1
|
Ren P, Wang R, Yang Y, Wang T, Hong Y, Zheng Y, Zheng Q, Ren X, Jia Z. Facile Synthesis of MoP and Its Composite Structure with Ru as an Efficient Electrocatalyst for Hydrogen Evolution Reaction in Both Acidic and Alkaline Conditions. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1184. [PMID: 40077412 PMCID: PMC11901484 DOI: 10.3390/ma18051184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
Developing low-cost electrocatalysts for efficient hydrogen evolution in both acidic and alkaline conditions is crucial for water-electrolytic hydrogen applications. Herein, MoP was synthesized via a simple, low-cost, and green phosphorization route. More importantly, the Ru/MoP composite prepared using the as-synthesized MoP as a reactant, which exhibited excellent catalytic activity for the hydrogen evolution reaction. It showed lower overpotentials of 108 and 55 mV at 10 mA·cm-2 in acidic and alkaline solutions, respectively, which are superior to those of bare Ru and pristine MoP as well as comparable or even better than those of previously reported excellent Ru- or MoP-based catalysts. In addition, it also demonstrated small Tafel slopes of 52.6 mV dec-1 and 67.9 mV dec-1 in acidic and alkaline solutions, respectively, along with long-term stability. This work provides an effective and feasible route to design high-efficient MoP-based electrocatalysts for hydrogen evolution reaction.
Collapse
Affiliation(s)
- Pinyun Ren
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Artificial Intelligence Key Laboratory of Sichuan Province, College of Physics and Electronic Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Rui Wang
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Yujie Yang
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Tianyu Wang
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Yilun Hong
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Yi Zheng
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Qianying Zheng
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Xianpei Ren
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Artificial Intelligence Key Laboratory of Sichuan Province, College of Physics and Electronic Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Zhili Jia
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| |
Collapse
|
2
|
Li B, Deng F, Wang H, Li Z, Yan F, Yu C. Core-Shell Quantum Wires-Supported Single-Atom Fe Electrocatalysts for Efficient Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409542. [PMID: 39668428 DOI: 10.1002/smll.202409542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/24/2024] [Indexed: 12/14/2024]
Abstract
It is of great significance for the development of hydrogen energy technology by exploring the new-type and high-efficiency electrocatalysts (such as single atom catalysts (SACs)) for water splitting. In this paper, by combining interface engineering and doping engineering, a unique single atom iron (Fe)-doped carbon-coated nickel sulfide (Ni3S2) quantum wires (Ni3S2@Fe-SACs) is prepared as a high-performance bi-functional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Theoretical calculation and experimental results show that the addition of atomic Fe species can effectively adjust the electronic structure of sulfide, the interfacial electron transfer modulates the d-band center position, optimizing the transient state of the catalytic process and adsorption energy of hydrogen/oxygen intermediates, and greatly accelerates the kinetics of HER and OER. The results show that the Ni3S2@Fe-SACs core-shell quantum wires array exhibit overpotentials of 46 and 219 mV for HER and OER at 10 mA cm-2 in 1 m KOH, respectively. In addition, the two-electrode electrolyzer assembled by the Ni3S2@Fe-SACs requires a voltage as low as 1.465 V to achieve alkaline overall water splitting of 10 mA cm-2. This work holds great promise for the development of highly active and highly stable electrocatalysts for future hydrogen energy conversion applications.
Collapse
Affiliation(s)
- Bolin Li
- College of Chemistry Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Fulin Deng
- College of Chemistry Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Hanlu Wang
- College of Chemistry Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Zesheng Li
- College of Chemistry Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Fanfei Yan
- College of Chemistry Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Changlin Yu
- College of Chemistry Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| |
Collapse
|
3
|
Hu M, Qian Y, Zhang R, Guo C, Yang L, Li L. Interfacial electronic modulation of NiCo decorated nano-flowered MoS 2 on carbonized wood as a remarkable bifunctional electrocatalyst for boosting overall water splitting. J Colloid Interface Sci 2025; 677:729-738. [PMID: 39121657 DOI: 10.1016/j.jcis.2024.07.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
The development of a cost-effective and efficient bifunctional electrode for overall water splitting holds significant importance in accelerating the sustainable advancement of hydrogen energy. The present study involved a bifunctional catalytic electrode was prepared by loading NiCo-modified 1T/2H MoS2 onto carbonized wood (NiCo-MoS2-CW) using the hydrothermal and electrodeposition techniques. The XPS analysis revealed that NiCo-modified MoS2 exhibited a weak electron characteristic, which facilitated the ionization of H2O and significantly enhanced the Volmer step. The XPS analysis unveiled that NiCo-modified MoS2 displayed a weak electron characteristic, thereby promoting the ionization of H2O and substantially augmenting the Volmer step. The electrocatalytic performance of the NiCo-MoS2-CW in 1.0 M KOH is remarkably impressive, exhibiting minimal overpotentials of only 64 mV (10 mA cm-2) and 216 mV (50 mA cm-2) for the hydrogen evolution reaction and oxygen evolution reaction, respectively. The NiCo-MoS2-CW || NiCo-MoS2-CW electrolytic cell can achieve a cell voltage of only 1.69 V to achieve a current density of 50 mA cm-2. Overall, this study proposes a potential approach to improve the catalytic efficiency of overall water splitting by modulating the interfacial electronic properties of MoS2.
Collapse
Affiliation(s)
- Mengliang Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, People's Republic of China; School of Materials, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Yuanpeng Qian
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, People's Republic of China
| | - Rumeng Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Chuigen Guo
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, People's Republic of China
| | - Lemin Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, People's Republic of China
| | - Liping Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, People's Republic of China.
| |
Collapse
|
4
|
Zhang W, Gao J, Gong Q, Liu F, Zhang Y, Xu GR, Wu Z, Wang L. Mo-Induced Surface Reconstruction in Ni/Co-OOH Prickly Flower Clusters for Improving the Hydrogen Production in Alkaline Seawater Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404858. [PMID: 39279606 DOI: 10.1002/smll.202404858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Indexed: 09/18/2024]
Abstract
Seawater electrolysis is the most promising technology for hydrogen production, in which surface reconstruction on the interface of electrode/electrolyte plays a crucial role in activating the catalytic reactions with a low activation energy barrier. Herein, an efficient Mo modifying NiCoMo prickly flower clusters electrocatalyst supported on nickel foam (Mo-doped Ni/Co-OOH prickly flower clusters) is obtained, which serves as an eminently active and durable catalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) due to the surface reconstruction during the alkaline seawater electrolysis with ultralow overpotentials. It just requires a cell voltage of 1.52 V to achieve the current density of 10 mA cm-2 for water electrolysis along with robust durability over 30 h. Mo doping effectively regulates the surface reconstruction of Ni/Co-OOH, which facilitates the adsorption of oxygen-containing intermediates on the active center, and the nonhomogeneous interface induces charge rearrangement for the catalytic process to improve efficiency, providing a new strategy for revealing the seawater electrolytic mechanism.
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Environment and Safety Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianyang Gao
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Environment and Safety Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qinzhen Gong
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Environment and Safety Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Fusheng Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yang Zhang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Environment and Safety Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Guang-Rui Xu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Environment and Safety Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Environment and Safety Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Environment and Safety Engineering, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
5
|
Zhang J, Tu Y, Zhang L, He S, Zhong C, Ke J, Wang L, Cui C, Song H, Du L, Cui Z. Surface-Reconstructed CdNNi 3 Antiperovskite Electrocatalyst: Unlocking Ampere-Level Current Density for Hydrogen Evolution. ACS NANO 2024; 18:32077-32087. [PMID: 39508061 DOI: 10.1021/acsnano.4c10486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Developing conductive electrocatalysts is crucial for decreasing the ohmic loss induced by electric resistance of the catalyst layer in the large-current-density hydrogen evolution reaction (HER), which has been overlooked previously. In this study, we screen a highly conductive antiperovskite CdNNi3 with negligible ohmic loss, as a highly active and durable HER electrocatalyst capable of unlocking ampere-scale current densities. CdNNi3 exhibits an impressive activity (an overpotential of 235 mV) at 1 A cm-2 and maintains its performance steadily at an ampere-scale current density (at 1 A cm-2 over 400 h). Besides, the CdNNi3-enabled anion-exchange membrane water electrolyzer outperforms that of the benchmark Pt/C, evidenced by a reduced cell voltage of 160 mV at 1 A cm-2, and presents a favorable stability at 1 A cm-2. Importantly, this study experimentally discovers the dynamic surface reconstruction phenomena of antiperovskite nitrides during alkaline HER. Theoretical analysis suggests that the presence of Cd in the reconstructed surface effectively adjusts the local electronic configuration of active sites, which promotes the adsorption of OH and reduces the binding strength to H, thereby facilitating the water dissociation step and reducing the energy barrier of the potential-determining step in the HER process.
Collapse
Affiliation(s)
- Jiaxi Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuanhua Tu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Longhai Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shunyi He
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chengzhi Zhong
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jun Ke
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liming Wang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ce Cui
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huiyu Song
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Li Du
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhiming Cui
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
6
|
Liao M, Shen H, Lin X, Li Z, Zhu M, Liu K, Zhou S, Dai J, Huang Y. Interfacial engineering of POM-stabilized Ni quantum dots on porous titanium mesh for high-rate and stable alkaline hydrogen production. Dalton Trans 2024; 53:5084-5088. [PMID: 38375913 DOI: 10.1039/d3dt03917j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The development of low-cost, high-efficiency, and stable electrocatalysts for the alkaline hydrogen evolution reaction (HER) is a key challenge because the alkaline HER kinetics is slowed by an additional water dissociation step. Herein, we report an interfacial engineering strategy for polyoxometalate (POM)-stabilized nickel (Ni) quantum dots decorated on the surface of porous titanium mesh (POMs-Ni@PTM) for high-rate and stable alkaline hydrogen production. Benefiting from the strong interfacial interactions among POMs, Ni atoms, and PTM substrates, as well as unique POM-Ni quantum dot structures, the optimized POMs-Ni@PTM electrocatalyst exhibits a remarkable alkaline HER performance with an overpotential (η10) of 30.1 mV to reach a current density of 10 mA cm-2, which is much better than those of bare Ni decorated porous titanium mesh (Ni@PTM) (η10 = 171.1 mV) and POM decorated porous titanium mesh (POMs@PTM) electrocatalysts (η10 = 493.6 mV), comparable to that of the commercial 20 wt% platinum/carbon (20% Pt/C) electrocatalyst (η10 = 20 mV). Moreover, the optimized POMs-Ni@PTM electrocatalyst demonstrates excellent stability under continuous alkaline water-splitting at a current density of ∼100 mA cm-2 for 100 h, demonstrating great potential for its practical application.
Collapse
Affiliation(s)
- Meihong Liao
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Huawei Shen
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
| | - Xiaorui Lin
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Zhengji Li
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Muzi Zhu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
| | - Kefei Liu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
| | - Shuaishuai Zhou
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Jingjie Dai
- School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, P. R. China.
| | - Yichao Huang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
| |
Collapse
|
7
|
Chen S, Xu J, Chen J, Yao Y, Wang F. Current Progress of Mo-Based Metal Organic Frameworks Derived Electrocatalysts for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304681. [PMID: 37649205 DOI: 10.1002/smll.202304681] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/12/2023] [Indexed: 09/01/2023]
Abstract
As an important half-reaction for electrochemical water splitting, electrocatalytic hydrogen evolution reaction suffers from sluggish kinetics, and it is still urgent to search high efficiency non-platinum-based electrocatalysts. Mo-based catalysts such as Mo2 C, MoO2 , MoP, MoS2 , and MoNx have emerged as promising alternatives to Pt/C owing to their similar electronic structure with Pt and abundant reserve of Mo. On the other hand, due to the adjustable topology, porosity, and nanostructure of metal organic frameworks (MOFs), MOFs are extensively used as precursors to prepare nano-electrocatalysts. In this review, for the first time, the progress of Mo-MOFs-derived electrocatalysts for hydrogen evolution reaction is summarized. The preparation method, structures, and catalytic performance of the catalysts are illustrated based on the types of the derived electrocatalysts including Mo2 C, MoO2 , MoP, MoS2 , and MoNx . Especially, the commonly used strategies to improve catalytic performance such as heteroatoms doping, constructing heterogeneous structure, and composited with noble metal are discussed. Moreover, the opportunities and challenges in this area are proposed to guide the designment and development of Mo-based MOF derived electrocatalysts.
Collapse
Affiliation(s)
- Siru Chen
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Junlong Xu
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Junyan Chen
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Yingying Yao
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Fang Wang
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| |
Collapse
|
8
|
Liu HJ, Zhang S, Chai YM, Dong B. Ligand Modulation of Active Sites to Promote Cobalt-Doped 1T-MoS 2 Electrocatalytic Hydrogen Evolution in Alkaline Media. Angew Chem Int Ed Engl 2023; 62:e202313845. [PMID: 37815533 DOI: 10.1002/anie.202313845] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Highly efficient hydrogen evolution reaction (HER) electrocatalyst will determine the mass distributions of hydrogen-powered clean technologies, while still faces grand challenges. In this work, a synergistic ligand modulation plus Co doping strategy is applied to 1T-MoS2 catalyst via CoMo-metal-organic frameworks precursors, boosting the HER catalytic activity and durability of 1T-MoS2 . Confirmed by Cs corrected transmission electron microscope and X-ray absorption spectroscopy, the polydentate 1,2-bis(4-pyridyl)ethane ligand can stably link with two-dimensional 1T-MoS2 layers through cobalt sites to expand interlayer spacing of MoS2 (Co-1T-MoS2 -bpe), which promotes active site exposure, accelerates water dissociation, and optimizes the adsorption and desorption of H in alkaline HER processes. Theoretical calculations indicate the promotions in the electronic structure of 1T-MoS2 originate in the formation of three-dimensional metal-organic constructs by linking π-conjugated ligand, which weakens the hybridization between Mo-3d and S-2p orbitals, and in turn makes S-2p orbital more suitable for hybridization with H-1s orbital. Therefore, Co-1T-MoS2 -bpe exhibits excellent stability and exceedingly low overpotential for alkaline HER (118 mV at 10 mA cm-2 ). In addition, integrated into an anion-exchange membrane water electrolyzer, Co-1T-MoS2 -bpe is much superior to the Pt/C catalyst at the large current densities. This study provides a feasible ligand modulation strategy for designs of two-dimensional catalysts.
Collapse
Affiliation(s)
- Hai-Jun Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Shuo Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| |
Collapse
|
9
|
Li S, Li J, Zhu H, Zhang L, Sang X, Zhu Z, You W, Zhang F. Development of polyoxometalate-based Ag-H 2biim inorganic-organic hybrid compounds functionalized for the acid electrocatalytic hydrogen evolution reaction. Dalton Trans 2023; 52:15725-15733. [PMID: 37843464 DOI: 10.1039/d3dt02820h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The electrocatalytic hydrogen evolution reaction (HER) is an ideal method for hydrogen production. Transition metal complex electrocatalysts exhibit poor HER activity due to excessive or weak adsorption of H during the electrochemical reduction of water to molecular hydrogen in acidic environments. Developing specific functional complex materials as desired catalysts is challenging. Here, an electrochemical surface restructuring strategy of polyoxometalate (POM)-modified Ag materials toward the HER with a dramatically decreased overpotential under acidic aqueous conditions is established. We prepared two POM [SiW12O40]4- (SiW12)/[P2W18O62]6- (P2W18)-based Ag-2,2'-biimidazole (H2biim) inorganic-organic hybrid compounds (1 and 2) via the hydrothermal method and these two compounds undergo an electrochemical restructuring process in 0.5 M H2SO4 during the HER, in which Ag nanoparticles are in situ formed with the basic structures of SiW12 and P2W18 being maintained. The activated catalysts (1-AC-RDE and 2-AC-RDE) exhibit good electrocatalytic activity for the HER with good long-term stability, and the required overpotentials at a current density of 10 mA cm-2 are 112 mV (1-AC-RDE) and 91 mV (2-AC-RDE) with Tafel slopes of 77 mV dec-1 and 65 mV dec-1, respectively. The excellent electron-proton storage and transferability of SiW12 and P2W18 may provide a solution for the insufficient capture of H by Ag, leading to an effective self-optimizing behavior and superior acidic HER activity.
Collapse
Affiliation(s)
- Sifan Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China.
- Department of Biochemical Engineering, Chaoyang Teachers College, Chaoyang 122000, Liaoning, China
| | - Jiansheng Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China.
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, Liaoning, China.
| | - Haotian Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China.
| | - Liyuan Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China.
| | - Xiaojing Sang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China.
| | - Zaiming Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China.
| | - Wansheng You
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China.
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, Liaoning, China.
| |
Collapse
|
10
|
Chen Y, Jiang T, Tian C, Zhan Y, Adabifiroozjaei E, Kempf A, Molina-Luna L, Hofmann JP, Riedel R, Yu Z. Molybdenum Phosphide Quantum Dots Encapsulated by P/N-Doped Carbon for Hydrogen Evolution Reaction in Acid and Alkaline Electrolytes. CHEMSUSCHEM 2023; 16:e202300479. [PMID: 37452791 DOI: 10.1002/cssc.202300479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
A facile and eco-friendly strategy is presented for synthesizing novel nanocomposites, with MoP quantum dots (QDs) as cores and graphitic carbon as shells, these nanoparticles are dispersed in a nitrogen and phosphorus-doped porous carbon and carbon nanotubes (CNTs) substrates (MoP@NPC/CNT). The synthesis involves self-assembling reactions to form single-source precursors (SSPs), followed by pyrolysis at 900 °C in an inert atmosphere to obtain MoP@NPC/CNT-900. The presence of carbon layers on the MoP QDs effectively prevents particle aggregation, enhancing the utilization of active MoP species. The optimized sample, MoP@NPC/CNT-900, exhibits remarkable electrocatalytic activity and durability for the hydrogen evolution reaction (HER). It demonstrates a low overpotential of 155 mV at 10 mA cm-2 , a small Tafel slope of 76 mV dec-1 , and sustained performance over 20 hours in 0.5 M H2 SO4 . Furthermore, the catalyst shows excellent activity in 1 M KOH, with a relatively low overpotential of 131 mV and long-term durability under constant current input. The exceptional HER activity can be attributed to several factors: the superior performance of MoP QDs, the large surface area and good conductivity of the carbon substrates, and the synergistic effect between MoP and carbon species.
Collapse
Affiliation(s)
- Yongchao Chen
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Tianshu Jiang
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Chuanmu Tian
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Ying Zhan
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Esmaeil Adabifiroozjaei
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Alexander Kempf
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Leopoldo Molina-Luna
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Jan P Hofmann
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Ralf Riedel
- Department of Materials and Earth Sciences, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Zhaoju Yu
- College of Materials, Key Laboratory of High Performance Ceramic Fibers (Xiamen University), Ministry of Education, Xiamen, 361005, P. R. China
- College of Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
11
|
Hu B, Huang K, Tang B, Lei Z, Wang Z, Guo H, Lian C, Liu Z, Wang L. Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution. NANO-MICRO LETTERS 2023; 15:217. [PMID: 37768413 PMCID: PMC10539274 DOI: 10.1007/s40820-023-01182-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023]
Abstract
The hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide (2H-MoS2) presents a significant hurdle in realizing its full potential applications. Here, we utilize theoretical calculations to predict possible functionalized graphene quantum dots (GQDs), which can enhance HER activity of bulk MoS2. Subsequently, we design a functionalized GQD-induced in-situ bottom-up strategy to fabricate near atom-layer 2H-MoS2 nanosheets mediated with GQDs (ALQD) by modulating the concentration of electron withdrawing/donating functional groups. Experimental results reveal that the introduction of a series of functionalized GQDs during the synthesis of ALQD plays a crucial role. Notably, the higher the concentration and strength of electron-withdrawing functional groups on GQDs, the thinner and more active the resulting ALQD are. Remarkably, the synthesized near atom-layer ALQD-SO3 demonstrate significantly improved HER performance. Our GQD-induced strategy provides a simple and efficient approach for expanding the catalytic application of MoS2. Furthermore, it holds substantial potential for developing nanosheets in other transition-metal dichalcogenide materials.
Collapse
Affiliation(s)
- Bingjie Hu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, People's Republic of China
| | - Kai Huang
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Bijun Tang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhendong Lei
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, People's Republic of China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, People's Republic of China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, People's Republic of China.
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
12
|
Yoon SJ, Lee SJ, Kim MH, Park HA, Kang HS, Bae SY, Jeon IY. Recent Tendency on Transition-Metal Phosphide Electrocatalysts for the Hydrogen Evolution Reaction in Alkaline Media. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2613. [PMID: 37764642 PMCID: PMC10535723 DOI: 10.3390/nano13182613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Hydrogen energy is regarded as an auspicious future substitute to replace fossil fuels, due to its environmentally friendly characteristics and high energy density. In the pursuit of clean hydrogen production, there has been a significant focus on the advancement of effective electrocatalysts for the process of water splitting. Although noble metals like Pt, Ru, Pd and Ir are superb electrocatalysts for the hydrogen evolution reaction (HER), they have limitations for large-scale applications, mainly high cost and low abundance. As a result, non-precious transition metals have emerged as promising candidates to replace their more expensive counterparts in various applications. This review focuses on recently developed transition metal phosphides (TMPs) electrocatalysts for the HER in alkaline media due to the cooperative effect between the phosphorus and transition metals. Finally, we discuss the challenges of TMPs for HER.
Collapse
Affiliation(s)
| | | | | | | | | | - Seo-Yoon Bae
- Department of Chemical Engineering, Nanoscale Environmental Sciences and Technology Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea; (S.J.Y.); (S.J.L.); (M.H.K.); (H.A.P.); (H.S.K.)
| | - In-Yup Jeon
- Department of Chemical Engineering, Nanoscale Environmental Sciences and Technology Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea; (S.J.Y.); (S.J.L.); (M.H.K.); (H.A.P.); (H.S.K.)
| |
Collapse
|
13
|
Peng W, Yuan Y, Huang C, Wu Y, Xiao Z, Zhan G. Ru and Se Co-Doped Cobalt Hydroxide Electrocatalyst for Efficient Hydrogen Evolution Reactions. Molecules 2023; 28:5736. [PMID: 37570706 PMCID: PMC10420253 DOI: 10.3390/molecules28155736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The development of efficient electrocatalysts for hydrogen evolution reactions is an extremely important area for the development of green and clean energy. In this work, a precursor material was successfully prepared via electrodeposition of two doping elements to construct a co-doped cobalt hydroxide electrocatalyst (Ru-Co(OH)2-Se). This approach was demonstrated to be an effective way to improve the performance of the hydrogen evolution reaction (HER). The experimental results show that the material exhibited a smaller impedance value and a larger electrochemically active surface area. In the HER process, the overpotential was only 109 mV at a current density of 10 mA/cm2. In addition, the doping of selenium and ruthenium effectively prevented the corrosion of the catalysts, with the (Ru-Co(OH)2-Se) material showing no significant reduction in the catalytic performance after 50 h. This synergistic approach through elemental co-doping demonstrated good results in the HER process.
Collapse
Affiliation(s)
| | | | | | | | | | - Guanghui Zhan
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China; (W.P.); (Y.Y.); (C.H.); (Y.W.); (Z.X.)
| |
Collapse
|
14
|
Tan C, Li Y, He W, Wang Z, Liu X, Li Y, Yan X. TiO 2-coated MoP/phosphorus doped carbon nanorods for ultralong-life sodium ion batteries with high capacity. NANOSCALE 2023. [PMID: 37466158 DOI: 10.1039/d3nr02392c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
How to green synthesize and construct MoP anode electrode materials with advanced structures for sodium-ion batteries still faces great challenges. Herein, a TiO2-coated MoP/phosphorus doped carbon (MoP@TiO2/P-C) nanorod with a new structure is constructed using TiO2-coated Mo-MOF as the precursor through an in situ topological conversion technique. In the synthesis process, the traditional highly toxic PH3 phosphorus is avoided. TEM results reveal that TiO2 nanoparticles are distributed at the interface between the MoP core and the P-doped carbon shell, which breaks the density of the carbon layer and facilitates ion transport. The GITT results demonstrate the fact that the diffusion coefficient of sodium ions is remarkably improved by two orders of magnitude due to the presence of TiO2. Notably, TiO2 can effectively cushion volume expansion with an almost negligible rate of 13%, allowing cells to manifest a high discharge capacity of 419 mA h g-1 at 0.5 A g-1 current density and exceptional stability where the specific capacity remains constant for 10 000 cycles at a high density of 10 A g-1 (∼81 seconds for one charging). The results indicate that MoP@TiO2/P-C possesses promising capabilities as an anode substance for SIBs. This also establishes a foundation for future investigations and practical use of this material in the field.
Collapse
Affiliation(s)
- Chunmei Tan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Yiran Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Wei He
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Zhanzhan Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Xiaoyu Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Yanjuan Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Xiao Yan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
15
|
Zhou M, Jiang X, Kong W, Li H, Lu F, Zhou X, Zhang Y. Synergistic Effect of Dual-Doped Carbon on Mo 2C Nanocrystals Facilitates Alkaline Hydrogen Evolution. NANO-MICRO LETTERS 2023; 15:166. [PMID: 37394676 PMCID: PMC10315362 DOI: 10.1007/s40820-023-01135-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023]
Abstract
Molybdenum carbide (Mo2C) materials are promising electrocatalysts with potential applications in hydrogen evolution reaction (HER) due to low cost and Pt-like electronic structures. Nevertheless, their HER activity is usually hindered by the strong hydrogen binding energy. Moreover, the lack of water-cleaving sites makes it difficult for the catalysts to work in alkaline solutions. Here, we designed and synthesized a B and N dual-doped carbon layer that encapsulated on Mo2C nanocrystals (Mo2C@BNC) for accelerating HER under alkaline condition. The electronic interactions between the Mo2C nanocrystals and the multiple-doped carbon layer endow a near-zero H adsorption Gibbs free energy on the defective C atoms over the carbon shell. Meanwhile, the introduced B atoms afford optimal H2O adsorption sites for the water-cleaving step. Accordingly, the dual-doped Mo2C catalyst with synergistic effect of non-metal sites delivers superior HER performances of a low overpotential (99 mV@10 mA cm-2) and a small Tafel slope (58.1 mV dec-1) in 1 M KOH solution. Furthermore, it presents a remarkable activity that outperforming the commercial 10% Pt/C catalyst at large current density, demonstrating its applicability in industrial water splitting. This study provides a reasonable design strategy towards noble-metal-free HER catalysts with high activity.
Collapse
Affiliation(s)
- Min Zhou
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
- College of Physical Science and Technology, Yangzhou University, Yangzhou, 225002, People's Republic of China.
| | - Xiaoli Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Weijie Kong
- College of Physical Science and Technology, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Hangfei Li
- College of Physical Science and Technology, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Fei Lu
- College of Physical Science and Technology, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Xin Zhou
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
16
|
Jiang H, Zhang S, Yan L, Xing Y, Zhang Z, Zheng Q, Shen J, Zhao X, Wang L. Stress-Dispersed Superstructure of Sn 3 (PO 4 ) 2 @PC Derived from Programmable Assembly of Metal-Organic Framework as Long-Life Potassium/Sodium-Ion Batteries Anodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206587. [PMID: 37088779 DOI: 10.1002/advs.202206587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/24/2023] [Indexed: 05/03/2023]
Abstract
The structures of anode materials significantly affect their properties in rechargeable batteries. Material nanosizing and electrode integrity are both beneficial for performance enhancement of batteries, but it is challenging to guarantee optimized nanosizing particles and high structural integrity simultaneously. Herein, a programmable assembly strategy of metal-organic frameworks (MOFs) is used to construct a Sn-based MOF superstructure precursor. After calcination under inert atmosphere, the as-fabricated Sn3 (PO4 )2 @phosphorus doped carbon (Sn3 (PO4 )2 @PC-48) well inherited the morphology of Sn-MOF superstructure precursor. The resultant new material exhibits appreciable reversible capacity and low capacity degradation for K+ storage (144.0 mAh g-1 at 5 A g-1 with 90.1% capacity retained after 10000 cycles) and Na+ storage (202.5 mAh g-1 at 5 A g-1 with 96.0% capacity retained after 8000 cycles). Detailed characterizations, density functional theory calculations, and finite element analysis simulations reveal that the optimized electronic structure and the stress-dispersed superstructure morphology of Sn3 (PO4 )2 @PC promote the electronic conductivity, enhance K+ / Na+ binding ability and improve the structure stabilization efficiently. This strategy to optimize the structure of anode materials by controlling the MOF growth process offer new dimension to regulate the materials precisely in the energy field.
Collapse
Affiliation(s)
- Huimin Jiang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Shuo Zhang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Liting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Hainan Medical University, Haikou, 571199, P. R. China
| | - Zhichao Zhang
- Tianmu Lake Institute of Advanced Energy Storage Technologies Co., Ltd, Liyang, 213300, P. R. China
| | - Qiuju Zheng
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jianxing Shen
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xuebo Zhao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Lianzhou Wang
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
17
|
Yan W, Ma H, Zhao X, Zhang Y, Vishniakov P, Wang X, Zhong X, Hong Z, Maximov MY, Song L, Peng S, Li L. P and Se Binary Vacancies and Heterostructures Modulated MoP/MoSe 2 Electrocatalysts for Improving Hydrogen Evolution and Coupling Electricity Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208270. [PMID: 37026657 DOI: 10.1002/smll.202208270] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Indexed: 06/19/2023]
Abstract
It is not enough to develop an ideal hydrogen evolution reaction (HER) electrocatalysts by single strategy. Here, the HER performances are significantly improved by the combined strategies of P and Se binary vacancies and heterostructure engineering, which is rarely explored and remain unclear. As a result, the overpotentials of MoP/MoSe2 -H heterostructures rich in P and Se binary vacancies are 47 and 110 mV at 10 mA cm-2 in 1 m KOH and 0.5 m H2 SO4 electrolytes, respectively. Especially, in 1 m KOH, the overpotential of MoP/MoSe2 -H is very close to commercial Pt/C at the beginning and even better than Pt/C when current density is over 70 mA cm-2 . The strong interactions between MoSe2 and MoP facilitate electrons transfer from P to Se. Thus, MoP/MoSe2 -H possesses more electrochemically active sites and faster charge transfer capability, which are all in favor of high HER activities. Additionally, Zn-H2 O battery with MoP/MoSe2 -H as cathode is fabricated for simultaneous generation of hydrogen and electricity, which displays the maximum power density of up to 28.1 mW cm-2 and stable discharging performance for 125 h. Overall, this work validates a vigorous strategy and provides guidance for the development of efficient HER electrocatalysts.
Collapse
Affiliation(s)
- Wensi Yan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Hui Ma
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| | - Xueting Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - You Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| | - Paul Vishniakov
- Peter the Great Saint-Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Xin Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiaohong Zhong
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Zhe Hong
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| | - Maxim Yu Maximov
- Peter the Great Saint-Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Li Song
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| | - Shengjie Peng
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| |
Collapse
|
18
|
An C, Wang Y, Huang R, Li Y, Wang C, Wu S, Gao L, Zhu C, Deng Q, Hu N. Lattice-matched Cu3P/Cu2Se heterojunction catalysts for efficient hydrogen evolution reactions. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
19
|
Wang C, Zhang Q, Yan B, You B, Zheng J, Feng L, Zhang C, Jiang S, Chen W, He S. Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions. NANO-MICRO LETTERS 2023; 15:52. [PMID: 36795218 PMCID: PMC9935811 DOI: 10.1007/s40820-023-01024-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 05/19/2023]
Abstract
The crystal facets featured with facet-dependent physical and chemical properties can exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) attributed to their anisotropy. The highly active exposed crystal facets enable increased mass activity of active sites, lower reaction energy barriers, and enhanced catalytic reaction rates for HER and OER. The formation mechanism and control strategy of the crystal facet, significant contributions as well as challenges and perspectives of facet-engineered catalysts for HER and OER are provided. The electrocatalytic water splitting technology can generate high-purity hydrogen without emitting carbon dioxide, which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality. Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency. Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface. Owing to the anisotropy, crystal planes with different orientations usually feature facet-dependent physical and chemical properties, leading to differences in the adsorption energies of oxygen or hydrogen intermediates, and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review, a brief introduction of the basic concepts, fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided. The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes. Subsequently, three strategies of selective capping agent, selective etching agent, and coordination modulation to tune crystal planes are comprehensively summarized. Then, we present an overview of significant contributions of facet-engineered catalysts toward HER, OER, and overall water splitting. In particular, we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity. Finally, the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed.
Collapse
Affiliation(s)
- Changshui Wang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Qian Zhang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Bing Yan
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
| | - Jiaojiao Zheng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Li Feng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 2150009, People's Republic of China
| | - Shaohua Jiang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
- University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Shuijian He
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
20
|
Ma H, Yan W, Yu Y, Deng L, Hong Z, Song L, Li L. Phosphorus vacancies improve the hydrogen evolution of MoP electrocatalysts. NANOSCALE 2023; 15:1357-1364. [PMID: 36562326 DOI: 10.1039/d2nr05964a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although molybdenum phosphide (MoP) has attracted increasing attention as an electrocatalyst in the hydrogen evolution reaction (HER), it is still worth exploring an effective approach to further improve the HER activities of MoP. To date, the generation and effect of P vacancies (Pv) on MoP have been rarely investigated for the HER in both alkaline and acidic media and remain unclear. Here, MoP rich in P vacancies (MoP-Pv) was prepared by hydrogen reduction to improve the HER catalytic performances. As a result, the overpotentials of MoP-Pv were 70 mV and 62 mV lower than those of pristine MoP in 1 M KOH and 0.5 M H2SO4 electrolytes, respectively. What's more, the TOFs of MoP-Pv were 3.14 s-1 and 1.19 s-1 at an overpotential of 200 mV in 1 M KOH and 0.5 M H2SO4, respectively, which are 4.1-fold and 2.5-fold higher than those of pristine MoP. Even when compared with other corresponding catalysts, the TOFs of MoP-Pv still ranked at the top. Due to the surface P vacancies, MoP-Pv possesses more electrochemically active sites and faster charge transfer capability, which all favor higher HER catalytic activities. Overall, our work validates a straightforward and vigorous strategy for improving the intrinsic HER catalytic activities of P vacancies, and also provides guidance for the development of vacancy engineering in electrocatalysts.
Collapse
Affiliation(s)
- Hui Ma
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang 163318, China
| | - Wensi Yan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Yanlong Yu
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang 163318, China
| | - LiHua Deng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang 163318, China
| | - Zhe Hong
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Li Song
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| |
Collapse
|
21
|
Shah SSA, Khan NA, Imran M, Rashid M, Tufail MK, Rehman AU, Balkourani G, Sohail M, Najam T, Tsiakaras P. Recent Advances in Transition Metal Tellurides (TMTs) and Phosphides (TMPs) for Hydrogen Evolution Electrocatalysis. MEMBRANES 2023; 13:113. [PMID: 36676920 PMCID: PMC9863077 DOI: 10.3390/membranes13010113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The hydrogen evolution reaction (HER) is a developing and promising technology to deliver clean energy using renewable sources. Presently, electrocatalytic water (H2O) splitting is one of the low-cost, affordable, and reliable industrial-scale effective hydrogen (H2) production methods. Nevertheless, the most active platinum (Pt) metal-based catalysts for the HER are subject to high cost and substandard stability. Therefore, a highly efficient, low-cost, and stable HER electrocatalyst is urgently desired to substitute Pt-based catalysts. Due to their low cost, outstanding stability, low overpotential, strong electronic interactions, excellent conductivity, more active sites, and abundance, transition metal tellurides (TMTs) and transition metal phosphides (TMPs) have emerged as promising electrocatalysts. This brief review focuses on the progress made over the past decade in the use of TMTs and TMPs for efficient green hydrogen production. Combining experimental and theoretical results, a detailed summary of their development is described. This review article aspires to provide the state-of-the-art guidelines and strategies for the design and development of new highly performing electrocatalysts for the upcoming energy conversion and storage electrochemical technologies.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Naseem Ahmad Khan
- Institute of Chemistry, the Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Imran
- Institute of Chemistry, the Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Rashid
- Institute of Chemistry, the Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | - Aziz ur Rehman
- Institute of Chemistry, the Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Georgia Balkourani
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos, 38834 Volos, Greece
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Tayyaba Najam
- Institute of Chemistry, the Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos, 38834 Volos, Greece
- Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry, RAS, 20 Akademicheskaya Str., Yekaterinburg 620990, Russia
- Laboratory of Materials and Devices for Electrochemical Power Engineering, Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., Yekaterinburg 620002, Russia
| |
Collapse
|
22
|
Chen J, Ha Y, Wang R, Liu Y, Xu H, Shang B, Wu R, Pan H. Inner Co Synergizing Outer Ru Supported on Carbon Nanotubes for Efficient pH-Universal Hydrogen Evolution Catalysis. NANO-MICRO LETTERS 2022; 14:186. [PMID: 36104459 PMCID: PMC9475008 DOI: 10.1007/s40820-022-00933-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/12/2022] [Indexed: 05/25/2023]
Abstract
Exploring highly active but inexpensive electrocatalysts for the hydrogen evolution reaction (HER) is of critical importance for hydrogen production from electrochemical water splitting. Herein, we report a multicomponent catalyst with exceptional activity and durability for HER, in which cobalt nanoparticles were in-situ confined inside bamboo-like carbon nanotubes (CNTs) while ultralow ruthenium loading (~ 2.6 µg per electrode area ~ cm-2) is uniformly deposited on their exterior walls (Co@CNTsǀRu). The atomic-scale structural investigations and theoretical calculations indicate that the confined inner Co and loaded outer Ru would induce charge redistribution and a synergistic electron coupling, not only optimizing the adsorption energy of H intermediates (ΔGH*) but also facilitating the electron/mass transfer. The as-developed Co@CNTsǀRu composite catalyst requires overpotentials of only 10, 32, and 63 mV to afford a current density of 10 mA cm-2 in alkaline, acidic and neutral media, respectively, representing top-level catalytic activity among all reported HER catalysts. The current work may open a new insight into the rational design of carbon-supported metal catalysts for practical applications.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, People's Republic of China
| | - Yuan Ha
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, People's Republic of China
| | - Ruirui Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yanxia Liu
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, People's Republic of China
| | - Hongbin Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China
| | - Bin Shang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430073, People's Republic of China.
| | - Renbing Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, People's Republic of China.
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
23
|
Wang W, Qi J, Zhai L, Ma C, Ke C, Zhai W, Wu Z, Bao K, Yao Y, Li S, Chen B, Repaka DVM, Zhang X, Ye R, Lai Z, Luo G, Chen Y, He Q. Preparation of 2D Molybdenum Phosphide via Surface-Confined Atomic Substitution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203220. [PMID: 35902244 DOI: 10.1002/adma.202203220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The emerging nonlayered 2D materials (NL2DMs) are sparking immense interest due to their fascinating physicochemical properties and enhanced performance in many applications. NL2DMs are particularly favored in catalytic applications owing to the extremely large surface area and low-coordinated surface atoms. However, the synthesis of NL2DMs is complex because their crystals are held together by strong isotropic covalent bonds. Here, nonlayered molybdenum phosphide (MoP) with well-defined 2D morphology is synthesized from layered molybdenum dichalcogenides via surface-confined atomic substitution. During the synthesis, the molybdenum dichalcogenide nanosheet functions as the host matrix where each layer of Mo maintains their hexagonal arrangement and forms isotropic covalent bonds with P that substitutes S, resulting in the conversion from layered van der Waals material to a covalently bonded NL2DM. The MoP nanosheets converted from few-layer MoS2 are single crystalline, while those converted from monolayers are amorphous. The converted MoP demonstrates metallic charge transport and desirable performance in the electrocatalytic hydrogen evolution reaction (HER). More importantly, in contrast to MoS2 , which shows edge-dominated HER performance, the edge and basal plane of MoP deliver similar HER performance, which is correlated with theoretical calculations. This work provides a new synthetic strategy for high-quality nonlayered materials with well-defined 2D morphology for future exploration.
Collapse
Affiliation(s)
- Wenbin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Junlei Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chengxuan Ke
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zongxiao Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Kai Bao
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - D V Maheswar Repaka
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), Singapore, 138632, Singapore
| | - Xiao Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ruquan Ye
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Guangfu Luo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
24
|
Seenivasan S, Moon H, Kim DH. Multilayer Strategy for Photoelectrochemical Hydrogen Generation: New Electrode Architecture that Alleviates Multiple Bottlenecks. NANO-MICRO LETTERS 2022; 14:78. [PMID: 35334000 PMCID: PMC8956779 DOI: 10.1007/s40820-022-00822-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Years of research have demonstrated that the use of multiple components is essential to the development of a commercial photoelectrode to address specific bottlenecks, such as low charge separation and injection efficiency, low carrier diffusion length and lifetime, and poor durability. A facile strategy for the synthesis of multilayered photoanodes from atomic-layer-deposited ultrathin films has enabled a new type of electrode architecture with a total multilayer thickness of 15-17 nm. We illustrate the advantages of this electrode architecture by using nanolayers to address different bottlenecks, thus producing a multilayer photoelectrode with improved interface kinetics and shorter electron transport path, as determined by interface analyses. The photocurrent density was twice that of the bare structure and reached a maximum of 33.3 ± 2.1 mA cm-2 at 1.23 VRHE. An integrated overall water-splitting cell consisting of an electrocatalytic NiS cathode and Bi2S3/NiS/NiFeO/TiO2 photoanode was used for precious-metal-free seawater splitting at a cell voltage of 1.23 V without degradation. The results and root analyses suggest that the distinctive advantages of the electrode architecture, which are superior to those of bulk bottom-up core-shell and hierarchical architectures, originate from the high density of active sites and nanometer-scale layer thickness, which enhance the suitability for interface-oriented energy conversion processes.
Collapse
Affiliation(s)
- Selvaraj Seenivasan
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| | - Hee Moon
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| | - Do-Heyoung Kim
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
25
|
Pan M, Chen W, Qian G, Yu T, Wang Z, Luo L, Yin S. Carbon-encapsulated Co3V decorated Co2VO4 nanosheets for enhanced urea oxidation and hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Logeshwaran N, Panneerselvam IR, Ramakrishnan S, Kumar RS, Kim AR, Wang Y, Yoo DJ. Quasihexagonal Platinum Nanodendrites Decorated over CoS 2 -N-Doped Reduced Graphene Oxide for Electro-Oxidation of C1-, C2-, and C3-Type Alcohols. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105344. [PMID: 35048552 PMCID: PMC8922112 DOI: 10.1002/advs.202105344] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/23/2021] [Indexed: 05/27/2023]
Abstract
The development of efficient and highly durable materials for renewable energy conversion devices is crucial to the future of clean energy demand. Herein, cage-like quasihexagonal structured platinum nanodendrites decorated over the transition metal chalcogenide core (CoS2 )-N-doped graphene oxide (PtNDs@CoS2 -NrGO) through optimized shape engineering and structural control technology are fabricated. The prepared electrocatalyst of PtNDs@CoS2 -NrGO is effectively used as anodic catalyst for alcohol oxidation in direct liquid alcohol fuel cells. Notably, the prepared PtNDs@CoS2 -NrGO exhibits superior electrocatalytic performance toward alcohol oxidation with higher oxidation peak current densities of 491.31, 440.25, and 438.12 mA mgpt -1 for (methanol) C1, (ethylene glycol) C2, and (glycerol) C3 fuel electrolytes, respectively, as compared to state-of-the-art Pt-C in acidic medium. The electro-oxidation durability of PtNDs@CoS2 -NrGO is investigated through cyclic voltammetry and chronoamperometry tests, which demonstrate excellent stability of the electrocatalyst toward various alcohols. Furthermore, the surface and adsorption energies of PtNDs and CoS2 are calculated using density functional theory along with the detailed bonding analysis. Overall, the obtained results emphasize the advances in effective precious material utilization and fabricating techniques of active electrocatalysts for direct alcohol oxidation fuel cell applications.
Collapse
Affiliation(s)
- Natarajan Logeshwaran
- Graduate SchoolDepartment of Energy Storage/Conversion Engineering (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
| | | | - Shanmugam Ramakrishnan
- Graduate SchoolDepartment of Energy Storage/Conversion Engineering (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
| | - Ramasamy Santhosh Kumar
- Graduate SchoolDepartment of Energy Storage/Conversion Engineering (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
| | - Ae Rhan Kim
- Graduate SchoolDepartment of Energy Storage/Conversion Engineering (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
- Department of Life ScienceJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
| | - Yan Wang
- Department of Mechanical EngineeringUniversity of Nevada, RenoRenoNV89557USA
| | - Dong Jin Yoo
- Graduate SchoolDepartment of Energy Storage/Conversion Engineering (BK21 FOUR)Hydrogen and Fuel Cell Research CenterJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
- Department of Life ScienceJeonbuk National UniversityJeonjuJeollabuk‐do54896Republic of Korea
| |
Collapse
|
27
|
Zhong Y, Wang S, Zhang S, Zhang L. Carbon-quantum-dot-modified ZnS nanospheres for highly efficient electrocatalytic hydrogen evolution. NEW J CHEM 2022. [DOI: 10.1039/d2nj00664b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CQDs modified ZnS nanospheres are modulated by tuning the addition of l-cysteine, and the CQDs attached on ZnS nanospheres plays an important role in improving the electron mobility and active areas, which determine the electrocatalytic performance.
Collapse
Affiliation(s)
- Yueyao Zhong
- School of Materials Science and Engineering, Shandong Jianzhu University, Jinan, 250100, P. R. China
| | - Shouzhi Wang
- Institute of Novel Semiconductors, State Key Lab of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shiying Zhang
- School of Science, Shandong Jianzhu University, Jinan, 250100, P. R. China
| | - Lei Zhang
- Institute of Novel Semiconductors, State Key Lab of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|