1
|
Li Z, Pandey G, Bandyopadhyay A, Awasthi K, Kennedy JV, Kumar P, Vinu A. Cryo-Exfoliation Synthesis of Borophene and its Application in Wearable Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502257. [PMID: 40184617 DOI: 10.1002/advs.202502257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/17/2025] [Indexed: 04/06/2025]
Abstract
Borophene, an anisotropic Dirac Xene, exhibits diverse crystallographic phases, including metallic β₁₂, χ₃, and semiconducting α phases, alongside exceptional properties such as high electronic mobility, superior Young's modulus, thermal conductivity, superconductivity, and ferroelasticity. These attributes position borophene as a promising material for energy storage, electrocatalysis, and wearable electronics. However, its widespread application is hindered by existing synthesis methods that are expensive, complex, and yield-limited. This study presents a novel, cost-effective, environmentally friendly cryo-exfoliation method for borophene synthesis. Crystalline boron powder is rapidly quenched in liquid nitrogen and subjected to mild sonication, producing borophene with lateral dimensions of ≈50 to 10 µm and few-layer thicknesses. Advanced characterizations, including Atomic Force Microscopy (AFM), High-Resolution Transmission Electron Microscopy (HRTEM), Raman Spectroscopy, and X-ray Photoelectron Spectroscopy (XPS), confirm structural integrity, chemical purity, and minimal surface oxidation. Molecular dynamics simulations further elucidate the weakened inter-layer coupling induced by cryo-processing. The integration of borophene into Polyvinylidene Fluoride (PVDF) nanocomposites demonstrates its potential for wearable electronics, achieving motion-sensitive devices with outstanding performance, generating output voltages up to ≈40 V. This scalable cryo-exfoliation approach paves the way for borophene-based applications in energy harvesting, sensing, and next-generation electronics.
Collapse
Affiliation(s)
- Zhixuan Li
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Gaurav Pandey
- Malaviya National Institute of Technology Jaipur, Jawahar Lal Nehru Marg, Jhalana Gram, Malviya Nagar, Jaipur, Rajasthan, 302017, India
| | - Arkamita Bandyopadhyay
- Institut für Physik, Theoretische Physik, Martin-Luther-Universität Halle-Wittenber, 06120, Halle, Germany
| | - Kamlendra Awasthi
- Malaviya National Institute of Technology Jaipur, Jawahar Lal Nehru Marg, Jhalana Gram, Malviya Nagar, Jaipur, Rajasthan, 302017, India
| | - John V Kennedy
- National Isotope Centre, 30 Gracefield Road, PO Box 30368, Lower Hutt, Wellington, 5040, New Zealand
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- National Isotope Centre, 30 Gracefield Road, PO Box 30368, Lower Hutt, Wellington, 5040, New Zealand
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
2
|
Vaso A, Tegkelidi E, Kaloudi AS, Gournis DP, Tzitzios V, Boukos N, Kolokithas Ntoukas A, Georgakilas VI. Aqueous Dispersion of Xenes by Liquid Phase Exfoliation of Monoelemental Crystals in Melamine Solution. Chemistry 2025; 31:e202403770. [PMID: 39625366 PMCID: PMC11803363 DOI: 10.1002/chem.202403770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Αfter the impressive evolution of graphene and its derivatives, a large number of two dimensional (2D) materials with important optical and electrical properties have been successfully fabricated. Liquid phase exfoliation (LPE) of layered and non-layered materials has become a widely applied method for the preparation of 2D nanostructures with an extensive variety of applications. However, in most cases organic solvents are used as liquid phase which are often toxic and environmentally unfriendly and lead to low yields. In this work, we present water as a suitable liquid phase and dispersion medium for the exfoliation of layered and non-layered monoelemental solids from IVA, VA and VIA groups of the periodic table, such as silicon, tin, bismuth and tellurium. The 2D nanostructures, silicene, stanene, bismuthene and tellurene are therefore prepared by a completely sustainable and environmentally friendly method. The prepared Xenes, as they are called, are fully characterized by microscopic and spectroscopic techniques.
Collapse
Affiliation(s)
- Alexia Vaso
- Department of Materials ScienceUniversity of PatrasRio26504Greece
| | - Eleni Tegkelidi
- Department of Materials ScienceUniversity of PatrasRio26504Greece
| | - Angela S. Kaloudi
- Department of Materials Science and EngineeringUniversity of IoanninaIoanninaGR-45110Greece
- School of Chemical and Environmental EngineeringTechnical University of CreteChaniaGR-73100Greece
| | - Dimitrios P. Gournis
- School of Chemical and Environmental EngineeringTechnical University of CreteChaniaGR-73100Greece
- Institute of GeoEnergyFoundation for Research and Technology-HellasChaniaGR-73100Greece
| | - Vasileios Tzitzios
- Institute of Nanoscience and NanotechnologyNCSR “Demokritos”Agia Paraskevi15341Greece
| | - Nikos Boukos
- Institute of Nanoscience and NanotechnologyNCSR “Demokritos”Agia Paraskevi15341Greece
| | - Argiris Kolokithas Ntoukas
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute (CATRIN)Palacký UniversityOlomoucCzechia
- Department of PharmacySchool of Health SciencesUniversity of PatrasPatras26504Greece
| | | |
Collapse
|
3
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406324. [PMID: 39754328 PMCID: PMC11809427 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Soofia Khanahmadi
- Institute for Molecular BiosciencesJohann Wolfgang Goethe Universität60438Frankfurt am MainGermany
| | - Ahmad Amiri
- Russell School of Chemical EngineeringThe University of TulsaTulsaOK74104USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| |
Collapse
|
4
|
Georgakilas VI. Water as Solvent for the Dispersion of 2D Nanostructured Materials. Chemphyschem 2025; 26:e202400904. [PMID: 39436895 DOI: 10.1002/cphc.202400904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
The development of large number of two-dimensional (2D) nanostructured materials that followed the success of graphene and the need for their handling and manipulation e. g., in inks, brought to the fore the study of solvents and substances that contribute to the stabilization of 2D nanomaterials in the liquid phase. The successful dispersion of 2D materials in solvents is combined with one of the most widespread preparation methods, that of liquid phase exfoliation. In this article, a review for the role of water in the preparation of different 2D nanostructures and their stable dispersions in the liquid phase is discussed. The use of water as a solvent or dispersant is instrumental in promoting materials with an ecological footprint, low cost, and sustainability.
Collapse
Affiliation(s)
- Vasilios I Georgakilas
- Department of Materials Science, University of Patras, University Campus, 20504, Rio Patra, Greece
| |
Collapse
|
5
|
Hong S, Wu L, Xiao Z, Chen Y, Kuklin A, Liu H, Ågren H, Ren X, Zhang Y. Facile Exfoliation of Few-Layer Sn-Based Nanosheets for Self-Powered Photo-Electrochemical and All-Optical Modulation Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404228. [PMID: 39075930 DOI: 10.1002/smll.202404228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Indexed: 07/31/2024]
Abstract
Few-layer tin (Sn)-based nanosheets (NSs) with a thickness of ≈2.5 nm are successfully prepared using a modified liquid phase exfoliation (LPE) method. Here the first exploration of photo-electrochemical (PEC) and nonlinear properties of Sn NSs is presented. The results demonstrate that the PEC properties are tunable under different experimental conditions. Additionally, Sn NSs are shown to exhibit a unique self-powered PEC performance, maintaining a good long-term stability for up to 1 month. Using electron spin resonance, active species, such as hydroxyl radicals (·OH), superoxide radicals (·O2 -), and holes (h+), are detected during operations, providing a deeper understanding of the working mechanism. Furthermore, measurements of nonlinear response reveal that Sn NSs can be effective for all-optical modulation, as it enables the realization of all-optical switching through excitation spatial cross-phase modulation (SXPM). These findings present new research insights and potential applications of Sn NSs in optoelectronics.
Collapse
Affiliation(s)
- Siyi Hong
- Lab of Optoelectronic Technology for Low Dimensional Nanomaterials, School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Leiming Wu
- Advanced Institute of Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zizhen Xiao
- Lab of Optoelectronic Technology for Low Dimensional Nanomaterials, School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Yinxiang Chen
- Lab of Optoelectronic Technology for Low Dimensional Nanomaterials, School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Artem Kuklin
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Huating Liu
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Xiaohui Ren
- The State Key Laboratory of Refractories and Metallurgy, Key Laboratory for Ferous Metalurgy and Resources Utilization of Ministry of Education & Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steel making, Faculty of Materials, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Ye Zhang
- Lab of Optoelectronic Technology for Low Dimensional Nanomaterials, School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
6
|
Chahal S, Sahay T, Li Z, Sharma RK, Kumari E, Bandyopadhyay A, Kumari P, Jyoti Ray S, Vinu A, Kumar P. Graphene via Microwave Expansion of Graphite Followed by Cryo-Quenching and its Application in Electrostatic Droplet Switching. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404337. [PMID: 38958089 DOI: 10.1002/smll.202404337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Monoelemental atomic sheets (Xenes) and other 2D materials offer record electronic mobility, high thermal conductivity, excellent Young's moduli, optical transparency, and flexural capability, revolutionizing ultrasensitive devices and enhancing performance. The ideal synthesis of these quantum materials should be facile, fast, scalable, reproducible, and green. Microwave expansion followed by cryoquenching (MECQ) leverages thermal stress in graphite to produce high-purity graphene within minutes. MECQ synthesis of graphene is reported at 640 and 800 W for 10 min, followed by liquid nitrogen quenching for 5 and 90 min of sonication. Microscopic and spectroscopic analyses confirmed the chemical identity and phase purity of monolayers and few-layered graphene sheets (200-12 µm). Higher microwave power yields thinner layers with enhanced purity. Molecular dynamics simulations and DFT calculations support the exfoliation under these conditions. Electrostatic droplet switching is demonstrated using MECQ-synthesized graphene, observing electrorolling of a mercury droplet on a BN/graphene interface at voltages above 20 V. This technique can inspire the synthesis of other 2D materials with high purity and enable new applications.
Collapse
Affiliation(s)
- Sumit Chahal
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
- Indian Institute of Technology Hyderabad, Kandi, Hyderabad, 502284, India
| | - Trisha Sahay
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
| | - Zhixuan Li
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, 2308, Australia
| | - Raju Kumar Sharma
- Department of Mechanical Engineering, Government Engineering College Sheohar, Chhatauna Bisunpur, Block- Piprahi, Sheohar, Bihar, 843329, India
| | - Ekta Kumari
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
| | - Arkamita Bandyopadhyay
- Institut für Physik, Theoretische Physik, Martin-Luther-Universität Halle-Wittenber, 06120, Halle, Germany
| | - Puja Kumari
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, 2308, Australia
| | - Prashant Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
7
|
Huang Y, Wang J, Bai B, Zhao M, Zhen X, Zhao L, Zhai X, Zhao L, Leng X. Dimension-Dependent Nonlinear Optical Properties of Stanene Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59022-59029. [PMID: 39413415 DOI: 10.1021/acsami.4c10938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Stanene (Sn)-based materials, with a graphene-like hexagonal structure, are now attracting considerable interest for potential applications in photoelectricity. However, the nonlinear optical properties of stanene remain largely unexplored. In this work, we prepared different sizes of stanene by liquid phase exfoliation and differential centrifugation methods, including two-dimensional (2D) Sn nanosheets (NSs) and zero-dimensional (0D) Sn nanodots (NDs). Z-scan measurements reveal that 2D Sn NSs exhibited high saturable absorption behavior, while the 0D Sn NDs led to reverse saturable absorption. Femtosecond ultrafast transient absorption spectra revealed that the reverse saturable absorption of Sn NDs is derived from a stronger excited state absorption and faster exciton relaxation dynamics. This research expands the potential applications of stanene in laser shielding and other ultrafast photonics technologies.
Collapse
Affiliation(s)
- Yifan Huang
- Institute of Special Environment Physical Sciences, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jingkun Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Bowen Bai
- Institute of Special Environment Physical Sciences, Harbin Institute of Technology, Shenzhen 518055, China
| | - Min Zhao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaojuan Zhen
- School of Electronic and Information Engineering, Lanzhou City University, Lanzhou 730000, P. R. China
| | - Lei Zhao
- School of Electronic and Information Engineering, Lanzhou City University, Lanzhou 730000, P. R. China
| | - Xinping Zhai
- Research Institute of Microscale Optoelectronics, School of Jia Yang, Zhejiang Shuren University, Shaoxing 312028, China
| | - Lin Zhao
- Institute of Special Environment Physical Sciences, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xuesong Leng
- Institute of Special Environment Physical Sciences, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
Wang J, Miao Y, Lu Z, Zhang Q, Guo W, Zhao M, Zhai X, Du H. High-Yield Exfoliation of Stanene Nanodots for High-Performance Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46590-46599. [PMID: 39171824 DOI: 10.1021/acsami.4c08258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Stanene nanodots (SnNDs) derived from layered tin have attracted considerable interest due to their conveniently tunable bandgap and topological superconductivity. However, high-yield exfoliation of ultrathin SnNDs is still a challenge due to the short layer spacing and strong binding energy. In this work, atomically thin SnNDs with a uniform size of 2.3 nm are successfully prepared by utilizing imidazolium ionic liquid-assisted exfoliation. The obtained SnNDs possess a wide bandgap of 2.69 eV, along with notable solvent compatibility (well dispersed in both polar and nonpolar solvents) and excellent stability. Furthermore, we construct Ir(ppy)3-based green OLED with hybridizing SnNDs and graphene oxide (GO) as the hole injection layer (HIL). It proves that the application of SnNDs helps to modulate the work function and passivate surface defects of GO, increasing hole mobility and thereby improving the device performance. Compared to the PEDOT:PSS-based control device, the optimized SnNDs-GO-based OLED demonstrates an improvement of 6.56, 41.06, and 8.16% in current efficiency (CE), power efficiency (PE), and external quantum efficiency (EQE), respectively. This work not only introduces a new approach to preparing 2D SnNDs but also creates a novel HIL material for OLED devices.
Collapse
Affiliation(s)
- Jingkun Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Yanqin Miao
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Ze Lu
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Qi Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Wenhao Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Min Zhao
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
- Aluminum-Magnesium Based New Material R&D Co., Ltd., Subsidiary of Xing Xian County Economic and Technological Development Zone, Xing Xian County 033600, China
| | - Xinping Zhai
- Research Institute of Microscale Optoelectronics, School of Jia Yang, Zhejiang Shuren, Shaoxing, Zhejiang 312028, China
| | - Huayun Du
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| |
Collapse
|
9
|
Chung JY, Yuan Y, Mishra TP, Joseph C, Canepa P, Ranjan P, Sadki EHS, Gradečak S, Garaj S. Structure and exfoliation mechanism of two-dimensional boron nanosheets. Nat Commun 2024; 15:6122. [PMID: 39033164 PMCID: PMC11271264 DOI: 10.1038/s41467-024-49974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
Exfoliation of two-dimensional (2D) nanosheets from three-dimensional (3D) non-layered, non-van der Waals crystals represents an emerging strategy for materials engineering that could significantly increase the library of 2D materials. Yet, the exfoliation mechanism in which nanosheets are derived from crystals that are not intrinsically layered remains unclear. Here, we show that planar defects in the starting 3D boron material promote the exfoliation of 2D boron sheets-by combining liquid-phase exfoliation, aberration-corrected scanning transmission electron microscopy, Raman spectroscopy, and density functional theory calculations. We demonstrate that 2D boron nanosheets consist of a planar arrangement of icosahedral sub-units cleaved along the {001} planes of β-rhombohedral boron. Correspondingly, intrinsic stacking faults in 3D boron form parallel layers of faulted planes in the same orientation as the exfoliated nanosheets, reducing the {001} cleavage energy. Planar defects represent a potential engineerable pathway for exfoliating 2D sheets from 3D boron and, more broadly, the other covalently bonded materials.
Collapse
Affiliation(s)
- Jing-Yang Chung
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
- Applied Materials - NUS Advanced Materials Corporate Lab, National University of Singapore, Singapore, Singapore
| | - Yanwen Yuan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
- Applied Materials - NUS Advanced Materials Corporate Lab, National University of Singapore, Singapore, Singapore
| | - Tara P Mishra
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Chithralekha Joseph
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Pieremanuele Canepa
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Pranay Ranjan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - El Hadi S Sadki
- Department of Physics, College of Science, United Arab Emirates University, Al-Ain, UAE
| | - Silvija Gradečak
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
- Applied Materials - NUS Advanced Materials Corporate Lab, National University of Singapore, Singapore, Singapore.
| | - Slaven Garaj
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Physics, Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Zhang N, Jiang L, Yue Y, Zhao X, Hu Y, Shi Y, Zhao L, Deng D. Metastable FeSe 2 nanosheets as a one-for-all platform for stepwise synergistic tumor therapy. J Mater Chem B 2024; 12:6466-6479. [PMID: 38864401 DOI: 10.1039/d4tb00825a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The urgent need to curb the rampant rise in cancer has impelled the rapid development of nanomedicine. Under the above issue, transition metal compounds have received special attention considering their physicochemical and biochemical properties. However, how to take full advantage of the valuable characteristics of nanomaterials based on their spatial structures and chemical components for synergistic tumor therapy is a worthwhile exploration. In this work, a tailored two-dimensional (2D) FeSe2 nanosheet (NS) platform is proposed, which integrates enzyme activity and drug efficacy through the regulation of itsstability. Specifically, metastable FeSe2 NSs can serve as dual nanozymes in an intact state, depleting GSH and increasing ROS to induce oxidative stress in the tumor microenvironment (TME). With the gradual degradation of the FeSe2 in TME, its degraded products can amplify the Fenton reaction and GSH consumption, enhance the expression of inflammatory factors, and achieve effective near-infrared (NIR)-light irradiation-enhanced synergistic photothermal therapy (PTT) and chemodynamic therapy (CDT). Our exploration further confirmed such a strategy that may integrate carrier activity and drug action into a metastable nanoplatform for tumor synergistic therapy. These results prompt the consideration of the rational design of a one-for-all carrier that can exhibit multifunctional properties and nanomedicine efficacy for versatile therapeutic applications in the future.
Collapse
Affiliation(s)
- Naiyue Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Liwen Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Yumeng Yue
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaomin Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Yanwei Hu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yali Shi
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Liying Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Dawei Deng
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
11
|
Lu C, Huang X, Jin Z, Deng J, Zha Z, Miao Z. Liquid exfoliation of molybdenum metallenes for non-inflammatory photothermal therapy of tumors. J Mater Chem B 2024; 12:5690-5698. [PMID: 38757489 DOI: 10.1039/d4tb00525b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Tissue damage and cell death occurring during photothermal therapy (PTT) for tumors can induce an inflammatory response that is detrimental to tumor therapy. Herein, ultrathin Mo metallene nanosheets with a thickness of <5 nm prepared by liquid phase exfoliation were explored as functional hyperthermia agents for non-inflammatory ablation of tumors. The obtained Mo metallene nanosheets exhibited good photothermal conversion properties and significant reactive oxygen species (ROS) scavenging ability, thus achieving superior cancer cell ablation and anti-inflammatory effects in vitro. For in vivo experiments, 4T1 tumors were ablated while the inflammation-related cytokine levels did not obviously increase, demonstrating that the inflammatory response induced by PTT was inhibited by the anti-inflammatory properties of Mo metallene nanosheets. Moreover, Mo metallene nanosheets depicted good dispersibility and biocompatibility, beneficial for biomedical applications. This work introduces Mo metallenes as promising hyperthermia agents for non-inflammatory PTT of tumors.
Collapse
Affiliation(s)
- Chenxin Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xiang Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Zhaoying Jin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Junwei Deng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
12
|
Li C, Fang X, Zhang H, Zhang B. Recent Advances of Emerging Metal-Containing Two-Dimensional Nanomaterials in Tumor Theranostics. Int J Nanomedicine 2024; 19:805-824. [PMID: 38283201 PMCID: PMC10822123 DOI: 10.2147/ijn.s444471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024] Open
Abstract
In recent years, metal-containing two-dimensional (2D) nanomaterials, among various 2D nanomaterials have attracted widespread attention because of their unique physical and chemical properties, especially in the fields of biomedical applications. Firstly, the review provides a brief introduction to two types of metal-containing 2D nanomaterials, based on whether metal species take up the major skeleton of the 2D nanomaterials. After this, the synthetical approaches are summarized, focusing on two strategies similar to other 2D nanomaterials, top-down and bottom-up methods. Then, the performance and evaluation of these 2D nanomaterials when applied to cancer therapy are discussed in detail. The specificity of metal-containing 2D nanomaterials in physics and optics makes them capable of killing cancer cells in a variety of ways, such as photodynamic therapy, photothermal therapy, sonodynamic therapy, chemodynamic therapy and so on. Besides, the integrated platform of diagnosis and treatment and the clinical translatability through metal-containing 2D nanomaterials is also introduced in this review. In the summary and perspective section, advanced rational design, challenges and promising clinical contributions to cancer therapy of these emerging metal-containing 2D nanomaterials are discussed.
Collapse
Affiliation(s)
- Chenxi Li
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, People’s Republic of China
- Graduate Collaborative Training Base of Shenzhen Second People’s Hospital, Heng Yang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| | - Xueyang Fang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, People’s Republic of China
| | - Han Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, People’s Republic of China
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People’s Republic of China
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, People’s Republic of China
| |
Collapse
|
13
|
Chen W, Li Y, Liu C, Kang Y, Qin D, Chen S, Zhou J, Liu HJ, Ferdows BE, Patel DN, Huang X, Koo S, Kong N, Ji X, Cao Y, Tao W, Xie T. In situ Engineering of Tumor-Associated Macrophages via a Nanodrug-Delivering-Drug (β-Elemene@Stanene) Strategy for Enhanced Cancer Chemo-Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202308413. [PMID: 37380606 DOI: 10.1002/anie.202308413] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Tumor-associated macrophages (TAMs) play a critical role in the immunosuppressive solid tumor microenvironment (TME), yet in situ engineering of TAMs for enhanced tumor immunotherapy remains a significant challenge in translational immuno-oncology. Here, we report an innovative nanodrug-delivering-drug (STNSP@ELE) strategy that leverages two-dimensional (2D) stanene-based nanosheets (STNSP) and β-Elemene (ELE), a small-molecule anticancer drug, to overcome TAM-mediated immunosuppression and improve chemo-immunotherapy. Our results demonstrate that both STNSP and ELE are capable of polarizing the tumor-supportive M2-like TAMs into a tumor-suppressive M1-like phenotype, which acts with the ELE chemotherapeutic to boost antitumor responses. In vivo mouse studies demonstrate that STNSP@ELE treatment can reprogram the immunosuppressive TME by significantly increasing the intratumoral ratio of M1/M2-like TAMs, enhancing the population of CD4+ and CD8+ T lymphocytes and mature dendritic cells, and elevating the expression of immunostimulatory cytokines in B16F10 melanomas, thereby promoting a robust antitumor response. Our study not only demonstrates that the STNSP@ELE chemo-immunotherapeutic nanoplatform has immune-modulatory capabilities that can overcome TAM-mediated immunosuppression in solid tumors, but also highlights the promise of this nanodrug-delivering-drug strategy in developing other nano-immunotherapeutics and treating various types of immunosuppressive tumors.
Collapse
Affiliation(s)
- Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Duotian Qin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shuying Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hai-Jun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bijan Emiliano Ferdows
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dylan Neal Patel
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiangang Huang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Na Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaoyuan Ji
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
14
|
Chen Y, Lyu R, Wang J, Cheng Q, Yu Y, Yang S, Mao C, Yang M. Metal-Organic Frameworks Nucleated by Silk Fibroin and Modified with Tumor-Targeting Peptides for Targeted Multimodal Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302700. [PMID: 37610511 PMCID: PMC10558676 DOI: 10.1002/advs.202302700] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/17/2023] [Indexed: 08/24/2023]
Abstract
Multimodal therapy requires effective drug carriers that can deliver multiple drugs to specific locations in a controlled manner. Here, the study presents a novel nanoplatform constructed using zeolitic imidazolate framework-8 (ZIF-8), a nanoscale metal-organic framework nucleated under the mediation of silk fibroin (SF). The nanoplatform is modified with the newly discovered MCF-7 breast tumor-targeting peptide, AREYGTRFSLIGGYR (AR peptide). Indocyanine green (ICG) and doxorubicin (DOX) are loaded onto the nanoplatform with high drug encapsulation efficiency (>95%). ICG enables the resultant nanoparticles (NPs), called AR-ZS/ID-P, to release reactive oxygen species for photodynamic therapy (PDT) and heat for photothermal therapy (PTT) under near-infrared (NIR) irradiation, promoting NIR fluorescence and thermal imaging to guide DOX-induced chemotherapy. Additionally, the controlled release of both ICG and DOX at acidic tumor conditions due to the dissolution of ZIF-8 provides a drug-targeting mechanism in addition to the AR peptide. When intravenously injected, AR-ZS/ID-P NPs specifically target breast tumors and exhibit higher anticancer efficacy than other groups through ICG-enabled PDT and PTT and DOX-derived chemotherapy, without inducing side effects. The results demonstrate that AR-ZS/ID-P NPs are a promising multimodal theranostic nanoplatform with maximal therapeutic efficacy and minimal side effects for targeted and controllable drug delivery.
Collapse
Affiliation(s)
- Yuping Chen
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Ruyin Lyu
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Jie Wang
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Qichao Cheng
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Yanfang Yu
- Jiangxi Cash Crops InstituteNanchangJiangxi330202P. R. China
| | - Shuxu Yang
- Department of NeurosurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang University3 East Qingchun RoadHangzhouZhejiang310016P. R. China
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongSha TinHong Kong SARP. R. China
- School of Materials Science & EngineeringZhejiang UniversityHangzhou310027China
| | - Mingying Yang
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| |
Collapse
|
15
|
Yi H, Yan G, He J, Zhuang J, Jin C, Zhang DY. Tantalum Nitride-Based Theranostic Agent for Photoacoustic Imaging-Guided Photothermal Therapy in the Second NIR Window. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111708. [PMID: 37299611 DOI: 10.3390/nano13111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 06/12/2023]
Abstract
Metal nitrides show excellent photothermal stability and conversion properties, which have the potential for photothermal therapy (PTT) for cancer. Photoacoustic imaging (PAI) is a new non-invasive and non-ionizing biomedical imaging method that can provide real-time guidance for precise cancer treatment. In this work, we develop polyvinylpyrrolidone-functionalized tantalum nitride nanoparticles (defined as TaN-PVP NPs) for PAI-guided PTT of cancer in the second near-infrared (NIR-II) window. The TaN-PVP NPs are obtained by ultrasonic crushing of massive tantalum nitride and further modification by PVP to obtain good dispersion in water. Due to their good absorbance in the NIR-II window, TaN-PVP NPs with good biocompatibility have obvious photothermal conversion performance, realizing efficient tumor elimination by PTT in the NIR-II window. Meanwhile, the excellent PAI and photothermal imaging (PTI) capabilities of TaN-PVP NPs are able to provide monitoring and guidance for the treatment process. These results indicate that TaN-PVP NPs are qualified for cancer photothermal theranostics.
Collapse
Affiliation(s)
- Huixi Yi
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Gaoyang Yan
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jinzhen He
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiani Zhuang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Chengzhi Jin
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Dong-Yang Zhang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
16
|
Zhang P, Xiao Y, Sun X, Lin X, Koo S, Yaremenko AV, Qin D, Kong N, Farokhzad OC, Tao W. Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. MED 2023; 4:147-167. [PMID: 36549297 DOI: 10.1016/j.medj.2022.12.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
With the integration of nanotechnology into the medical field at large, great strides have been made in the development of nanomedicines for tackling different diseases, including cancers. To date, various cancer nanomedicines have demonstrated success in preclinical studies, improving therapeutic outcomes, prolonging survival, and/or decreasing side effects. However, the translation from bench to bedside remains challenging. While a number of nanomedicines have entered clinical trials, only a few have been approved for clinical applications. In this review, we highlight the most recent progress in cancer nanomedicine, discuss current clinical advances and challenges for the translation of cancer nanomedicines, and provide our viewpoints on accelerating clinical translation. We expect this review to benefit the future development of cancer nanotherapeutics specifically from the clinical perspective.
Collapse
Affiliation(s)
- Pengfei Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510080, China
| | - Yufen Xiao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xue Sun
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xiaoning Lin
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Seyoung Koo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexey V Yaremenko
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Duotian Qin
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Omid C Farokhzad
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Seer, Inc., Redwood City, CA 94065, USA
| | - Wei Tao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Mao Z, Kim JH, Lee J, Xiong H, Zhang F, Kim JS. Engineering of BODIPY-based theranostics for cancer therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Wu D, Yin X, Zhao Y, Wang Y, Li D, Yang F, Wang L, Chen Y, Wang J, Yang H, Liu X, Liu F, Zhang T. Tinware-Inspired Aerobic Surface-Initiated Controlled Radical Polymerization (SI-Sn 0CRP) for Biocompatible Surface Engineering. ACS Macro Lett 2023; 12:71-76. [PMID: 36576724 DOI: 10.1021/acsmacrolett.2c00556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Surface anchored polymer brushes prepared by surface-initiated controlled radical polymerization (SI-CRP) have raised considerable interest in biomaterials and bioengineering. However, undesired residues of noxious transition metal catalysts critically restrain their widespread biomedical applications. Herein, we present a robust and biocompatible surface-initiated controlled radical polymerization catalyzed by a Sn(0) sheet (SI-Sn0CRP) under ambient conditions. Through this approach, microliter volumes of vinyl monomers with diverse functions (heterocyclic, ionic, hydrophilic, and hydrophobic) could be efficiently converted to homogeneous polymer brushes. The excellent controllability of SI-Sn0CRP strategy is further demonstrated by the exquisite fabrication of predetermined block and patterned polymer brushes through chain extension and photolithography, respectively. Additionally, in virtue of intrinsic biocompatibility of Sn, the resultant polymer brushes present transcendent affinity toward blood and cell, in marked contrast to those of copper-based approaches. This strategy could provide an avenue for the controllable fabrication of biocompatible polymer brushes toward biological applications.
Collapse
Affiliation(s)
- Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaodong Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Zhao
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yiwen Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Fuchao Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Long Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Yi Chen
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianing Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Liu
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Fu Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
19
|
Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Kang Y, Zhang H, Chen L, Dong J, Yao B, Yuan X, Qin D, Yaremenko AV, Liu C, Feng C, Ji X, Tao W. The marriage of Xenes and hydrogels: Fundamentals, applications, and outlook. Innovation (N Y) 2022; 3:100327. [PMID: 36263399 PMCID: PMC9573930 DOI: 10.1016/j.xinn.2022.100327] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022] Open
Abstract
Hydrogels have blossomed as superstars in various fields, owing to their prospective applications in tissue engineering, soft electronics and sensors, flexible energy storage, and biomedicines. Two-dimensional (2D) nanomaterials, especially 2D mono-elemental nanosheets (Xenes) exhibit high aspect ratio morphology, good biocompatibility, metallic conductivity, and tunable electrochemical properties. These fascinating characteristics endow numerous tunable application-specific properties for the construction of Xene-based hydrogels. Hierarchical multifunctional hydrogels can be prepared according to the application requirements and can be effectively tuned by different stimulation to complete specific tasks in a spatiotemporal sequence. In this review, the synthesis mechanism, properties, and emerging applications of Xene hydrogels are summarized, followed by a discussion on expanding the performance and application range of both hydrogels and Xenes.
Collapse
Affiliation(s)
- Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Hanjie Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Jinrui Dong
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Bin Yao
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Duotian Qin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexey V. Yaremenko
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chan Feng
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Respiratory Medicine, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Dat VD, Vu TV, Lavrentyev AA, Khyzhun OY, Hieu NN, Tong HD. First-principles study on the structural properties of 2D MXene SnSiGeN 4 and its electronic properties under the effects of strain and an external electric field. RSC Adv 2022; 12:29113-29123. [PMID: 36320756 PMCID: PMC9555058 DOI: 10.1039/d2ra05265b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/24/2022] [Indexed: 12/04/2022] Open
Abstract
The MXene SnSiGeN4 monolayer as a new member of the MoSi2N4 family was proposed for the first time, and its structural and electronic properties were explored by applying first-principles calculations with both PBE and hybrid HSE06 approaches. The layered hexagonal honeycomb structure of SnSiGeN4 was determined to be stable under dynamical effects or at room temperature of 300 K, with a rather high cohesive energy of 7.0 eV. The layered SnSiGeN4 has a Young's modulus of 365.699 N m-1 and a Poisson's ratio of 0.295. The HSE06 approach predicted an indirect band gap of around 2.4 eV for the layered SnSiGeN4. While the major donation from the N-p orbitals to the band structure makes SnSiGeN4's band gap close to those of similar 2D MXenes, the smaller distributions from the other orbitals of Sn, Si, and Ge slightly vary this band gap. The work functions of the GeN and SiN surfaces are 6.367 eV and 5.903 eV, respectively. The band gap of the layered SnSiGeN4 can be easily tuned by strain and an external electric field. A semiconductor-metal transition can occur at certain values of strain, and with an electric field higher than 5 V nm-1. The electron mobility of the layered SnSiGeN4 can reach up to 677.4 cm2 V-1 s-1, which is much higher than the hole mobility of about 52 cm2 V-1 s-1. The mentioned characteristics make the layered SnSiGeN4 a very promising material for use in electronic and photoelectronic devices, and for solar energy conversion.
Collapse
Affiliation(s)
- Vo D Dat
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, Van Lang University Ho Chi Minh City Vietnam
| | - Tuan V Vu
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, Van Lang University Ho Chi Minh City Vietnam
| | - A A Lavrentyev
- Department of Electrical Engineering and Electronics, Don State Technical University 1 Gagarin Square, 344010 Rostov-on-Don Russian Federation
| | - O Y Khyzhun
- Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine 3 Krzhyzhanovsky Street UA-03142 Kyiv Ukraine
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Hien D Tong
- Faculty of Engineering, Vietnamese-German University Binh Duong Vietnam
| |
Collapse
|
22
|
Hu Z, Song X, Ding L, Cai Y, Yu L, Zhang L, Zhou Y, Chen Y. Engineering Fe/Mn-doped zinc oxide nanosonosensitizers for ultrasound-activated and multiple ferroptosis-augmented nanodynamic tumor suppression. Mater Today Bio 2022; 16:100452. [PMID: 36245834 PMCID: PMC9557028 DOI: 10.1016/j.mtbio.2022.100452] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
As an effective tumor-therapeutic modality, ultrasound-triggered sonodynamic therapy (SDT) has been extensively explored to induce cancer cell death by activating sonosensitizers to generate reactive oxygen species (ROS). However, the traditional inorganic semiconductor-based sonosensitizers still suffer from inefficient ROS production because of the low separation efficiency of electrons and holes (e-/h+) and their fast recombination. Herein, the iron (Fe) and manganese (Mn) co-doped zinc oxide nanosonosensitizers have been rationally designed and engineered for augmenting the SDT efficiency against tumor by inducing both multiple ferroptosis and apoptosis of tumor cells. The Fe/Mn component was co-doped into the nannostructure of ZnO nanosonosensitizers, which not only catalyzed the Fenton reaction in the hydrogen peroxide-overexpressed tumor microenvironment to produce ROS, but also depleted intracellular glutathione to suppress the consumption of ROS. The doping nanostructure in the engineered nanosonosensitizers substantially augmented the SDT efficacy of ZnO nanosonosensitizers by promoting the separation and hindering the recombination of e-/h+ under ultrasound activation. The multiple ferroptosis and apoptosis in the enhanced SDT effect of Fe/Mn co-doped ZnO nanosonosensitizers were solidly demonstrated both in vitro and in vivo on tumor-bearing mice in accompany with the detailed mechanism assessment by RNA sequenching. This work provides a distinct strategy to augment the nanomedicine-enabled SDT efficency by engineering the inorganic semiconductor-based nanosonosensitizers with transitional metal doping and inducing multiple cell-death pathways including ferroptosis.
Collapse
Affiliation(s)
- Zhongqian Hu
- Department of Ultrasound and Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, PR China
| | - Xinran Song
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Shanghai, PR China
| | - Li Ding
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Shanghai, PR China
| | - Yu Cai
- Department of Ultrasound and Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, PR China
| | - Luodan Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China,Corresponding author.
| | - Lijuan Zhang
- Department of Ultrasound, The Fourth Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, PR China,Corresponding author.
| | - Yajun Zhou
- Department of Ultrasound, The Fourth Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, PR China,Corresponding author.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China,Corresponding author.
| |
Collapse
|
23
|
|
24
|
Wang D, Nie T, Huang C, Chen Z, Ma X, Fang W, Huang Y, Luo L, Xiao Z. Metal-Cyclic Dinucleotide Nanomodulator-Stimulated STING Signaling for Strengthened Radioimmunotherapy of Large Tumor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203227. [PMID: 36026551 DOI: 10.1002/smll.202203227] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Combined treatment of immunotherapy and radiotherapy shows promising therapeutic effects for the regression of a variety of cancers. However, even multi-modality therapies often fail to antagonize the regression of large tumors due to the extremely immunosuppressive tumor microenvironment (TME). Here, a radioimmunotherapeutic paradigm based on stimulator of interferon genes (STING)-dependent signaling is applied to preclude large tumor progression by utilizing the metal-cyclic dinucleotide (CDN) nanoplatform, which integrates STING agonist c-di-AMP and immunomodulating microelement manganese (II) within the tannic acid nanostructure (TMA-NPs). As observed by magnetic resonance imaging, the localized administration of TMA-NPs effectively relieves hypoxia within TME and causes radical oxygen species overproduction and apoptosis in cancer cells after exposure to X-ray irradiation. The DNA fragments released from the apoptotic cells after the combined treatment augment the production of endogenous CDNs in cancer cells, hence significantly activating the STING-mediated pathway for stronger anti-tumor immunity. The localized therapy of TMA-NPs + X-ray not only inhibits the primary large tumor progression but also retards distant tumor growth by promoting dendritic cell maturation and activating cytotoxic immune cells whil suppressing immunosuppressive cells. Therefore, this work represents the combinatorial potency of TMA-NPs and X-rays on large tumor regression through strengthened STING-mediated radioimmunotherapeutics.
Collapse
Affiliation(s)
- Duo Wang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Tianqi Nie
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Cuiqing Huang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zerong Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Xiaocong Ma
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Weiming Fang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510317, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| |
Collapse
|
25
|
Germanene-modified chitosan hydrogel for treating bacterial wound infection: An ingenious hydrogel-assisted photothermal therapy strategy. Int J Biol Macromol 2022; 221:1558-1571. [PMID: 36126816 DOI: 10.1016/j.ijbiomac.2022.09.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/22/2022]
Abstract
The elaborate design of an ingenious hydrogel-assisted photothermal therapy (PTT) platform is a promising strategy for treating bacterial wound infections. Herein, a new generation of germanene nanocrystals (Ge NCs) with excellent photothermal performance are prepared via an ice-bath sonication liquid-phase exfoliation technique. Whereafter, by crosslinking interaction between chitosan and zinc acetate, as well as self-assembly property between Ge NCs and chitosan, we successfully construct an innovative germanene-modified chitosan antimicrobial hydrogel (CS/Ge NCs0.8) integrating capture and killing bacteria performances. When co-cultured with bacteria, CS/Ge NCs0.8 hydrogel with the positive charge can adsorb and restrict bacteria in the range of PTT destruction. Once the near-infrared laser is introduced, CS/Ge NCs0.8 hydrogel will effectively convert light energy into localized heat, further inducing bacterial death. By this entirely novel modality, CS/Ge NCs0.8 hydrogel exhibits marvelous antibacterial property against E. coli and S. aureus in vitro. Furthermore, in vivo studies demonstrate that CS/Ge NCs0.8 hydrogel possesses the ability to significantly rescue S. aureus-induced skin wound infections, suggesting CS/Ge NCs0.8 hydrogel can be served as an antibacterial dressing. Strikingly, this is the first-ever report of CS/Ge NCs0.8 hydrogel in the antibacterial field, which may spur a wave of developing Ge-based biomaterials to benefit biomedical applications.
Collapse
|
26
|
Zheng S, Tian Y, Ouyang J, Shen Y, Wang X, Luan J. Carbon nanomaterials for drug delivery and tissue engineering. Front Chem 2022; 10:990362. [PMID: 36171994 PMCID: PMC9510755 DOI: 10.3389/fchem.2022.990362] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/19/2022] [Indexed: 11/14/2022] Open
Abstract
Carbon nanomaterials are some of the state-of-the-art materials used in drug-delivery and tissue-engineering research. Compared with traditional materials, carbon nanomaterials have the advantages of large specific surface areas and unique properties and are more suitable for use in drug delivery and tissue engineering after modification. Their characteristics, such as high drug loading and tissue loading, good biocompatibility, good targeting and long duration of action, indicate their great development potential for biomedical applications. In this paper, the synthesis and application of carbon dots (CDs), carbon nanotubes (CNTs) and graphene in drug delivery and tissue engineering are reviewed in detail. In this review, we discuss the current research focus and existing problems of carbon nanomaterials in order to provide a reference for the safe and effective application of carbon nanomaterials in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Shaolie Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuan Tian
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Jiang Ouyang
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Yuan Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Xiaoyu Wang, ; Jian Luan,
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang, China
- *Correspondence: Xiaoyu Wang, ; Jian Luan,
| |
Collapse
|
27
|
Kaur H, Coleman JN. Liquid-Phase Exfoliation of Nonlayered Non-Van-Der-Waals Crystals into Nanoplatelets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202164. [PMID: 35470487 DOI: 10.1002/adma.202202164] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Indexed: 05/28/2023]
Abstract
For nearly 15 years, researchers have been using liquid-phase exfoliation (LPE) to produce 2D nanosheets from layered crystals. This has yielded multiple 2D materials in a solution-processable form whose utility has been demonstrated in multiple applications. It was believed that the exfoliation of such materials is enabled by the very large bonding anisotropy of layered materials where the strength of intralayer chemical bonds is very much larger than that of interlayer van der Waals bonds. However, over the last five years, a number of papers have raised questions about our understanding of exfoliation by describing the LPE of nonlayered materials. These results are extremely surprising because, as no van der Waals gap is present to provide an easily cleaved direction, the exfoliation of such compounds requires the breaking of only chemical bonds. Here the progress in this unexpected new research area is examined. The structure and properties of nanoplatelets produced by LPE of nonlayered materials are reviewed. A number of unexplained trends are found, not least the preponderance of isotropic materials that have been exfoliated to give high-aspect-ratio nanoplatelets. Finally, the applications potential of this new class of 2D materials are considered.
Collapse
Affiliation(s)
- Harneet Kaur
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Jonathan N Coleman
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin, D02 PN40, Ireland
| |
Collapse
|
28
|
Wang D, Zhou J, Fang W, Huang C, Chen Z, Fan M, Zhang MR, Xiao Z, Hu K, Luo L. A multifunctional nanotheranostic agent potentiates erlotinib to EGFR wild-type non-small cell lung cancer. Bioact Mater 2022; 13:312-323. [PMID: 35224311 PMCID: PMC8844835 DOI: 10.1016/j.bioactmat.2021.10.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI), such as Erlotinib, have demonstrated remarkable efficacy in the treatment of non-small cell lung cancer (NSCLC) patients with mutated EGFR. However, the efficacy of EGFR-TKIs in wild-type (wt) EGFR tumours has been shown to be marginal. Methods that can sensitize Erlotinib to EGFR wild-type NSCLC remain rare. Herein, we developed a multifunctional superparamagnetic nanotheranostic agent as a novel strategy to potentiate Erlotinib to EGFR-wt NSCLCs. Our results demonstrate that the nanoparticles can co-escort Erlotinib and a vascular epithermal growth factor (VEGF) inhibitor, Bevacizumab (Bev), to EGFR-wt tumours. The nanotheranostic agent exhibits remarkable effects as an inhibitor of EGFR-wt tumour growth. Moreover, Bev normalizes the tumour embedded vessels, further promoting the therapeutic efficacy of Erlotinib. In addition, the tumour engagement of the nanoparticles and the vascular normalization could be tracked by magnetic resonance imaging (MRI). Collectively, our study, for the first time, demonstrated that elaborated nanoparticles could be employed as a robust tool to potentiate Erlotinib to EGFR-wt NSCLC, paving the way for imaging-guided nanotheranostics for refractory NSCLCs expressing EGFR wild-type genes.
Collapse
Affiliation(s)
- Duo Wang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510632, PR China
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Weimin Fang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510632, PR China
| | - Cuiqing Huang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510632, PR China
| | - Zerong Chen
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510632, PR China
| | - Meng Fan
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510632, PR China
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Zeyu Xiao
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510632, PR China
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Liangping Luo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|
29
|
Ouyang J, Rao S, Liu R, Wang L, Chen W, Tao W, Kong N. 2D materials-based nanomedicine: From discovery to applications. Adv Drug Deliv Rev 2022; 185:114268. [PMID: 35398466 DOI: 10.1016/j.addr.2022.114268] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/11/2022] [Accepted: 04/02/2022] [Indexed: 01/14/2023]
Abstract
Due to their unique physicochemical characteristics, 2D materials have attracted more and more attention in the biomedicine field. Currently, 2D materials-based nanomedicines have been extensively applied in various diseases including cancer, bacterial infection, tissue engineering, biological protection, neurodegenerative diseases, and cardiovascular disease. Depending on their various characteristics, these 2D nanomedicines exert their therapeutic effect in different ways, showing great clinical application prospects. Herein, we focus on the various biomedical applications of 2D materials-based nanomedicine. The structures and characteristics of several typical 2D nanomaterials with different configurations and their corresponding biomedical applications are first introduced. Then, the potential of 2D nanomedicines on therapeutic and imaging and their biological functionalization are discussed. Furthermore, the therapeutic potentials of 2D nanomedicines in various diseases are also comprehensively summarized. At last, the challenges and perspectives for the advancement of 2D nanomedicines in clinical transformation are outlooks.
Collapse
Affiliation(s)
- Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Siyuan Rao
- Guangzhou University of Chinese Medicine, Guangzhou, China & Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Runcong Liu
- Zhuhai Hospital Affiliated, Jinan University, Zhuhai, Guangdong 519000, China
| | - Liqiang Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China; Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Ouyang J, Xie A, Zhou J, Liu R, Wang L, Liu H, Kong N, Tao W. Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem Soc Rev 2022; 51:4996-5041. [PMID: 35616098 DOI: 10.1039/d1cs01148k] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traditional treatments such as chemotherapy and surgery usually cause severe side effects and excruciating pain. The emergence of nanomedicines and minimally invasive therapies (MITs) has brought hope to patients with malignant diseases. Especially, minimally invasive nanomedicines (MINs), which combine the advantages of nanomedicines and MITs, can effectively target pathological cells/tissues/organs to improve the bioavailability of drugs, minimize side effects and achieve painless treatment with a small incision or no incision, thereby acquiring good therapeutic effects. In this review, we provide a comprehensive review of the research status and challenges of MINs, which generally refers to the medical applications of nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Additionally, we also discuss their combined application in various fields including cancers, cardiovascular diseases, tissue engineering, neuro-functional diseases, and infectious diseases. The prospects, and potential bench-to-bedside translation of MINs are also presented in this review. We expect that this review can inspire the broad interest for a wide range of readers working in the fields of interdisciplinary subjects including (but not limited to) chemistry, nanomedicine, bioengineering, nanotechnology, materials science, pharmacology, and biomedicine.
Collapse
Affiliation(s)
- Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Angel Xie
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Runcong Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong 519000, China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haijun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Guan S, Liu X, Li C, Wang X, Cao D, Wang J, Lin L, Lu J, Deng G, Hu J. Intracellular Mutual Amplification of Oxidative Stress and Inhibition Multidrug Resistance for Enhanced Sonodynamic/Chemodynamic/Chemo Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107160. [PMID: 35146899 DOI: 10.1002/smll.202107160] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Emerging noninvasive treatments, such as sonodynamic therapy (SDT) and chemodynamic therapy (CDT), have developed as promising alternatives or supplements to traditional chemotherapy. However, their therapeutic effects are limited by the hypoxic environment of tumors. Here, a biodegradable nanocomposite-mesoporous zeolitic-imidazolate-framework@MnO2 /doxorubicin hydrochloride (mZMD) is developed, which achieves enhanced SDT/CDT/chemotherapy through promoting oxidative stress and overcoming the multidrug resistance. The mZMD decomposes under both ultrasound (US) irradiation and specific reactions in the tumor microenvironment (TME). The mZM composite structure reduces the recombination rate of e- and h+ to improve SDT. MnO2 not only oxidizes glutathione in tumor cells to enhance oxidative stress, but also converts the endogenic H2 O2 into O2 to improve the hypoxic TME, which enhances the effects of chemotherapy/SDT. Meanwhile, the generated Mn2+ catalyzes the endogenic H2 O2 into ·OH for CDT, and acts as magnetic resonance imaging agent to guide therapy. In addition, dissociated Zn2+ further breaks the redox balance of TME, and co-inhibits the expression of P-glycoprotein (P-gp) with generated ROS to overcome drug resistance. Thus, the as-prepared intelligent biodegradable mZMD provides an innovative strategy to enhance SDT/CDT/chemotherapy.
Collapse
Affiliation(s)
- Shaoqi Guan
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Chunlin Li
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, NO. 650 Xin Songjiang Road, Shanghai, 201620, China
| | - Xingyan Wang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Dongmiao Cao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Jinxia Wang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Lizhou Lin
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, NO. 650 Xin Songjiang Road, Shanghai, 201620, China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
32
|
Dat VD, Vu TV. Layered post-transition-metal dichalcogenide SnGe 2N 4 as a promising photoelectric material: a DFT study. RSC Adv 2022; 12:10249-10257. [PMID: 35425004 PMCID: PMC8972097 DOI: 10.1039/d2ra00935h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
First-principles calculations were performed to study a novel layered SnGe2N4 compound, which was found to be dynamically and thermally stable in the 2H phase, with the space group P6̄m2 and lattice constant a = 3.143 Å. Due to its hexagonal structure, SnGe2N4 exhibits isotropic mechanical properties on the x-y plane, where the Young's modulus is 335.49 N m-1 and the Poisson's ratio is 0.862. The layered 2H SnGe2N4 is a semiconductor with a direct band gap of 1.832 eV, allowing the absorption of infrared and visible light at a rate of about 104 cm-1. The DOS is characterized by multiple high peaks in the valence and conduction bands, making it possible for this semiconductor to absorb light in the ultraviolet region with an even higher rate of 105 cm-1. The band structure, with a strongly concave downward conduction band and rather flat valence band, leads to a high electron mobility of 1061.66 cm2 V-1 s-1, which is substantially greater than the hole mobility of 28.35 cm2 V-1 s-1. This difference in mobility is favorable for electron-hole separation. These advantages make layered 2H SnGe2N4 a very promising photoelectric material. Furthermore, the electronic structure of 2H SnGe2N4 responds well to strain and an external electric field due to the specificity of the p-d hybridization, which predominantly constructs the valence bands. As a result, strain and external electric fields can efficiently tune the band gap value of 2H SnGe2N4, where compressive strain widens the band gap, meanwhile tensile strain and external electric fields cause band gap reduction. In particular, the band gap is decreased by about 0.25 eV when the electric field strength increases by 0.1 V Å-1, making a semiconductor-metal transition possible for the layered SnGe2N4.
Collapse
Affiliation(s)
- Vo D Dat
- Group of Computational Physics and Simulation of Advanced Materials, Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province Vietnam
| | - Tuan V Vu
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Electrical & Electronics Engineering, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
33
|
Zhang D, You Y, Xu Y, Cheng Q, Xiao Z, Chen T, Shi C, Luo L. Facile synthesis of near-infrared responsive on-demand oxygen releasing nanoplatform for precise MRI-guided theranostics of hypoxia-induced tumor chemoresistance and metastasis in triple negative breast cancer. J Nanobiotechnology 2022; 20:104. [PMID: 35246149 PMCID: PMC8896283 DOI: 10.1186/s12951-022-01294-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/03/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hypoxia is an important factor that contributes to chemoresistance and metastasis in triple negative breast cancer (TNBC), and alleviating hypoxia microenvironment can enhance the anti-tumor efficacy and also inhibit tumor invasion. METHODS A near-infrared (NIR) responsive on-demand oxygen releasing nanoplatform (O2-PPSiI) was successfully synthesized by a two-stage self-assembly process to overcome the hypoxia-induced tumor chemoresistance and metastasis. We embedded drug-loaded poly (lactic-co-glycolic acid) cores into an ultrathin silica shell attached with paramagnetic Gd-DTPA to develop a Magnetic Resonance Imaging (MRI)-guided NIR-responsive on-demand drug releasing nanosystem, where indocyanine green was used as a photothermal converter to trigger the oxygen and drug release under NIR irradiation. RESULTS The near-infrared responsive on-demand oxygen releasing nanoplatform O2-PPSiI was chemically synthesized in this study by a two-stage self-assembly process, which could deliver oxygen and release it under NIR irradiation to relieve hypoxia, improving the therapeutic effect of chemotherapy and suppressed tumor metastasis. This smart design achieves the following advantages: (i) the O2 in this nanosystem can be precisely released by an NIR-responsive silica shell rupture; (ii) the dynamic biodistribution process of O2-PPSiI was monitored in real-time and quantitatively analyzed via sensitive MR imaging of the tumor; (iii) O2-PPSiI could alleviate tumor hypoxia by releasing O2 within the tumor upon NIR laser excitation; (iv) The migration and invasion abilities of the TNBC tumor were weakened by inhibiting the process of EMT as a result of the synergistic therapy of NIR-triggered O2-PPSiI. CONCLUSIONS Our work proposes a smart tactic guided by MRI and presents a valid approach for the reasonable design of NIR-responsive on-demand drug-releasing nanomedicine systems for precise theranostics in TNBC.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- The Shunde Affiliated Hospital, Jinan University, Foshan, 528300, China
| | - Yuanyuan You
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Yuan Xu
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Qingqing Cheng
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Tianfeng Chen
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China.
| | - Changzheng Shi
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| | - Liangping Luo
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
34
|
Li Z, Zhang X, Ouyang J, Chu D, Han F, Shi L, Liu R, Guo Z, Gu GX, Tao W, Jin L, Li J. Ca 2+-supplying black phosphorus-based scaffolds fabricated with microfluidic technology for osteogenesis. Bioact Mater 2021; 6:4053-4064. [PMID: 33997492 PMCID: PMC8089774 DOI: 10.1016/j.bioactmat.2021.04.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Effective osteogenesis remains a challenge in the treatment of bone defects. The emergence of artificial bone scaffolds provides an attractive solution. In this work, a new biomineralization strategy is proposed to facilitate osteogenesis through sustaining supply of nutrients including phosphorus (P), calcium (Ca), and silicon (Si). We developed black phosphorus (BP)-based, three-dimensional nanocomposite fibrous scaffolds via microfluidic technology to provide a wealth of essential ions for bone defect treatment. The fibrous scaffolds were fabricated from 3D poly (l-lactic acid) (PLLA) nanofibers (3D NFs), BP nanosheets, and hydroxyapatite (HA)-porous SiO2 nanoparticles. The 3D BP@HA NFs possess three advantages: i) stably connected pores allow the easy entrance of bone marrow-derived mesenchymal stem cells (BMSCs) into the interior of the 3D fibrous scaffolds for bone repair and osteogenesis; ii) plentiful nutrients in the NFs strongly improve osteogenic differentiation in the bone repair area; iii) the photothermal effect of fibrous scaffolds promotes the release of elements necessary for bone formation, thus achieving accelerated osteogenesis. Both in vitro and in vivo results demonstrated that the 3D BP@HA NFs, with the assistance of NIR laser, exhibited good performance in promoting bone regeneration. Furthermore, microfluidic technology makes it possible to obtain high-quality 3D BP@HA NFs with low costs, rapid processing, high throughput and mass production, greatly improving the prospects for clinical application. This is also the first BP-based bone scaffold platform that can self-supply Ca2+, which may be the blessedness for older patients with bone defects or patients with damaged bones as a result of calcium loss.
Collapse
Affiliation(s)
- Zhanrong Li
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Jiang Ouyang
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Dandan Chu
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Fengqi Han
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Liuqi Shi
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Ruixing Liu
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Zhihua Guo
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Grace X. Gu
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720‐1740, United States
| | - Wei Tao
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Lin Jin
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Jingguo Li
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, People's Republic of China
| |
Collapse
|
35
|
Liu Y, Li Y, Koo S, Sun Y, Liu Y, Liu X, Pan Y, Zhang Z, Du M, Lu S, Qiao X, Gao J, Wang X, Deng Z, Meng X, Xiao Y, Kim JS, Hong X. Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. Chem Rev 2021; 122:209-268. [PMID: 34664951 DOI: 10.1021/acs.chemrev.1c00553] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vivo imaging in the second near-infrared window (NIR-II, 1000-1700 nm), which enables us to look deeply into living subjects, is producing marvelous opportunities for biomedical research and clinical applications. Very recently, there has been an upsurge of interdisciplinary studies focusing on developing versatile types of inorganic/organic fluorophores that can be used for noninvasive NIR-IIa/IIb imaging (NIR-IIa, 1300-1400 nm; NIR-IIb, 1500-1700 nm) with near-zero tissue autofluorescence and deeper tissue penetration. This review provides an overview of the reports published to date on the design, properties, molecular imaging, and theranostics of inorganic/organic NIR-IIa/IIb fluorophores. First, we summarize the design concepts of the up-to-date functional NIR-IIa/IIb biomaterials, in the order of single-walled carbon nanotubes (SWCNTs), quantum dots (QDs), rare-earth-doped nanoparticles (RENPs), and organic fluorophores (OFs). Then, these novel imaging modalities and versatile biomedical applications brought by these superior fluorescent properties are reviewed. Finally, challenges and perspectives for future clinical translation, aiming at boosting the clinical application progress of NIR-IIa and NIR-IIb imaging technology are highlighted.
Collapse
Affiliation(s)
- Yishen Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yang Li
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yixuan Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Xing Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Laboratory of Plant Systematics and Evolutionary Biology, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yanna Pan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhiyun Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Mingxia Du
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Siyu Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xue Qiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Jianfeng Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zixin Deng
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuling Xiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Xuechuan Hong
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
36
|
Zhou J, Zhang Z, Joseph J, Zhang X, Ferdows BE, Patel DN, Chen W, Banfi G, Molinaro R, Cosco D, Kong N, Joshi N, Farokhzad OC, Corbo C, Tao W. Biomaterials and nanomedicine for bone regeneration: Progress and future prospects. EXPLORATION (BEIJING, CHINA) 2021; 1:20210011. [PMID: 37323213 PMCID: PMC10190996 DOI: 10.1002/exp.20210011] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/12/2021] [Indexed: 06/14/2023]
Abstract
Bone defects pose a heavy burden on patients, orthopedic surgeons, and public health resources. Various pathological conditions cause bone defects including trauma, tumors, inflammation, osteoporosis, and so forth. Auto- and allograft transplantation have been developed as the most commonly used clinic treatment methods, among which autologous bone grafts are the golden standard. Yet the repair of bone defects, especially large-volume defects in the geriatric population or those complicated with systemic disease, is still a challenge for regenerative medicine from the clinical perspective. The fast development of biomaterials and nanomedicine favors the emergence and promotion of efficient bone regeneration therapies. In this review, we briefly summarize the progress of novel biomaterial and nanomedical approaches to bone regeneration and then discuss the current challenges that still hinder their clinical applications in treating bone defects.
Collapse
Affiliation(s)
- Jun Zhou
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
| | - Zhongyang Zhang
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
| | - John Joseph
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
| | - Xingcai Zhang
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- School of EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Bijan Emiliano Ferdows
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
- Pomona CollegeClaremontCaliforniaUSA
| | - Dylan Neal Patel
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
- Jericho High SchoolJerichoNew YorkUSA
| | - Wei Chen
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
| | - Giuseppe Banfi
- IRCCS GaleazziMilanoItaly
- Università Vita e Salute San RaffaeleMilanoItaly
| | | | - Donato Cosco
- Department of Health ScienceCampus Universitario‐Germaneto“Magna Græcia” University of CatanzaroCatanzaroItaly
| | - Na Kong
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
| | - Nitin Joshi
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
| | - Omid C. Farokhzad
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
| | - Claudia Corbo
- School of Medicine and SurgeryNanomedicine Center NanomibUniversity of Milano‐BicoccaVedano al LambroItaly
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
37
|
Liu Y, Hong H, Xue J, Luo J, Liu Q, Chen X, Pan Y, Zhou J, Liu Z, Chen T. Near-Infrared Radiation-Assisted Drug Delivery Nanoplatform to Realize Blood-Brain Barrier Crossing and Protection for Parkinsonian Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37746-37760. [PMID: 34318658 DOI: 10.1021/acsami.1c12675] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mitochondrial dysfunction, which is directly involved in Parkinson's disease (PD), is characterized by the production of reactive oxygen species (ROS) and aberrant energy metabolism. Thus, regulating mitochondrial function might be an effective strategy to treat PD. However, the blood-brain barrier (BBB) presents a significant challenge for the intracerebral delivery of drugs. Here, we synthesized a zeolitic imidazolate framework 8-coated Prussian blue nanocomposite (ZIF-8@PB), which was encapsulated with quercetin (QCT), a natural antioxidant, to treat PD. ZIF-8@PB-QCT exhibited superior near-infrared radiation (NIR) response and penetrated through the BBB to the site of mitochondrial damage guided by the photothermal effect. In the mice model of PD, the QCT released from ZIF-8@PB-QCT significantly increased the adenosine triphosphate levels, reduced the oxidative stress levels, and reversed dopaminergic neuronal damage as well as PD-related behavioral deficits without any damage to the normal tissues. Furthermore, we explored the underlying neuroprotective mechanism of ZIF-8@PB-QCT that was mediated by activating the PI3K/Akt signaling pathway. Thus, combined with noninvasive NIR radiation, the biocompatible ZIF-8@PB-QCT nanocomposite could be used to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jincheng Xue
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiao Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingwei Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zeming Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
38
|
Designing highly stable ferrous selenide-black phosphorus nanosheets heteronanostructure via P-Se bond for MRI-guided photothermal therapy. J Nanobiotechnology 2021; 19:201. [PMID: 34229725 PMCID: PMC8262019 DOI: 10.1186/s12951-021-00905-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background The design of stable and biocompatible black phosphorus-based theranostic agents with high photothermal conversion efficiency and clear mechanism to realize MRI-guided precision photothermal therapy (PTT) is imminent. Results Herein, black phosphorus nanosheets (BPs) covalently with mono-dispersed and superparamagnetic ferrous selenide (FeSe2) to construct heteronanostructure nanoparticles modified with methoxy poly (Ethylene Glycol) (mPEG-NH2) to obtain good water solubility for MRI-guided photothermal tumor therapy is successfully designed. The mechanism reveals that the enhanced photothermal conversion achieved by BPs-FeSe2-PEG heteronanostructure is attributed to the effective separation of photoinduced carriers. Besides, through the formation of the P-Se bond, the oxidation degree of FeSe2 is weakened. The lone pair electrons on the surface of BPs are occupied, which reduces the exposure of lone pair electrons in air, leading to excellent stability of BPs-FeSe2-PEG. Furthermore, the BPs-FeSe2-PEG heteronanostructure could realize enhanced T2-weighted imaging due to the aggregation of FeSe2 on BPs and the formation of hydrogen bonds, thus providing accurate PTT guidance and generating hyperthermia to inhabit tumor growth under NIR laser with negligible toxicity in vivo. Conclusions Collectively, this work offers an opportunity for fabricating BPs-based heteronanostructure nanomaterials that could simultaneously enhance photothermal conversion efficiency and photostability to realize MRI-guided cancer therapy. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00905-5.
Collapse
|
39
|
Luo J, Fan M, Xiong L, Hao Q, Jiang M, He Q, Su C. 1T-Phase Dirac Semimetal PdTe 2 Nanoparticles for Efficient Photothermal Therapy in the NIR-II Biowindow. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27963-27971. [PMID: 34110773 DOI: 10.1021/acsami.1c06740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
1T-phase transition-metal dichalcogenides (TMDs) nanomaterials are one type of emerging and promising near-infrared II (NIR-II) photothermal agents (PTAs) derived from their distinct metallic electronic structure, but it is still challenging to synthesize these nanomaterials. Herein, PdTe2 nanoparticles (PTNs) with a 1T crystal symmetry and around 50 nm in size are prepared by an electrochemical exfoliation method, and the corresponding photothermal performances irradiated under a NIR-II laser have been explored. The encapsulation of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG) endows PTNs with water solubility, enhanced photothermal stability, and high biocompatibility. Notably, PTN/DSPE-PEG displays a potent absorbance through the NIR-II zone and considerable photothermal conversion efficiency, which is up to 68% when irradiated with a 1060 nm laser. With these unique photothermal properties, excellent in vitro and in vivo tumor inhibition effects of PTN/DSPE-PEG have been achieved under the irradiation of a NIR-II (1060 nm) laser without visible toxicity to normal tissues, suggesting that it is an efficient NIR-II photothermal nanoagent.
Collapse
Affiliation(s)
- Jingjing Luo
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, No. 3688 Nanhai Avenue, Shenzhen 518060, China
| | - Mingjian Fan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Shenzhen 518060, China
| | - Liwei Xiong
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qiaoyan Hao
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, No. 3688 Nanhai Avenue, Shenzhen 518060, China
| | - Mengna Jiang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Shenzhen 518060, China
| | - Qianjun He
- School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Shenzhen 518060, China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, No. 3688 Nanhai Avenue, Shenzhen 518060, China
| |
Collapse
|
40
|
Wei Q, He J, Wang S, Hua S, Qi Y, Li F, Ling D, Zhou M. Low-dose X-ray enhanced tumor accumulation of theranostic nanoparticles for high-performance bimodal imaging-guided photothermal therapy. J Nanobiotechnology 2021; 19:155. [PMID: 34039369 PMCID: PMC8152352 DOI: 10.1186/s12951-021-00875-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Theranostic nanoparticles (NPs) have achieved rapid development owing to their capacity for personalized multimodal diagnostic imaging and antitumor therapy. However, the efficient delivery and bulk accumulation of NPs in tumors are still the decisive factors in improving therapeutic effect. It is urgent to seek other methods to alters tumor microenvironment (like vascular permeability and density) for enhancing the efficiency of nanoparticles delivery and accumulation at the tumor site. METHODS Herein, we developed a Raman-tagged hollow gold nanoparticle (termed as HAuNP@DTTC) with surface-enhanced Raman scattering (SERS) property, which could be accumulated efficiently in tumor site with the pre-irradiation of low-dose (3 Gy) X-ray and then exerted highly antitumor effect in breast cancer model. RESULTS The tumor growth inhibition (TGI) of HAuNP@DTTC-induced photothermal therapy (PTT) was increased from 60% for PTT only to 97%, and the lethal distant metastasis of 4T1 breast cancer (such as lung and liver) were effectively inhibited under the X-ray-assisted PTT treatment. Moreover, with the strong absorbance induced by localized surface plasmon resonance in near-infrared (NIR) region, the signals of Raman/photoacoustic (PA) imaging in tumor was also significantly enhanced after the administration of HAuNP@DTTC, indicating it could be used as the Raman/PA imaging and photothermal agent simultaneously under 808 nm laser irradiation. CONCLUSIONS Our studied of the as-prepared HAuNP@DTTC integrated the Raman/PA imaging and PTT functions into the single platform, and showed the good prospects for clinical applications especially with the low-dose X-ray irradiation as an adjuvant, which will be a productive strategy for enhancing drug delivery and accumulation in tumor theranostics.
Collapse
Affiliation(s)
- Qiaolin Wei
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
- Institute of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jian He
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Shuaifei Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shiyuan Hua
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Yuchen Qi
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China.
- State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
41
|
Gao P, Xiao Y, YuliangWang, Li L, Li W, Tao W. Biomedical applications of 2D monoelemental materials formed by group VA and VIA: a concise review. J Nanobiotechnology 2021; 19:96. [PMID: 33794908 PMCID: PMC8012749 DOI: 10.1186/s12951-021-00825-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/06/2021] [Indexed: 01/10/2023] Open
Abstract
The development of two-dimensional (2D) monoelemental nanomaterials (Xenes) for biomedical applications has generated intensive interest over these years. In this paper, the biomedical applications using Xene-based 2D nanomaterials formed by group VA (e.g., BP, As, Sb, Bi) and VIA (e.g., Se, Te) are elaborated. These 2D Xene-based theranostic nanoplatforms confer some advantages over conventional nanoparticle-based systems, including better photothermal conversion, excellent electrical conductivity, and large surface area. Their versatile and remarkable features allow their implementation for bioimaging and theranostic purposes. This concise review is focused on the current developments in 2D Xenes formed by Group VA and VIA, covering the synthetic methods and various biomedical applications. Lastly, the challenges and future perspectives of 2D Xenes are provided to help us better exploit their excellent performance and use them in practice.
Collapse
Affiliation(s)
- Ping Gao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Yufen Xiao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - YuliangWang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, 132013, China.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|