1
|
Kumar RS, Tamilarasi S, Stephan AM, Kim AR, Yoo DJ. CrS Doped MOF-Derived Carbon Implanted CoNi Particles as Exceedingly Effectual Oxygen Electrocatalysts in Sustainable Zinc-Air Batteries. SMALL METHODS 2025; 9:e2401515. [PMID: 39981777 DOI: 10.1002/smtd.202401515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/29/2025] [Indexed: 02/22/2025]
Abstract
Utilizing affordable bifunctional catalysts per strong ORR/OER (oxygen reduction and evolution reactions) ability and superior zinc-air battery performance is yet difficult due to the diverse mechanisms of ORR/OER. This work uses CoNi-MOF (metal-organic framework) as a self-template to yield the CrS doped CoNi/C bifunctional catalyst. Comparable to Pt/C and IrO2 commercial catalysts, the CrS@CoNi/C catalyst exhibits improved electrocatalytic activity toward OER and ORR due to its linked pellet architecture and intact metal sulfide@carbon structure. The CrS@CoNi/C catalyst has the most intriguing ORR/OER performance, with a significantly lower potential and an exceptionally extended cycle duration (E1/2 = 0.72 V and η10 = 260 mV). The CrS@CoNi/C-based aqueous zinc-air battery shows long-term charge-discharge stability (more than 100h/600 cycles) together with significant specific capacity (789.7 mAh g-1 Zn) and power density (132.2 mW cm-2). Most significantly, after charge-discharge stability, the recharged CrS@CoNi/C-based alkaline zinc-air battery has been employed to exhibit less structural deformation for the cathode and more zincate ion production for the anode side electrodes, which is employed through TEM analysis.
Collapse
Affiliation(s)
- Ramasamy Santhosh Kumar
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - S Tamilarasi
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Arul Manuel Stephan
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Ae Rhan Kim
- Department of Life Science, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Dong Jin Yoo
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Department of Life Science, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
2
|
Ding H, Liu D, Liu X, Zhang L, Xu G. Tuning the electronic-state of metal cobalt/cobalt iron alloy hetero-interface embedded in nitrogen-doped carbon nanotube arrays for boosting electrocatalytic overall water splitting. J Colloid Interface Sci 2025; 682:392-402. [PMID: 39631311 DOI: 10.1016/j.jcis.2024.11.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Maximizing the utilization of active sites and tuning the electronic-state are crucial yet extremely challenging in enhancing the ability of alloy-based catalysts to catalyze hydrogen and oxygen evolution reactions (HER and OER). Here, the 3D self-supported N-doped carbon nanotube arrays (NCNTAs) was synthesized on Ni foam by the drop-casting and calcination method, where the metal Co and Co7Fe3 alloy were enclosed at the NCNT tip (denoted as Co/Co7Fe3@NCNT/NF). The Co/Co7Fe3 hetero-interface formation led to changes in the electronic state, which can optimize the adsorption free energy of reaction intermediates and thereby boost the intrinsic catalytic performance. The well-dispersed carbon nanotube arrays with superhydrophilic and superaerophobic characteristic promotes electrolyte permeation and bubbles escape. Therefore, the optimized Co/Co7Fe3-10@NCNT/NF exhibits superior bifunctional activities with overpotential of 93 and 174 mV at 10 mA cm-2 for HER and OER, respectively. For overall water splitting (OWS), the assembled dual electrode device with Co/Co7Fe3-10@NCNT/NF only requires a low voltage of 1.56 V to achieve 10 mA cm-2 and stabilizes for 24 h at 100 mA cm-2. The result underscores the importance of hetero-interface electronic effect and carbon nanotube arrays in catalytic water splitting, providing valuable insights for the design of more advanced bifunctional electrocatalysts for OWS.
Collapse
Affiliation(s)
- Hui Ding
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Dejiang Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Xia Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Li Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China; College of Chemical Engineering, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Guancheng Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
3
|
Li A, Tan Y, Wang Y, Shen S, Jia R, Cheng Y, Cong C, Zhang Y, Guan C, Cheng C. A General Sol-Gel Route to Fabricate Large-Area Highly-Ordered Metal Oxide Arrays Toward High-Performance Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409620. [PMID: 39654338 DOI: 10.1002/smll.202409620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/18/2024] [Indexed: 02/06/2025]
Abstract
A universal method is demonstrated for the fabrication of large-area highly ordered microporous arrayed metal oxides based on a high-quality self-assembly opal template combined with a sucrose-assisted sol-gel technique. Sucrose as a chelating agent optimizes precursor infiltration and regulates both oxide formation and the melting process of polystyrene templates, thus preventing crack formation during infiltration and calcination. As a result, over 20 metal element-based 3DOM oxides with arbitrary compositions are successfully prepared. Therein, a champion electrocatalyst RuCoOx-IO exhibits outstanding bifunctional oxygen activity with an ultra-narrow oxygen potential gap of 0.598 V, and the Zn-air batteries based on RuCoOx-IO air cathode operates for 1380 h under fast-charging cycling (50 mA cm-2), and reaches a high energy efficiency of 69.5% in discharge-charge cycling. In situ spectroscopy characterizations and density functional theory reveal that the rational construction of Ru─O─Co heterointerface with decoupled multi-active sites and mutual coupling of RuO2 and Co3O4 facilitate interfacial electron transfer, leading to an optimized d-band centers of active Ru/Co and a weakened spin interaction between oxygen intermediates and Co sites, so as to enhance the adsorption ability of *OOH on interfacial Co sites for fast ORR kinetics while favoring the desorption of oxygen intermediates on interfacial Ru during OER.
Collapse
Affiliation(s)
- Aoshuang Li
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yan Tan
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yijie Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shuwen Shen
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Runlong Jia
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yiwen Cheng
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chunxiao Cong
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Yuzhong Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Cao Guan
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chuanwei Cheng
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
4
|
Song CY, Huang CJ, Xu HM, Zhang ZJ, Shuai TY, Zhan QN, Li GR. High-Performance Bifunctional Electrocatalysts for Flexible and Rechargeable Zn-Air Batteries: Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402761. [PMID: 38953299 DOI: 10.1002/smll.202402761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Flexible rechargeable Zn-air batteries (FZABs) exhibit high energy density, ultra-thin, lightweight, green, and safe features, and are considered as one of the ideal power sources for flexible wearable electronics. However, the slow and high overpotential oxygen reaction at the air cathode has become one of the key factors restricting the development of FZABs. The improvement of activity and stability of bifunctional catalysts has become a top priority. At the same time, FZABs should maintain the battery performance under different bending and twisting conditions, and the design of the overall structure of FZABs is also important. Based on the understanding of the three typical configurations and working principles of FZABs, this work highlights two common strategies for applying bifunctional catalysts to FZABs: 1) powder-based flexible air cathode and 2) flexible self-supported air cathode. It summarizes the recent advances in bifunctional oxygen electrocatalysts and explores the various types of catalyst structures as well as the related mechanistic understanding. Based on the latest catalyst research advances, this paper introduces and discusses various structure modulation strategies and expects to guide the synthesis and preparation of efficient bifunctional catalysts. Finally, the current status and challenges of bifunctional catalyst research in FZABs are summarized.
Collapse
Affiliation(s)
- Chen-Yu Song
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
5
|
Tian Z, Liang Y, Chen K, Gao J, Lu Z, Hu X, Ding Y, Wen Z. Advanced Hollow Cubic FeCo-N-C Cathode Electrocatalyst for Ultrahigh-Power Aluminum-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310694. [PMID: 38545993 DOI: 10.1002/smll.202310694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/22/2024] [Indexed: 08/02/2024]
Abstract
The exploration of electrocatalysts toward oxygen reduction reaction (ORR) is pivotal in the development of diverse batteries and fuel cells that rely on ORR. Here, a FeCo-N-C electrocatalyst (FeCo-HNC) featuring with atomically dispersed dual metal sites (Fe-Co) and hollow cubic structure is reported, which exhibits high activity for electrocatalysis of ORR in alkaline electrolyte, as evidenced by a half-wave potential of 0.907 V, outperforming that of the commercial Pt/C catalyst. The practicality of such FeCo-HNC catalyst is demonstrated by integrating it as the cathode catalyst into an alkaline aluminum-air battery (AAB) paring with an aluminum plate serving as the anode. This AAB demonstrates an unprecedented power density of 804 mW cm-2 in ambient air and an impressive 1200 mW cm-2 in an oxygen-rich environment. These results not only establish a new benchmark but also set a groundbreaking record for the highest power density among all AABs reported to date. Moreover, they stand shoulder to shoulder with state-of-the-art H2-O2 fuel cells. This AAB exhibits robust stability with continuous operation for an impressive 200 h. This groundbreaking achievement underscores the immense potential and forward strides that the present work brings to the field.
Collapse
Affiliation(s)
- Zhidong Tian
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350000, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yiqi Liang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Kai Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Jiyuan Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhiwen Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xiang Hu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yichun Ding
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
6
|
Gao Y, Liu L, Jiang Y, Yu D, Zheng X, Wang J, Liu J, Luo D, Zhang Y, Shi Z, Wang X, Deng YP, Chen Z. Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries. NANO-MICRO LETTERS 2024; 16:162. [PMID: 38530476 PMCID: PMC11250732 DOI: 10.1007/s40820-024-01366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/26/2024] [Indexed: 03/28/2024]
Abstract
Zinc-air batteries (ZABs) are promising energy storage systems because of high theoretical energy density, safety, low cost, and abundance of zinc. However, the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs. Therefore, feasible and advanced non-noble-metal electrocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction. In this review, we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field. Then, we discussed the working mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design, crystal structure tuning, interface strategy, and atomic engineering. We also included theoretical studies, machine learning, and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions. Finally, we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.
Collapse
Affiliation(s)
- Yunnan Gao
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Ling Liu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yi Jiang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| | - Dexin Yu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Xiaomei Zheng
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Jiayi Wang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Jingwei Liu
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Dan Luo
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yongguang Zhang
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| | - Zhenjia Shi
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Xin Wang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, People's Republic of China
| | - Ya-Ping Deng
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Zhongwei Chen
- Power Battery and Systems Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| |
Collapse
|
7
|
Kumar G, Das SK, Nayak C, Dey RS. Pd "Kills Two Birds with One Stone" for the Synthesis of Catalyst: Dual Active Sites of Pd Triggers the Kinetics of O 2 Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307110. [PMID: 37857577 DOI: 10.1002/smll.202307110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Noble metal-based catalyst, despite their exorbitant cost, are the only successful catalyst for bifunctional oxygen electrocatalysis owing to their capability to drive forward the reaction rate kinetically. Therefore, it is desirable to diminish the noble metal loading without any compromise in the catalyst performance. In this study, the aim to achieve two goals with one action via a single-step route to have ultra-low loading of Pd in the catalyst. The Pd is used as a catalyst for C─C bond formation followed by complexation reactions or vice versa, in conventional Suzuki-Miyaura cross-coupling (SMCC) reaction, which yields a Pd-based porous organic polymer. Interestingly, it is found that dispersed Pd nanocluster (PdNC ) is present together with Pd single atom doped into nanocarbon (Pd-NC) matrix in the catalyst (PdNC /Pd-NC800 ) that obtained after pyrolysis of the porous polymer. The catalyst exhibits remarkable bifunctional activity and durability towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Further, it is studied that the in situ attenuated total reflection infrared (ATR-IR) spectroscopy at different electrochemical potentials during ORR and OER to observe the reaction intermediates. The homemade zinc-air battery with the catalyst displayed great performance, establishing the significance of PdNC /Pd-NC800 as a bifunctional oxygen electrocatalyst.
Collapse
Affiliation(s)
- Greesh Kumar
- Institute of Nano Science and Technology, Sector-81, Knowledge city, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Sabuj Kanti Das
- Institute of Nano Science and Technology, Sector-81, Knowledge city, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Chandrani Nayak
- Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ramendra Sundar Dey
- Institute of Nano Science and Technology, Sector-81, Knowledge city, S.A.S. Nagar, Mohali, Punjab, 140306, India
| |
Collapse
|
8
|
Chen J, Qian J. Insights on MOF-derived metal-carbon nanostructures for oxygen evolution. Dalton Trans 2024. [PMID: 38269643 DOI: 10.1039/d3dt04263d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Electrochemical water splitting has been regarded a promising method for the production of green hydrogen, addressing the need for efficient energy conversion and storage. However, it is severely hindered by the oxygen evolution reaction (OER) because of its multi-step four-electron transfer pathway with sluggish reaction kinetics. Microporous metal-organic-frameworks (MOFs), by virtue of large specific surface area, high porosity, tunable composition and morphology, find widespread use as precursors of metal-carbon nanostructures. The resulting carbon nanomaterials can well inherit the characteristics and advantages of the crystalline MOF precursors, and exhibit versatile application prospects in the fields of environment and energy, particularly in OER. Herein, a meticulous overview of the synthesis strategy for MOF-derived metal-carbon nanostructures and the origins of their enhanced OER properties has been demonstrated. We comprehensively illustrate these aspects across three dimensions: MOF selection, metal introduction, and carbon structures. Finally, the challenges and future prospects for this emerging field will be presented.
Collapse
Affiliation(s)
- Junliang Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China.
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China.
| |
Collapse
|
9
|
Dai L, Feng C, Luo Y, Wan J, Sun Y, Zheng Y, Zhang H, Wang Y. CoFe Alloys Dispersed on Se, N Co-Doped Graphitic Carbon as Efficient Bifunctional Catalysts for Zn-Air Batteries. Chemistry 2024; 30:e202303173. [PMID: 37880198 DOI: 10.1002/chem.202303173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
The development of a stable and efficient non-noble metal catalyst with both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is paramount to achieving the widespread application of Zn-air batteries (ZABs) but remains a great challenge. Herein, a novel Co3 Fe7 alloy nanoparticle dispersed on Se, N co-doped graphitic carbon (denoted as CoFe/Se@CN) was prepared through a facile hydrothermal and pyrolysis process. The synthesized CoFe/Se@CN exhibits outstanding ORR and OER properties with an ultralow potential gap of 0.625 V, which is mainly attributed to the abundant porous structure, the rich structural defects formed by doping Se atoms, and the strong synergistic effects between the CoFe alloys and graphitic carbon nanosheet. Furthermore, the ZAB fabricated by CoFe/Se@CN shows a high peak power density of 160 mW cm-2 and a large specific capacity of 802 mA h g-1 with favorable cycling stability, outperforming that of Pt/C+RuO2 . Our study offers a plausible strategy to explore bifunctional carbon-based materials with efficient electrocatalytic properties for rechargeable ZABs.
Collapse
Affiliation(s)
- Longhua Dai
- School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 400044, Chongqing City, P. R. China
| | - Chuanzhen Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 400044, Chongqing City, P. R. China
| | - Yangjun Luo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 400044, Chongqing City, P. R. China
| | - Jin Wan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 400044, Chongqing City, P. R. China
| | - Yue Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 400044, Chongqing City, P. R. China
| | - Yanan Zheng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 400044, Chongqing City, P. R. China
| | - Huijuan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 400044, Chongqing City, P. R. China
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, 010022, Huhehaote, P. R. China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 400044, Chongqing City, P. R. China
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, 010022, Huhehaote, P. R. China
| |
Collapse
|
10
|
Liu J, Yu J, Wang X, Cheng M, Sun S, Hu S, Li C, Wang Z. Core-Shell ZIF-8@ZIF-67-Derived Cobalt Nanoparticle-Embedded Nanocage Electrocatalyst with Excellent Oxygen Reduction Performance for Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59482-59493. [PMID: 38090752 DOI: 10.1021/acsami.3c14231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Metal-nitrogen-carbon (M-N-C) catalysts obtained from zeolitic imidazolate frameworks (ZIFs) have great potential in the oxygen reduction reaction (ORR). Herein, based on the same three-dimensional (3D) topological structure of ZIF-67 and ZIF-8, ZIF-67 is grown on the ZIF-8 surface by the epitaxial growth method, and ZIF-8 is used as a sacrificial template to obtain a Co-embedded layered porous carbon nanocage (CoPCN) electrocatalyst. Meanwhile, the self-sacrificing template effectively improves the specific surface area of the porous structure and reduces the depletion of active sites. The CoPCN shows a high half-wave potential of 0.885 V and superior stability as well as excellent methanol resistance. Theoretical calculations demonstrate that the Co-N1-C2 sites of CoPCN effectively reduce the energy barrier of ORR. In addition, a zinc-air battery (ZAB) based on the CoPCN exhibits excellent peak power density (90 mW cm-2) and superior cycle performance. This work presents a novel idea in the design of ZIF precursor systems to synthesize efficient ORR catalysts.
Collapse
Affiliation(s)
- Junhao Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Jinshi Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiaoyan Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Meng Cheng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Shuangqing Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Songqing Hu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Chunling Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zhikun Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
11
|
Wang K, Wang L, Huang J, Chen Y, Liu X, Yang T, Wei G, Gao S. Structural design of FeCo alloy implanted into N,S co-doped carbon nanotubes via self-catalyzed growth for advanced liquid and flexible all-state-state Zn-air battery. NANOSCALE 2023; 15:18395-18406. [PMID: 37933493 DOI: 10.1039/d3nr04491b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The introduction of transition bimetallic alloys can effectively improve oxygen reduction reaction (ORR) activity. However, the alloy particles are inclined to dissolve under harsher conditions, resulting in a serious decrease in catalytic activity and stability. Herein, an efficient ORR catalyst, FeCo alloy nanoparticles (NPs) encapsulated in N,S co-doped carbon nanotubes (FeCo10-NSCNTs), was developed through a self-catalyzed growth strategy. Due to the delicate structural design, the N,S co-doped structure can effectively improve the ORR performance by modulating the electronic properties and surface polarity of the carbon substrate, and the randomly connected carbon nanotube structure with large specific surface area can further enhance the adsorption and dissociation of gas molecules, accelerating the kinetics of gas participation in the reaction. Carbon-encapsulated FeCo alloys are beneficial for improving catalytic activity and durability. The FeCo10-NSCNTs displayed excellent ORR activity with a half-wave potential of E1/2 = 0.84 V and robust stability of 13 k cycles. More impressively, the assembled liquid-state Zn-air battery (ZAB) with FeCo10-NSCNTs as the air-electrode delivers an output power density of 146.68 mW cm-2 along with excellent operation durability. The assembled all-solid ZAB has good cyclic stability under 0-180° bending conditions. The synthesized N,S co-doping, carbon nanotubes and FeCo alloys provide important guidance for the construction of cheap non-noble metal-carbon hybrid nanomaterials.
Collapse
Affiliation(s)
- Kun Wang
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China.
| | - Liyuan Wang
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China.
| | - Jinrui Huang
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China.
| | - Ye Chen
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China.
| | - Xupo Liu
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China.
| | - Tianfang Yang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P.R. China
| | - Gangya Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P.R. China
| | - Shuyan Gao
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P.R. China
| |
Collapse
|
12
|
Niu Y, Jiang G, Gong S, Liu X, Shangguan E, Li L, Chen Z. Engineering of heterointerface of ultrathin carbon nanosheet-supported CoN/MnO enhances oxygen electrocatalysis for rechargeable Zn-air batteries. J Colloid Interface Sci 2023; 656:346-357. [PMID: 37995404 DOI: 10.1016/j.jcis.2023.11.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Designing bifunctional electrocatalysts with outstanding reactivity and durability towards the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has remained a long-term aim for metal-air batteries. Achieving the high level of fusion between two distinct metal components to form bifunctional catalysts with optimized heterointerfaces and well-defined morphology holds noteworthy implications in the enhancement of electrocatalytic activity yet challenging. Herein, the fabrication of numerous heterointerfaces of CoN/MnO is successfully realized within ultrathin carbon nanosheets via a feasible self-templating synthesis strategy. Experimental results and theoretic calculations verify that the interfacial electron transfer from CoN to MnO at the heterointerface engenders an ameliorated charge transfer velocity, finely tuned energy barriers concerning reaction intermediates and ultimately accelerated reaction kinetics. The as-prepared CoN/MnO@NC demonstrates exceptional bifunctional catalytic performance, excelling in both OER and ORR showcasing a low reversible overpotential of 0.69 V. Furthermore, rechargeable liquid and quasi-solid-state flexible Zn-air batteries employing CoN/MnO@NC as the air-cathode deliver remarkable endurance and elevated power density, registering values of 153 and 116 mW cm-2 respectively and exceeding Pt/C + RuO2 counterparts and those reported in literature. Deeply exploring the effect of electron-accumulated heterointerfaces on catalytic activity would contribute wisdom to the development of bifunctional electrocatalysts for rechargeable metal-air batteries.
Collapse
Affiliation(s)
- Yanli Niu
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China; School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Gang Jiang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shuaiqi Gong
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuan Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Enbo Shangguan
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Linpo Li
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Zuofeng Chen
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
13
|
Hu B, Huang K, Tang B, Lei Z, Wang Z, Guo H, Lian C, Liu Z, Wang L. Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution. NANO-MICRO LETTERS 2023; 15:217. [PMID: 37768413 PMCID: PMC10539274 DOI: 10.1007/s40820-023-01182-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023]
Abstract
The hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide (2H-MoS2) presents a significant hurdle in realizing its full potential applications. Here, we utilize theoretical calculations to predict possible functionalized graphene quantum dots (GQDs), which can enhance HER activity of bulk MoS2. Subsequently, we design a functionalized GQD-induced in-situ bottom-up strategy to fabricate near atom-layer 2H-MoS2 nanosheets mediated with GQDs (ALQD) by modulating the concentration of electron withdrawing/donating functional groups. Experimental results reveal that the introduction of a series of functionalized GQDs during the synthesis of ALQD plays a crucial role. Notably, the higher the concentration and strength of electron-withdrawing functional groups on GQDs, the thinner and more active the resulting ALQD are. Remarkably, the synthesized near atom-layer ALQD-SO3 demonstrate significantly improved HER performance. Our GQD-induced strategy provides a simple and efficient approach for expanding the catalytic application of MoS2. Furthermore, it holds substantial potential for developing nanosheets in other transition-metal dichalcogenide materials.
Collapse
Affiliation(s)
- Bingjie Hu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, People's Republic of China
| | - Kai Huang
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Bijun Tang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhendong Lei
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, People's Republic of China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, People's Republic of China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, People's Republic of China.
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
14
|
Wang X, Xu X, Nie Y, Wang R, Zou J. Electronic-State Modulation of Metallic Co-Assisted Co 7 Fe 3 Alloy Heterostructure for Highly Efficient and Stable Overall Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301961. [PMID: 37219005 PMCID: PMC10401179 DOI: 10.1002/advs.202301961] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Indexed: 05/24/2023]
Abstract
Manipulating electronic structure of alloy-based electrocatalysts can eagerly regulate its catalytic efficiency and corrosion resistance for water splitting and fundamentally understand the catalytic mechanisms for oxygen/hydrogen evolution reactions (OER/HER). Herein, the metallic Co-assisted Co7 Fe3 alloy heterojunction (Co7 Fe3 /Co) embeds in a 3D honeycomb-like graphitic carbon is purposely constructed as a bifunctional catalyst for overall water splitting. As-marked Co7 Fe3 /Co-600 displays the excellent catalytic activities in alkaline media with low overpotentials of 200 mV for OER and 68 mV for HER at 10 mA cm-2 . Theoretical calculations reveal the electronic redistribution after coupling Co with Co7 Fe3 , which likely forms the electron-rich state over interfaces and the electron-delocalized state at Co7 Fe3 alloy. This process changes the d-band center position of Co7 Fe3 /Co and optimizes the affinity of catalyst surface to intermediates, thus promoting the intrinsic OER/HER activities. For overall water splitting, the electrolyzer only requires a cell voltage of 1.50 V to achieve 10 mA cm-2 and dramatically retains 99.1% of original activity after 100 h of continuous operation. This work proposes an insight into modulation of electronic state in alloy/metal heterojunctions and explores a new path to construct more competitive electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Functional Inorganic Material ChemistryMinistry of Education of the People's Republic of ChinaSchool of Chemistry and Materials ScienceHeilongjiang UniversityHarbin150080China
| | - Xiaoqin Xu
- Key Laboratory of Functional Inorganic Material ChemistryMinistry of Education of the People's Republic of ChinaSchool of Chemistry and Materials ScienceHeilongjiang UniversityHarbin150080China
| | - Yao Nie
- Key Laboratory of Functional Inorganic Material ChemistryMinistry of Education of the People's Republic of ChinaSchool of Chemistry and Materials ScienceHeilongjiang UniversityHarbin150080China
| | - Ruihong Wang
- Key Laboratory of Functional Inorganic Material ChemistryMinistry of Education of the People's Republic of ChinaSchool of Chemistry and Materials ScienceHeilongjiang UniversityHarbin150080China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material ChemistryMinistry of Education of the People's Republic of ChinaSchool of Chemistry and Materials ScienceHeilongjiang UniversityHarbin150080China
| |
Collapse
|
15
|
Kumar RS, Prabhakaran S, Ramakrishnan S, Karthikeyan SC, Kim AR, Kim DH, Yoo DJ. Developing Outstanding Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries Using High-Purity Spinel-Type ZnCo 2 Se 4 Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207096. [PMID: 36808828 DOI: 10.1002/smll.202207096] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Indexed: 05/18/2023]
Abstract
Zinc-air batteries are gaining popularity as viable energy sources for green energy storage technologies. The cost and performance of Zn-air batteries are mostly determined by the air electrodes in combination with an oxygen electrocatalyst. This research aims at the particular innovations and challenges relating to air electrodes and related materials. Here, a nanocomposite of ZnCo2 Se4 @rGO that exhibits excellent electrocatalytic activity for the oxygen reduction reaction, ORR (E1/2 = 0.802 V), and oxygen evolution reaction, OER (η10 = 298 mV@10 mA cm-2 ) is synthesized. In addition, a rechargeable zinc-air battery with ZnCo2 Se4 @rGO as the cathode showed a high open circuit voltage (OCV) of 1.38 V, a peak power density of 210.4 mW cm-2 , and outstanding long-term cycling stability. The electronic structure and oxygen reduction/evolution reaction mechanism of the catalysts ZnCo2 Se4 and Co3 Se4 are further investigated using density functional theory calculations. Finally, a perspective for designing, preparing, and assembling air electrodes is suggested for the future developments of high-performance Zn-air batteries.
Collapse
Affiliation(s)
- Ramasamy Santhosh Kumar
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Sampath Prabhakaran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Shanmugam Ramakrishnan
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - S C Karthikeyan
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Ae Rhan Kim
- Department of Life Science, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Do Hwan Kim
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Division of Science Education, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Department of Life Science, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
16
|
Zheng H, Zhong J, Liu X, Zhu Y, Hou B, Zhao L, Sun C, Wang X, Su Z. Co-modified polyoxovanadoborates derived Co/BN-CNT/VN based bifunctional electrocatalysts for rechargeable zinc-air batteries. J Colloid Interface Sci 2023; 634:675-683. [PMID: 36563424 DOI: 10.1016/j.jcis.2022.12.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Rational design of high-performance bifunctional electrocatalysts to accelerate the sluggish oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) in rechargeable Zn-air batteries remain an enduring challenge. The construction of multicomponent catalysts is a promising solution to achieve this goal. Herein, B and N co-doped interconnecting graphite carbon and carbon nanotube with the decoration of Co and vanadium nitride (VN) nanoparticles (Co/BN-CNT/VN) are synthesized using Co-modified polyoxovanadoborates as precursors. The optimized composite achieves superior bifunctional oxygen electrocatalytic activity and stability, which is comparable to noble metal catalysts and reported bifunctional electrocatalysts. Specifically, the half-potential of ORR reaches 0.85 V, and the overpotential of OER is low to 296 mV at a current density of 10 mA cm-2. Strikingly, zinc-air batteries assembled based on Co/BN-CNT/VN demonstrate a small charge-discharge voltage gap of 0.873 V, a remarkable peak-power density of 156.3 mW cm-2, and outstanding cycling durability (∼1000 cycles at 10 mA cm-2). This work affords a new alternative strategy to create cost-effective and high-potency bifunctional oxygen electrocatalysts for advanced air batteries.
Collapse
Affiliation(s)
- Haiyan Zheng
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China
| | - Jun Zhong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123 Jiangsu, China
| | - Xinyan Liu
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China
| | - Ying Zhu
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China
| | - Baoshan Hou
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China
| | - Liang Zhao
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China.
| | - Chunyi Sun
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China.
| | - Xinlong Wang
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China
| | - Zhongmin Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
17
|
Shi J, Mao K, Zhang Q, Liu Z, Long F, Wen L, Hou Y, Li X, Ma Y, Yue Y, Li L, Zhi C, Gao Y. An Air-Rechargeable Zn Battery Enabled by Organic-Inorganic Hybrid Cathode. NANO-MICRO LETTERS 2023; 15:53. [PMID: 36795246 PMCID: PMC9935787 DOI: 10.1007/s40820-023-01023-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/01/2023] [Indexed: 06/18/2023]
Abstract
Self-charging power systems collecting energy harvesting technology and batteries are attracting extensive attention. To solve the disadvantages of the traditional integrated system, such as highly dependent on energy supply and complex structure, an air-rechargeable Zn battery based on MoS2/PANI cathode is reported. Benefited from the excellent conductivity desolvation shield of PANI, the MoS2/PANI cathode exhibits ultra-high capacity (304.98 mAh g-1 in N2 and 351.25 mAh g-1 in air). In particular, this battery has the ability to collect, convert and store energy simultaneously by an air-rechargeable process of the spontaneous redox reaction between the discharged cathode and O2 from air. The air-rechargeable Zn batteries display a high open-circuit voltage (1.15 V), an unforgettable discharge capacity (316.09 mAh g-1 and the air-rechargeable depth is 89.99%) and good air-recharging stability (291.22 mAh g-1 after 50 air recharging/galvanostatic current discharge cycle). Most importantly, both our quasi-solid zinc ion batteries and batteries modules have excellent performance and practicability. This work will provide a promising research direction for the material design and device assembly of the next-generation self-powered system.
Collapse
Affiliation(s)
- Junjie Shi
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Ke Mao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Qixiang Zhang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Zunyu Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Fei Long
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Li Wen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Yixin Hou
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Xinliang Li
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong SAR, 999077, People's Republic of China
| | - Yanan Ma
- Hubei Key Laboratory of Critical Materials of New Energy Vehicles and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China
| | - Yang Yue
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, People's Republic of China.
| | - Luying Li
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Chunyi Zhi
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong SAR, 999077, People's Republic of China
| | - Yihua Gao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics, Center for Nanoscale Characterization & Devices (CNCD), Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
- Hubei Key Laboratory of Critical Materials of New Energy Vehicles and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| |
Collapse
|
18
|
Chandrasekaran S, Hu R, Yao L, Sui L, Liu Y, Abdelkader A, Li Y, Ren X, Deng L. Mutual Self-Regulation of d-Electrons of Single Atoms and Adjacent Nanoparticles for Bifunctional Oxygen Electrocatalysis and Rechargeable Zinc-Air Batteries. NANO-MICRO LETTERS 2023; 15:48. [PMID: 36773092 PMCID: PMC9922344 DOI: 10.1007/s40820-023-01022-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 05/11/2023]
Abstract
Rechargeable zinc-air batteries (ZABs) are a promising energy conversion device, which rely critically on electrocatalysts to accelerate their rate-determining reactions such as oxygen reduction (ORR) and oxygen evolution reactions (OER). Herein, we fabricate a range of bifunctional M-N-C (metal-nitrogen-carbon) catalysts containing M-Nx coordination sites and M/MxC nanoparticles (M = Co, Fe, and Cu) using a new class of γ-cyclodextrin (CD) based metal-organic framework as the precursor. With the two types of active sites interacting with each other in the catalysts, the obtained Fe@C-FeNC and Co@C-CoNC display superior alkaline ORR activity in terms of low half-wave (E1/2) potential (~ 0.917 and 0.906 V, respectively), which are higher than Cu@C-CuNC (~ 0.829 V) and the commercial Pt/C (~ 0.861 V). As a bifunctional electrocatalyst, the Co@C-CoNC exhibits the best performance, showing a bifunctional ORR/OER overpotential (ΔE) of ~ 0.732 V, which is much lower than that of Fe@C-FeNC (~ 0.831 V) and Cu@C-CuNC (~ 1.411 V), as well as most of the robust bifunctional electrocatalysts reported to date. Synchrotron X-ray absorption spectroscopy and density functional theory simulations reveal that the strong electronic correlation between metallic Co nanoparticles and the atomic Co-N4 sites in the Co@C-CoNC catalyst can increase the d-electron density near the Fermi level and thus effectively optimize the adsorption/desorption of intermediates in ORR/OER, resulting in an enhanced bifunctional electrocatalytic performance. The Co@C-CoNC-based rechargeable ZAB exhibited a maximum power density of 162.80 mW cm-2 at 270.30 mA cm-2, higher than the combination of commercial Pt/C + RuO2 (~ 158.90 mW cm-2 at 265.80 mA cm-2) catalysts. During the galvanostatic discharge at 10 mA cm-2, the ZAB delivered an almost stable discharge voltage of 1.2 V for ~ 140 h, signifying the virtue of excellent bifunctional ORR/OER electrocatalytic activity.
Collapse
Affiliation(s)
- Sundaram Chandrasekaran
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| | - Rong Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Lei Yao
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Lijun Sui
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yongping Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Amor Abdelkader
- Department of Design and Engineering, Faculty of Science & Technology, Bournemouth University, Poole, BH12 5BB, Dorset, UK
| | - Yongliang Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Libo Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
19
|
Guo J, Li W, Xu Y, Mao Y, Mei Z, Li H, He Y, San X, Xu K, Liang X. Ionic Covalent Organic Frameworks-Derived Cobalt Single Atoms and Nanoparticles for Efficient Oxygen Electrocatalysis. SMALL METHODS 2023; 7:e2201371. [PMID: 36585369 DOI: 10.1002/smtd.202201371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Metal single atoms show outstanding electrocatalytic activity owing to the abundant atomic reactive sites and superior stability. However, the preparation of single atoms suffers from inexorable metal aggregation which is harmful to electrocatalytic activity. Here, ionic covalent organic frameworks (iCOFs) are employed as the sacrificial precursor to mitigate the metal aggregation and subsequent formation of bulky particles. Molecular dynamics simulation shows that iCOFs can trap and confine more Co ions as compared to neutral COFs, resulting in the formation of a catalyst composed of Co single atoms and uniformly distributed Co nanoparticles (CoSA &CoNP-10 ). However, the neutral COFs derive a catalyst composed of Co atomic clusters and large Co nanoparticles (CoAC &CoNP-25 ). The CoSA &CoNP-10 catalyst exhibits higher oxygen bifunctional electrocatalytic activities than CoAC &CoNP-25 , coinciding with the density functional theory results. Taking the CoSA &CoNP-10 as the air cathode in Zn-air batteries (ZABs), the aqueous ZAB presents a high power density of 181 mW cm-2 , a specific capacity of 811 mAh g-1 as well as a long cycle life of 407 h at a current density of 10 mA cm-2 , while the quasi-solid state ZAB displays a power density of 179 mW cm-2 and the cycle life of 30 h.
Collapse
Affiliation(s)
- Jiaming Guo
- Guangxi Key Laboratory of Nuclear Physics and Technology, Department of Physics, Guangxi Normal University, Guilin, 541004, China
| | - Wenqiong Li
- Guangxi Key Laboratory of Nuclear Physics and Technology, Department of Physics, Guangxi Normal University, Guilin, 541004, China
| | - Yuncun Xu
- Guangxi Key Laboratory of Nuclear Physics and Technology, Department of Physics, Guangxi Normal University, Guilin, 541004, China
| | - Yanqi Mao
- Guangxi Key Laboratory of Nuclear Physics and Technology, Department of Physics, Guangxi Normal University, Guilin, 541004, China
| | - Zhiwei Mei
- Guangxi Key Laboratory of Nuclear Physics and Technology, Department of Physics, Guangxi Normal University, Guilin, 541004, China
| | - Haihan Li
- Guangxi Key Laboratory of Nuclear Physics and Technology, Department of Physics, Guangxi Normal University, Guilin, 541004, China
| | - Yun He
- Guangxi Key Laboratory of Nuclear Physics and Technology, Department of Physics, Guangxi Normal University, Guilin, 541004, China
| | - Xingyuan San
- Hebei Key Laboratory of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Kui Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xiaoguang Liang
- Guangxi Key Laboratory of Nuclear Physics and Technology, Department of Physics, Guangxi Normal University, Guilin, 541004, China
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
20
|
Zheng S, Chen M, Chen K, Wu Y, Yu J, Jiang T, Wu M. Solar-Light-Responsive Zinc-Air Battery with Self-Regulated Charge-Discharge Performance based on Photothermal Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2985-2995. [PMID: 36622791 DOI: 10.1021/acsami.2c19663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
It is extremely challenging to significantly increase the voltaic efficiency, power density, and cycle stability of a Zn-air battery by just adjusting the catalytic performance of the cathode with nanometers/atomistic engineering because of the restriction of thermodynamic equilibrium potential. Herein, inspired by solar batteries, the S-atom-bridged FeNi particles and N-doped hollow carbon nanosphere composite configuration (FeNi-S,N-HCS) is presented as a prototype of muti-functional air electrode material (intrinsic electrocatalytic function and additional photothermal function) for designing photoresponsive all-solid-state Zn-air batteries (PR-ZABs) based on the photothermal effect. The local temperature of the FeNi-S,N-HCS electrode can well respond to the stimuli of sunlight irradiation because of their superior photothermal effect. As expected, under illumination, the power density of the as-fabricated PR-ZABs based on the FeNi-S,N-HCS electrode can be improved from 77 mW cm-2 to 126 mW cm-2. Simultaneously, charge voltage can be dramatically reduced, and cycle lifetime is also prolonged under illumination, because of the expedited electrocatalytic kinetics, the increased electrical conductivity, and the accelerated desorption rate of O2 bubbles from the electrode. By exerting the intrinsic electrocatalytic and photothermal efficiency of the electrode materials, this research paves new ways to improve battery performance from kinetic and thermodynamic perspectives.
Collapse
Affiliation(s)
- Shushan Zheng
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P.R. China
- Institute of Energy, Hefei Comprehensive Nation Science Center, Hefei, Anhui 230031, P.R. China
| | - Mengyu Chen
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Kui Chen
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Yongjian Wu
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Jing Yu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, P. R. China
| | - Tongtong Jiang
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Mingzai Wu
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P.R. China
- Institute of Energy, Hefei Comprehensive Nation Science Center, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
21
|
Ding K, Ye Y, Hu J, Zhao L, Jin W, Luo J, Cai S, Weng B, Zou G, Hou H, Ji X. Aerophilic Triphase Interface Tuned by Carbon Dots Driving Durable and Flexible Rechargeable Zn-Air Batteries. NANO-MICRO LETTERS 2023; 15:28. [PMID: 36595071 PMCID: PMC9810778 DOI: 10.1007/s40820-022-00994-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Efficient bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are vital for rechargeable Zn-air batteries (ZABs). Herein, an oxygen-respirable sponge-like Co@C-O-Cs catalyst with oxygen-rich active sites was designed and constructed for both ORR and OER by a facile carbon dot-assisted strategy. The aerophilic triphase interface of Co@C-O-Cs cathode efficiently boosts oxygen diffusion and transfer. The theoretical calculations and experimental studies revealed that the Co-C-COC active sites can redistribute the local charge density and lower the reaction energy barrier. The Co@C-O-Cs catalyst displays superior bifunctional catalytic activities with a half-wave potential of 0.82 V for ORR and an ultralow overpotential of 294 mV at 10 mA cm-2 for OER. Moreover, it can drive the liquid ZABs with high peak power density (106.4 mW cm-2), specific capacity (720.7 mAh g-1), outstanding long-term cycle stability (over 750 cycles at 10 mA cm-2), and exhibits excellent feasibility in flexible all-solid-state ZABs. These findings provide new insights into the rational design of efficient bifunctional oxygen catalysts in rechargeable metal-air batteries.
Collapse
Affiliation(s)
- Kuixing Ding
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Yu Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Jiugang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| | - Liming Zhao
- College of Standardization, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Wei Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Jia Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Shan Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Baicheng Weng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| |
Collapse
|
22
|
Long J, Chen J, Chen C, Xu T, Gou X. MOFs encapsulated nanorods derived CoNi@CN composites with open structure as highly efficient bifunctional catalysts for rechargeable Zn-air batteries. J Colloid Interface Sci 2023; 629:73-82. [DOI: 10.1016/j.jcis.2022.08.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/31/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
|
23
|
Jin T, Nie J, Dong M, Chen B, Nie J, Ma G. 3D Interconnected Honeycomb-Like Multifunctional Catalyst for Zn-Air Batteries. NANO-MICRO LETTERS 2022; 15:26. [PMID: 36586003 PMCID: PMC9805485 DOI: 10.1007/s40820-022-00959-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Developing high-performance and low-cost electrocatalysts is key to achieve the clean-energy target. Herein, a dual regulation method is proposed to prepare a 3D honeycomb-like carbon-based catalyst with stable Fe/Co co-dopants. Fe atoms are highly dispersed and fixed to the polymer microsphere, followed by a high-temperature decomposition, for the generation of carbon-based catalyst with a honeycomb-like structure. The as-prepared catalyst contains a large number of Fe/Co nanoparticles (Fe/Co NPs), providing the excellent catalytic activity and durability in oxygen reduction reaction, oxygen evolution reaction and hydrogen evolution reaction. The Zn-air battery assembled by the as-prepared catalyst as air cathode shows a good charge and discharge capacity, and it exhibits an ultra-long service life by maintaining a stable charge and discharge platform for a 311-h cycle. Further X-ray absorption fine structure characterization and density functional theory calculation confirms that the Fe doping optimizes the intermediate adsorption process and electron transfer of Co.
Collapse
Affiliation(s)
- Tianxu Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Junli Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Mei Dong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Binling Chen
- College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, EX4 4QF, UK.
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Guiping Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
24
|
Kafle A, Gupta D, Bordoloi A, Nagaiah TC. Self-standing Fe 3O 4 decorated paper electrode as a binder-free trifunctional electrode for electrochemical ammonia synthesis and Zn-O 2 batteries. NANOSCALE 2022; 14:16590-16601. [PMID: 36317393 DOI: 10.1039/d2nr03297j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The conversion of the abundant biodegradable material into electroactive electrode material can be a good resource for sustainable energy conversion and storage applications. Herein, we present a simple, cost-effective and green approach for the fabrication of a flexible cellulose paper electrode using an electroless-electrodeposition method. The one-step electroless deposition route is followed to induce conductivity into a non-conductive cellulose paper substrate without using any expensive activators or sensitisers. The Fe3O4 is then electro-deposited as an active catalyst over the conductive paper substrate for use in electrochemical activities. The as-fabricated paper electrode shows promising activity and stability during the dinitrogen reduction reaction (NRR) as well as oxygen bifunctional electrocatalysis. A faradaic efficiency of 4.32% with a yield rate of 245 μg h-1 mgcat-1 at -0.1 V is achieved for NRR whereas a very small overpotential of 180 mV is required to reach 10 mA cm-2 during OER, and the ORR reaction starts at the onset potential of 0.86 V. The practical applicability of the paper electrode is validated by assembling a Zn-O2 battery showing a peak power density of 81 mW cm-2 and a stability up to 35 h during charge-discharge cycles, which can power the NRR to produce NH3 under full cell conditions.
Collapse
Affiliation(s)
- Alankar Kafle
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| | - Divyani Gupta
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| | - Ankur Bordoloi
- Council of Scientific and Industrial Research - Indian institute of Petroleum, Dehradun, India
| | - Tharamani C Nagaiah
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| |
Collapse
|
25
|
Wang M, Ji S, Wang H, Wang X, Linkov V, Wang R. Foamed Carbon-Supported Nickel-Iron Oxides Interspersed with Bamboo-Like Carbon Nanotubes for High-Performance Rechargeable Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204474. [PMID: 36161700 DOI: 10.1002/smll.202204474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The development of multi-component bi-functional electrocatalysts is necessary for commercialization of high-performance zinc-air batteries. Herein, foamed carbon-supported nickel-iron oxides interspersed with bamboo-like carbon nanotubes are prepared as bi-functional electrocatalysts for this battery type. During high temperature synthesis, edges of carbon sheets comprising the foamed carbon structure become involuted to form short carbon nanotubes. The composite of carbon nanotubes and network carbon confer high specific surface area and high electrical conductivity on the newly prepared materials. The supported NiFe2 O4 phase improves the oxygen reduction reaction (ORR) activity by fixing more N atoms, and high-valent Ni oxide (Ni2 O3 ) promotes the formation of OO bonds, which is conducive to the oxygen evolution reaction (OER). The optimized material exhibits excellent bi-functional electrocatalytic activity toward both ORR and OER, and its use in the assembled zinc-air battery cell results in a high power density of 150 mW cm-2 with long discharge stability.
Collapse
Affiliation(s)
- Minghui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Shan Ji
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, P. R. China
| | - Hui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xuyun Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Vladimir Linkov
- South African Institute for Advanced Materials Chemistry, University of the Western Cape, Cape Town, 7535, South Africa
| | - Rongfang Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
26
|
Liao T, Wang M, Pu Y, He Y, Hua S, Zhang X, Li P, Wan X, Tang H. Synthesis of Nitrogen‐Doped Hierarchical Carbon Derived from Water Hyacinth with High Catalytic Activity for Oxygen Reduction Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202202613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tianhao Liao
- School of Materials and Energy University of Electronic Science and Technology of China 2006 Xiyuan Road Chengdu 611731 PR China
| | - Minkang Wang
- School of Materials and Energy University of Electronic Science and Technology of China 2006 Xiyuan Road Chengdu 611731 PR China
| | - Yi Pu
- School of Materials and Energy University of Electronic Science and Technology of China 2006 Xiyuan Road Chengdu 611731 PR China
| | - Yuling He
- School of Materials and Energy University of Electronic Science and Technology of China 2006 Xiyuan Road Chengdu 611731 PR China
| | - Shiyang Hua
- Wuhan Institute of Marine Electric Propulsion Wuhan 430064 China
| | - Xinglong Zhang
- School of Materials and Energy University of Electronic Science and Technology of China 2006 Xiyuan Road Chengdu 611731 PR China
| | - Peiwen Li
- School of Materials and Energy University of Electronic Science and Technology of China 2006 Xiyuan Road Chengdu 611731 PR China
| | - Xinming Wan
- China Automotive Engineering Research Institute Co., Ltd. Chongqing 401122 China
| | - Hui Tang
- School of Materials and Energy University of Electronic Science and Technology of China 2006 Xiyuan Road Chengdu 611731 PR China
| |
Collapse
|
27
|
Wagh NK, Shinde SS, Lee CH, Kim SH, Kim DH, Um HD, Lee SU, Lee JH. Supramolecular Polymer Intertwined Free-Standing Bifunctional Membrane Catalysts for All-Temperature Flexible Zn-Air Batteries. NANO-MICRO LETTERS 2022; 14:190. [PMID: 36114911 PMCID: PMC9482563 DOI: 10.1007/s40820-022-00927-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 05/28/2023]
Abstract
Rational construction of flexible free-standing electrocatalysts featuring long-lasting durability, high efficiency, and wide temperature tolerance under harsh practical operations are fundamentally significant for commercial zinc-air batteries. Here, 3D flexible free-standing bifunctional membrane electrocatalysts composed of covalently cross-linked supramolecular polymer networks with nitrogen-deficient carbon nitride nanotubes are fabricated (referred to as PEMAC@NDCN) by a facile self-templated approach. PEMAC@NDCN demonstrates the lowest reversible oxygen bifunctional activity of 0.61 V with exceptional long-lasting durability, which outperforms those of commercial Pt/C and RuO2. Theoretical calculations and control experiments reveal the boosted electron transfer, electrolyte mass/ion transports, and abundant active surface site preferences. Moreover, the constructed alkaline Zn-air battery with PEMAC@NDCN air-cathode reveals superb power density, capacity, and discharge-charge cycling stability (over 2160 cycles) compared to the reference Pt/C + RuO2. Solid-state Zn-air batteries enable a high power density of 211 mW cm-2, energy density of 1056 Wh kg-1, stable charge-discharge cycling of 2580 cycles for 50 mA cm-2, and wide temperature tolerance from - 40 to 70 °C with retention of 86% capacity compared to room-temperature counterparts, illustrating prospects over harsh operations.
Collapse
Affiliation(s)
- Nayantara K Wagh
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Sambhaji S Shinde
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Chi Ho Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
| | - Sung-Hae Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Dong-Hyung Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Han-Don Um
- Department of Chemical Engineering, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Sang Uck Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea.
| | - Jung-Ho Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
28
|
Chen C, Long J, Shen K, Liu X, Zhang W. Monodispersed Eu 2O 3-Modified Fe 3O 4@NCG Composites as Highly Efficient and Ultra-stable Catalysts for Rechargeable Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38677-38688. [PMID: 35977406 DOI: 10.1021/acsami.2c07373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Constructing highly efficient cathode catalysts for Zn-air batteries (ZABs) is an attractive research topic in sustainable energy storage area. Herein, the rare-earth metal oxide modification strategy has been proposed to construct the highly efficient and ultra-stable catalysts for ZABs. Accordingly, a graphene oxide-doped carbon-supported Eu2O3-modified Fe3O4 (Fe3O4/Eu2O3@NCG) catalyst is developed with layered Fe-Eu-MOF/GO as a precursor. Detailed characterization reveals that Fe3O4/Eu2O3@NCG possesses unique structural properties, including carbon-metal-carbon configuration, plentiful oxygen vacancies, and variable metal-active sites, which endows the catalyst with strong conductivity, high activity, and ultra-long stability. The optimal Fe3O4/Eu2O3@NCG catalyst exhibits an outstanding electrochemical performance, and the potential difference (Egap) between oxygen reduction reaction and oxygen evolution reaction is merely 0.68 V at 0.1 M KOH condition. Moreover, density functional theory calculations are employed to investigate the reaction mechanism and the synergetic effect between Fe and Eu atoms. Most importantly, the Fe3O4/Eu2O3@NCG-based aqueous ZAB delivers a high power density (218 mW/cm2), specific capacity (854 mA h/g@5 mA/cm2), and an impressive ultra-long cycle property with more than 1000 h (>6000 cycles) charge-discharge cycle life. In addition, the Fe3O4/Eu2O3@NCG-based all-solid-state ZAB also exhibits an outstanding performance, achieving >460 h cycle life (>2760 cycles) and strong practical application capability.
Collapse
Affiliation(s)
- Cheng Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, P. R. China
| | - Jilan Long
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, P. R. China
| | - Kui Shen
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaohong Liu
- National University of Singapore (Chongqing) Research Institute, Chongqing 401123, P. R. China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| |
Collapse
|
29
|
Shangguan E, Wang L, Wang Y, Li L, Chen M, Qi J, Wu C, Wang M, Li Q, Gao S, Li J. Recycling of Zinc-Carbon Batteries into MnO/ZnO/C to Fabricate Sustainable Cathodes for Rechargeable Zinc-Ion Batteries. CHEMSUSCHEM 2022; 15:e202200720. [PMID: 35592892 DOI: 10.1002/cssc.202200720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Acidic zinc-carbon dry batteries have been widely used in life because of their low cost. However, a great quantity of used batteries is discarded as refuse, which not only wastes resources but also leads to environmental contamination. To reuse spent batteries on a large scale, this study concerns a simple, effective, and sustainable strategy to turn them into MnO/ZnO/C composites. After a conventional leaching treatment followed by pyrolysis, the rust cathode materials can be reduced to MnO/ZnO/C. When serving as a rechargeable zinc-ion battery cathode, this electrode provides a maximum reversible capacity of around 362 mAh g-1 MnO ) and a rate capability of 191 mAh g-1 MnO at a high current rate of 1.20 A g-1 . Furthermore, ZnO gradually dissolves in the electrolyte with the increase of discharge cycles, replenishing the Zn2+ content in the electrolyte and further enhancing cycling stability (98.02 % after 500 cycles). The device also exhibits a remarkable energy density of 336.37 Wh kg-1 , low self-discharge rate, and can efficiently power a LED panel. This strategy offers an economical and facile route to convert zinc-carbon battery waste into useful materials for aqueous rechargeable zinc ion batteries.
Collapse
Affiliation(s)
- Enbo Shangguan
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
- Henan Chaoli New Energy Co., Ltd, Xinxiang, 453007, P. R. China
| | - Liming Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Yingchao Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Linpo Li
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Mingxing Chen
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Jing Qi
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Chengke Wu
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Mingyu Wang
- Henan Chaoli New Energy Co., Ltd, Xinxiang, 453007, P. R. China
| | - Quanmin Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Shuyan Gao
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Jing Li
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| |
Collapse
|
30
|
Han C, Yi W, Feng S, Li Z, Song H. Single-atom palladium anchored N-doped carbon towards oxygen electrocatalysis for rechargeable Zn-air batteries. Dalton Trans 2022; 51:12314-12323. [PMID: 35900080 DOI: 10.1039/d2dt01760a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, an atomically dispersed palladium catalyst on a hierarchical porous structure of N-doped carbon (Pd1/N-C) is prepared using a facile freeze-drying-assisted strategy. Freeze-drying methods not only suppress the aggregation of Pd atoms but also successfully produce abundant nanopores. HAADF-STEM confirms that Pd single atoms are uniformly anchored on the N-C surface. The Pd1/N-C electrocatalyst enhances the ORR and OER activity and durability compared to N-C and Pd-NPs/N-C. Rechargeable Zn-air batteries (ZABs) based on novel Pd1/N-C exhibit a peak power density of 113.7 mW cm-2 and maintain a voltage efficiency of 64.0% after 495 cycles at a discharge current density of 5 mA cm-2. Besides, two ZABs in series can supply an LED light for at least 170 h.
Collapse
Affiliation(s)
- Chunxiao Han
- Institute of Environmental Science, Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan 030006, P.R. China. .,School of the Environment, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Wenwen Yi
- Institute of Environmental Science, Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan 030006, P.R. China.
| | - Sisi Feng
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering, Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, P.R. China
| | - Zhongping Li
- Institute of Environmental Science, Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan 030006, P.R. China.
| | - Haiou Song
- School of the Environment, Nanjing Normal University, Nanjing 210023, P.R. China
| |
Collapse
|
31
|
He T, Chen Y, Liu Q, Lu B, Song X, Liu H, Liu M, Liu YN, Zhang Y, Ouyang X, Chen S. Theory-Guided Regulation of FeN 4 Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal-Air Batteries. Angew Chem Int Ed Engl 2022; 61:e202201007. [PMID: 35468253 DOI: 10.1002/anie.202201007] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 01/11/2023]
Abstract
Iron, nitrogen-codoped carbon (Fe-N-C) nanocomposites have emerged as viable electrocatalysts for the oxygen reduction reaction (ORR) due to the formation of FeNx Cy coordination moieties. In this study, results from first-principles calculations show a nearly linear correlation of the energy barriers of key reaction steps with the Fe magnetic moment. Experimentally, when single Cu sites are incorporated into Fe-N-C aerogels (denoted as NCAG/Fe-Cu), the Fe centers exhibit a reduced magnetic moment and markedly enhanced ORR activity within a wide pH range of 0-14. With the NCAG/Fe-Cu nanocomposites used as the cathode catalyst in a neutral/quasi-solid aluminum-air and alkaline/quasi-solid zinc-air battery, both achieve a remarkable performance with an ultrahigh open-circuit voltage of 2.00 and 1.51 V, large power density of 130 and 186 mW cm-2 , and good mechanical flexibility, all markedly better than those with commercial Pt/C or Pt/C-RuO2 catalysts at the cathode.
Collapse
Affiliation(s)
- Ting He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China.,School of Materials Science and Engineering, Xiangtan University Yuhu District, Xiangtan, Hunan, 411105, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Bingzhang Lu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Hongtao Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Min Liu
- School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, Hunan, 410083, China.,Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Xiaoping Ouyang
- School of Materials Science and Engineering, Xiangtan University Yuhu District, Xiangtan, Hunan, 411105, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
32
|
Muthurasu A, Chae SH, Hoon Ko T, Chandra Lohani P, Yong Kim H. Highly ordered nanoarrays catalysts embedded in carbon nanotubes as highly efficient and robust air electrode for flexible solid-state rechargeable zinc-air batteries. J Colloid Interface Sci 2022; 616:679-690. [PMID: 35245794 DOI: 10.1016/j.jcis.2022.02.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 02/20/2022] [Indexed: 12/31/2022]
Abstract
The development of multicomponent materials is the most efficient and successful way for creating advanced multifunctional catalysts. Herein, the bimetal FeCo nanoarrays enclosed N-CNTs have a high surface on carbon cloth support, which promotes efficient electron transport and prevents nanoparticle aggregation. Taking advantage of the high-level use of active material and fast charge transfer, the developed electrocatalyst exhibits excellent multifunctional electrocatalyst such as oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The N-CNTs@MOF FeCo nanoarrays @CC exhibit higher activity than reference catalysts including MOF FeCo nanoarrays@CC, FeCo nanoarrays@CC, and CC. Interestingly, the synthesized multifunctional catalyst, which serves as the air electrode in zinc-air batteries with liquid electrolytes as well as solid-state gel electrolytes possesses outstanding charging-discharge performance and long service life. This study provides enormous potential for the real implementation of portable, even wearable, and efficient rechargeable batteries in the future.
Collapse
Affiliation(s)
- Alagan Muthurasu
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Su-Hyeong Chae
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Tae Hoon Ko
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Prakash Chandra Lohani
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Hak Yong Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
33
|
He T, Chen Y, Liu Q, Lu B, Song X, Liu H, Liu M, Liu Y, Zhang Y, Ouyang X, Chen S. Theory‐Guided Regulation of FeN
4
Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal–Air Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ting He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
- School of Materials Science and Engineering Xiangtan University Yuhu District Xiangtan Hunan 411105 China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
| | - Qiming Liu
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| | - Bingzhang Lu
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
| | - Hongtao Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
| | - Min Liu
- School of Physics and Electronics Central South University Changsha Hunan 410083 China
| | - You‐Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science College of Chemistry and Chemical Engineering Central South University 932 Lushan South Road Changsha Hunan 410083 China
- Key Laboratory of Materials Processing and Mold, Ministry of Education Zhengzhou University Zhengzhou, Henan 450002 China
| | - Xiaoping Ouyang
- School of Materials Science and Engineering Xiangtan University Yuhu District Xiangtan Hunan 411105 China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| |
Collapse
|
34
|
Xu C, Niu Y, Gong S, Liu X, Xu M, Liu T, Chen Z. Integrating Bimetal Alloy into N-Doped Carbon Nanotubes@Nanowires Superstructure for Zn-Air Batteries. CHEMSUSCHEM 2022; 15:e202200312. [PMID: 35275443 DOI: 10.1002/cssc.202200312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Exploring bifunctional oxygen electrocatalysts with low cost and high performance is critical to the development of rechargeable zinc-air batteries, but it still remains a huge challenge. In this work, a "coordination construction-pyrolysis/self-catalyzed growth" approach was employed to fabricate branches@trunks-like, N-doped carbon nanotubes@nanowires superstructure with uniformly incorporated CoFe alloy nanoparticles (CoFe@CNTs-NWs). The rational design of such hierarchical architecture could effectively enlarge the exposure of active sites, modulate their electronic structure, and assist the electron transfer and mass diffusion, thus benefiting both ORR and OER. The resultant CoFe@CNTs-NWs displayed prominent bifunctional electrocatalytic activity and stability with a minimized oxygen overpotential of 0.71 V. When used as a cathode for zinc-air batteries, it provided a high peak power density of 131 mW cm-2 and remarkable charge-discharge stability for at least 400 cycles (130 h). This study presents a successful demonstration for optimizing the electrocatalytic performance by elaborate nanostructure and carbon matrix hybridization with simultaneous modulation of electronic structure, thus providing a new avenue to the rational design of transition metal-based oxygen electrocatalysts.
Collapse
Affiliation(s)
- Chen Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yanli Niu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Shuaiqi Gong
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Xuan Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Mingze Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Tao Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Zuofeng Chen
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
35
|
Gao L, Gao X, Jiang P, Zhang C, Guo H, Cheng Y. Atomically Dispersed Iron with Densely Exposed Active Sites as Bifunctional Oxygen Catalysts for Zinc-Air Flow Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105892. [PMID: 34898014 DOI: 10.1002/smll.202105892] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Atomically dispersed iron embedded carbon is a promising bifunctional catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), but its exposed iron sites must be increased. Herein, the authors propose a double steric hindrance strategy by using zeolitic imidazolate frameworks-8 as the first barrier skeleton and encapsulated phenylboronic acid as the second space obstruction to realize densely exposed atomic iron sites. Prepared PA@Z8-FeNC has the highest iron content (5.49 wt%) among reported transition-metal-based single-atom oxygen catalysts. Meanwhile, its concave surfaces, hollow structures, and hierarchical pores enable the high utilization rate of iron sites to 88.5 ± 4.5% and exposed active site density to 5.2 ± 0.3 × 1020 sites g-1 . Resultantly, PA@Z8-FeNC exhibits superior activity and stability to commercial Pt/C and IrO2 for the ORR and OER in half-cells and zinc-air flow batteries. This provides insight for developing densely and accessibly active sites in single-atom catalysts.
Collapse
Affiliation(s)
- Lesen Gao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xia Gao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peng Jiang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Cunyin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hui Guo
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuanhui Cheng
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
36
|
Liu H, Xie W, Huang Z, Yao C, Han Y, Huang W. Recent Advances in Flexible Zn-Air Batteries: Materials for Electrodes and Electrolytes. SMALL METHODS 2022; 6:e2101116. [PMID: 35041275 DOI: 10.1002/smtd.202101116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/16/2021] [Indexed: 06/14/2023]
Abstract
Flexible Zn-air batteries (ZABs) draw much attention due to the merits of high energy density, stability, and safety, and show potential applications for wearable devices. However, the development of flexible ZABs with great energy density, high round-trip efficiency, and long cycle life for practical applications is highly restricted by the lack of highly active oxygen catalysts, high ion-conducting solid-state electrolytes, appropriate Zn anodes, and advanced battery configuration. Promising oxygen catalysts should possess both, superior oxygen reduction reaction and oxygen evolution reaction performance and can be directly used as self-supporting cathodes without loading catalysts on support materials such as carbon cloth. In addition, electrolytes play an important role in ZABs; a good electrolyte should be in all-solid state with high ion conductivity. Moreover, for an excellent Zn anode, it is required to stably contact the electrolyte interface during the bending process. Therefore, in this review, recent advances in ZABs are summarized, including: i) the powder and 3D self-supporting oxygen catalysts, ii) the species of solid-state electrolytes, and iii) the rational design of Zn anodes. Finally, the challenges and opportunities of this promising field are presented.
Collapse
Affiliation(s)
- Haoran Liu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wen Xie
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zeyi Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chuanhao Yao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), and Ningbo Institute of NPU, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
37
|
Chen J, Zhu J, li S, li Z, Wu C, wang D, Luo Z, Li Y, Luo K. In Situ Construction of FeCo Alloy Nanoparticles Embedded in Nitrogen‑Doped Bamboo-like Carbon Nanotubes as a Bifunctional Electrocatalyst for Zn-Air Battery. Dalton Trans 2022; 51:14498-14507. [DOI: 10.1039/d2dt02132c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rational design and exploration of low-cost, highly efficient, and robust bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts are essential for the application of zinc-air batteries....
Collapse
|
38
|
Dong F, Wu M, Chen Z, Liu X, Zhang G, Qiao J, Sun S. Atomically Dispersed Transition Metal-Nitrogen-Carbon Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries: Recent Advances and Future Perspectives. NANO-MICRO LETTERS 2021; 14:36. [PMID: 34918185 PMCID: PMC8677872 DOI: 10.1007/s40820-021-00768-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/05/2021] [Indexed: 05/25/2023]
Abstract
Rechargeable zinc-air batteries (ZABs) are currently receiving extensive attention because of their extremely high theoretical specific energy density, low manufacturing costs, and environmental friendliness. Exploring bifunctional catalysts with high activity and stability to overcome sluggish kinetics of oxygen reduction reaction and oxygen evolution reaction is critical for the development of rechargeable ZABs. Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts possessing prominent advantages of high metal atom utilization and electrocatalytic activity are promising candidates to promote oxygen electrocatalysis. In this work, general principles for designing atomically dispersed M-N-C are reviewed. Then, strategies aiming at enhancing the bifunctional catalytic activity and stability are presented. Finally, the challenges and perspectives of M-N-C bifunctional oxygen catalysts for ZABs are outlined. It is expected that this review will provide insights into the targeted optimization of atomically dispersed M-N-C catalysts in rechargeable ZABs.
Collapse
Affiliation(s)
- Fang Dong
- Institut National de La Recherche Scientifique (INRS)-Centre Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada
| | - Mingjie Wu
- Institut National de La Recherche Scientifique (INRS)-Centre Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada
- Engineering Research Center of Nano, Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Zhangsen Chen
- Institut National de La Recherche Scientifique (INRS)-Centre Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Gaixia Zhang
- Institut National de La Recherche Scientifique (INRS)-Centre Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| | - Jinli Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Shanghai Innovation Institute for Materials, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Shuhui Sun
- Institut National de La Recherche Scientifique (INRS)-Centre Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| |
Collapse
|