1
|
Lee CY, Hong SH, Liu CL. Recent Progress in Polymer Gel-Based Ionic Thermoelectric Devices: Materials, Methods, and Perspectives. Macromol Rapid Commun 2025; 46:e2400837. [PMID: 39895205 DOI: 10.1002/marc.202400837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/27/2024] [Indexed: 02/04/2025]
Abstract
Polymer gel-based ionic thermoelectric (i-TE) devices, including thermally chargeable capacitors and thermogalvanic cells, represent an innovative approach to sustainable energy harvesting by converting waste heat into electricity. This review provides a comprehensive overview of recent advancements in gel-based i-TE materials, focusing on their ionic Seebeck coefficients, the mechanisms underlying the thermodiffusion and thermogalvanic effects, and the various strategies employed to enhance their performance. Gel-based i-TE materials show great promise due to their flexibility, low cost, and suitability for flexible and wearable devices. However, challenges such as improving the ionic conductivity and stability of redox couples remain. Future directions include enhancing the efficiency of ionic-electronic coupling and developing more robust electrode materials to optimize the energy conversion efficiency in real-world applications.
Collapse
Affiliation(s)
- Chia-Yu Lee
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Shao-Huan Hong
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
2
|
Huang J, Shao J, Zhong W, Sun C, Zhang G, Chen L, Fang J, Li C, Wang J, Feng X, Zhou L, Mi H, Chen J, Dong X, Liu X. A Wind Bell Inspired Triboelectric Nanogenerator for Extremely Low‑Speed and Omnidirectional Wind Energy Harvesting. SMALL METHODS 2024; 8:e2400078. [PMID: 38537103 DOI: 10.1002/smtd.202400078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Indexed: 12/28/2024]
Abstract
As one of the most promising renewable energies, wind energy is abundant in the natural environment. However, it is still challenging to effectively collect wind energy because of its variable wind speed and unpredictable direction. Here, a triboelectric nanogenerator, which is inspired by ancient Chinese wind bells, has been developed to collect energy from variable-speed and multi-directional wind. The wind-bell-inspired triboelectric nanogenerator (W-TENG) has the capability to generate electricity even at a very low wind speed of 0.5 m s-1. Furthermore, it is able to harvest wind energy effectively from all directions (0-360 degrees). The parameter-optimized W-TENG achieves a maximum output voltage of 9.3 V and a maximum current of 0.63 µA. Electronic devices including a digital watch and 40 light-emitting diodes (LEDs) are successfully powered by the designed W-TENG, demonstrating its applicability. In this study, it is believed that a novel and effective strategy is provided to harvest energy from variable-speed and multi-directional wind.
Collapse
Affiliation(s)
- Jinlong Huang
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Jiang Shao
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Wei Zhong
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Chao Sun
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Gengchen Zhang
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Longyi Chen
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Jiwen Fang
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Chong Li
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Jia Wang
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Xiaoming Feng
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Lijun Zhou
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Hongliang Mi
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Jiawei Chen
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Xiaohong Dong
- The College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Xue Liu
- The College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475001, China
| |
Collapse
|
3
|
Miller K, Gayle JM, Roy S, Abdellah MH, Hardian R, Cseri L, Demingos PG, Nadella HR, Lee F, Tripathi M, Gupta S, Guo G, Bhattacharyya S, Wang X, Dalton AB, Garg A, Singh CV, Vajtai R, Szekely G, Ajayan P. Tunable 2D Conjugated Porous Organic Polymer Films for Precise Molecular Nanofiltration and Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401269. [PMID: 38687141 DOI: 10.1002/smll.202401269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Indexed: 05/02/2024]
Abstract
Structural design of 2D conjugated porous organic polymer films (2D CPOPs), by tuning linkage chemistries and pore sizes, provides great adaptability for various applications, including membrane separation. Here, four free-standing 2D CPOP films of imine- or hydrazone-linked polymers (ILP/HLP) in combination with benzene (B-ILP/HLP) and triphenylbenzene (TPB-ILP/HLP) aromatic cores are synthesized. The anisotropic disordered films, composed of polymeric layered structures, can be exfoliated into ultrathin 2D-nanosheets with layer-dependent electrical properties. The bulk CPOP films exhibit structure-dependent optical properties, triboelectric nanogenerator output, and robust mechanical properties, rivaling previously reported 2D polymers and porous materials. The exfoliation energies of the 2D CPOPs and their mechanical behavior at the molecular level are investigated using density function theory (DFT) and molecular dynamics (MD) simulations, respectively. Exploiting the structural tunability, the comparative organic solvent nanofiltration (OSN) performance of six membranes having different pore sizes and linkages to yield valuable trends in molecular weight selectivity is investigated. Interestingly, the OSN performances follow the predicted transport modeling values based on theoretical pore size calculations, signifying the existence of permanent porosity in these materials. The membranes exhibit excellent stability in organic solvents at high pressures devoid of any structural deformations, revealing their potential in practical OSN applications.
Collapse
Affiliation(s)
- Kristen Miller
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Jessica M Gayle
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Mohamed H Abdellah
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rifan Hardian
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Levente Cseri
- Department of Chemical Engineering & Analytical Science, School of Engineering, The University of Manchester, The Mill, Sackville Street, Manchester, M1 3BB, UK
- Department of Chemistry, Femtonics Ltd., Tuzolto u. 58, Budapest, 1094, Hungary
| | - Pedro G Demingos
- Department of Material Science and Engineering, University of Toronto, Ontario, ON M5S 1A1, Canada
| | - Hema Rajesh Nadella
- Department of Material Science and Engineering, University of Toronto, Ontario, ON M5S 1A1, Canada
| | - Frank Lee
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9RH, UK
| | - Manoj Tripathi
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9RH, UK
| | - Sashikant Gupta
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Galio Guo
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Xu Wang
- Shared Equipment Authority, Rice University, Houston, Texas, 77005, USA
| | - Alan B Dalton
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9RH, UK
| | - Ashish Garg
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Chandra Veer Singh
- Department of Material Science and Engineering, University of Toronto, Ontario, ON M5S 1A1, Canada
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Gyorgy Szekely
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Chemical Engineering Program, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pulickel Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
4
|
Yang N, Li Y, Xu Z, Zhu Y, He Q, Wang Z, Zhang X, Liu J, Liu C, Wang Y, Zhou M, Cheng T, Wang ZL. A Blade-Type Triboelectric-Electromagnetic Hybrid Generator with Double Frequency Up-Conversion Mechanism for Harvesting Breeze Wind Energy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33404-33415. [PMID: 38904481 PMCID: PMC11231971 DOI: 10.1021/acsami.4c04377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/26/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Triboelectric nanogenerators (TENGs) have garnered substantial attention in breeze wind energy harvesting. However, how to improve the output performance and reduce friction and wear remain challenging. To this end, a blade-type triboelectric-electromagnetic hybrid generator (BT-TEHG) with a double frequency up-conversion (DFUC) mechanism is proposed. The DFUC mechanism enables the TENG to output a high-frequency response that is 15.9 to 300 times higher than the excitation frequency of 10 to 200 rpm. Coupled with the collisions between tribomaterials, a higher surface charge density and better generating performance are achieved. The magnetization direction and dimensional parameters of the BT-TEHG were optimized, and its generating characteristics under varying rotational speeds and electrical boundary conditions were studied. At wind speeds of 2.2 and 10 m/s, the BT-TEHG can generate, respectively, power of 1.30 and 19.01 mW. Further experimentation demonstrates its capacity to charge capacitors, light up light emitting diodes (LEDs), and power wireless temperature and humidity sensors. The demonstrations show that the BT-TEHG has great potential applications in self-powered wireless sensor networks (WSNs) for environmental monitoring of intelligent agriculture.
Collapse
Affiliation(s)
- Na Yang
- School
of Mechanical Engineering, Hangzhou Dianzi
University, Hangzhou 310018, China
| | - Yingxuan Li
- School
of Mechanical Engineering, Hangzhou Dianzi
University, Hangzhou 310018, China
| | - Zhenlong Xu
- School
of Mechanical Engineering, Hangzhou Dianzi
University, Hangzhou 310018, China
| | - Yongkang Zhu
- School
of Mechanical Engineering, Hangzhou Dianzi
University, Hangzhou 310018, China
| | - Qingkai He
- School
of Mechanical Engineering, Hangzhou Dianzi
University, Hangzhou 310018, China
| | - Ziyi Wang
- School
of Mechanical Engineering, Hangzhou Dianzi
University, Hangzhou 310018, China
| | - Xueting Zhang
- School
of Mechanical Engineering, Hangzhou Dianzi
University, Hangzhou 310018, China
| | - Jingbiao Liu
- School
of Mechanical Engineering, Hangzhou Dianzi
University, Hangzhou 310018, China
| | - Chaoran Liu
- Ministry
of Education Engineering Research Center of Smart Microsensors and
Microsystems, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yun Wang
- School
of Mechanical Engineering, Hangzhou Dianzi
University, Hangzhou 310018, China
| | - Maoying Zhou
- School
of Mechanical Engineering, Hangzhou Dianzi
University, Hangzhou 310018, China
| | - Tinghai Cheng
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Zhong Lin Wang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| |
Collapse
|
5
|
Li Y, Deng H, Wu H, Luo Y, Deng Y, Yuan H, Cui Z, Tang J, Xiong J, Zhang X, Xiao S. Rotary Wind-driven Triboelectric Nanogenerator for Self-Powered Airflow Temperature Monitoring of Industrial Equipment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307382. [PMID: 38240464 PMCID: PMC10987131 DOI: 10.1002/advs.202307382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Indexed: 04/04/2024]
Abstract
Heat dissipation performance is crucial for the operational reliability of industrial equipment, which can be monitored by detecting the wind or airflow temperature of the radiator. The emergence of triboelectric nanogenerators (TENGs) provides new routes for wind energy harvesting and self-powered sensing. Herein, a rotary wind-driven triboelectric nanogenerator (RW-TENG) with soft-contact working mode is newly designed to achieve tunable contact areas by utilizing the reliable thermal response of NiTi shape memory alloy (SMA) to air/wind temperature. The RW-TENG can generate different triboelectric outputs under air stimulation with different speeds or temperatures, which is demonstrated as a power source for online monitoring sensors, self-powered wind speed sensing, and airflow temperature monitoring. Specifically, a self-powered sensor of wind speed is demonstrated with a sensitivity of 0.526 µA m-1 s between 2.2 and 19.6 m s-1, and a self-powered monitoring device of high airflow temperature, which show relatively short response time (109 s), strong anti-interference ability and outstanding long-term durability. This study introduces an innovative route for real-time detection of airflow temperature in wind-cooled industrial equipment, showing broad application prospects for information perception and intelligent sensing of the industrial IoTs.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Power Grid Environmental ProtectionSchool of Electrical Engineering and AutomationWuhan UniversityWuhanHubei430072China
| | - Haocheng Deng
- State Key Laboratory of Power Grid Environmental ProtectionSchool of Electrical Engineering and AutomationWuhan UniversityWuhanHubei430072China
| | - Haoying Wu
- State Key Laboratory of Power Grid Environmental ProtectionSchool of Electrical Engineering and AutomationWuhan UniversityWuhanHubei430072China
| | - Yi Luo
- Beijing International S&T Cooperation Base for Plasma Science and Energy ConversionInstitute of Electrical EngineeringChinese Academy of SciencesBeijing100190China
| | - Yeqiang Deng
- State Key Laboratory of Power Grid Environmental ProtectionSchool of Electrical Engineering and AutomationWuhan UniversityWuhanHubei430072China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Zhaolun Cui
- School of Electrical PowerSouth China University of TechnologyGuangdong510640China
| | - Ju Tang
- State Key Laboratory of Power Grid Environmental ProtectionSchool of Electrical Engineering and AutomationWuhan UniversityWuhanHubei430072China
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Xiaoxing Zhang
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid EquipmentHubei University of TechnologyWuhanHubei430068China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental ProtectionSchool of Electrical Engineering and AutomationWuhan UniversityWuhanHubei430072China
| |
Collapse
|
6
|
Peng S, Xie B, Wang Y, Wang M, Chen X, Ji X, Zhao C, Lu G, Wang D, Hao R, Wang M, Hu N, He H, Ding Y, Zheng S. Low-grade wind-driven directional flow in anchored droplets. Proc Natl Acad Sci U S A 2023; 120:e2303466120. [PMID: 37695920 PMCID: PMC10515142 DOI: 10.1073/pnas.2303466120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/22/2023] [Indexed: 09/13/2023] Open
Abstract
Low-grade wind with airspeed Vwind < 5 m/s, while distributed far more abundantly, is still challenging to extract because current turbine-based technologies require particular geography (e.g., wide-open land or off-shore regions) with year-round Vwind > 5 m/s to effectively rotate the blades. Here, we report that low-speed airflow can sensitively enable directional flow within nanowire-anchored ionic liquid (IL) drops. Specifically, wind-induced air/liquid friction continuously raises directional leeward fluid transport in the upper portion, whereas three-phase contact line (TCL) pinning blocks further movement of IL. To remove excessive accumulation of IL near TCL, fluid dives, and headwind flow forms in the lower portion, as confirmed by microscope observation. Such stratified circulating flow within single drop can generate voltage output up to ~0.84 V, which we further scale up to ~60 V using drop "wind farms". Our results demonstrate a technology to tap the widespread low-grade wind as a reliable energy resource.
Collapse
Affiliation(s)
- Shan Peng
- Department of Inorganic Chemistry, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, Hebei071002, China
| | - Binglin Xie
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou510641, China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Mi Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Xiaoxin Chen
- Department of Inorganic Chemistry, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, Hebei071002, China
| | - Xiaoyu Ji
- Department of Inorganic Chemistry, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, Hebei071002, China
| | - Chenyang Zhao
- Department of Inorganic Chemistry, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, Hebei071002, China
| | - Gang Lu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Dianyu Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou450001, China
| | - Ruiran Hao
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng475004, China
| | - Mingzhan Wang
- Pritzker School of Molecular Engineering, University of Chicago, ChicagoIL60637
| | - Nan Hu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou510641, China
- Pazhou Lab., Guangzhou510005, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou451150, China
| | - Yulong Ding
- School of Chemical Engineering, University of Birmingham, BirminghamB15 2TT, United Kingdom
| | - Shuang Zheng
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Wang H, Xiong B, Zhang Z, Zhang H, Azam A. Small wind turbines and their potential for internet of things applications. iScience 2023; 26:107674. [PMID: 37711647 PMCID: PMC10497799 DOI: 10.1016/j.isci.2023.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Wind energy is crucial for meeting climate and energy sustainability targets. Small wind turbines (SWTs) have gained significant attention due to their size and adaptability. These turbines have potential for Internet of Things (IoT) applications, particularly in powering large areas and low-power devices. This review examines SWTs for IoT applications, providing an extensive overview of their development, including wind energy rectifiers, power generation mechanisms, and IoT applications. The paper summarizes and compares different types of wind energy rectifiers, explores recent advancements and representative work, and discusses applicable generator systems such as electromagnetic, piezoelectric, and triboelectric nanogenerators. In addition, it thoroughly reviews the latest research on IoT application scenarios, including transportation, urban environments, intelligent agriculture, and self-powered wind sensing. Lastly, the paper identifies future research directions and emphasizes the potential of interdisciplinary technologies in driving SWT development.
Collapse
Affiliation(s)
- Hao Wang
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, P.R. China
| | - Bendong Xiong
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, P.R. China
| | - Zutao Zhang
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Hexiang Zhang
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, P.R. China
| | - Ali Azam
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| |
Collapse
|
8
|
Choi D, Lee Y, Lin ZH, Cho S, Kim M, Ao CK, Soh S, Sohn C, Jeong CK, Lee J, Lee M, Lee S, Ryu J, Parashar P, Cho Y, Ahn J, Kim ID, Jiang F, Lee PS, Khandelwal G, Kim SJ, Kim HS, Song HC, Kim M, Nah J, Kim W, Menge HG, Park YT, Xu W, Hao J, Park H, Lee JH, Lee DM, Kim SW, Park JY, Zhang H, Zi Y, Guo R, Cheng J, Yang Z, Xie Y, Lee S, Chung J, Oh IK, Kim JS, Cheng T, Gao Q, Cheng G, Gu G, Shim M, Jung J, Yun C, Zhang C, Liu G, Chen Y, Kim S, Chen X, Hu J, Pu X, Guo ZH, Wang X, Chen J, Xiao X, Xie X, Jarin M, Zhang H, Lai YC, He T, Kim H, Park I, Ahn J, Huynh ND, Yang Y, Wang ZL, Baik JM, Choi D. Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications. ACS NANO 2023; 17:11087-11219. [PMID: 37219021 PMCID: PMC10312207 DOI: 10.1021/acsnano.2c12458] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Serious climate changes and energy-related environmental problems are currently critical issues in the world. In order to reduce carbon emissions and save our environment, renewable energy harvesting technologies will serve as a key solution in the near future. Among them, triboelectric nanogenerators (TENGs), which is one of the most promising mechanical energy harvesters by means of contact electrification phenomenon, are explosively developing due to abundant wasting mechanical energy sources and a number of superior advantages in a wide availability and selection of materials, relatively simple device configurations, and low-cost processing. Significant experimental and theoretical efforts have been achieved toward understanding fundamental behaviors and a wide range of demonstrations since its report in 2012. As a result, considerable technological advancement has been exhibited and it advances the timeline of achievement in the proposed roadmap. Now, the technology has reached the stage of prototype development with verification of performance beyond the lab scale environment toward its commercialization. In this review, distinguished authors in the world worked together to summarize the state of the art in theory, materials, devices, systems, circuits, and applications in TENG fields. The great research achievements of researchers in this field around the world over the past decade are expected to play a major role in coming to fruition of unexpectedly accelerated technological advances over the next decade.
Collapse
Affiliation(s)
- Dongwhi Choi
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Younghoon Lee
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Soft Robotics Research Center, Seoul National University, Seoul 08826, South Korea
- Department
of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Zong-Hong Lin
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sumin Cho
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Miso Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Chi Kit Ao
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Siowling Soh
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Changwan Sohn
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Chang Kyu Jeong
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Jeongwan Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Minbaek Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Seungah Lee
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jungho Ryu
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Parag Parashar
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Yujang Cho
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Feng Jiang
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
- Institute of Flexible
Electronics Technology of Tsinghua, Jiaxing, Zhejiang 314000, China
| | - Pooi See Lee
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Gaurav Khandelwal
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
- School
of Engineering, University of Glasgow, Glasgow G128QQ, U. K.
| | - Sang-Jae Kim
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
| | - Hyun Soo Kim
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Hyun-Cheol Song
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Minje Kim
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Junghyo Nah
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Wook Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Habtamu Gebeyehu Menge
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Yong Tae Park
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Wei Xu
- Research
Centre for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, P. R. China
| | - Jianhua Hao
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hong Kong, P.R. China
| | - Hyosik Park
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Ju-Hyuck Lee
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Sang-Woo Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- Samsung
Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
- SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ji Young Park
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Haixia Zhang
- National
Key Laboratory of Science and Technology on Micro/Nano Fabrication;
Beijing Advanced Innovation Center for Integrated Circuits, School
of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yunlong Zi
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Ru Guo
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Jia Cheng
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Ze Yang
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Yannan Xie
- College
of Automation & Artificial Intelligence, State Key Laboratory
of Organic Electronics and Information Displays & Institute of
Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Sangmin Lee
- School
of Mechanical Engineering, Chung-ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Jihoon Chung
- Department
of Mechanical Design Engineering, Kumoh
National Institute of Technology (KIT), 61 Daehak-ro, Gumi, Gyeongbuk 39177, South Korea
| | - Il-Kwon Oh
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Ji-Seok Kim
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Tinghai Cheng
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Qi Gao
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Gang Cheng
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Guangqin Gu
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Minseob Shim
- Department
of Electronic Engineering, College of Engineering, Gyeongsang National University, 501, Jinjudae-ro, Gaho-dong, Jinju 52828, South Korea
| | - Jeehoon Jung
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Changwoo Yun
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Chi Zhang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxu Liu
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufeng Chen
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Suhan Kim
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xiangyu Chen
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Jun Hu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xiong Pu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Zi Hao Guo
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xudong Wang
- Department
of Materials Science and Engineering, University
of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jun Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xing Xie
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mourin Jarin
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hulin Zhang
- College
of Information and Computer, Taiyuan University
of Technology, Taiyuan 030024, P. R. China
| | - Ying-Chih Lai
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung 40227, Taiwan
- i-Center
for Advanced Science and Technology, National
Chung Hsing University, Taichung 40227, Taiwan
- Innovation
and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tianyiyi He
- Department
of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
| | - Hakjeong Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Inkyu Park
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junseong Ahn
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Nghia Dinh Huynh
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ya Yang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- Center
on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Zhong Lin Wang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jeong Min Baik
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Dukhyun Choi
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| |
Collapse
|
9
|
Wang Q, Li W, Wang K, Liao Y, Zheng J, Zhou X, Lin J, Zhang Y, Wu C. Omnidirectional Triboelectric Nanogenerator for Wide-Speed-Range Wind Energy Harvesting. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4046. [PMID: 36432334 PMCID: PMC9698673 DOI: 10.3390/nano12224046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The environmentally friendly harvesting of wind energy is an effective technique for achieving carbon neutrality and a green economy. In this work, a core-shell triboelectric nanogenerator (CS-TENG) for harvesting wind energy is demonstrated and the device structure parameters are optimized. The core-shell structure enables the CS-TENG to respond sensitively to wind from any direction and generate electrical output on the basis of the vertical contact-separation mode. A single device can generate a maximum power density of 0.14 W/m3 and can power 124 light-emitting diodes. In addition, wind energy can be harvested even at a wind speed as low as 2.3 m/s by paralleling CS-TENGs of different sizes. Finally, a self-powered water quality testing system that uses the CS-TENG as its power supply is built. The CS-TENG exhibits the advantages of a simple structure, environmentally friendly materials, low cost, and simple fabrication process. These features are of considerable significance for the development of green energy harvesting devices.
Collapse
Affiliation(s)
- Qiman Wang
- College of Advanced Manufacturing, Fuzhou University, Quanzhou 362251, China
| | - Wenhao Li
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Kun Wang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yitao Liao
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junjie Zheng
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiongtu Zhou
- College of Advanced Manufacturing, Fuzhou University, Quanzhou 362251, China
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Jianpu Lin
- College of Advanced Manufacturing, Fuzhou University, Quanzhou 362251, China
| | - Yongai Zhang
- College of Advanced Manufacturing, Fuzhou University, Quanzhou 362251, China
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Chaoxing Wu
- College of Advanced Manufacturing, Fuzhou University, Quanzhou 362251, China
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
10
|
Fu S, He W, Wu H, Shan C, Du Y, Li G, Wang P, Guo H, Chen J, Hu C. High Output Performance and Ultra-Durable DC Output for Triboelectric Nanogenerator Inspired by Primary Cell. NANO-MICRO LETTERS 2022; 14:155. [PMID: 35916998 PMCID: PMC9346042 DOI: 10.1007/s40820-022-00898-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/14/2022] [Indexed: 05/17/2023]
Abstract
Triboelectric nanogenerator (TENG) is regarded as an effective strategy to convert environment mechanical energy into electricity to meet the distributed energy demand of large number of sensors in the Internet of Things (IoTs). Although TENG based on the coupling of triboelectrification and air-breakdown achieves a large direct current (DC) output, material abrasion is a bottleneck for its applications. Here, inspired by primary cell and its DC signal output characteristics, we propose a novel primary cell structure TENG (PC-TENG) based on contact electrification and electrostatic induction, which has multiple working modes, including contact separation mode, freestanding mode and rotation mode. The PC-TENG produces DC output and operates at low surface contact force. It has an ideal effective charge density (1.02 mC m-2). Meanwhile, the PC-TENG shows a superior durability with 99% initial output after 100,000 operating cycles. Due to its excellent output performance and durability, a variety of commercial electronic devices are powered by PC-TENG via harvesting wind energy. This work offers a facile and ideal scheme for enhancing the electrical output performance of DC-TENG at low surface contact force and shows a great potential for the energy harvesting applications in IoTs.
Collapse
Affiliation(s)
- Shaoke Fu
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Wencong He
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Huiyuan Wu
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Chuncai Shan
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yan Du
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Gui Li
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Ping Wang
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Hengyu Guo
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Jie Chen
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| | - Chenguo Hu
- Department of Applied Physics, State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
11
|
Walden R, Kumar C, Mulvihill DM, Pillai SC. Opportunities and Challenges in Triboelectric Nanogenerator (TENG) based Sustainable Energy Generation Technologies: A Mini-Review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
Wang Y, Liu X, Wang Y, Wang H, Wang H, Zhang SL, Zhao T, Xu M, Wang ZL. Flexible Seaweed-Like Triboelectric Nanogenerator as a Wave Energy Harvester Powering Marine Internet of Things. ACS NANO 2021; 15:15700-15709. [PMID: 34528797 DOI: 10.1021/acsnano.1c05127] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The marine internet of things (MIoT), an increasingly important foundation for ocean development and protection, consists of a variety of marine distributed sensors under water. These sensors of the MIoT have always been highly dependent on batteries. To realize in situ power supply, a flexible seaweed-like triboelectric nanogenerator (S-TENG) capable of harvesting wave energy is proposed in this study. The flexible structure, designed with inspiration from the seaweed structure, processes extensive marine application scenarios. The bending and recovering of the S-TENG structure under wave excitations are converted to electricity. As the output performance increases with the number of parallel connected S-TENG units, an S-TENG system with multiple units could serve for floating buoys, coastal power stations, and even submerged devices. Through the demonstration experiments performed in this study, the flexible, low-cost S-TENG could become an effective approach to achieve a battery independent MIoT.
Collapse
Affiliation(s)
- Yan Wang
- Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Xiangyu Liu
- Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Yawei Wang
- Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Hao Wang
- Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - He Wang
- Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Steven L Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Tiancong Zhao
- School of Marine Engineering and Technology, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Minyi Xu
- Dalian Key Laboratory of Marine Micro/Nano Energy and Self-powered Systems, Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|
13
|
Triboelectric Nanogenerators for Harvesting Wind Energy: Recent Advances and Future Perspectives. ENERGIES 2021. [DOI: 10.3390/en14216949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Throughout the world, wind energy is widely distributed as one of the most universal energy sources in nature, containing a gigantic reserve of renewable and green energy. At present, the main way to capture wind energy is to use an electromagnetic generator (EMG), but this technology has many limitations; notably, energy conversion efficiency is relatively low in irregular environments or when there is only a gentle breeze. A triboelectric nanogenerator (TENG), which is based on the coupling effect of triboelectrification and electrostatic induction, has obvious advantages for mechanical energy conversion in some specific situations. This review focuses on wind energy harvesting by TENG. First, the basic principles of TENG and existing devices’ working modes are introduced. Second, the latest research into wind energy-related TENG is summarized from the perspectives of structure design, self-power sensors and systems. Then, the potential for large-scale application and hybridization with other energy harvesting technologies is discussed. Finally, future trends and remaining challenges are anticipated and proposed.
Collapse
|
14
|
Jia Y, Pan Y, Wang C, Liu C, Shen C, Pan C, Guo Z, Liu X. Flexible Ag Microparticle/MXene-Based Film for Energy Harvesting. NANO-MICRO LETTERS 2021; 13:201. [PMID: 34559322 PMCID: PMC8463646 DOI: 10.1007/s40820-021-00729-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 05/10/2023]
Abstract
Ultra-thin flexible films have attracted wide attention because of their excellent ductility and potential versatility. In particular, the energy-harvesting films (EHFs) have become a research hotspot because of the indispensability of power source in various devices. However, the design and fabrication of such films that can capture or transform different types of energy from environments for multiple usages remains a challenge. Herein, the multifunctional flexible EHFs with effective electro-/photo-thermal abilities are proposed by successive spraying Ag microparticles and MXene suspension between on waterborne polyurethane films, supplemented by a hot-pressing. The optimal coherent film exhibits a high electrical conductivity (1.17×104 S m-1), excellent Joule heating performance (121.3 °C) at 2 V, and outstanding photo-thermal performance (66.2 °C within 70 s under 100 mW cm-1). In addition, the EHFs-based single-electrode triboelectric nanogenerators (TENG) give short-circuit transferred charge of 38.9 nC, open circuit voltage of 114.7 V, and short circuit current of 0.82 μA. More interestingly, the output voltage of TENG can be further increased via constructing the double triboelectrification layers. The comprehensive ability for harvesting various energies of the EHFs promises their potential to satisfy the corresponding requirements.
Collapse
Affiliation(s)
- Yunpeng Jia
- College of Materials Science and Engineering, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Yamin Pan
- College of Materials Science and Engineering, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Chunfeng Wang
- National Center for Nanoscience and Technology (NCNST), Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Chuntai Liu
- College of Materials Science and Engineering, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Changyu Shen
- College of Materials Science and Engineering, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Caofeng Pan
- National Center for Nanoscience and Technology (NCNST), Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Zhanhu Guo
- Integrated Composites Laboratory, Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Xianhu Liu
- College of Materials Science and Engineering, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
15
|
Cao R, Xia Y, Wang J, Jia X, Jia C, Zhu S, Zhang W, Gao X, Zhang X. Suppressing Thermal Negative Effect and Maintaining High-Temperature Steady Electrical Performance of Triboelectric Nanogenerators by Employing Phase Change Material. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41657-41668. [PMID: 34432426 DOI: 10.1021/acsami.1c11212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Triboelectric nanogenerators (TENGs) are newly developed energy-harvesting mechanisms, which can efficiently transmute irregular mechanical energy into scarce electrical energy. However, the electrical performance of TENGs shows a decreasing tendency with the increase in temperature, and the negative effect caused by friction heat and operating environmental thermal stresses for the output performance, durability, and reliability are still a bottleneck, restricting the practical application of TENG electronic devices. Especially for wearable TENG devices, the heat-induced temperature rise evokes extreme discomfort and even hazards to human health. To effectively suppress the thermal negative effect and maintain the high-temperature steady electrical performance of TENGs, a novel thermo-regulating TENG (Tr-TENG) based on phase change materials (PCMs) is designed. The results state clearly that the Tr-TENG can maintain steady output performance without deterioration by the introduction of PCMs, during continuous heating and natural cooling, while the output performance of conventional TENG is decayed by 18.33%. More importantly, the Tr-TENG possesses high-efficiency thermal management ability, resulting in its improved durability, reliability, and thermal comfort. This study creates new possibilities for the development of advanced multifunctional TENGs with attractive characteristics and desirable performances and promotes the application of TENG electronic devices in harsh environments.
Collapse
Affiliation(s)
- Ruirui Cao
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yifan Xia
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Jing Wang
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Xiaoyong Jia
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Chunyang Jia
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Shunli Zhu
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Weifeng Zhang
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Xuefeng Gao
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xingxiang Zhang
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
16
|
Tao K, Chen Z, Yi H, Zhang R, Shen Q, Wu J, Tang L, Fan K, Fu Y, Miao J, Yuan W. Hierarchical Honeycomb-Structured Electret/Triboelectric Nanogenerator for Biomechanical and Morphing Wing Energy Harvesting. NANO-MICRO LETTERS 2021; 13:123. [PMID: 34138353 PMCID: PMC8110617 DOI: 10.1007/s40820-021-00644-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/23/2021] [Indexed: 05/23/2023]
Abstract
Flexible, compact, lightweight and sustainable power sources are indispensable for modern wearable and personal electronics and small-unmanned aerial vehicles (UAVs). Hierarchical honeycomb has the unique merits of compact mesostructures, excellent energy absorption properties and considerable weight to strength ratios. Herein, a honeycomb-inspired triboelectric nanogenerator (h-TENG) is proposed for biomechanical and UAV morphing wing energy harvesting based on contact triboelectrification wavy surface of cellular honeycomb structure. The wavy surface comprises a multilayered thin film structure (combining polyethylene terephthalate, silver nanowires and fluorinated ethylene propylene) fabricated through high-temperature thermoplastic molding and wafer-level bonding process. With superior synchronization of large amounts of energy generation units with honeycomb cells, the manufactured h-TENG prototype produces the maximum instantaneous open-circuit voltage, short-circuit current and output power of 1207 V, 68.5 μA and 12.4 mW, respectively, corresponding to a remarkable peak power density of 0.275 mW cm-3 (or 2.48 mW g-1) under hand pressing excitations. Attributed to the excellent elastic property of self-rebounding honeycomb structure, the flexible and transparent h-TENG can be easily pressed, bent and integrated into shoes for real-time insole plantar pressure mapping. The lightweight and compact h-TENG is further installed into a morphing wing of small UAVs for efficiently converting the flapping energy of ailerons into electricity for the first time. This research demonstrates this new conceptualizing single h-TENG device's versatility and viability for broad-range real-world application scenarios.
Collapse
Affiliation(s)
- Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, X'ian, 710072, People's Republic of China
| | - Zhensheng Chen
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, X'ian, 710072, People's Republic of China
| | - Haiping Yi
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, X'ian, 710072, People's Republic of China
| | - Ruirong Zhang
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, X'ian, 710072, People's Republic of China
| | - Qiang Shen
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, X'ian, 710072, People's Republic of China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lihua Tang
- Department of Mechanical Engineering, University of Auckland, 20 Symonds Street, Auckland, 1010, New Zealand
| | - Kangqi Fan
- School of Mechano-Electronic Engineering, Xidian University, X'ian, 710071, People's Republic of China
| | - Yongqing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Jianmin Miao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Weizheng Yuan
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, X'ian, 710072, People's Republic of China.
| |
Collapse
|
17
|
Yi J, Dong K, Shen S, Jiang Y, Peng X, Ye C, Wang ZL. Fully Fabric-Based Triboelectric Nanogenerators as Self-Powered Human-Machine Interactive Keyboards. NANO-MICRO LETTERS 2021; 13:103. [PMID: 34138337 PMCID: PMC8021621 DOI: 10.1007/s40820-021-00621-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/09/2021] [Indexed: 05/03/2023]
Abstract
Combination flexible and stretchable textiles with self-powered sensors bring a novel insight into wearable functional electronics and cyber security in the era of Internet of Things. This work presents a highly flexible and self-powered fully fabric-based triboelectric nanogenerator (F-TENG) with sandwiched structure for biomechanical energy harvesting and real-time biometric authentication. The prepared F-TENG can power a digital watch by low-frequency motion and respond to the pressure change by the fall of leaves. A self-powered wearable keyboard (SPWK) is also fabricated by integrating large-area F-TENG sensor arrays, which not only can trace and record electrophysiological signals, but also can identify individuals' typing characteristics by means of the Haar wavelet. Based on these merits, the SPWK has promising applications in the realm of wearable electronics, self-powered sensors, cyber security, and artificial intelligences.
Collapse
Affiliation(s)
- Jia Yi
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Kai Dong
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shen Shen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Yang Jiang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiao Peng
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Cuiying Ye
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
| |
Collapse
|
18
|
Shi Q, Sun Z, Zhang Z, Lee C. Triboelectric Nanogenerators and Hybridized Systems for Enabling Next-Generation IoT Applications. RESEARCH (WASHINGTON, D.C.) 2021; 2021:6849171. [PMID: 33728410 PMCID: PMC7937188 DOI: 10.34133/2021/6849171] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/27/2020] [Indexed: 01/08/2023]
Abstract
In the past few years, triboelectric nanogenerator-based (TENG-based) hybrid generators and systems have experienced a widespread and flourishing development, ranging among almost every aspect of our lives, e.g., from industry to consumer, outdoor to indoor, and wearable to implantable applications. Although TENG technology has been extensively investigated for mechanical energy harvesting, most developed TENGs still have limitations of small output current, unstable power generation, and low energy utilization rate of multisource energies. To harvest the ubiquitous/coexisted energy forms including mechanical, thermal, and solar energy simultaneously, a promising direction is to integrate TENG with other transducing mechanisms, e.g., electromagnetic generator, piezoelectric nanogenerator, pyroelectric nanogenerator, thermoelectric generator, and solar cell, forming the hybrid generator for synergetic single-source and multisource energy harvesting. The resultant TENG-based hybrid generators utilizing integrated transducing mechanisms are able to compensate for the shortcomings of each mechanism and overcome the above limitations, toward achieving a maximum, reliable, and stable output generation. Hence, in this review, we systematically introduce the key technologies of the TENG-based hybrid generators and hybridized systems, in the aspects of operation principles, structure designs, optimization strategies, power management, and system integration. The recent progress of TENG-based hybrid generators and hybridized systems for the outdoor, indoor, wearable, and implantable applications is also provided. Lastly, we discuss our perspectives on the future development trend of hybrid generators and hybridized systems in environmental monitoring, human activity sensation, human-machine interaction, smart home, healthcare, wearables, implants, robotics, Internet of things (IoT), and many other fields.
Collapse
Affiliation(s)
- Qiongfeng Shi
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Smart Systems Institute, National University of Singapore, 3 Research Link, Singapore, Singapore 117602
| | - Zhongda Sun
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Smart Systems Institute, National University of Singapore, 3 Research Link, Singapore, Singapore 117602
| | - Zixuan Zhang
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Smart Systems Institute, National University of Singapore, 3 Research Link, Singapore, Singapore 117602
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Center for Intelligent Sensors and MEMS, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117583
- Smart Systems Institute, National University of Singapore, 3 Research Link, Singapore, Singapore 117602
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore 117456
| |
Collapse
|