, Fan C, Feng X, Heng H, Wang K. Integrated Wearable Flexible Hydrogel Patch Sensing System for the Detection of Physiological Markers. Anal Chem 2025; 97:60-64. [PMID: 39723894 DOI: 10.1021/acs.analchem.4c05553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Conventional wearable flexible sensing systems typically comprise three components: a flexible substrate that contacts the skin, a signal processing module, and a signal output module. These components function relatively independently, resulting in a complex system that lacks sufficient integration. Therefore, developing an integrated wearable flexible sensing system by combining the flexible substrate, the signal processing module, and the signal output module not only enhances performance and comfort, but also reduces manufacturing costs and the risk of failure. Hydrogel substrates are particularly advantageous due to their excellent biocompatibility, flexibility, and encapsulation capabilities. Herein, we designed an integrated wearable flexible sensing system using an agarose hydrogel to encapsulate biological oxidative enzymes (e.g., glucose oxidase (GOx), lactate oxidase, and ethanol oxidase) and silver nanowires-polydopamine (Ag NWs-PB) as the signal processing module and a color-changing TMB probe as the signal output module. Additionally, we incorporated a polydimethylsiloxane-silicon dioxide patch to collect sweat for detecting physiological markers (e.g., glucose, lactate, and ethanol). An example of the application to facilitate visual detection of glucose in sweat was developed by encapsulating GOx as a biological oxidative enzyme in a sensing system. The system provides results within 3.5 min and operates within a linear range of 0.02 to 5.00 mmol/L, achieving a limit of detection of 0.011 mmol/L. This innovation not only presents a more integrated and portable solution for wearable hydrogel systems, but also introduces a new, feasible method for detecting human physiological markers through a straightforward detection process.
Collapse
Affiliation(s)
- Zhiying Shao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kezuo Di
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cunhao Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xujing Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huadong Heng
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
2
|
Ge C, Xu D, Feng X, Yang X, Song Z, Song Y, Chen J, Liu Y, Gao C, Du Y, Sun Z, Xu W, Fang J. Recent Advances in Fibrous Materials for Hydroelectricity Generation. NANO-MICRO LETTERS 2024; 17:29. [PMID: 39347862 PMCID: PMC11444048 DOI: 10.1007/s40820-024-01537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development. Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gaseous water has been considered a promising strategy for mitigating the energy crisis. Fibrous materials with unique flexibility, processability, multifunctionality, and practicability have been widely applied for fibrous materials-based hydroelectricity generation (FHG). In this review, the power generation mechanisms, design principles, and electricity enhancement factors of FHG are first introduced. Then, the fabrication strategies and characteristics of varied constructions including 1D fiber, 1D yarn, 2D fabric, 2D membrane, 3D fibrous framework, and 3D fibrous gel are demonstrated. Afterward, the advanced functions of FHG during water harvesting, proton dissociation, ion separation, and charge accumulation processes are analyzed in detail. Moreover, the potential applications including power supply, energy storage, electrical sensor, and information expression are also discussed. Finally, some existing challenges are considered and prospects for future development are sincerely proposed.
Collapse
Affiliation(s)
- Can Ge
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
| | - Duo Xu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Xiao Feng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xing Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zheheng Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, People's Republic of China
| | - Yuhang Song
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jingyu Chen
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Yingcun Liu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Chong Gao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Yong Du
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China
| | - Zhe Sun
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
3
|
Sayyad PW, Park SJ, Ha TJ. Recent advances in biosensors based on metal-oxide semiconductors system-integrated into bioelectronics. Biosens Bioelectron 2024; 259:116407. [PMID: 38776800 DOI: 10.1016/j.bios.2024.116407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Metal-oxide semiconductors (MOSs) have emerged as pivotal components in technology related to biosensors and bioelectronics. Detecting biomarkers in sweat provides a glimpse into an individual's metabolism without the need for sample preparation or collection steps. The distinctive attributes of this biosensing technology position it as an appealing option for biomedical applications beyond the scope of diagnosis and healthcare monitoring. This review encapsulates ongoing developments of cutting-edge biosensors based on MOSs. Recent advances in MOS-based biosensors for human sweat analyses are reviewed. Also discussed is the progress in sweat-based biosensing technologies to detect and monitor diseases. Next, system integration of biosensors is demonstrated ultimately to ensure the accurate and reliable detection and analysis of target biomarkers beyond individual devices. Finally, the challenges and opportunities related to advanced biosensors and bioelectronics for biomedical applications are discussed.
Collapse
Affiliation(s)
- Pasha W Sayyad
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Sang-Joon Park
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Tae-Jun Ha
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
4
|
Wu ZQ, Cao XQ, Hua Y, Yu CM. A Bifunctional Wearable Sensor Based on a Nanoporous Membrane for Simultaneous Detection of Sweat Lactate and Temperature. Anal Chem 2024. [PMID: 38320230 DOI: 10.1021/acs.analchem.3c05216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Wearable sensors for non-invasive, real-time detection of sweat lactate have far-reaching implications in the fields of health care and exercise physiological responses. Here, we propose a wearable electrochemical sensor with gold nanoelectrode arrays fabricated on the nanoporous polycarbonate (PC) membrane by encapsulating lactate oxidase (LOx) in chitosan (CS) hydrogel for detecting body temperature and sweat lactate concurrently. Flexible gold nanoporous electrodes not only enhance electrode area but also offer a nanoconfined space to accelerate the catalytic reaction of LOx and control substrate concentration on the surface of LOx to decrease substrate inhibition. The proposed sensor has a long durability of 13 days and better selectivity for the detection of sweat lactate over a wide linear range (0.01-35 mM) with a low detection limit (0.144 μM). Furthermore, temperature-dependent transmembrane currents passing through the sensor are used to estimate body temperature. We then use multiple linear regression to adjust the effect of temperature on lactate detection and succeed in monitoring lactate molecules in sweat and body temperature during exercise.
Collapse
Affiliation(s)
- Zeng-Qiang Wu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Qing Cao
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Yu Hua
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Chun-Mei Yu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
5
|
Garg M, Parihar A, Rahman MS. Advanced and personalized healthcare through integrated wearable sensors (versatile). MATERIALS ADVANCES 2024; 5:432-452. [DOI: 10.1039/d3ma00657c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Applications of integrated wearable sensors for the monitoring of human vital signs and clinically relevant biomarkers.
Collapse
Affiliation(s)
- Mayank Garg
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, India
| | - Md. Saifur Rahman
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Veenuttranon K, Kaewpradub K, Jeerapan I. Screen-Printable Functional Nanomaterials for Flexible and Wearable Single-Enzyme-Based Energy-Harvesting and Self-Powered Biosensing Devices. NANO-MICRO LETTERS 2023; 15:85. [PMID: 37002513 PMCID: PMC10066049 DOI: 10.1007/s40820-023-01045-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Developing flexible bioelectronics is essential to the realization of artificial intelligence devices and biomedical applications, such as wearables, but their potential is limited by sustainable energy supply. An enzymatic biofuel cell (BFC) is promising for power supply, but its use is limited by the challenges of incorporating multiple enzymes and rigid platforms. This paper shows the first example of screen-printable nanocomposite inks engineered for a single-enzyme-based energy-harvesting device and a self-powered biosensor driven by glucose on bioanode and biocathode. The anode ink is modified with naphthoquinone and multiwalled carbon nanotubes (MWCNTs), whereas the cathode ink is modified with Prussian blue/MWCNT hybrid before immobilizing with glucose oxidase. The flexible bioanode and the biocathode consume glucose. This BFC yields an open circuit voltage of 0.45 V and a maximum power density of 266 μW cm-2. The wearable device coupled with a wireless portable system can convert chemical energy into electric energy and detect glucose in artificial sweat. The self-powered sensor can detect glucose concentrations up to 10 mM. Common interfering substances, including lactate, uric acid, ascorbic acid, and creatinine, have no effect on this self-powered biosensor. Additionally, the device can endure multiple mechanical deformations. New advances in ink development and flexible platforms enable a wide range of applications, including on-body electronics, self-sustainable applications, and smart fabrics.
Collapse
Affiliation(s)
- Kornautchaya Veenuttranon
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kanyawee Kaewpradub
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Itthipon Jeerapan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
7
|
Ning Z, Long Z, Yang G, Xing L, Xue X. Self-Powered Wearable Biosensor in a Baby Diaper for Monitoring Neonatal Jaundice through a Hydrovoltaic-Biosensing Coupling Effect of ZnO Nanoarray. BIOSENSORS 2022; 12:bios12030164. [PMID: 35323434 PMCID: PMC8946715 DOI: 10.3390/bios12030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 05/02/2023]
Abstract
Neonatal jaundice refers to the abnormality of bilirubin metabolism for newborns, and wearable transcutaneous bilirubin meters for real-time measuring the bilirubin concentration is an insistent demand for the babies' parents and doctors. In this paper, a self-powered wearable biosensor in a baby diaper for real-time monitoring neonatal jaundice has been realized by the hydrovoltaic-biosensing coupling effect of ZnO nanoarray. Without external power supply, the system can work independently, and the hydrovoltaic output can be treated as both the power source and biosensing signal. The working mechanism is that the hydrovoltaic output arises from the urine flowing on ZnO nanoarray and the enzymatic reaction on the surface can influence the output. The sensing information can be transmitted through a wireless transmitter, and thus the parents and doctors can treat the neonatal jaundice of babies in time. This work can potentially promote the development of next generation of biosensors and physiological monitoring system, and expand the scope of self-powered technique and smart healthcare area.
Collapse
Affiliation(s)
- Zirui Ning
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.N.); (G.Y.); (L.X.)
| | - Zhihe Long
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China;
| | - Guangyou Yang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.N.); (G.Y.); (L.X.)
| | - Lili Xing
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.N.); (G.Y.); (L.X.)
| | - Xinyu Xue
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.N.); (G.Y.); (L.X.)
- Correspondence:
| |
Collapse
|
8
|
Light-Weight, Self-Powered Sensor Based on Triboelectric Nanogenerator for Big Data Analytics in Sports. ELECTRONICS 2021. [DOI: 10.3390/electronics10192322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
With the rapid development of the Internet of Things (IoTs), big data analytics has been widely used in the sport field. In this paper, a light-weight, self-powered sensor based on a triboelectric nanogenerator for big data analytics in sports has been demonstrated. The weight of each sensing unit is ~0.4 g. The friction material consists of polyaniline (PANI) and polytetrafluoroethylene (PTFE). Based on the triboelectric nanogenerator (TENG), the device can convert small amounts of mechanical energy into the electrical signal, which contains information about the hitting position and hitting velocity of table tennis balls. By collecting data from daily table tennis training in real time, the personalized training program can be adjusted. A practical application has been exhibited for collecting table tennis information in real time and, according to these data, coaches can develop personalized training for an amateur to enhance the ability of hand control, which can improve their table tennis skills. This work opens up a new direction in intelligent athletic facilities and big data analytics.
Collapse
|
9
|
Shao Y, Shen M, Zhou Y, Cui X, Li L, Zhang Y. Nanogenerator-based self-powered sensors for data collection. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:680-693. [PMID: 34327113 PMCID: PMC8275872 DOI: 10.3762/bjnano.12.54] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Self-powered sensors can provide energy and environmental data for applications regarding the Internet of Things, big data, and artificial intelligence. Nanogenerators provide excellent material compatibility, which also leads to a rich variety of nanogenerator-based self-powered sensors. This article reviews the development of nanogenerator-based self-powered sensors for the collection of human physiological data and external environmental data. Nanogenerator-based self-powered sensors can be designed to detect physiological data as wearable and implantable devices. Nanogenerator-based self-powered sensors are a solution for collecting data and expanding data dimensions in a future intelligent society. The future key challenges and potential solutions regarding nanogenerator-based self-powered sensors are discussed.
Collapse
Affiliation(s)
- Yicheng Shao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Maoliang Shen
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuankai Zhou
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xin Cui
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijie Li
- Multidisciplinary Nanotechnology Centre, College of Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Yan Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
- College of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Shaw ZL, Kuriakose S, Cheeseman S, Dickey MD, Genzer J, Christofferson AJ, Crawford RJ, McConville CF, Chapman J, Truong VK, Elbourne A, Walia S. Antipathogenic properties and applications of low-dimensional materials. Nat Commun 2021; 12:3897. [PMID: 34162835 PMCID: PMC8222221 DOI: 10.1038/s41467-021-23278-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/14/2021] [Indexed: 01/31/2023] Open
Abstract
A major health concern of the 21st century is the rise of multi-drug resistant pathogenic microbial species. Recent technological advancements have led to considerable opportunities for low-dimensional materials (LDMs) as potential next-generation antimicrobials. LDMs have demonstrated antimicrobial behaviour towards a variety of pathogenic bacterial and fungal cells, due to their unique physicochemical properties. This review provides a critical assessment of current LDMs that have exhibited antimicrobial behaviour and their mechanism of action. Future design considerations and constraints in deploying LDMs for antimicrobial applications are discussed. It is envisioned that this review will guide future design parameters for LDM-based antimicrobial applications.
Collapse
Affiliation(s)
- Z L Shaw
- School of Engineering, RMIT University, Melbourne, Australia
| | - Sruthi Kuriakose
- School of Engineering, RMIT University, Melbourne, Australia
- Functional Materials and Microsystems Research Group, MicroNano Research Facility, RMIT University, Melbourne, Australia
| | | | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | | - Chris F McConville
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3220, Australia
| | - James Chapman
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Vi Khanh Truong
- School of Science, RMIT University, Melbourne, VIC, Australia
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, Australia.
- Functional Materials and Microsystems Research Group, MicroNano Research Facility, RMIT University, Melbourne, Australia.
| |
Collapse
|
11
|
Zou Y, Bo L, Li Z. Recent progress in human body energy harvesting for smart bioelectronic system. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.05.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
12
|
Shit A, Heo SB, In I, Park SY. Mineralized Soft and Elastic Polymer Dot Hydrogel for a Flexible Self-Powered Electronic Skin Sensor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34105-34114. [PMID: 32613826 DOI: 10.1021/acsami.0c08677] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We propose an integrated, self-powered, flexible electronic skin device containing an alginate-derived polymer dot (A-PD)-incorporated mineralized hydrogel-based energy storage unit and a chitosan-derived n-type carbon dot (N-CD)-based solar cell for an energy-harvesting unit. This study demonstrates a unique architecture of mineralized hydrogel comprising A-PD-incorporated poly(acrylic acid) (PAA)/CaCO3/laponite containing soft and sensitive layers, deposited with a polyaniline electrode to serve as an energy storage unit. The self-assembly was achieved through the ionic cross-linking between A-PD and PAA driven by the mineralization process, resulting in excellent dimensional stability and improved mechanical properties of the hydrogel. The sp2 carbon-rich A-PD enhances the electrochemical performance and the overall photon-to-electrical conversion and storage efficiency for self-powered devices by the formation of the bridge of electrons between the ionized polymer and metal ion. The capacitive sensor developed in this study exhibits high sensitivity in detecting small pressure changes, such as the falling of small water droplets. The self-powered sensing device can detect and monitor various human motions continuously by harvesting light energy from outdoor sunlight. Furthermore, the energy-autonomous device exhibits unique responses for handwriting characters stably and repeatedly. The proposed system may be applicable to human-machine interfaces, biomonitoring systems, secure communication, and wearable devices.
Collapse
Affiliation(s)
- Arnab Shit
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Seong Beom Heo
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Insik In
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Sung Young Park
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| |
Collapse
|