1
|
Arenas-Hernandez A, Cancino-Gordillo FE, Pal U. Ni 1-x Mn x Co 2O 4 Nanoparticles as High-Performance Electrochemical Sensor Materials for Acetaminophen Monitoring. ACS OMEGA 2025; 10:11250-11263. [PMID: 40160727 PMCID: PMC11947848 DOI: 10.1021/acsomega.4c10927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Ternary metal oxides, known for their superior electrical and optical properties compared to binary or conventional oxides, hold significant promise for catalysis and energy storage applications. This study investigates the electrochemical performance of Ni1-x Mn x Co2O4 nanoparticles for detecting acetaminophen in aqueous phosphate buffer solution. The cobaltite nanoparticles were obtained through a simple gel-combustion synthesis, and the sensors were characterized using cyclic voltammetry, chronoamperometry, and differential pulse voltammetry. The anodic peak currents associated with acetaminophen oxidation were assessed by varying the scan rate of current-voltage cycles. Among the sensors tested, the one fabricated with Ni0.5Mn0.5Co2O4 nanoparticles as an active material exhibited the highest sensitivity of 38.2 μA cm-2 mM-1 and a detection limit of approximately 2 μM, demonstrating its potential for sensitive and efficient acetaminophen detection. Moreover, the sensors fabricated using these ternary oxide nanostructures demonstrate a rapid chronoamperometric response time of 35.4 s and a decay lifetime of 0.31 s, highlighting the fast detection capabilities of acetaminophen. The electrochemical oxidation mechanism of acetaminophen and the charge transfer characteristics at the electrode-electrolyte interface have been discussed.
Collapse
Affiliation(s)
- Alba Arenas-Hernandez
- Institute
of Physics, Autonomous University of Puebla, 18 Sur & Av. San Claudio, C.U., Puebla 72570, Mexico
| | | | - Umapada Pal
- Institute
of Physics, Autonomous University of Puebla, 18 Sur & Av. San Claudio, C.U., Puebla 72570, Mexico
| |
Collapse
|
2
|
Xiong Y, Sun F, Huang L. Bi-Doped NiCo 2O 4 Catalyst for Electrocatalysis Glucose Oxidation Accompanied Hydrogen Generation. Chem Asian J 2025. [PMID: 40098574 DOI: 10.1002/asia.202401811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
The slow dynamics of oxygen evolution reaction and the use of the proton exchange membrane have been troubling the hydrogen production from electrolytic water splitting. Reducing the electrolytic voltage and avoiding the utilization of proton exchange membranes are crucial targets for electrolytic hydrogen evolution. Bi-doped NiCo2O4 catalyst is prepared and applied in electrocatalysis glucose oxidation coupled hydrogen generation. Structural characterizations confirm the successful preparation of NiCo2O4 and the existence of Bi. Bi leads to the electrons transfer from Co to Ni, increasing the content of Co3+, and lowers the oxidation potential of Co. Electrochemical experiments indicate that NiCo2O4-Bi has good electrocatalytic activity and stability toward electrochemical glucose oxidation, with a potential of 1.13 V vs RHE at 10 mA cm-2 current density. The asymmetric electrolysis of two electrodes requires just 1.26 V to achieve a 10 mA cm-2 current density. The design of NiCo2O4-Bi is an exploration for electrocatalytic glucose oxidation coupled hydrogen production with low voltage and no proton exchange membrane.
Collapse
Affiliation(s)
- Yi Xiong
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Fengchao Sun
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Liangbin Huang
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
3
|
Pallavolu MR, Muralee Gopi CVV, Prabu S, Ullapu PR, Jung JH, Joo SW, Ramesh R. Hierarchical nanoporous NiCoN nanoflowers with highly rough surface electrode material for high-performance asymmetric supercapacitors. RSC Adv 2025; 15:4619-4627. [PMID: 39935466 PMCID: PMC11811699 DOI: 10.1039/d4ra07757a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/25/2024] [Indexed: 02/13/2025] Open
Abstract
This study presents a novel strategy to enhance the energy storage performance of asymmetric supercapacitors (ASCs) by utilizing nanoporous NiCoN flower structures as the positive electrode material. The NiCoN material is synthesized via a straightforward hydrothermal method, followed by calcination in a nitrogen atmosphere. The resulting electrode demonstrates exceptional electrochemical properties, including a high specific capacity of 773 C g-1 (1955 F g-1), excellent rate capability, and outstanding cycling stability. The hierarchical architecture of the NiCoN electrode, composed of interconnected porous nanosheets, facilitates efficient charge transfer and enhanced electrolyte ion diffusion. When paired with activated carbon (AC) as the negative electrode in the NiCoN//AC ASC configuration, the device achieves an impressive energy density of 36 W h kg-1 at a power density of 775 W kg-1. Moreover, the device exhibits remarkable cycling stability, retaining 85% of its initial capacitance after 5000 charge-discharge cycles. These findings underscore the potential of NiCoN as a high-performance electrode material for ASCs, offering a promising pathway for advancements in next-generation energy storage technologies.
Collapse
Affiliation(s)
- Mohan Reddy Pallavolu
- School of Chemical Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Chandu V V Muralee Gopi
- Department of Electrical Engineering, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
| | - Samikannu Prabu
- Graduate Institute of Environmental Engineering, National Central University Zhong-Da Road, Zhong-Li District Tao-Yuan City Taiwan
| | - Punna Reddy Ullapu
- School of Science and Technology (UST) 176 Gajung-dong, 217 Gajungro, Yuseong-gu Daejung 305-333 South Korea
| | - Jae Hak Jung
- School of Chemical Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - R Ramesh
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University P.O. Box 1888 Adama Ethiopia
| |
Collapse
|
4
|
Mikaeeli Kangarshahi B, Naghib SM, Rabiee N. DNA/RNA-based electrochemical nanobiosensors for early detection of cancers. Crit Rev Clin Lab Sci 2024; 61:473-495. [PMID: 38450458 DOI: 10.1080/10408363.2024.2321202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
Nucleic acids, like DNA and RNA, serve as versatile recognition elements in electrochemical biosensors, demonstrating notable efficacy in detecting various cancer biomarkers with high sensitivity and selectivity. These biosensors offer advantages such as cost-effectiveness, rapid response, ease of operation, and minimal sample preparation. This review provides a comprehensive overview of recent developments in nucleic acid-based electrochemical biosensors for cancer diagnosis, comparing them with antibody-based counterparts. Specific examples targeting key cancer biomarkers, including prostate-specific antigen, microRNA-21, and carcinoembryonic antigen, are highlighted. The discussion delves into challenges and limitations, encompassing stability, reproducibility, interference, and standardization issues. The review suggests future research directions, exploring new nucleic acid recognition elements, innovative transducer materials and designs, novel signal amplification strategies, and integration with microfluidic devices or portable instruments. Evaluating these biosensors in clinical settings using actual samples from cancer patients or healthy donors is emphasized. These sensors are sensitive and specific at detecting non-communicable and communicable disease biomarkers. DNA and RNA's self-assembly, programmability, catalytic activity, and dynamic behavior enable adaptable sensing platforms. They can increase biosensor biocompatibility, stability, signal transduction, and amplification with nanomaterials. In conclusion, nucleic acids-based electrochemical biosensors hold significant potential to enhance cancer detection and treatment through early and accurate diagnosis.
Collapse
Affiliation(s)
- Babak Mikaeeli Kangarshahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Lian M, Shi F, Cao Q, Wang C, Li N, Li X, Zhang X, Chen D. Paper-based colorimetric sensor using bimetallic Nickel-Cobalt selenides nanozyme with artificial neural network-assisted for detection of H 2O 2 on smartphone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124038. [PMID: 38364516 DOI: 10.1016/j.saa.2024.124038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Paper-based analytical devices (PADs) integrated with smartphones have shown great potential in various fields, but they also face challenges such as single signal reading, complex data processing and significant environmental impacting. In this study, a colorimetric PAD platform has been proposed using bimetallic nickel-cobalt selenides as highly active peroxidase mimic, smartphone with 3D-printing dark-cavity as a portable detector and an artificial neural network (ANN) model as multi-signal processing tool. Notably, the optimized nickel-cobalt selenides (Ni0.75Co0.25Se with Ni to Co ratio of 3/1) exhibit excellent peoxidase-mimetic activities and are capable of catalyzing the oxidation of four chromogenic reagents in the presence of H2O2. Using a smartphone with image capture function as a friendly signal readout tool, the Ni0.75Co0.25Se based four channel colorimetric sensing paper is used for multi-signal quantitative analysis of H2O2 by determining the Grey, red (R), green (G) and blue (B) channel values of the captured pictures. An intelligent on-site detection method for H2O2 has been constructed by combining an ANN model and a self-programmed easy-to-use smartphone APP with a dynamic range of 5 μM to 2 M. Noteworthy, machine learning-assisted smartphone sensing devices based on nanozyme and 3D printing technology provide new insights and universal strategies for visual ultrasensitive detection in a variety of fields, including environments monitoring, biomedical diagnosis and safety screening.
Collapse
Affiliation(s)
- Meiling Lian
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, PR China
| | - Feiyu Shi
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, PR China
| | - Qi Cao
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, PR China
| | - Cong Wang
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, PR China
| | - Na Li
- The PLA Rocket Force Characteristic Medical Center, Beijing 100088, PR China
| | - Xiao Li
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, PR China.
| | - Xiao Zhang
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, PR China.
| | - Da Chen
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, PR China.
| |
Collapse
|
6
|
Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, Yu X. Nanozyme-Enhanced Electrochemical Biosensors: Mechanisms and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307815. [PMID: 37985947 DOI: 10.1002/smll.202307815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/22/2023] [Indexed: 11/22/2023]
Abstract
Nanozymes, as innovative materials, have demonstrated remarkable potential in the field of electrochemical biosensors. This article provides an overview of the mechanisms and extensive practical applications of nanozymes in electrochemical biosensors. First, the definition and characteristics of nanozymes are introduced, emphasizing their significant role in constructing efficient sensors. Subsequently, several common categories of nanozyme materials are delved into, including metal-based, carbon-based, metal-organic framework, and layered double hydroxide nanostructures, discussing their applications in electrochemical biosensors. Regarding their mechanisms, two key roles of nanozymes are particularly focused in electrochemical biosensors: selective enhancement and signal amplification, which crucially support the enhancement of sensor performance. In terms of practical applications, the widespread use of nanozyme-based electrochemical biosensors are showcased in various domains. From detecting biomolecules, pollutants, nucleic acids, proteins, to cells, providing robust means for high-sensitivity detection. Furthermore, insights into the future development of nanozyme-based electrochemical biosensors is provided, encompassing improvements and optimizations of nanozyme materials, innovative sensor design and integration, and the expansion of application fields through interdisciplinary collaboration. In conclusion, this article systematically presents the mechanisms and applications of nanozymes in electrochemical biosensors, offering valuable references and prospects for research and development in this field.
Collapse
Affiliation(s)
- Zhongwei Yang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Longwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jian Zhang
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
7
|
Xie C, Li J, Zhang Y, Wang J, Zhou T, Zhou C, Li L, Bai J, Zhu H, Zhou B. Enhanced •Cl generation by introducing electrophilic Cu(II) in Co 3O 4 anode for efficient total nitrogen removal with hydrogen recovery in urine treatment. WATER RESEARCH 2024; 248:120847. [PMID: 37976956 DOI: 10.1016/j.watres.2023.120847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Urine is a nitrogen-containing waste, but can be used as an attractive alternative substrate for H2 recovery. However, conventional urea oxidation reaction is subject to complex six-electron transfer kinetics and requires alkaline conditions. Herein, an efficient method of enhancing •Cl generation by introducing electrophilic Cu(II) into Co3O4 nanowires anode was proposed, which realized the highly efficient TN removal and H2 production in urine treatment under neutral conditions. The key mechanism is that the electrophilic effect of Cu(II) attracts electrons from the oxygen atom, which causes the oxygen atom to further attract electrons from Co(II), reducing the charge density of Co(II). Electrophilic Cu(II) accelerates the difficult conversion step of Co(II) to Co(III), which enhances the generation of •Cl. The generated •Cl efficiently converts urea to N2, while the electron transport promotes H2 production on the CuO@CF nanowires cathode. Results showed that the steady-state concentration of •Cl was increased to about 1.5 times by the Cu(II) introduction. TN removal and H2 production reached 94.7% and 642.1 μmol after 50 min, which was 1.6 times and 1.5 times that of Co3O4 system, respectively. It was also 2.3 times and 2.1 times of RuO2, and 3.3 times and 2.5 times of Pt, respectively. Moreover, TN removal was 11.0 times higher than that of without •Cl mediation, and H2 production was 4.3 times higher. More importantly, excellent TN removal and H2 production were also observed in the actual urine treatment. This work provides a practical possibility for efficient total nitrogen removal and hydrogen recovery in urine wastewater treatment.
Collapse
Affiliation(s)
- Chaoyue Xie
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinhua Li
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Zhang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiachen Wang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tingsheng Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changhui Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Li
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Bai
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hong Zhu
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
8
|
Subramania AK, Sugumaran S, Sethuramalingam P, Ramesh R, Dhandapani P, Angaiah S. NiCo 2O 4/Ti 2NbC 2 (double MXene) nanohybrid-based non-enzymatic electrochemical biosensor for the detection of glucose in sweat. Bioprocess Biosyst Eng 2023; 46:1755-1763. [PMID: 37855914 DOI: 10.1007/s00449-023-02930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
The non-enzymatic electrochemical sensors are attractive due to their high sensitivity, quick detection, low cost, and simple construction. Hence, in this work, a non-enzymatic biosensor was constructed with NiCo2O4 nanoparticles (~ 82 nm) decorated over Ti2NbC2 nanosheets by an in-situ method. The crystal structure, phase purity, morphology and elemental composition of the synthesized NiCo2O4/Ti2NbC2 nanohybrid was investigated using XRD, Raman and FESEM analysis. The electrocatalytic and electrochemical behaviour of the prepared nanohybrid was investigated using cyclic voltammetry and amperometry analysis. Hybrid of NiCo2O4/Ti2NbC2 produces a biocompatible, electrochemically active surface with enhanced electrical conductivity. The enhanced surface area of NiCo2O4 and superior electrical conductivity of Ti2NbC2 nanosheets helped to develop non-enzymatic electrochemical glucose sensor with enhanced sensitivity (425.6 µA mM-1cm-2), low limit of detection and quick response time that satisfy glucose detection applications. Thus, the developed non-enzymatic electrochemical glucose sensor has excellent electrochemical properties and making it as a strong candidate for the detection of glucose concentration in sweat.
Collapse
Affiliation(s)
- Ashok Kumar Subramania
- Department of Biomedical Engineering, Saveetha Engineering College, Chennai, 602105, India
| | - Sivanandam Sugumaran
- Department of Biomedical Engineering, Saveetha Engineering College, Chennai, 602105, India.
| | | | - Rajasekaran Ramesh
- Department of Biomedical Engineering, Saveetha Engineering College, Chennai, 602105, India
| | - Preethi Dhandapani
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry, 605014, India
| | - Subramania Angaiah
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
9
|
Yuwen T, Shu D, Zou H, Yang X, Wang S, Zhang S, Liu Q, Wang X, Wang G, Zhang Y, Zang G. Carbon nanotubes: a powerful bridge for conductivity and flexibility in electrochemical glucose sensors. J Nanobiotechnology 2023; 21:320. [PMID: 37679841 PMCID: PMC10483845 DOI: 10.1186/s12951-023-02088-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
The utilization of nanomaterials in the biosensor field has garnered substantial attention in recent years. Initially, the emphasis was on enhancing the sensor current rather than material interactions. However, carbon nanotubes (CNTs) have gained prominence in glucose sensors due to their high aspect ratio, remarkable chemical stability, and notable optical and electronic attributes. The diverse nanostructures and metal surface designs of CNTs, coupled with their exceptional physical and chemical properties, have led to diverse applications in electrochemical glucose sensor research. Substantial progress has been achieved, particularly in constructing flexible interfaces based on CNTs. This review focuses on CNT-based sensor design, manufacturing advancements, material synergy effects, and minimally invasive/noninvasive glucose monitoring devices. The review also discusses the trend toward simultaneous detection of multiple markers in glucose sensors and the pivotal role played by CNTs in this trend. Furthermore, the latest applications of CNTs in electrochemical glucose sensors are explored, accompanied by an overview of the current status, challenges, and future prospects of CNT-based sensors and their potential applications.
Collapse
Affiliation(s)
- Tianyi Yuwen
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Danting Shu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Hanyan Zou
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Xinrui Yang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shijun Wang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shuheng Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Qichen Liu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangxiu Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Guixue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| | - Yuchan Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Guangchao Zang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
10
|
Zhou X, Zhang X, Peng Y, Douka AI, You F, Yao J, Jiang X, Hu R, Yang H. Electroactive Microorganisms in Advanced Energy Technologies. Molecules 2023; 28:molecules28114372. [PMID: 37298848 DOI: 10.3390/molecules28114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Large-scale production of green and pollution-free materials is crucial for deploying sustainable clean energy. Currently, the fabrication of traditional energy materials involves complex technological conditions and high costs, which significantly limits their broad application in the industry. Microorganisms involved in energy production have the advantages of inexpensive production and safe process and can minimize the problem of chemical reagents in environmental pollution. This paper reviews the mechanisms of electron transport, redox, metabolism, structure, and composition of electroactive microorganisms in synthesizing energy materials. It then discusses and summarizes the applications of microbial energy materials in electrocatalytic systems, sensors, and power generation devices. Lastly, the research progress and existing challenges for electroactive microorganisms in the energy and environment sectors described herein provide a theoretical basis for exploring the future application of electroactive microorganisms in energy materials.
Collapse
Affiliation(s)
- Xingchen Zhou
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Xianzheng Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Yujie Peng
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Abdoulkader Ibro Douka
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Feng You
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Junlong Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Ruofei Hu
- Department of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Huan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| |
Collapse
|
11
|
He J, Xu X, Li M, Zhou S, Zhou W. Recent advances in perovskite oxides for non-enzymatic electrochemical sensors: A review. Anal Chim Acta 2023; 1251:341007. [PMID: 36925293 DOI: 10.1016/j.aca.2023.341007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Non-enzymatic electrochemical sensors with significant advantages of high sensitivity, long-term stability, and excellent reproducibility, are one promising technology to solve many challenges, such as the detection of toxic substances and viruses. Among various materials, perovskite oxides have become a promising candidate for use in non-enzymatic electrochemical sensors because of their low cost, flexible structure, and high intrinsic catalytic activity. A comprehensive overview of the recent advances in perovskite oxides for non-enzymatic electrochemical sensors is provided, which includes the synthesis methods of nanostructured perovskites and the electrocatalytic mechanisms of perovskite catalysts. The better sensing performance of perovskite oxides is mainly due to the lattice O vacancies and superoxide oxygen ions (O22-/O-), which are generated by the transfer of lattice oxygen to adsorbed -OH and have performed excellent properties suitable for electrooxidation of analytes. However, the limited electron transfer kinetics, stability, and selectivity of perovskite oxides alone make perovskite oxides far from ready for scientific development. Therefore, composites of perovskite oxides with other materials like graphitic carbon, metals, metal compounds, conducting organics, and biomolecules are summarized. Furthermore, a brief section describing the future challenges and the corresponding recommendation is presented in this review.
Collapse
Affiliation(s)
- Juan He
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia.
| | - Meisheng Li
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Shouyong Zhou
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| |
Collapse
|
12
|
Liu Y, Liu M, Shang S, Gao W, Wang X, Hong J, Hua C, You Z, Liu Y, Chen J. Recrystallization of 2D C-MOF Films for High-Performance Electrochemical Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16991-16998. [PMID: 36972375 DOI: 10.1021/acsami.3c00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) conjugated metal-organic framework (c-MOF) films bring a completely new opportunity in the fields of catalysis, energy, and sensors, but preparing large-area continuous 2D c-MOF films remains a tremendous challenge. Here, we report a universal recrystallization strategy to synthesize large-area continuous 2D c-MOF films, revealing that the recrystallization strategy can significantly improve the electrochemical sensor sensitivity. Applying the 2D Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) c-MOF film as the active layer, the electrochemical sensor for glucose detection shows a high sensitivity of 20600 μA mM-1 cm-2, which is the best compared with the active materials reported previously. Most importantly, the as-made Cu3(HHTP)2 c-MOF-based electrochemical sensor possesses excellent stability. Overall, this work brings a brand-new universal strategy to prepare large-area continuous 2D c-MOF films for electrochemical sensors.
Collapse
Affiliation(s)
- Youxing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Minghui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengcong Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiaxin Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chunyu Hua
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zewen You
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianyi Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Flexible electrochemical sensor with Fe/Co bimetallic oxides for sensitive analysis of glucose in human tears. Anal Chim Acta 2023; 1243:340781. [PMID: 36697172 DOI: 10.1016/j.aca.2023.340781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023]
Abstract
The construction of uniformly dispersed structure with abundant active sites is crucial for fast electron transport and advancing electrocatalytic reactions. Herein, FexCoyO4-rGO was prepared by depositing Fe and Co bimetallic oxides in-situ on reduced graphene oxide through a simple process combined hydrothermal reaction and calcination. Fe was elaborately introduced into the synthesis of metal oxides to alleviate the aggregation of cobalt oxides and obtain nanocomposites with homogeneously structured and abundant redox sites, and the bimetallic oxides nanomaterials had enhanced electrocatalysis under the synergistic effect. The flexible electrode prepared from FexCoyO4-rGO exhibited excellent detection performance for glucose with a detection limit down low to 0.07 μM and a sensitivity of 1510 μM cm-2 mA-1. The adoption of flexible substrates improved the wearability of the electrode and broadened its practicality for detecting biomarkers on the skin surface. The constructed sensor was successfully used in the dynamic analysis of glucose content in tears, and the results were highly consistent with the test outcome of a commercial test kit, demonstrating its application prospects in non-invasive epidermal diabetes mellitus diagnosis.
Collapse
|
14
|
Liu H, Liu C, Zong X, Wang Y, Hu Z, Zhang Z. Role of the Support Effects in Single-Atom Catalysts. Chem Asian J 2023; 18:e202201161. [PMID: 36635222 DOI: 10.1002/asia.202201161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
In recent years, single-atom catalysts (SACs) have received a significant amount of attention due to their high atomic utilization, low cost, high reaction activity, and selectivity for multiple catalytic reactions. Unfortunately, the high surface free energy of single atoms leads them easily migrated and aggregated. Therefore, support materials play an important role in the preparation and catalytic performance of SACs. Aiming at understanding the relationship between support materials and the catalytic performance of SACs, the support effects in SACs are introduced and reviewed herein. Moreover, special emphasis is placed on exploring the influence of the type and structure of supports on SAC catalytic performance through advanced characterization and theoretical research. Future research directions for support materials are also proposed, providing some insight into the design of SACs with high efficiency and high loading.
Collapse
Affiliation(s)
- Huimin Liu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Chang Liu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Xing Zong
- School of Materials and Metallurgy, University of Science and Technology Liaoning Anshan, Liaoning, 114051, P. R. China
| | - Yongfei Wang
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China.,School of Materials and Metallurgy, University of Science and Technology Liaoning Anshan, Liaoning, 114051, P. R. China
| | - Zhizhi Hu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| |
Collapse
|
15
|
Bakhtian M, Khosroshahi N, Safarifard V. Efficient Removal of Inorganic and Organic Pollutants over a NiCo 2O 4@MOF-801@MIL88A Photocatalyst: The Significance of Ternary Heterojunction Engineering. ACS OMEGA 2022; 7:42901-42915. [PMID: 36467958 PMCID: PMC9713798 DOI: 10.1021/acsomega.2c05000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Energy problems are a substantial concern in a global society that can be solved by replacing with sustainable energies. In recent years, designing nanomaterials as photocatalysts that can produce chemical energy with the utilization of infinite visible light energy became a new solution for water treatment. In the present study, NiCo2O4@MOF-801 has been synthesized with multiple properties, and then, a novel three-layer NiCo2O4@MOF-801@MIL88A photocatalyst has been successfully synthesized to improve meropenem degradation and Cr(VI) reduction. The prepared photocatalyst was characterized by XRD, IR, XPS, TEM, SEM, TGA, BET, EIS, PL, and UV-vis. According to the structural and optical analysis performed, the interaction between the components formed a heterojunction structure that prevented the recombination of charge carriers and increased the photocatalytic performance. Photocatalytic simulation tests also proved the reduction of chromium and degradation of antibiotics to find the optimal heterogeneous performance. As a result, the NiCo2O4@MOF-801@MIL88A composite can completely reduce Cr(VI) in 45 min, which is strongly preferable to any pure component's performance. Overall, this work offers a low-cost but high-efficiency material that can remove organic and inorganic contaminants from water.
Collapse
|
16
|
|
17
|
Modeling and Simulation of the alkaline Zn battery with nanostructured NiCo2O4 cathode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Urchin like inverse spinel manganese doped NiCo2O4 microspheres as high performances anode for lithium-ion batteries. J Colloid Interface Sci 2022; 616:509-519. [DOI: 10.1016/j.jcis.2022.02.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
|
19
|
Lei Z, Guo B. 2D Material-Based Optical Biosensor: Status and Prospect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102924. [PMID: 34898053 PMCID: PMC8811838 DOI: 10.1002/advs.202102924] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/05/2021] [Indexed: 05/07/2023]
Abstract
The combination of 2D materials and optical biosensors has become a hot research topic in recent years. Graphene, transition metal dichalcogenides, black phosphorus, MXenes, and other 2D materials (metal oxides and degenerate semiconductors) have unique optical properties and play a unique role in the detection of different biomolecules. Through the modification of 2D materials, optical biosensor has the advantages that traditional sensors (such as electrical sensing) do not have, and the sensitivity and detection limit are greatly improved. Here, optical biosensors based on different 2D materials are reviewed. First, various detection methods of biomolecules, including surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET), and evanescent wave and properties, preparation and integration strategies of 2D material, are introduced in detail. Second, various biosensors based on 2D materials are summarized. Furthermore, the applications of these optical biosensors in biological imaging, food safety, pollution prevention/control, and biological medicine are discussed. Finally, the future development of optical biosensors is prospected. It is believed that with their in-depth research in the laboratory, optical biosensors will gradually become commercialized and improve people's quality of life in many aspects.
Collapse
Affiliation(s)
- Zong‐Lin Lei
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| | - Bo Guo
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| |
Collapse
|
20
|
Hydrogen-assisted synthesis of Ni-ZIF-derived nickel nanoparticle chains coated with nitrogen-doped graphitic carbon layers as efficient electrocatalysts for non-enzymatic glucose detection. Mikrochim Acta 2022; 189:80. [DOI: 10.1007/s00604-022-05172-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
|
21
|
Heterostructural NiCo
2
O
4
Nanocomposites for Nonenzymatic Electrochemical Glucose Sensing. ELECTROANAL 2022. [DOI: 10.1002/elan.202100519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Fu X, Sale M, Ding B, Lewis W, Silvester DS, Ling CD, D'Alessandro DM. Hydrogen-Bonding 2D Coordination Polymer for Enzyme-Free Electrochemical Glucose Sensing. CrystEngComm 2022. [DOI: 10.1039/d2ce00240j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regular detection of blood glucose levels is a critical indicator for effective diabetes management. Owing to the intrinsic highly sensitive nature of enzymes, the performance of enzymatic glucose sensors is...
Collapse
|
23
|
Sharma A, Khan P, Mandal D, Pathak M, Rout CS, Adarsh KV. Unveiling and engineering of third-order optical nonlinearities in NiCo 2O 4 nanoflowers. OPTICS LETTERS 2021; 46:5930-5933. [PMID: 34851926 DOI: 10.1364/ol.443826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
In this Letter, we demonstrate for the first time, to the best of our knowledge, NiCo2O4 (NCO) as a novel nonlinear optical material with straightforward potential applications in optical limiting. For the 532 nm nanosecond laser, excited state absorption (ESA) and free-carrier absorption give rise to large ESA coefficient (βESA) and positive nonlinear n2. On the other hand, when excited with the 800 nm femtosecond laser, two-photon absorption (TPA) takes place, and bound carriers induce strong negative n2. The values of β and n2 obtained for NCO are found to be higher compared to other conventional transition metal oxides and, therefore, are promising for optics and other photonics applications.
Collapse
|
24
|
Li X, He G, Zeng C, Zhou D, Xiang J, Chen W, Tian L, Yang W, Cheng Z, Song J. Design of Hierarchical NiCo 2O 4 Nanocages with Excellent Electrocatalytic Dynamic for Enhanced Methanol Oxidation. NANOMATERIALS 2021; 11:nano11102667. [PMID: 34685106 PMCID: PMC8539344 DOI: 10.3390/nano11102667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Although sheet-like materials have good electrochemical properties, they still suffer from agglomeration problems during the electrocatalytic process. Integrating two-dimensional building blocks into a hollow cage-like structure is considered as an effective way to prevent agglomeration. In this work, the hierarchical NiCo2O4 nanocages were successfully synthesized via coordinated etching and precipitation method combined with a post-annealing process. The nanocages are constructed through the interaction of two-dimensional NiCo2O4 nanosheets, forming a three-dimensional hollow hierarchical architecture. The three-dimensional supporting cavity effectively prevents the aggregation of NiCo2O4 nanosheets and the hollow porous feature provides amounts of channels for mass transport and electron transfer. As an electrocatalytic electrode for methanol, the NiCo2O4 nanocages-modified glassy carbon electrode exhibits a lower overpotential of 0.29 V than those of NiO nanocages (0.38 V) and Co3O4 nanocages (0.34 V) modified glassy carbon electrodes. The low overpotential is attributed to the prominent electrocatalytic dynamic issued from the three-dimensional hollow porous architecture and two-dimensional hierarchical feature of NiCo2O4 building blocks. Furthermore, the hollow porous structure provides sufficient interspace for accommodation of structural strain and volume change, leading to improved cycling stability. The NiCo2O4 nanocages-modified glassy carbon electrode still maintains 80% of its original value after 1000 consecutive cycles. The results demonstrate that the NiCo2O4 nanocages could have potential applications in the field of direct methanol fuel cells due to the synergy between two-dimensional hierarchical feature and three-dimensional hollow structure.
Collapse
Affiliation(s)
- Xue Li
- School of Electronic Information and Electrical, Chongqing University of Arts and Sciences, Chongqing 400000, China; (X.L.); (C.Z.); (D.Z.); (J.X.); (W.C.)
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Gege He
- School of Physics, Xi’an Jiaotong University, Shanxi 710000, China;
| | - Chong Zeng
- School of Electronic Information and Electrical, Chongqing University of Arts and Sciences, Chongqing 400000, China; (X.L.); (C.Z.); (D.Z.); (J.X.); (W.C.)
| | - Dengmei Zhou
- School of Electronic Information and Electrical, Chongqing University of Arts and Sciences, Chongqing 400000, China; (X.L.); (C.Z.); (D.Z.); (J.X.); (W.C.)
| | - Jing Xiang
- School of Electronic Information and Electrical, Chongqing University of Arts and Sciences, Chongqing 400000, China; (X.L.); (C.Z.); (D.Z.); (J.X.); (W.C.)
| | - Wenbo Chen
- School of Electronic Information and Electrical, Chongqing University of Arts and Sciences, Chongqing 400000, China; (X.L.); (C.Z.); (D.Z.); (J.X.); (W.C.)
| | - Liangliang Tian
- School of Electronic Information and Electrical, Chongqing University of Arts and Sciences, Chongqing 400000, China; (X.L.); (C.Z.); (D.Z.); (J.X.); (W.C.)
- Correspondence: (L.T.); (W.Y.); (Z.C.); Tel.: +86-150-2316-0415 (L.T.); +86-189-8209-6691 (W.Y.); +86-139-8384-3228 (Z.C.)
| | - Wenyao Yang
- School of Electronic Information and Electrical, Chongqing University of Arts and Sciences, Chongqing 400000, China; (X.L.); (C.Z.); (D.Z.); (J.X.); (W.C.)
- Correspondence: (L.T.); (W.Y.); (Z.C.); Tel.: +86-150-2316-0415 (L.T.); +86-189-8209-6691 (W.Y.); +86-139-8384-3228 (Z.C.)
| | - Zhengfu Cheng
- School of Electronic Information and Electrical, Chongqing University of Arts and Sciences, Chongqing 400000, China; (X.L.); (C.Z.); (D.Z.); (J.X.); (W.C.)
- Correspondence: (L.T.); (W.Y.); (Z.C.); Tel.: +86-150-2316-0415 (L.T.); +86-189-8209-6691 (W.Y.); +86-139-8384-3228 (Z.C.)
| | - Jing Song
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
25
|
Ji P, Wan J, Lu J, Zhang D, Hu C, Xi Y. Zn induced NiCo composites modified by carbon materials as a battery-type electrode material for high-performance supercapacitors. NANOTECHNOLOGY 2021; 32:495603. [PMID: 34438386 DOI: 10.1088/1361-6528/ac218e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The development of simple preparation and excellent capacity performance electrode materials is the key to energy conversion and storage for supercapacitors. Based on the growth mechanism of crystal, Zn induced NiCo nanosheets and nanoneedles composite structure deposed on Ni foam (ZNC) are successfully attained by a facile one-step method, the growth mechanism of the composite structure is further discussed. Because of its unique composites structure and additional modification of carbon, the carbon modified ZNC (ZNC@C) delivers better energy storage ability (2280 mC cm-2at 2 mA cm-2) compare to ZNC. An asymmetric supercapacitor (ASC) is assembled by ZNC@C as the positive electrode and carbonized popcorn as the negative electrode. The ASC exhibits good energy storage performance. Zn also positively affects the adsorption energy to enhance the capacitance property based on Density Functional theory calculation. The simple method for the composite structure by tuning the kinetics behaver of the crystal can provide a new strategy in synthesizing the materials, and the material with a unique structure and high performance will have potential applications in the field of energy storage.
Collapse
Affiliation(s)
- Peiyuan Ji
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Department of Applied Physics, Chongqing University, Chongqing 400044, People's Republic of China
| | - Jing Wan
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Department of Applied Physics, Chongqing University, Chongqing 400044, People's Republic of China
| | - Junlin Lu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Department of Applied Physics, Chongqing University, Chongqing 400044, People's Republic of China
| | - Dazhi Zhang
- Department of Automotive Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Chenguo Hu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Department of Applied Physics, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yi Xi
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Department of Applied Physics, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
26
|
Puttananjegowda K, Takshi A, Thomas S. Silicon Carbide Nanoparticles based Nanofibrous Membrane in Comparison with Thin-Film Enzymatic Glucose Sensor. IEEE Trans Nanobioscience 2021; 20:577-580. [PMID: 34310315 DOI: 10.1109/tnb.2021.3100466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This work presents, silicon carbide nanoparticles (SiCNPs) embedded in a conductive polymer (CP) to be electrospun to fabricate a nanofibrous membrane and a thin-film. Electrochemical enzymatic glucose sensing mechanism of an electrospun nanofibrous membrane (ENFM) of SiCNPs in a CP compared to a spin-coated-thin-film (SCTF) of SiCNPs in a CP. Fiber alignment in the form of a matrix is a key factor that determines the physical properties of nanofiber membrane compared to thin-film. It is found that glucose sensing electrodes formed by a SiCNPs-ENFM has enhanced binding of the glucose oxidase (GOx) enzyme within the fibrous membrane as compared to a SiCNPs-SCTF. The SiCNPs-ENFM and SiCNPs-SCTF glucose sensing electrodes were characterized for morphology by using scanning electron microscopy (SEM) and for electrochemical activity by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) methods. SiCNPs-ENFM based glucose electrodes shown a detection range from a 0.5 mM to 20 mM concentration with a better sensitivity of 387.57 μA/gmMcm2, and low limit of detection (LOD) 552.89 nM compared to SiCNPs-SCTF with sensitivity of 6.477 μA/gmMcm2 and LOD of 60.87 μM. The change in current level with SiCNPs-ENFM was ~14% contrast to ~75% with the SiCNPs-SCTF based glucose sensor over 50 days. The electrochemical analysis results demonstrated that the SiCNPs-ENFM electrode provides enhanced sensitivity, better limit of detection (LOD), and durability compared to SiCNPs-SCTF based glucose sensing electrode.
Collapse
|
27
|
Qin C, Wang B, Wu N, Han C, Wang Y. General Strategy to Fabricate Porous Co-Based Bimetallic Metal Oxide Nanosheets for High-Performance CO Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26318-26329. [PMID: 34032420 DOI: 10.1021/acsami.1c03508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Two-dimensional (2D) porous bimetallic oxide nanosheets are attractive for high-performance gas sensing because of their porous structures, high surface areas, and cooperative effects. Nevertheless, it is still a huge challenge to synthesize these nanomaterials. Herein, we report a general strategy to fabricate porous cobalt-based bimetallic oxide nanosheets (Co-M-O NSs, M = Cu, Mn, Ni, and Zn) with an adjustable Co/M ratio and the homogeneous composition using metal-organic framework (MOF) nanosheets as precursors. The obtained Co-M-O NS possesses the porous nanosheet structure and ultrahigh specific surface areas (146.4-220.7 m2 g-1), which enhance the adsorption of CO molecules, support the transport of electrons, and expose abundant active sites for CO-sensing reaction. As a result, the Co-M-O NS exhibited excellent sensing performances including high response, low working temperature, fast response-recovery, good selectivity and stability, and ppb-level detection limitation toward CO. In particular, the Co-Mn-O NS showed the highest response of 264% to 100 ppm CO at low temperature (175 °C). We propose that the excellent sensing performance is ascribed to the specific porous nanosheet structure, the relatively highly active Co3+ ratio resulting from cation substitution, and large amounts of chemisorbed oxygen species on the surface. Such a general strategy can also be introduced to design noble-metal-free bimetallic metal oxide nanosheets for gas sensing, catalysis, and other energy-related fields.
Collapse
Affiliation(s)
- Cong Qin
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, PR China
| | - Bing Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, PR China
| | - Nan Wu
- Department of Material Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, PR China
| | - Cheng Han
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, PR China
| | - Yingde Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, PR China
| |
Collapse
|
28
|
Electrocatalytic detection of nitrite at NiCo2O4 nanotapes synthesized via microwave-hydrothermal method. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Hu FX, Hu T, Chen S, Wang D, Rao Q, Liu Y, Dai F, Guo C, Yang HB, Li CM. Single-Atom Cobalt-Based Electrochemical Biomimetic Uric Acid Sensor with Wide Linear Range and Ultralow Detection Limit. NANO-MICRO LETTERS 2020; 13:7. [PMID: 34138193 PMCID: PMC8187548 DOI: 10.1007/s40820-020-00536-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/13/2020] [Indexed: 05/17/2023]
Abstract
Uric acid (UA) detection is essential in diagnosis of arthritis, preeclampsia, renal disorder, and cardiovascular diseases, but it is very challenging to realize the required wide detection range and low detection limit. We present here a single-atom catalyst consisting of Co(II) atoms coordinated by an average of 3.4 N atoms on an N-doped graphene matrix (A-Co-NG) to build an electrochemical biomimetic sensor for UA detection. The A-Co-NG sensor achieves a wide detection range over 0.4-41,950 μM and an extremely low detection limit of 33.3 ± 0.024 nM, which are much better than previously reported sensors based on various nanostructured materials. Besides, the A-Co-NG sensor also demonstrates its accurate serum diagnosis for UA for its practical application. Combination of experimental and theoretical calculation discovers that the catalytic process of the A-Co-NG toward UA starts from the oxidation of Co species to form a Co3+-OH-UA*, followed by the generation of Co3+-OH + *UA_H, eventually leading to N-H bond dissociation for the formation of oxidized UA molecule and reduction of oxidized Co3+ to Co2+ for the regenerated A-Co-NG. This work provides a promising material to realize UA detection with wide detection range and low detection limit to meet the practical diagnosis requirements, and the proposed sensing mechanism sheds light on fundamental insights for guiding exploration of other biosensing processes.
Collapse
Affiliation(s)
- Fang Xin Hu
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Tao Hu
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Shihong Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Dongping Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China
| | - Qianghai Rao
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Yuhang Liu
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chunxian Guo
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Hong Bin Yang
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Chang Ming Li
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
- Institute for Advanced Cross-field Science and College of Life Science, Qingdao University, Qingdao, 200671, People's Republic of China.
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|