1
|
Wang Y, Feng X, Chen X. Autonomous Bioelectronic Devices Based on Silk Fibroin. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500073. [PMID: 40123251 DOI: 10.1002/adma.202500073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/01/2025] [Indexed: 03/25/2025]
Abstract
The development of autonomous bioelectronic devices capable of dynamically adapting to changing biological environments represents a significant advancement in healthcare and wearable technologies. Such systems draw inspiration from the precision, adaptability, and self-regulation of biological processes, requiring materials with intrinsic versatility and seamless bio-integration to ensure biocompatibility and functionality over time. Silk fibroin (SF) derived from Bombyx mori cocoons, has emerged as an ideal biomaterial with a unique combination of biocompatibility, mechanical flexibility, and tunable biodegradability. Adding autonomous features into SF, including self-healing, shape-morphing, and controllable degradation, enables dynamic interactions with living tissues while minimizing immune responses and mechanical mismatches. Additionally, structural tunability and environmental sustainability of SF further reinforce its potential as a platform for adaptive implants, epidermal electronics, and intelligent textiles. This review explores recent progress in understanding the structure-property relationships of SF, its modification strategies, and its great potential for integration into advanced autonomous bioelectronic systems while addressing challenges related to scalability, reproducibility, and multifunctionality. Future opportunities, such as AI-assisted material design, scalable fabrication techniques, and the incorporation of wireless and personalized technologies, are also discussed, positioning SF as a key material in bridging the gap between biological systems and artificial technologies.
Collapse
Affiliation(s)
- Yanling Wang
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
- Innovative Centre for Flexible Devices (iFLEX), Max Plank-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xue Feng
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Plank-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
2
|
Wang N, Wang Y, Si Y, Yu J, Tang P. Electrochromic Covalent Organic Framework-Assembled Nanofibrous Membranes with Mimetic Chameleon Skin Architectures for Visible and Near-Infrared Camouflage Stealth. NANO LETTERS 2024; 24:13341-13348. [PMID: 39382456 DOI: 10.1021/acs.nanolett.4c03848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The developments of modern surveillance technology pose great challenges to combat concealment for warfighters. Traditional camouflage suits cannot accommodate the need for camouflage stealth in complex warfare scenarios. Herein, a bidirectional diffusion-controlled in situ synthesis methodology is reported to achieve electrochromic nanofibrous membranes with mimetic chameleon skin structures (CSENs) by assembling electrochromic covalent organic frameworks on nanofibers. CSENs exhibit reversible color changes in the visible and near-infrared ranges under an applied potential with fast response times (25.8 s/26.2 s). The macro- and mesoporous structures in CSENs favored the transportation of electrolyte ions, achieving excellent color difference and coloration efficiency of 35.58 and 1053.26 cm2/C, respectively. Importantly, CSENs feature unique properties of self-standing, breathability, and flexibility, which are attributed to the micrometer pores constructed by entangled nanofibers. As a proof-of-concept study, the CSEN-based flexible electrochromic suit exhibits a dynamic camouflage function in real environments, showing promising properties as smart textiles for dynamic camouflage stealth.
Collapse
Affiliation(s)
- Ni Wang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yonghui Wang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yang Si
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Peixin Tang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Zhou W, Yang Q, Tao S, Cui J, Zhu J, Zhou S, Li R, Su J, Zhang N, Xu L, Pan H, Wang J. Utilization of Tea Polyphenols as Color Developers in Reversible Thermochromic Dyes for Thermosensitive Color Change and Enhanced Functionality of Polyester Fabrics. Molecules 2024; 29:4944. [PMID: 39459312 PMCID: PMC11510006 DOI: 10.3390/molecules29204944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Thermochromic textiles possess the capability to indicate ambient temperature through color changes, enabling real-time temperature monitoring and providing temperature warnings for body heat management. In this study, three thermochromic dyes-blue, red, and yellow-were synthesized using crystalline violet lactone (CVL), 6'-(diethylamino)-1',3'-dimethyl-fluoran (DDF), and 3',6'-dimethoxyfluoran (DOF) as leuco dyes, respectively, with biomass tea polyphenol serving as the color developer and tetradecanol as the phase change material. The chemical structures of these dyes were characterized using UV spectroscopy, infrared spectroscopy, Raman spectroscopy and 1H NMR. The thermochromic mechanisms were investigated, revealing that the binding bonds between the leuco dyes and the color developer broke and reorganized with temperature changes, imparting reversible thermochromic property. Polyester fabrics were dyed using an impregnation method to produce three reversible thermochromic fabrics in blue, red, and yellow. The structure and properties of these fabrics were analyzed, showing a significant increase in the UPF value from 26.3 to approximately 100, indicating enhanced UV resistance. Water contact angle measurements revealed that the contact angle of undyed polyester fabrics was 139°, while that of dyed polyester fabrics decreased by about 40°, indicating improved hydrophilicity. Additionally, the fabric inductive static tester showed that the static voltage half-life of dyed polyester fabric was less than 1 s, demonstrating a significant antistatic effect. Infrared thermal imaging results indicated that during the warming and cooling process, the thermochromic polyester fabric exhibited specific energy storage and insulation effects at 38 °C, close to the human body temperature. This study presented a novel approach to developing smart color-changing textiles using biomass-derived thermochromic dyes, offering diverse materials for personal thermal management, and intelligent insulation applications.
Collapse
Affiliation(s)
- Weimian Zhou
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (W.Z.)
| | - Qun Yang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (W.Z.)
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
- Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China
| | - Sixuan Tao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (W.Z.)
| | - Jin Cui
- Shanghai Evershine Co., Ltd., Shanghai 201600, China
| | - Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (W.Z.)
| | - Siyu Zhou
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (W.Z.)
| | - Ruimiao Li
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (W.Z.)
| | - Juan Su
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (W.Z.)
| | - Ning Zhang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (W.Z.)
| | - Lihui Xu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (W.Z.)
| | - Hong Pan
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (W.Z.)
| | - Jiping Wang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (W.Z.)
- Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China
| |
Collapse
|
4
|
Yang YZ, Rong Y, Li YY, Ma M, Chen D, Lu H, Wu C, Shen B, Guan JP, Zhuo MP. Rationally Integrating Charge-Transfer Cocrystal and Ni(II) Organometallics for Visualized Photo/Thermochromic Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42726-42735. [PMID: 39094052 DOI: 10.1021/acsami.4c09071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Smart materials demonstrate fascinating responses to environmental physical/chemical stimuli, including thermal, photonic, electronic, humidity, or magnetic stimuli, which have attracted intensive interest in material chemistry. However, their limited/harsh stimuli-responsive behavior or sophisticated postprocessing leads to enormous challenges for practical applications. Herein, we rationally designed and synthesized thermochromic Ni(II) organometallic [(C2H5)2NH2]2NiCl4-xBrx via a facile mechanochemical strategy, which demonstrated a reversible switch from yellow to blue color with a tunable phase-transition temperature from 75.6 to 61.7 °C. The simple electrospinning technology was applied to fabricate thermochromic Ni(II) organometallic-based nanofiber membranes for temperature monitoring. Furthermore, the organic charge-transfer cocrystal with a wide spectral absorption of 300-1950 nm and a high-efficiency photothermal conversion was combined with thermochromic Ni(II) organometallics for the desired dual-stimuli photo/thermochromism. This work supplies a new strategy for realizing multiple stimuli-responsive applications, such as thermal/light sensor displays and information storage.
Collapse
Affiliation(s)
- You-Zhou Yang
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yun Rong
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yuan-Yuan Li
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Mengmeng Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Dan Chen
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Hang Lu
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Chang Wu
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Boyuan Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jin-Ping Guan
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Ming-Peng Zhuo
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Supian ABM, Asyraf MRM, Syamsir A, Najeeb MI, Alhayek A, Al-Dala’ien RN, Manar G, Atiqah A. Thermochromic Polymer Nanocomposites for the Heat Detection System: Recent Progress on Properties, Applications, and Challenges. Polymers (Basel) 2024; 16:1545. [PMID: 38891491 PMCID: PMC11174980 DOI: 10.3390/polym16111545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Reversible thermochromic polymers have emerged as compelling candidates in recent years, captivating attention for their application in heat detection systems. This comprehensive review navigates through the multifaceted landscape, intricately exploring both the virtues and hurdles inherent in their integration within these systems. Their innate capacity to change colour in response to temperature fluctuations renders reversible thermochromic nanocomposites promising assets for heat detection technologies. However, despite their inherent potential, certain barriers hinder their widespread adoption. Factors such as a restricted colour spectrum, reliance on external triggers, and cost considerations have restrained their pervasive use. For instance, these polymer-based materials exhibit utility in the domain of building insulation, where their colour-changing ability serves as a beacon, flagging areas of heat loss or inadequate insulation, thus alerting building managers and homeowners to potential energy inefficiencies. Nevertheless, the limited range of discernible colours may impede precise temperature differentiation. Additionally, dependency on external stimuli, such as electricity or UV light, can complicate implementation and inflate costs. Realising the full potential of these polymer-based materials in heat detection systems necessitates addressing these challenges head-on. Continuous research endeavours aimed at augmenting colour diversity and diminishing reliance on external stimuli offer promising avenues to enhance their efficacy. Hence, this review aims to delve into the intricate nuances surrounding reversible thermochromic nanocomposites, highlighting their transformative potential in heat detection and sensing. By exploring their mechanisms, properties, and current applications, this manuscript endeavours to shed light on their significance, providing insights crucial for further research and potential applications.
Collapse
Affiliation(s)
- A. B. M. Supian
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
- Centre for Defence Research and Technology (CODRAT), Universiti Pertahanan National Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - M. R. M. Asyraf
- Engineering Design Research Group (EDRG), Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Agusril Syamsir
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
- Civil Engineering Department, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (A.A.)
| | - M. I. Najeeb
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Abdulrahman Alhayek
- Civil Engineering Department, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (A.A.)
| | - Rayeh Nasr Al-Dala’ien
- Civil Engineering Department, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (A.A.)
| | - Gunasilan Manar
- Centre for Defence Research and Technology (CODRAT), Universiti Pertahanan National Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - A. Atiqah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
6
|
Song Y, Hu C, Wang Z, Wang L. Silk-based wearable devices for health monitoring and medical treatment. iScience 2024; 27:109604. [PMID: 38628962 PMCID: PMC11019284 DOI: 10.1016/j.isci.2024.109604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Previous works have focused on enhancing the tensile properties, mechanical flexibility, biocompatibility, and biodegradability of wearable devices for real-time and continuous health management. Silk proteins, including silk fibroin (SF) and sericin, show great advantages in wearable devices due to their natural biodegradability, excellent biocompatibility, and low fabrication cost. Moreover, these silk proteins possess great potential for functionalization and are being explored as promising candidates for multifunctional wearable devices with sensory capabilities and therapeutic purposes. This review introduces current advancements in silk-based constituents used in the assembly of wearable sensors and adhesives for detecting essential physiological indicators, including metabolites in body fluids, body temperature, electrocardiogram (ECG), electromyogram (EMG), pulse, and respiration. SF and sericin play vital roles in addressing issues related to discomfort reduction, signal fidelity improvement, as well as facilitating medical treatment. These developments signify a transition from hospital-centered healthcare toward individual-centered health monitoring and on-demand therapeutic interventions.
Collapse
Affiliation(s)
- Yu Song
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuting Hu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Yan J, Cai Y, Zhang H, Han M, Liu X, Chen H, Cheng C, Lei T, Wang L, Wang H, Xiong S. Rapid Thermochromic and Highly Thermally Conductive Nanocomposite Based on Silicone Rubber for Temperature Visualization Thermal Management in Electronic Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7883-7893. [PMID: 38299449 DOI: 10.1021/acsami.3c17947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Effective heat dissipation and real-time temperature monitoring are crucial for ensuring the long-term stable operation of modern, high-performance electronic products. This study proposes a silicon rubber polydimethylsiloxane (PDMS)-based nanocomposite with a rapid thermal response and high thermal conductivity. This nanocomposite enables both rapid heat dissipation and real-time temperature monitoring for high-performance electronic products. The reported material primarily consists of a thermally conductive layer (Al2O3/PDMS composites) and a reversible thermochromic layer (organic thermochromic material, graphene oxide, and PDMS nanocoating; OTM-GO/PDMS). The thermal conductivity of OTM-GO/Al2O3/PDMS nanocomposites reached 4.14 W m-1 K-1, reflecting an increase of 2200% relative to that of pure PDMS. When the operating temperature reached 35, 45, and 65 °C, the surface of OTM-GO/Al2O3/PDMS nanocomposites turned green, yellow, and red, respectively, and the thermal response time was only 30 s. The OTM-GO/Al2O3/PDMS nanocomposites also exhibited outstanding repeatability and maintained excellent color stability over 20 repeated applications.
Collapse
Affiliation(s)
- Junbao Yan
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Yuhan Cai
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Hanwen Zhang
- Department of Mechanical Engineering, Faculty of Engineering, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xueyang Liu
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Haojie Chen
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Cui Cheng
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Tong Lei
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Luoxin Wang
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Hua Wang
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Siwei Xiong
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| |
Collapse
|
8
|
Chen W, Wei X, Liu W, Xu F. Dual-functional thermal management textiles for dynamic temperature regulation based on ultra-stretchable spiral conductive composite yarn with 500%-strain thermal stability and durability. MATERIALS HORIZONS 2024; 11:792-802. [PMID: 37997742 DOI: 10.1039/d3mh01636f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Next-generation personal thermal management (PTM) textiles for daily routine environments are attracting extensive attention. However, challenges remain in developing multifunctional PTM textiles that are comfortable to wear, have motion stability and environmental adaptability. Herein, a novel design for fabricating a sandwich-structure PTM textile based on an ultra-stretchable spiral conductive composite yarn (SCCY) with strain-electric stability is proposed. An SCCY composed of carbon nanotubes (CNTs)/polyvinyl pyrrolidone (PVP)/waterborne polyurethane (WPU) and a drawn textured yarn (DTY) is fabricated through a dip-twisting and shaping process. The PVP not only facilitates the interfacial bonding between CNTs and yarn, but also constructs strong hydrogen bond interactions with WPU, resulting in improved structure stability and robust electrical performance. Benefitting from the optimized spiral and composite structure, the SCCY exhibits a fast thermal response (130 °C within 8 s), long-term durability (1500 cycles), and superior thermal stability under large deformation (ΔT/T0 ≈ 8.4%, under 500%). By assembling a stretchable electrothermal fabric based on SCCYs with an elastic fabric and thermochromic layer, temperature visualization and dynamic temperature regulation are integrated into the textile. This multifunctional PTM textile not only features dual thermal regulation modes of radiant cooling and Joule heating, but also maintains flexibility, breathability, and excellent stretchability, which provides broad application prospects in next-generation wearable devices.
Collapse
Affiliation(s)
- Wei Chen
- Shanghai Frontier Science Research Center for Modern Textiles, Donghua University, Shanghai 201620, P. R. China.
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
| | - Xiaoxiao Wei
- Shanghai Frontier Science Research Center for Modern Textiles, Donghua University, Shanghai 201620, P. R. China.
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
| | - Wei Liu
- School of Fashion Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Fujun Xu
- Shanghai Frontier Science Research Center for Modern Textiles, Donghua University, Shanghai 201620, P. R. China.
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
9
|
Wu M, Shao Z, Zhao N, Zhang R, Yuan G, Tian L, Zhang Z, Gao W, Bai H. Biomimetic, knittable aerogel fiber for thermal insulation textile. Science 2023; 382:1379-1383. [PMID: 38127754 DOI: 10.1126/science.adj8013] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Aerogels have been considered as an ideal material for thermal insulation. Unfortunately, their application in textiles is greatly limited by their fragility and poor processability. We overcame these issues by encapsulating the aerogel fiber with a stretchable layer, mimicking the core-shell structure of polar bear hair. Despite its high internal porosity over 90%, our fiber is stretchable up to 1000% strain, which is greatly improved compared with that of traditional aerogel fibers (~2% strain). In addition to its washability and dyeability, our fiber is mechanically robust, retaining its stable thermal insulation property after 10,000 stretching cycles (100% strain). A sweater knitted with our fiber was only one-fifth as thick as down, with similar performance. Our strategy for this fiber provides rich possibilities for developing multifunctional aerogel fibers and textiles.
Collapse
Affiliation(s)
- Mingrui Wu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ziyu Shao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Nifang Zhao
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Rongzhen Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Guodong Yuan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lulu Tian
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zibei Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
10
|
Civan L, Kurama S. Preparation and characterization of intelligent thermochromic fabric coatings for the detection of fever diseases. MATERIALS CHEMISTRY AND PHYSICS 2023; 305:127977. [PMID: 37284330 PMCID: PMC10219780 DOI: 10.1016/j.matchemphys.2023.127977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023]
Abstract
Real-time monitoring of changes in skin temperature with smart thermochromic fabrics that act as sensors is extremely important in the early diagnosis of febrile diseases such as the COVID-19 epidemic that endanger public health. In this context, the study aims to detect fever, which is the immune response of the body, as a symptom in the diagnosis of various diseases and to prepare a thermochromic functional fabric by coating method to reduce the risk of contamination. For this purpose, a composition containing green pigment and zinc acetate dihydrate as the starting material was prepared using the sol-gel method. The prepared composition was applied to calico and alpaca fabric, and it was provided to show transformation at 37.5 °C with the effect of the pigment, which had a color change feature at 33 °C. The samples were analyzed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) characterization methods. The results showed that it was possible to change the active conversion temperature of the pigment from 33 °C to 37.5 °C, depending on the composition. The use of the compositions developed in this study in alpaca fabric coating provides an area of use as an indicator if the human body temperature reaches 37.5 °C, which is considered the concept of fever.
Collapse
Affiliation(s)
- Lale Civan
- Eskisehir Technical University, Department of Materials Science and Engineering, 26555, Eskisehir, Turkey
| | - Semra Kurama
- Eskisehir Technical University, Department of Materials Science and Engineering, 26555, Eskisehir, Turkey
| |
Collapse
|
11
|
Jung Y, Kim M, Kim T, Ahn J, Lee J, Ko SH. Functional Materials and Innovative Strategies for Wearable Thermal Management Applications. NANO-MICRO LETTERS 2023; 15:160. [PMID: 37386321 PMCID: PMC10310690 DOI: 10.1007/s40820-023-01126-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/13/2023] [Indexed: 07/01/2023]
Abstract
Highlights This article systematically reviews the thermal management wearables with a specific emphasis on materials and strategies to regulate the human body temperature. Thermal management wearables are subdivided into the active and passive thermal managing methods. The strength and weakness of each thermal regulatory wearables are discussed in details from the view point of practical usage in real-life. Abstract Thermal management is essential in our body as it affects various bodily functions, ranging from thermal discomfort to serious organ failures, as an example of the worst-case scenario. There have been extensive studies about wearable materials and devices that augment thermoregulatory functionalities in our body, employing diverse materials and systematic approaches to attaining thermal homeostasis. This paper reviews the recent progress of functional materials and devices that contribute to thermoregulatory wearables, particularly emphasizing the strategic methodology to regulate body temperature. There exist several methods to promote personal thermal management in a wearable form. For instance, we can impede heat transfer using a thermally insulating material with extremely low thermal conductivity or directly cool and heat the skin surface. Thus, we classify many studies into two branches, passive and active thermal management modes, which are further subdivided into specific strategies. Apart from discussing the strategies and their mechanisms, we also identify the weaknesses of each strategy and scrutinize its potential direction that studies should follow to make substantial contributions to future thermal regulatory wearable industries.
Collapse
Affiliation(s)
- Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Minwoo Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Taegyeom Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jiyong Ahn
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
12
|
Dong J, Peng Y, Wang D, Li L, Zhang C, Lai F, He G, Zhao X, Yan XP, Ma P, Hofkens J, Huang Y, Liu T. Quasi-Homogeneous and Hierarchical Electronic Textiles with Porosity-Hydrophilicity Dual-Gradient for Unidirectional Sweat Transport, Electrophysiological Monitoring, and Body-Temperature Visualization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206572. [PMID: 36592428 DOI: 10.1002/smll.202206572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
On-skin electronics based on impermeable elastomers and stacking structures often suffer from inferior sweat-repelling capabilities and severe mechanical mismatch between sub-layers employed, which significantly impedes their lengthy wearing comfort and functionality. Herein, inspired by the transpiration system of vascular plants and the water diode phenomenon, a hierarchical nonwoven electronic textile (E-textile) with multi-branching microfibers and robust interlayer adhesion is rationally developed. The layer-by-layer electro-airflow spinning method and selective oxygen plasma treatment are utilized to yield a porosity-hydrophilicity dual-gradient. The resulting E-textile shows unidirectional, nonreversible, and anti-gravity water transporting performance even upon large-scale stretching (250%), excellent mechanical matching between sub-layers, as well as a reversible color-switching ability to visualize body temperature. More importantly, the conducting and skin-conformal E-textile demonstrates accurate and stable detecting capability for biomechanical and bioelectrical signals when applied as an on-skin bioelectrode, including different human activities, electrocardiography, electromyogram, and electrodermal activity signals. Further, the E-textile can be efficiently implemented in human-machine interfaces to build a gesture-controlled dustbin and a smart acousto-optic alarm. Hence, this hierarchically-designed E-textile with integrated functionalities offers a practical and innovative method for designing comfortable and daily applicable on-skin electronics.
Collapse
Affiliation(s)
- Jiancheng Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yidong Peng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Dan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Le Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xu Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiu-Ping Yan
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Piming Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yunpeng Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
13
|
Li H, Jin B, Wang Y, Deng B, Wang D, Tang BZ. As Fiber Meets with AIE: Opening a Wonderland for Smart Flexible Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210085. [PMID: 36479736 DOI: 10.1002/adma.202210085] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) have recently been developed at a tremendous pace in the area of organic luminescent materials by virtue of their superior properties. However, the practical applications of AIEgens still face the challenge of transforming AIEgens from molecules into materials. Till now, many AIEgens have been integrated into fiber, endowing the fiber with prominent fluorescence and/or photosensitizing capacities. AIEgens and fiber complement each other for making progress in flexible smart materials, in which the utilization of AIEgens creates new application possibilities for fiber, and the fiber provides an excellent carrier for AIEgens towards realizing the conversion from molecule to materials and an ideal platform to research the aggregate state of AIEgens in mesoscale and macroscale. This review begins with a brief summary of the recent advances related to some typical AIEgens with various functions and the technology for the fabrication of AIEgen-functionalized fiber. The most representative applications are then highlighted by focusing on energy conversion, personal protective equipment, biomedical, sensor, and fluorescence-related fields. Finally, the challenges, opportunities, and tendencies in future development are discussed in detail. This review hopes to inspire innovation in AIEgens and fiber from the view of mesoscale and macroscale.
Collapse
Affiliation(s)
- Haoxuan Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Bingqi Jin
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yuanwei Wang
- Centre for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Bingyao Deng
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Dong Wang
- Centre for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
14
|
Guo M, Peng Y, Chen Z, Sheng N, Sun F. Smart Humidly Adaptive Yarns and Textiles from Twisted and Coiled Viscose Fiber Artificial Muscles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8312. [PMID: 36499808 PMCID: PMC9739715 DOI: 10.3390/ma15238312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The self-adaptive nature of smart textiles to the ambient environment has made them an indispensable part of emerging wearable technologies. However, current advances generally suffer from complex material preparation, uncomfortable fitting feeling, possible toxicity, and high cost in fabrication, which hinder the real-world application of smart materials in textiles. Herein, humidity-response torsional and tensile yarn actuators from twisted and coiled structures are developed using commercially available, cost-effective, and biodegradable viscose fibers based on yarn-spinning and weaving technologies. The twisted yarn shows a reversible torsional stroke of 1400° cm-1 in 5 s when stimulated by water fog with a spraying speed of 0.05 g s-1; the coiled yarn exhibits a peak tensile stroke of 900% upon enhancing the relative humidity. Further, textile manufacturing allows for the scalable fabrication to create fabric artificial muscles with high-dimensional actuation deformations and human-touch comfort, which can boost the potential applications of the humidly adaptive yarns in smart textile and advanced textile materials.
Collapse
Affiliation(s)
- Mingrui Guo
- MOE Key Laboratory of Eco-Textiles, Jiangnan University, Wuxi 214122, China
| | - Yangyang Peng
- MOE Key Laboratory of Eco-Textiles, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials, Jiangnan University, Wuxi 214122, China
| | - Zihan Chen
- College of Fashion Design, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Nan Sheng
- MOE Key Laboratory of Eco-Textiles, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials, Jiangnan University, Wuxi 214122, China
| | - Fengxin Sun
- MOE Key Laboratory of Eco-Textiles, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Li P, Sun Z, Wang R, Gong Y, Zhou Y, Wang Y, Liu X, Zhou X, Ouyang J, Chen M, Hou C, Chen M, Tao G. Flexible thermochromic fabrics enabling dynamic colored display. FRONTIERS OF OPTOELECTRONICS 2022; 15:40. [PMID: 36637557 PMCID: PMC9756210 DOI: 10.1007/s12200-022-00042-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 06/08/2023]
Abstract
Color-changeable fibers can provide diverse functions for intelligent wearable devices such as novel information displays and human-machine interfaces when woven into fabric. This work develops a low-cost, effective, and scalable strategy to produce thermochromic fibers by wet spinning. Through a combination of different thermochromic microcapsules, flexible fibers with abundant and reversible color changes are obtained. These color changes can be clearly observed by the naked eye. It is also found that the fibers exhibit excellent color-changing stability even after 8000 thermal cycles. Moreover, the thermochromic fibers can be fabricated on a large scale and easily woven or implanted into various fabrics with good mechanical performance. Driven by their good mechanical and physical characteristics, applications of thermochromic fibers in dynamic colored display are demonstrated. Dynamic quick response (QR) code display and recognition are successfully realized with thermochromic fabrics. This work well confirms the potential applications of thermochromic fibers in smart textiles, wearable devices, flexible displays, and human-machine interfaces.
Collapse
Affiliation(s)
- Pan Li
- Wuhan National Laboratory for Optoelectronics and Sport and Health Initiative, Optical Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhihui Sun
- Wuhan National Laboratory for Optoelectronics and Sport and Health Initiative, Optical Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rui Wang
- Wuhan National Laboratory for Optoelectronics and Sport and Health Initiative, Optical Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuchen Gong
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yingting Zhou
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuwei Wang
- Wuhan National Laboratory for Optoelectronics and Sport and Health Initiative, Optical Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojuan Liu
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xianjun Zhou
- Wuhan National Laboratory for Optoelectronics and Sport and Health Initiative, Optical Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ju Ouyang
- Wuhan National Laboratory for Optoelectronics and Sport and Health Initiative, Optical Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingzhi Chen
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chong Hou
- Wuhan National Laboratory for Optoelectronics and Sport and Health Initiative, Optical Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
- School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min Chen
- Wuhan National Laboratory for Optoelectronics and Sport and Health Initiative, Optical Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guangming Tao
- Wuhan National Laboratory for Optoelectronics and Sport and Health Initiative, Optical Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China.
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
16
|
Bioinspired zero-energy thermal-management device based on visible and infrared thermochromism for all-season energy saving. Proc Natl Acad Sci U S A 2022; 119:e2207353119. [PMID: 36095218 PMCID: PMC9499507 DOI: 10.1073/pnas.2207353119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Radiative thermal management provides a zero-energy strategy to reduce the demands of fossil energy for active thermal management. However, whether solar heating or radiative cooling, one-way temperature control will exacerbate all-season energy consumption during hot summers or cold winters. Inspired by the Himalayan rabbit's hair and Mimosa pudica's leaves, we proposed a dual-mode thermal-management device with two differently selective electromagnetic spectrums. The combination of visible and infrared "thermochromism" enables this device to freely switch between solar heating and radiative cooling modes by spontaneously perceiving the temperature without any external energy consumption. Numerical prediction shows that a dual-mode device exhibits an outstanding potential for all-season energy saving in terms of thermal management beyond most static or single-wavelength, range-regulable, temperature-responsive designs. Such a scalable and cost-efficient device represents a more efficient radiative thermal-management strategy toward applying in a practical scenario with dynamic daily and seasonal variations.
Collapse
|
17
|
Wen H, Chen X, Wang Y, Yao J, Chen X, Ling S, Shao Z. Proteinic Artificial Skin with Molecularly Encoded Coloration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39322-39331. [PMID: 35980800 DOI: 10.1021/acsami.2c07666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An ability to integrate adaptive coloration and tissue-like compositions, structures, as well as mechanical properties, and so forth into a material remains elusive. To address this problem, this work presents a solution whereby these features were integrated into a proteinic artificial skin through biomimetic design. In this artificial skin, silk fibroin was used to mimic the structural framework of the cytoskeleton due to its unique molecular network structure and outstanding and tunable mechanical properties. Meanwhile, a thermochromic filamentous network consisting of C25-GAGAGAGY amphiphilic peptides was designed to mimic the functional tracks in the cytoskeleton, enabling its temperature-adaptive coloration ability. The interconnected linkage between the structural frame and functional units makes this artificial skin have stable structures, mechanical properties, and functions. The whole protein composition also makes this artificial skin essentially different from other existing color-tunable artificial skins, which are a combination of organic and inorganic compounds. Furthermore, because the protein composition is compatible with a range of dyes, the chromatic gamut of adaptive coloration of the developed artificial skin can be further expanded by color fusion. With the further inclusion of other functional units, such as photothermal and magnetothermal nanoparticles, the thermochromism of the artificial skin could be realized through sun exposure and alternating magnetic field modulation. With this diversity in color change pathways and stimulation mode, as well as the environmental friendliness of the material used, these artificial proteinic skins have promising applications as sensors in physiological monitoring, food preservation, and anti-counterfeiting.
Collapse
Affiliation(s)
- Huijuan Wen
- State Key Laboratory of Molecular Engineering of Polymers, Advanced Material Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Xuyang Chen
- State Key Laboratory of Molecular Engineering of Polymers, Advanced Material Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, P. R. China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Advanced Material Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Advanced Material Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, P. R. China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Advanced Material Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
18
|
Lu Y, Yang G, Shen Y, Yang H, Xu K. Multifunctional Flexible Humidity Sensor Systems Towards Noncontact Wearable Electronics. NANO-MICRO LETTERS 2022; 14:150. [PMID: 35869398 PMCID: PMC9307709 DOI: 10.1007/s40820-022-00895-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/02/2022] [Indexed: 05/14/2023]
Abstract
In the past decade, the global industry and research attentions on intelligent skin-like electronics have boosted their applications in diverse fields including human healthcare, Internet of Things, human-machine interfaces, artificial intelligence and soft robotics. Among them, flexible humidity sensors play a vital role in noncontact measurements relying on the unique property of rapid response to humidity change. This work presents an overview of recent advances in flexible humidity sensors using various active functional materials for contactless monitoring. Four categories of humidity sensors are highlighted based on resistive, capacitive, impedance-type and voltage-type working mechanisms. Furthermore, typical strategies including chemical doping, structural design and Joule heating are introduced to enhance the performance of humidity sensors. Drawing on the noncontact perception capability, human/plant healthcare management, human-machine interactions as well as integrated humidity sensor-based feedback systems are presented. The burgeoning innovations in this research field will benefit human society, especially during the COVID-19 epidemic, where cross-infection should be averted and contactless sensation is highly desired.
Collapse
Affiliation(s)
- Yuyao Lu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Geng Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Yajing Shen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Kaichen Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
19
|
Ye C, Yang S, Ren J, Dong S, Cao L, Pei Y, Ling S. Electroassisted Core-Spun Triboelectric Nanogenerator Fabrics for IntelliSense and Artificial Intelligence Perception. ACS NANO 2022; 16:4415-4425. [PMID: 35238534 DOI: 10.1021/acsnano.1c10680] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
IntelliSense fabrics that can sense transient mechanical stimuli are widely anticipated in flexible and wearable electronics. However, most IntelliSense fabrics developed so far are only sensitive to quasi-static forces, such as stretching, bending, or twisting. In this work, a sheath-core triboelectric nanogenerator (SC-TENG) yarn was developed via a rational design, electroassisted core spinning technique, that consisted of a rough nanoscale dielectric surface and mechanically strong and electrically conductive core yarns. The resulting system was used to sense and distinguish the instantaneous mechanical stimuli generated by different materials. To further improve the sensing accuracy, a machine learning model, based on a classification coding and recurrent neural network, was built to predict the type of contact materials from the peak profiles of output voltages. With these experimental and algorithmic optimizations, we finally used SC-TENG yarn to identify the type of materials in real-time. Moreover, by applying Internet of Things techniques, we investigated that SC-TENG yarn could be integrated into an IntelliSense system to recognize and control various electronic and electrical systems, demonstrating promising applications in wearable energy supply, IntelliSense fabrics, and human-machine interactions.
Collapse
Affiliation(s)
- Chao Ye
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Shuo Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Shaojun Dong
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Leitao Cao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Ying Pei
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
20
|
Shu T, Lv Z, Chen CT, Gu GX, Ren J, Cao L, Pei Y, Ling S, Kaplan DL. Mechanical Training-Driven Structural Remodeling: A Rational Route for Outstanding Highly Hydrated Silk Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102660. [PMID: 34288406 DOI: 10.1002/smll.202102660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Highly hydrated silk materials (HHSMs) have been the focus of extensive research due to their usefulness in tissue engineering, regenerative medicine, and soft devices, among other fields. However, HHSMs have weak mechanical properties that limit their practical applications. Inspired by the mechanical training-driven structural remodeling strategy (MTDSRS) in biological tissues, herein, engineered MTDSRS is developed for self-reinforcement of HHSMs to improve their inherent mechanical properties and broaden potential utility. The MTDSRS consists of repetitive mechanical training and solvent-induced conformation transitions. Solvent-induced conformation transition enables the formation of β-sheet physical crosslinks among the proteins, while the repetitive mechanical loading allows the rearrangement of physically crosslinked proteins along the loading direction. Such synergistic effects produce strong and stiff mechanically trained-HHSMs (MT-HHSMs). The fracture strength and Young's modulus of the resultant MT-HHSMs (water content of 43 ± 4%) reach 4.7 ± 0.9 and 21.3 ± 2.1 MPa, respectively, which are 8-fold stronger and 13-fold stiffer than those of the as-prepared HHSMs, as well as superior to most previously reported HHSMs with comparable water content. In addition, the animal silk-like highly oriented molecular crosslinking network structure also provides MT-HHSMs with fascinating physical and functional features, such as stress-birefringence responsibility, humidity-induced actuation, and repeatable self-folding deformation.
Collapse
Affiliation(s)
- Ting Shu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Zhuochen Lv
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Chun-Teh Chen
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Grace X Gu
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Leitao Cao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Ying Pei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|