1
|
Zhang TY, Zhao QQ, Sun B, Ahmed I, Liu R, Liu C, Wang H, Pei S, Liu C, Zeng Y. All-In-One Flexible MXene/PET Films via Scalable Scanning Centrifugal Casting for High Transparency and Ultra-Wide Multispectral Electromagnetic Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501540. [PMID: 40365757 DOI: 10.1002/advs.202501540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/27/2025] [Indexed: 05/15/2025]
Abstract
Highly integrated multifunctional materials are crucial for the development of next-generation aircraft and electronic communication devices. In this study, a novel ultra-thin MXene film with high optical transparency and broad multispectral electromagnetic responses is first fabricated using the scanning centrifugal casting (SCC) technique. The MXene-coated PET films significantly integrate transparency, UV-adsorption, infrared (IR) stealth, and electromagnetic shielding from gigahertz (GHz) to terahertz (THz) frequencies together to address the diverse demands of multifunctional applications. The all-in-one integrated flexible films exhibit excellent optoelectronic properties (sheet resistance of 163 Ω sq-1 at 82% transparency with a figure of merit of 10.88), outstanding IR stealth (IR emissivity below 55%), and ultra-broad electromagnetic shielding performance (shielding effectiveness of over 10 dB across GHz to THz frequencies). This remarkable performance is attributed to the intrinsic multifunctionality of MXene, ultra-thin thickness, horizontal alignment of nanosheets, and strong interfacial interactions achieved during the SCC process. These all-in-one flexible MXene films exhibit great potential for applications in aircraft windows, wearable electronics, and next-generation communication technology.
Collapse
Affiliation(s)
- Tian-Yu Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Qiang-Qiang Zhao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Bo Sun
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Ibrar Ahmed
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Ruijia Liu
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chi Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Han Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Songfeng Pei
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - You Zeng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| |
Collapse
|
2
|
Li J, Guo F, Bao Y, Si Q, Lu Y, Fu Q, Shi J. Cellulose-Based Electromagnetic Functional Aerogels: Mechanism, Fabrication, Structural Design, and Application. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27579-27604. [PMID: 40324338 DOI: 10.1021/acsami.4c22875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Electromagnetic functional materials offer a promising solution to reduce impacts from electromagnetic pollution and interference, such as digital communications, national defenses, and military fields. Cellulose-based aerogels, featured with their hierarchical porous structure, high specific surface area, and surface activity, can be engineered to possess electromagnetic wave shielding and absorption capabilities through structural regulation, composition optimization, and material functionalization. Moreover, these cellulose-based aerogels exhibit remarkable renewability and biocompatibility, highlighting their significant potential in the field of electromagnetic functional materials. In this review, we stigmatically overview the state-of-the-art of cellulosic electromagnetic functional aerogels, which begins with elucidating the mechanisms behind electromagnetic interference shielding and microwave absorption. The material design based on the physical and chemical characteristics of cellulose aerogels is discussed. Furthermore, the hierarchical design strategies of the cellulosic electromagnetic functional aerogels are reviewed including macro-structures, micro/nanostructures, and supramolecular structures. Multifunctional applications of cellulose electromagnetic functional aerogels are presented, such as infrared and radar stealth materials, intelligent responsive electromagnetic devices, and radiation protection equipment. Finally, an up-to-date summary and an outlook on developing the cellulose-based electromagnetic functional aerogels are provided in the fields of electromagnetic interference shielding and microwave absorption, as well as outlining future research perspectives.
Collapse
Affiliation(s)
- Jiayao Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fakun Guo
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yunhui Bao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qingshan Si
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yun Lu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Qiliang Fu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Dehua TB New Decoration Material Co., Ltd., Huzhou 313200, China
| | - Jiangtao Shi
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Lin J, Cui L, Shi X, Wu S. Emerging Trends in Microfluidic Biomaterials: From Functional Design to Applications. J Funct Biomater 2025; 16:166. [PMID: 40422832 DOI: 10.3390/jfb16050166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/28/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
The rapid development of microfluidics has driven innovations in material engineering, particularly through its ability to precisely manipulate fluids and cells at microscopic scales. Microfluidic biomaterials, a cutting-edge interdisciplinary field integrating microfluidic technology with biomaterials science, are revolutionizing biomedical research. This review focuses on the functional design and fabrication of organ-on-a-chip (OoAC) platforms via 3D bioprinting, explores the applications of biomaterials in drug delivery, cell culture, and tissue engineering, and evaluates the potential of microfluidic systems in advancing personalized healthcare. We systematically analyze the evolution of microfluidic materials-from silicon and glass to polymers and paper-and highlight the advantages of 3D bioprinting over traditional fabrication methods. Currently, despite significant advances in microfluidics in medicine, challenges in scalability, stability, and clinical translation remain. The future of microfluidic biomaterials will depend on combining 3D bioprinting with dynamic functional design, developing hybrid strategies that combine traditional molds with bio-printed structures, and using artificial intelligence to monitor drug delivery or tissue response in real time. We believe that interdisciplinary collaborations between materials science, micromachining, and clinical medicine will accelerate the translation of organ-on-a-chip platforms into personalized therapies and high-throughput drug screening tools.
Collapse
Affiliation(s)
- Jiaqi Lin
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lijuan Cui
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaokun Shi
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shuping Wu
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Du Y, Chen W, Li S, Wang Y, Li X, Liang Y, Cui Y, Li J, Xia C. Core-shell structured waste paper/biocarbon composite providing exceptional electromagnetic interference shielding and flame retardancy. Int J Biol Macromol 2025; 307:142054. [PMID: 40090643 DOI: 10.1016/j.ijbiomac.2025.142054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/04/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
The widespread use of electronic devices significantly facilitates daily human life, but also leads to increasingly serious electromagnetic pollution. Therefore, it is necessary to develop eco-friendly electromagnetic interference (EMI) shielding materials with excellent overall performance. Here, we prepare a waste paper/biocarbon (WP/BC) composite with a distinct densely self-bonded core-shell structure through the partial dissolution co-mixing process. Benefiting from this structure, the WP/BC composite exhibits metal-grade EMI shielding performance of EMI shielding effectiveness (EMI SE) up to 69.59 dB and superior flame retardancy (limiting oxygen index of 33.39 %). In addition, the WP/BC composite also shows favorable thermal management performance and low environmental impacts. This lightweight and eco-friendly WP/BC composite with excellent overall performance possesses significant potential for applications in commercial, industrial, and military sectors.
Collapse
Affiliation(s)
- Yingkuan Du
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weiqiang Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Suiyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Yang Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yunyi Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yilong Cui
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianzhang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
5
|
Lai D, Chen Z, Wang W, Chen X. Foaming ink for 3D-printing of ultralight and hyperelastic graphene architectures: Multiscale design and ultra-efficient electromagnetic interference shielding. J Colloid Interface Sci 2025; 685:900-911. [PMID: 39874827 DOI: 10.1016/j.jcis.2025.01.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Extrusion-based printing of macroscopic architectures layer-by-layer offers new opportunities for constructing customized electromagnetic interference (EMI) shielding materials. However, current research primarily focuses on improving the printability of material inks by increasing contents and adding various modifiers, controllable construction of ultralight and robust macro-architectures with structural design at both macro- and micro-scales is still challenging. Herein, we develop a graphene oxide foaming ink enriched with air bubbles for direct-ink writing, enabling the creation of macroscopic graphene architectures with arbitrary geometries. Meanwhile, air bubbles guide the self-assembly of nanosheets into a unique closed-cellular structure, which plays a critical role in enhancing EMI shielding performance. The resulting bubble-derived graphene aerogels (BGAs), fabricated through lyophilization and reduction of the foaming inks, exhibit ultralow densities of 0.0033-0.0045 g·cm-3, superior resilience even at cryogenic temperatures (-196 °C in liquid nitrogen), high compressive strength, and a negative Poisson's ratio. Remarkably, these BGAs achieve exceptionally high EMI shielding effectiveness (SE), reaching 103.2 dB with a low SE reflection of merely 4.8 dB. The specific SE (SSE/t), an absolute measure considering density and thickness, reaches an impressive value of 52,252 dB·cm2·g-1, ranking among the highest reported for synthetic foams. The desirable nanosheets-wrapped closed bubble-shaped cells, well-connected porous and conductive networks, and abundant interfaces in the BGAs collectively contribute to the intense interference and multireflection of electromagnetic waves, driving their outstanding shielding performance. This study presents a straightforward and practical approach to construct ultralight and resilient graphene architectures with multiscale designs, offering a promising solution for advanced EMI shielding applications.
Collapse
Affiliation(s)
- Dengguo Lai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 China; UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FF UK
| | - Zhaohui Chen
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 China
| | - Wenxuan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 China
| | - Xiaoxiao Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 515200 China.
| |
Collapse
|
6
|
Peng H, Zhang D, Xie Z, Lu S, Liu Y, Liang F. Recent Advances in Structural Design of Carbon/Magnetic Composites and their Electromagnetic Wave Absorption Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408570. [PMID: 39831826 DOI: 10.1002/smll.202408570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Electromagnetic pollution protection and military stealth technologies underscore the urgent need to develop efficient electromagnetic wave-absorbing materials (EWAMs). Traditional EWAMs suffer from single absorption loss mechanisms, poor impedance matching, and weak reflection loss. To date, combining dielectric loss with magnetic loss in EWAMs have proven to be an effective approach to enhancing electromagnetic absorption performance. The structural design of composites plays a pivotal role in improving impedance matching and enhancing the attenuation of electromagnetic waves. It is widely regarded as one of the principal methods for fine-tuning electromagnetic parameters and response mechanisms. Among these, composites of carbon and magnetic materials have become a research hotspot due to their magnetoelectric synergistic effects and versatile microstructure design. Herein, the principles of electromagnetic wave absorption in terms of both the loss mechanism and impedance matching are outlined. The research progress on core-shell, skeleton, and hollow structure of carbon/magnetic composite EWAMs are summarized. The synthesis methods, absorption properties, and attenuation mechanisms of composites with these structures are described in detail. Finally, the limitations of carbon/magnetic composites in electromagnetic wave absorption are discussed, possible solutions are proposed, and future development directions for carbon/magnetic composite EWAMs are envisioned.
Collapse
Affiliation(s)
- Haiyang Peng
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Key Laboratory for Nonferrous Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Da Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Key Laboratory for Nonferrous Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Zhipeng Xie
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Key Laboratory for Nonferrous Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Shuiqing Lu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Key Laboratory for Nonferrous Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Yichang Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Key Laboratory for Nonferrous Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Feng Liang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
- Key Laboratory for Nonferrous Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| |
Collapse
|
7
|
Tian Y, Wang J, Chen H, Lin H, Wu S, Zhang Y, Tian M, Meng J, Saeed W, Liu W, Chen X. Electrospun multifunctional nanofibers for advanced wearable sensors. Talanta 2025; 283:127085. [PMID: 39490308 DOI: 10.1016/j.talanta.2024.127085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The multifunctional extension of fiber-based wearable sensors determines their integration and sustainable development, with electrospinning technology providing reliable, efficient, and scalable support for fabricating these sensors. Despite numerous studies on electrospun fiber-based wearable sensors, further attention is needed to leverage composite structural engineering for functionalizing electrospun fibers. This paper systematically reviews the research progress on fiber-based multifunctional wearable sensors in terms of design concept, device fabrication, mechanism exploration, and application potential. Firstly, the basics of electrospinning are briefly introduced, including its development, principles, parameters, and material selection. Tactile sensors, as crucial components of wearable sensors, are discussed in detail, encompassing their performance parameters, transduction mechanisms, and preparation strategies for pressure, strain, temperature, humidity, and bioelectrical signal sensors. The main focus of the article is on the latest research progress in multifunctional sensing design concepts, multimodal decoupling mechanisms, sensing mechanisms, and functional extensions. These extensions include multimodal sensing, self-healing, energy harvesting, personal thermal management, EMI shielding, antimicrobial properties, and other capabilities. Furthermore, the review assesses existing challenges and outlines future developments for multifunctional wearable sensors, highlighting the need for continued research and innovation.
Collapse
Affiliation(s)
- Ye Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China; The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Junhao Wang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Haojie Chen
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Haibin Lin
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Shulei Wu
- Key Laboratory of Polymer Materials and Products, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, People's Republic of China
| | - Yifan Zhang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Meng Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Jiaqi Meng
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Waqas Saeed
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Wei Liu
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Xing Chen
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
8
|
Li Y, Wang Y, Huang Y. A Review on MXene/Nanocellulose Composites: Toward Wearable Multifunctional Electromagnetic Interference Shielding Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410283. [PMID: 39696902 DOI: 10.1002/smll.202410283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Indexed: 12/20/2024]
Abstract
With the rapid development of mobile communication technology and wearable electronic devices, the electromagnetic radiation generated by high-frequency information exchange inevitably threatens human health, so high-performance wearable electromagnetic interference (EMI) shielding materials are urgently needed. The 2D nanomaterial MXene exhibits superior EMI shielding performance owing to its high conductivity, however, its mechanical properties are limited due to the high porosity between MXene nanosheets. In recent years, it has been reported that by introducing natural nanocellulose as an organic framework, the EMI shielding and mechanical properties of MXene/nanocellulose composites can be synergically improved, which are expected to be widely used in wearable multifunctional shielding devices. In this review, the electromagnetic wave (EMW) attenuation mechanism of EMI shielding materials is briefly introduced, and the latest progress of MXene/nanocellulose composites in wearable multifunctional EMI shielding applications is comprehensively reviewed, wherein the advantages and disadvantages of different preparation methods and various types of composites are summarized. Finally, the challenges and perspectives are discussed, regarding the performance improvement, the performance control mechanism, and the large-scale production of MXene/nanocellulose composites. This review can provide guidance on the design of flexible MXene/nanocellulose composites for multifunctional electromagnetic protection applications in the future intelligent wearable field.
Collapse
Affiliation(s)
- Yuhong Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yang Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yi Huang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
9
|
Sun Y, Li C, Liu D, Zhang F, Xue J, Zheng Q. Surface and Interfacial Engineering for Multifunctional Nanocarbon Materials. ACS NANO 2025; 19:1944-1980. [PMID: 39782760 DOI: 10.1021/acsnano.4c14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Multifunctional materials are accelerating the development of soft electronics with integrated capabilities including wearable physical sensing, efficient thermal management, and high-performance electromagnetic interference shielding. With outstanding mechanical, thermal, and electrical properties, nanocarbon materials offer ample opportunities for designing multifunctional devices with broad applications. Surface and interfacial engineering have emerged as an effective approach to modulate interconnected structures, which may have tunable and synergistic effects for the precise control over mechanical, transport, and electromagnetic properties. This review presents a comprehensive summary of recent advances empowering the development of multifunctional nanocarbon materials via surface and interfacial engineering in the context of surface and interfacial engineering techniques, structural evolution, multifunctional properties, and their wide applications. Special emphasis is placed on identifying the critical correlations between interfacial structures across nanoscales, microscales, and macroscales and multifunctional properties. The challenges currently faced by the multifunctional nanocarbon materials are examined, and potential opportunities for applications are also revealed. We anticipate that this comprehensive review will promote the further development of soft electronics and trigger ideas for the interfacial design of nanocarbon materials in multidisciplinary applications.
Collapse
Affiliation(s)
- Yuxuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | - Chuanbing Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | - Dan Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | - Fei Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | - Jie Xue
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| |
Collapse
|
10
|
Yuan B, Yang B, Xu P, Zhang M. Poly( p-Phenylene Benzobisoxazole) Nanofiber: A Promising Nanoscale Building Block Toward Extremely Harsh Conditions. ACS NANO 2025; 19:1981-2012. [PMID: 39760682 DOI: 10.1021/acsnano.4c14912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Since the invention and commercialization of poly(p-phenylene benzobisoxazole) (PBO) fibers, numerous breakthroughs in applications have been realized both in the military and aerospace industries, attributed to its superb properties. Particularly, PBO nanofibers (PNFs) not only retain the high performance of PBO fiber but also exhibit impressive nanofeatures and desirable processability, which have been extensively applied in extreme scenarios. However, no review has yet comprehensively summarized the preparation, applications, and prospective challenges of PNFs to the best of our knowledge. Herein, the two fabrication pathways to acquire PNFs from bottom-up to top-down approaches are critically overviewed; the significant advantages and the problem caused simultaneously of the protonation approach compared with other methods are revealed. Besides, the construction strategies of multidimensional PNF-based advanced composites, including 1D fiber, 2D film/nanopaper, and 3D gel, are discussed. Moreover, the outstanding mechanical, insulating, and thermal stability properties of PNFs facilitate their extensive applications in thermal protection, electrical insulation, batteries, and flexible wearable devices, which are further comprehensively introduced. Finally, the perspective and challenges of the fabrication and application of PNFs are highlighted. It demonstrates that the PNFs as one of the promising high-performance nanoscale building blocks can be fully competent using extremely harsh conditions.
Collapse
Affiliation(s)
- Baolong Yuan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Bin Yang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Ping Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| |
Collapse
|
11
|
Yu F, Liu Q, Ding Y, Zhang W, Ma MG. Multi-performance sodium alginate-based composite films for sensing and electromagnetic shielding. Int J Biol Macromol 2025; 287:138557. [PMID: 39662558 DOI: 10.1016/j.ijbiomac.2024.138557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
As science and technology progress swiftly, the demand for high-performance composite films designed to shield against electromagnetic interference (EMI) and for strain sensing applications has significantly increased, making these films essential components for the future generation of smart wearable electronics. However, designing and developing multifunctional flexible composite films remains a considerable challenge. This study employed vacuum-assisted filtration techniques combined with calcium ion cross-linking to create multifunctional MXene/sodium alginate/liquid metal (MSL) composite films exhibiting exceptional EMI shielding and strain sensing capabilities. The mechanical strength of the MSL composite films was optimized by implementing continuous hydrogen bonding and ionic interactions among MXene, sodium alginate, liquid metal (LM), and calcium ions, resulting in a tensile strength of 71.71 MPa. The composite film exhibits excellent electromagnetic absorption properties, resulting in an exceptional EMI shielding efficacy of 50.61 dB and a specific shielding effectiveness value of 7563 dB·cm2·g-1. This is due to the heterogeneous interface between MXene and LM nanoparticles. Furthermore, the composite film exhibits favorable electrothermal and photothermal conversion capabilities. The film can be a flexible sensor to detect human motion, contingent on the conductive network between MXene and LM. This research illustrates the potential of multifunctional MSL composite films for EMI shielding and human motion monitoring, offering a promising pathway for creating adaptable wearable electronics in challenging electromagnetic conditions.
Collapse
Affiliation(s)
- Fengwei Yu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Qi Liu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yan Ding
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Wei Zhang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China; Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen 518055, PR China..
| | - Ming-Guo Ma
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
12
|
Xue J, Liu D, Li D, Hong T, Li C, Zhu Z, Sun Y, Gao X, Guo L, Shen X, Ma P, Zheng Q. New Carbon Materials for Multifunctional Soft Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312596. [PMID: 38490737 DOI: 10.1002/adma.202312596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Soft electronics are garnering significant attention due to their wide-ranging applications in artificial skin, health monitoring, human-machine interaction, artificial intelligence, and the Internet of Things. Various soft physical sensors such as mechanical sensors, temperature sensors, and humidity sensors are the fundamental building blocks for soft electronics. While the fast growth and widespread utilization of electronic devices have elevated life quality, the consequential electromagnetic interference (EMI) and radiation pose potential threats to device precision and human health. Another substantial concern pertains to overheating issues that occur during prolonged operation. Therefore, the design of multifunctional soft electronics exhibiting excellent capabilities in sensing, EMI shielding, and thermal management is of paramount importance. Because of the prominent advantages in chemical stability, electrical and thermal conductivity, and easy functionalization, new carbon materials including carbon nanotubes, graphene and its derivatives, graphdiyne, and sustainable natural-biomass-derived carbon are particularly promising candidates for multifunctional soft electronics. This review summarizes the latest advancements in multifunctional soft electronics based on new carbon materials across a range of performance aspects, mainly focusing on the structure or composite design, and fabrication method on the physical signals monitoring, EMI shielding, and thermal management. Furthermore, the device integration strategies and corresponding intriguing applications are highlighted. Finally, this review presents prospects aimed at overcoming current barriers and advancing the development of state-of-the-art multifunctional soft electronics.
Collapse
Affiliation(s)
- Jie Xue
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Dan Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Da Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Tianzeng Hong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Chuanbing Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zifu Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yuxuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xiaobo Gao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Lei Guo
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xi Shen
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
- The Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Pengcheng Ma
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
13
|
Wang D, Ping T, Du Z, Liu X, Zhang Y. Lessons from Nature: Advances and Perspectives in Bionic Microwave Absorption Materials. NANO-MICRO LETTERS 2024; 17:100. [PMID: 39739207 DOI: 10.1007/s40820-024-01591-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/08/2024] [Indexed: 01/02/2025]
Abstract
Inspired by the remarkable electromagnetic response capabilities of the complex morphologies and subtle microstructures evolved by natural organisms, this paper delves into the research advancements and future application potential of bionic microwave-absorbing materials (BMAMs). It outlines the significance of achieving high-performance microwave-absorbing materials through ingenious microstructural design and judicious composition selection, while emphasizing the innovative strategies offered by bionic manufacturing. Furthermore, this work meticulously analyzes how inspiration can be drawn from the intricate structures of marine organisms, plants, animals, and non-metallic minerals in nature to devise and develop BMAMs with superior electromagnetic wave absorption properties. Additionally, the paper provides an in-depth exploration of the theoretical underpinnings of BMAMs, particularly the latest breakthroughs in broadband absorption. By incorporating advanced methodologies such as simulation modeling and bionic gradient design, we unravel the scientific principles governing the microwave absorption mechanisms of BMAMs, thereby furnishing a solid theoretical foundation for understanding and optimizing their performance. Ultimately, this review aims to offer valuable insights and inspiration to researchers in related fields, fostering the collective advancement of research on BMAMs.
Collapse
Affiliation(s)
- Dashuang Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Tuo Ping
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
- Beijing Spacecrafts, China Academy of Space Technology, Beijing, 100194, People's Republic of China
| | - Zhilan Du
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Xiaoying Liu
- Army Logistics Academy of PLA, Chongqing, 401331, People's Republic of China.
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
14
|
Liu YL, Zhu TY, Wang Q, Huang ZJ, Sun DX, Yang JH, Qi XD, Wang Y. Hierarchically Porous Polypyrrole Foams Contained Ordered Polypyrrole Nanowire Arrays for Multifunctional Electromagnetic Interference Shielding and Dynamic Infrared Stealth. NANO-MICRO LETTERS 2024; 17:97. [PMID: 39724460 DOI: 10.1007/s40820-024-01588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 12/28/2024]
Abstract
As modern communication and detection technologies advance at a swift pace, multifunctional electromagnetic interference (EMI) shielding materials with active/positive infrared stealth, hydrophobicity, and electric-thermal conversion ability have received extensive attention. Meeting the aforesaid requirements simultaneously remains a huge challenge. In this research, the melamine foam (MF)/polypyrrole (PPy) nanowire arrays (MF@PPy) were fabricated via one-step electrochemical polymerization. The hierarchical MF@PPy foam was composed of three-dimensional PPy micro-skeleton and ordered PPy nanowire arrays. Due to the upwardly grown PPy nanowire arrays, the MF@PPy foam possessed good hydrophobicity ability with a water contact angle of 142.00° and outstanding stability under various harsh environments. Meanwhile, the MF@PPy foam showed excellent thermal insulation property on account of the low thermal conductivity and elongated ligament characteristic of PPy nanowire arrays. Furthermore, taking advantage of the high conductivity (128.2 S m-1), the MF@PPy foam exhibited rapid Joule heating under 3 V, resulting in dynamic infrared stealth and thermal camouflage effects. More importantly, the MF@PPy foam exhibited remarkable EMI shielding effectiveness values of 55.77 dB and 19,928.57 dB cm2 g-1. Strong EMI shielding was put down to the hierarchically porous PPy structure, which offered outstanding impedance matching, conduction loss, and multiple attenuations. This innovative approach provides significant insights to the development of advanced multifunctional EMI shielding foams by constructing PPy nanowire arrays, showing great applications in both military and civilian fields.
Collapse
Affiliation(s)
- Yu-Long Liu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Ting-Yu Zhu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Qin Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Zi-Jie Huang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - De-Xiang Sun
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Jing-Hui Yang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Xiao-Dong Qi
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Yong Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| |
Collapse
|
15
|
Dong T, Quan J, Huang F, Guan Y, Lin Z, Wang Z, Liu Y, Hang Z, Zhao Y, Huang Y. Fabrication and Performance Regulation of Lightweight Porous Electromagnetic Absorbing Materials via CO 2 Nucleation-Free Foaming of EP. Polymers (Basel) 2024; 16:3549. [PMID: 39771399 PMCID: PMC11677744 DOI: 10.3390/polym16243549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, CO2 reacted with a curing agent through nucleophilic addition to form ammonium salts, enabling the stable capture and internal release of CO2, which achieved gas-phase nucleation and foaming. Additionally, the introduction of wave-absorbing agents improved the absorption mechanism and promoted uniform foaming. This nucleation-free foaming process relies on the induced growth of gas nuclei and the synergistic effect of the wave-absorbing agents, effectively preventing the uneven foaming issues caused by traditional nucleating agents. Ultimately, a lightweight epoxy foam absorbing material (LFAM) was developed. BET tests showed that 2.0 wt% carbon-based wave-absorbing agents (LFAMs-A2) expanded the material's volume to 4.6 times its original size, forming a uniform porous structure. VNA tests revealed that LFAMs-A2 achieved a minimum reflection loss of -13.25 dB and an absorption bandwidth of 3.7 GHz in the 12-18 GHz range. The material with 2.0 wt% ferrite-based wave-absorbing agents (LFAMs-C2) achieved a minimum reflection loss of -26.83 dB at 16.6 GHz and an absorption bandwidth of 5.3 GHz, nearly covering the Ku band. DSC tests indicated that the material maintained good thermal stability at 150 °C. This study provides a new approach for lightweight coatings and structural optimization, with broad application potential in 5G communications, microwave anechoic chambers, and aerospace fields.
Collapse
Affiliation(s)
- Tienan Dong
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China;
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (J.Q.); (F.H.); (Y.G.); (Z.L.); (Z.W.); (Y.L.); (Y.H.)
| | - Jingru Quan
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (J.Q.); (F.H.); (Y.G.); (Z.L.); (Z.W.); (Y.L.); (Y.H.)
| | - Funing Huang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (J.Q.); (F.H.); (Y.G.); (Z.L.); (Z.W.); (Y.L.); (Y.H.)
| | - Yitong Guan
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (J.Q.); (F.H.); (Y.G.); (Z.L.); (Z.W.); (Y.L.); (Y.H.)
| | - Zihong Lin
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (J.Q.); (F.H.); (Y.G.); (Z.L.); (Z.W.); (Y.L.); (Y.H.)
| | - Zeyao Wang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (J.Q.); (F.H.); (Y.G.); (Z.L.); (Z.W.); (Y.L.); (Y.H.)
| | - Yuheng Liu
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (J.Q.); (F.H.); (Y.G.); (Z.L.); (Z.W.); (Y.L.); (Y.H.)
| | - Zusheng Hang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (J.Q.); (F.H.); (Y.G.); (Z.L.); (Z.W.); (Y.L.); (Y.H.)
| | - Yupei Zhao
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China;
| | - Yu’an Huang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (J.Q.); (F.H.); (Y.G.); (Z.L.); (Z.W.); (Y.L.); (Y.H.)
| |
Collapse
|
16
|
Wu N, Mao P, Chang N, Zhou Y, Yang W, Fu F, Liu X, Ji T, Zhao J, Huang Y, Li Y, Dickey MD, Gong W. Weavable, Reconfigurable Triboelectric Ferrofluid Fiber for Early Warning. ACS NANO 2024; 18:33319-33329. [PMID: 39611767 DOI: 10.1021/acsnano.4c06225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
As communication technologies have become omnipresent, the prevalence of electromagnetic field (EMF) exposures poses possible health risks, particularly to vulnerable groups such as pregnant women. In response, we introduce a triboelectric ferrofluid fiber (TFF) that moves in response to EMF, thereby generating charge in a way that is self-powered. The TFF is flexible, stretchable (470%), and can be woven into fabrics. The TFF utilizes a soft-contact (ferrofluid-silicon rubber fiber) triboelectric core layer to enhance its sensitivity to EMF, enabling it to detect even minor electromagnetic fluctuations, such as those from cell phone typing. By integrating hydrogel electrodes that offer conductivity and minimal electromagnetic interference shielding, the TFF's sensitivity to magnetic fields is further amplified. Moreover, its open-circuit voltage output is increased by 50% compared to the conventional electrodes. Building on this technology, we designed a smart fabric for environmental early warning and potential real-time pulse monitoring, specifically tailored for the safety and healthcare needs of vulnerable groups. Finally, we developed a sensing and communication apparel (SCA) by integrating TFF into the apparel and exploring its capabilities in a wireless transmission of warning signals and long-distance NFC functionality.
Collapse
Affiliation(s)
- Naiyan Wu
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Department of Electrical and Systems Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Pengxiang Mao
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Ningbo Chang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Yanrun Zhou
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Weifeng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Fan Fu
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Xixi Liu
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Tianyi Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Junyi Zhao
- Department of Electrical and Systems Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Yuxuan Huang
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695-7905, United States
| | - Wei Gong
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Hefei 230036, China
| |
Collapse
|
17
|
Zhang Y, Min P, Yue G, Niu B, Li L, Yu ZZ, Zhang HB. Emulsion-Based Multiscale Structural Design Realizes Lightweight and Superelastic Graphene Aerogels for Electromagnetic Interference Shielding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405950. [PMID: 39224048 DOI: 10.1002/smll.202405950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Ultralight graphene aerogels with high electrical conductivity and superelasticity are demanded yet difficult to produce. A versatile emulsion-based approach is demonstrate to optimize multiscale structure of lightweight, elastic, and conductive graphene aerogels. By constructing Pickering emulsion using graphene oxide (GO), poly (amic acid) (PAA), and octadeyl amine (ODA), micron-level close-pore structure is realized while thermal shrinkage mismatch between GO and PAA creates numerous nanowrinkles during thermal annealing. GO nanosheets are bridged by PAA-derived carbon, enhancing the structural integrity at molecular level. These multiscale structural features facilitate rapid electron transport and efficient load transfer, conferring graphene aerogels with intriguing mechanical and electromagnetic interference (EMI) shielding properties. The emulsion-based graphene aerogel with an ultralow density of ≈3.0 mg cm-3 integrates outstanding electrical conductivity, air-caliber thermal insulation, high EMI shielding effectiveness of 75.0 dB, and 90% strain compressibility with superb fatigue resistance. Intriguingly, thanks to the gel-like rheological behavior of the emulsion, ultralight graphene scaffolds with programmable geometries are obtained by 3D printing. This work provides a general approach for the preparation of ultralight and superelastic graphene aerogels with excellent EMI shielding properties, showing broad application prospects in various fields.
Collapse
Affiliation(s)
- Yiman Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peng Min
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guoyao Yue
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bochao Niu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lulu Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Xi´an Modern Chemistry Research Institute, Xi´an, 710065, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
18
|
Zheng L, Zuo Y, Song D, Li X, Lou Z, Wu Y. Green Strategy for a Large-Format, Superhard, and Insulated Electromagnetic Wave Absorber Inspired by a Natural Feature of a Conch Shell. ACS NANO 2024; 18:29457-29468. [PMID: 39422504 DOI: 10.1021/acsnano.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Due to the intensification of electromagnetic pollution and energy shortages, there is an urgent need for multifunctional composites that can absorb electromagnetic waves and provide insulation. However, developing low-cost electromagnetic wave-absorbing composites that are lightweight, high strength, heat-insulating, and large-format for special environments remains challenging. Inspired by the conch shell, this article proposes a green strategy of hydration recrystallization self-assembly. Highly biologically active hydroxyapatite (HAP) was used to lock in free water to prevent porous carbon fibers from absorbing a large amount of water. Meanwhile, HAP underwent ion exchange and recombined with hydrated crystals of magnesium oxychloride to form a gelatinous HAP-5 phase crystal. The cementitious HAP-5 phase crystal was interwoven and interlocked with the support skeleton carbon fibers and metal Ni powder to form conch shell composites (Bio-CSC) with multiple interfaces via electrostatic adsorption and metal complexation. This strategy utilized inorganic substances as bridges to uniformly disperse conductive materials such as carbon fibers to construct a conductive network with an enriched interface polarization. The prepared Bio-CSC was composed of multiple heterogeneous interfaces and was lightweight and high strength, with a specific strength increase of 300%. It also provided excellent thermal insulation and electromagnetic wave absorption. Its thermal conductivity was 0.071 W·m-1·k-1, and the lowest RLmin value of -21.88 dB, with a matching thickness of only 1.2 mm. The composites in this study overcame the limitations of traditional absorption materials such as high magnetism and single function and may be used in fields such as building energy conservation and electromagnetic safety.
Collapse
Affiliation(s)
- Long Zheng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, P. R. China
| | - Yingfeng Zuo
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, P. R. China
| | - Daihao Song
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, P. R. China
| | - Xingong Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, P. R. China
| | - Zhichao Lou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, P. R. China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, P. R. China
| |
Collapse
|
19
|
Li X, Chen C, Li Z, Yi P, Zou H, Deng G, Fang M, He J, Sun X, Yu R, Shui J, Pan C, Liu X. Inter-Skeleton Conductive Routes Tuning Multifunctional Conductive Foam for Electromagnetic Interference Shielding, Sensing and Thermal Management. NANO-MICRO LETTERS 2024; 17:52. [PMID: 39465431 PMCID: PMC11513780 DOI: 10.1007/s40820-024-01540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024]
Abstract
Conductive polymer foam (CPF) with excellent compressibility and variable resistance has promising applications in electromagnetic interference (EMI) shielding and other integrated functions for wearable electronics. However, its insufficient change amplitude of resistance with compressive strain generally leads to a degradation of shielding performance during deformation. Here, an innovative loading strategy of conductive materials on polymer foam is proposed to significantly increase the contact probability and contact area of conductive components under compression. Unique inter-skeleton conductive films are constructed by loading alginate-decorated magnetic liquid metal on the polymethacrylate films hanged between the foam skeleton (denoted as AMLM-PM foam). Traditional point contact between conductive skeletons under compression is upgraded to planar contact between conductive films. Therefore, the resistance change of AMLM-PM reaches four orders of magnitude under compression. Moreover, the inter-skeleton conductive films can improve the mechanical strength of foam, prevent the leakage of liquid metal and increase the scattering area of EM wave. AMLM-PM foam has strain-adaptive EMI shielding performance and shows compression-enhanced shielding effectiveness, solving the problem of traditional CPFs upon compression. The upgrade of resistance response also enables foam to achieve sensitive pressure sensing over a wide pressure range and compression-regulated Joule heating function.
Collapse
Affiliation(s)
- Xufeng Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Chunyan Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Zhenyang Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Peng Yi
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Haihan Zou
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Gao Deng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Ming Fang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Junzhe He
- Science and Technology On Electromagnetic Scattering Laboratory, Beijing Institute of Environmental Features, Beijing, 100854, People's Republic of China
| | - Xin Sun
- Science and Technology On Electromagnetic Scattering Laboratory, Beijing Institute of Environmental Features, Beijing, 100854, People's Republic of China
| | - Ronghai Yu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China.
| | - Jianglan Shui
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China.
- Tianmushan Laboratory, Xixi Octagon City, Yuhang District, Hangzhou, 310023, People's Republic of China.
| | - Caofeng Pan
- Institute of Atomic Manufacturing, Beihang University, Beijing, 100191, People's Republic of China.
| | - Xiaofang Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
20
|
Wang R, Huang Q, Hong G, Liu Y, Liu C, Li J, Li L, Qu Q. Eco-friendly versatile shielding revolution: Tannin tailored bamboo waste composite with wave-absorbing, flame retardancy, and antibacterial abilities. Int J Biol Macromol 2024; 277:134162. [PMID: 39069061 DOI: 10.1016/j.ijbiomac.2024.134162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The swift evolution of fifth-generation technology has intensified the need for lightweight, high-efficiency, and low-reflection multifunctional electromagnetic interference shielding materials, crucial in combating escalating electromagnetic pollution in complex application environments. To tackle these challenges, an innovative solution has emerged: a biocomposite crafted from discarded bamboo materials. This innovation incorporates a meticulously engineered functional coating composed of tannic acid, boric acid, and polyvinyl alcohol. Additionally, the integration of highly conductive Ti3C2Tx (MXene) nanosheets onto the surface of bamboo powders enhances the EMI shielding efficiency of composites, achieving an impressive ∼40.9 dB. Meanwhile, significant improvements in mechanical reinforcement have been achieved, along with increases in the relative values of key performance indicators: tensile strength (89.8 %), tensile modulus (79.6 %), flexural strength (51.6 %), flexural modulus (35.1 %), and impact strength (45.4 %). Furthermore, the introduction of functional components grants the composite exceptional flame retardancy and antibacterial properties against both Gram-negative and Gram-positive bacteria. Beyond these strides, the utilization of bamboo waste as a composite pioneer a paradigm shift in waste utilization, converting refuse into invaluable resources.
Collapse
Affiliation(s)
- Rong Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Qiude Huang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Gonghua Hong
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China; BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yan Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chengyang Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jialiang Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Lei Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Qing Qu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
21
|
Orasugh JT, Temane LT, Ray SS. Nanocellulose-based conductive composites: A review of systems for electromagnetic interference shielding applications. Int J Biol Macromol 2024; 277:133891. [PMID: 39025190 DOI: 10.1016/j.ijbiomac.2024.133891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Electronic systems and telecommunications have grown in popularity, leading to increasing electromagnetic (EM) radiation pollution. Environmental protection from EM radiation demands the use of environmentally friendly products. The design of EM interference (EMI) shielding materials using resources like nanocellulose (NC) is gaining traction. Cellulose, owing to its biocompatibility, biodegradability, and excellent mechanical and thermal properties, has attracted significant interest for developing EMI shielding materials. Recent advancements in cellulose-based EMI shielding materials, particularly modified cellulosic composites, are highlighted in this study. By incorporating metallic coatings compounded with conductive fillers and modified with inherently conductive elements, conductivity and effectiveness of EMI shielding can be significantly improved. This review discusses the introduction of EMI shields, cellulose, and NC, assessing environmentally friendly EMI shield options and diverse NC-based composite EMI shields considering their low reflectivity. The study offers new insights into designing advanced NC-based conductive composites for EMI shielding applications.
Collapse
Affiliation(s)
- Jonathan Tersur Orasugh
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Lesego Tabea Temane
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa; Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa.
| |
Collapse
|
22
|
Shi Y, Wu M, Ge S, Li J, Alshammari AS, Luo J, Amin MA, Qiu H, Jiang J, Asiri YM, Huang R, Hou H, El-Bahy ZM, Guo Z, Jia C, Xu K, Chen X. Advanced Functional Electromagnetic Shielding Materials: A Review Based on Micro-Nano Structure Interface Control of Biomass Cell Walls. NANO-MICRO LETTERS 2024; 17:3. [PMID: 39302510 DOI: 10.1007/s40820-024-01494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/27/2024] [Indexed: 09/22/2024]
Abstract
Research efforts on electromagnetic interference (EMI) shielding materials have begun to converge on green and sustainable biomass materials. These materials offer numerous advantages such as being lightweight, porous, and hierarchical. Due to their porous nature, interfacial compatibility, and electrical conductivity, biomass materials hold significant potential as EMI shielding materials. Despite concerted efforts on the EMI shielding of biomass materials have been reported, this research area is still relatively new compared to traditional EMI shielding materials. In particular, a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment, preparation process, and micro-control would be valuable. The preparation methods and characteristics of wood, bamboo, cellulose and lignin in EMI shielding field are critically discussed in this paper, and similar biomass EMI materials are summarized and analyzed. The composite methods and fillers of various biomass materials were reviewed. this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
Collapse
Affiliation(s)
- Yang Shi
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Mingjun Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jianzhang Li
- State Key Laboratory of Efficient Production of Forest Resourced, Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing, 100083, People's Republic of China.
| | - Anoud Saud Alshammari
- Department of Physics, Faculty of Sciences-Arar, Northern Border University, Arar, 91431, Saudi Arabia
| | - Jing Luo
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Jinxuan Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yazeed M Asiri
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Runzhou Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Hua Hou
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Zhanhu Guo
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
| | - Chong Jia
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, People's Republic of China.
| | - Xiangmeng Chen
- School of Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
23
|
Zhang X, Zhang X, Liu D, Wang L, Wen G, Wang Y, Huang X. Advances in Carbon Microsphere-Based Nanomaterials for Efficient Electromagnetic Wave Absorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18857-18881. [PMID: 39194215 DOI: 10.1021/acs.langmuir.4c02829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Carbon microspheres have indeed shown great promise as effective materials for absorbing electromagnetic waves, particularly in microwave applications. Their unique properties, such as high surface area, porosity, and electronic characteristics, make them ideal candidates for addressing the growing concerns around electromagnetic pollution from electronic devices. By leveraging the properties of these materials, we can work toward creating more efficient and sustainable electromagnetic wave absorption technologies. Recent efforts have focused on synthesizing and investigating carbon microsphere-based electromagnetic wave-absorbing nanomaterials with the ambition of achieving the desired attributes of being thin, light, wide, and robust. This Review first delves into the detailed mechanism of electromagnetic wave absorption, followed by an elucidation of the preparation methods for carbon microsphere-based nanomaterials. Furthermore, it systematically outlines the common methods and strategies employed to improve the microwave absorption capabilities of carbon microspheres, including chemical vapor deposition, emulsion polymerization, hydrothermal methods, and template methods. Lastly, it outlines the challenges encountered by carbon microsphere-based electromagnetic wave absorption nanomaterials and outlines their prospects, mainly morphology change, component hybridization, and elemental doping. This Review aims to provide valuable insights into the creation of carbon microsphere nanomaterials with excellent electromagnetic wave absorption properties.
Collapse
Affiliation(s)
- Xuji Zhang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Xueqian Zhang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Dongdong Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, China
| | - Longxin Wang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Guangwu Wen
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yishan Wang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Xiaoxiao Huang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
24
|
Sun Y, Su Y, Chai Z, Jiang L, Heng L. Flexible solid-liquid bi-continuous electrically and thermally conductive nanocomposite for electromagnetic interference shielding and heat dissipation. Nat Commun 2024; 15:7290. [PMID: 39242567 PMCID: PMC11379691 DOI: 10.1038/s41467-024-51732-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/14/2024] [Indexed: 09/09/2024] Open
Abstract
In the era of 5 G, the rise in power density in miniaturized, flexible electronic devices has created an urgent need for thin, flexible, polymer-based electrically and thermally conductive nanocomposites to address challenges related to electromagnetic interference (EMI) and heat accumulation. However, the difficulties in establishing enduring and continuous transfer pathways for electrons and phonons using solid-rigid conductive fillers within insulative polymer matrices limit the development of such nanocomposites. Herein, we incorporate MXene-bridging-liquid metal (MBLM) solid-liquid bi-continuous electrical-thermal conductive networks within aramid nanofiber/polyvinyl alcohol (AP) matrices, resulting in the AP/MBLM nanocomposite with ultra-high electrical conductivity (3984 S/cm) and distinguished thermal conductivity of 13.17 W m-1 K-1. This nanocomposite exhibits excellent EMI shielding efficiency (SE) of 74.6 dB at a minimal thickness of 22 μm, and maintains high EMI shielding stability after enduring various harsh conditions. Meanwhile, the AP/MBLM nanocomposite also demonstrates promising heat dissipation behavior. This work expands the concept of creating thin films with high electrical and thermal conductivity.
Collapse
Affiliation(s)
- Yue Sun
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, PR China
| | - Yunting Su
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, PR China
| | - Ziyuan Chai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, PR China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, PR China
| | - Liping Heng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
25
|
Shao W, Zhang X, Liang X, Tao W, Ma M, Chen S, Shi Y, He H, Zhu Y, Wang X. Cellulose Nanofiber-Based Nanocomposite Films with Efficient Electromagnetic Interference Shielding and Fire-Resistant Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42674-42686. [PMID: 39087650 DOI: 10.1021/acsami.4c10660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Cellulose nanofiber (CNF) has been widely used as a flexible and lightweight polymer matrix for electromagnetic shielding and thermally conductive composite films because of its excellent mechanical strength, environmental performance, and low cost. However, the lack of flame retardancy seriously hinders its further application. Herein, renewable and biomass-sourced l-arginine (AR) was used to surface-modify ammonium polyphosphate (APP) and an environmentally friendly biobased flame retardant was synthesized by the coordination of zinc sulfate heptahydrate (ZnSO4·7H2O), which was named AAZ. AAZ was deposited on the surface of CNF by electrostatic adsorption and Zn2+ complexation. The biobased compatibilizer Triton X-100 was employed to assist the exfoliation of graphene nanoplatelets (GNPs) and their dispersion in the CNF matrix. Due to the formation of a dense lamellar layer resembling a shell structure, the CNF/GNPs composite films with a tensile strength of 52 MPa were obtained via vacuum-assisted filtration. Because the phosphorus-containing group produces a protective layer of PxOy compound and promotes the formation of a carbon layer by CNF and the combustion releases ammonia gas, the fire-resistant performance of the composite films was greatly improved. Compared with the pure CNF film, the composite film exhibits 33% reduction in PHRR value and 40% reduction in THR. In addition, the CNF/GNPs composite film with 20 wt % GNPs possessed high conductivity (2079.2 S/m) and electromagnetic interference (EMI) shielding effectiveness (37 dB). The ultrathin CNF/GNPs composite films have excellent potential for use as efficient flame retardant and EMI shielding materials.
Collapse
Affiliation(s)
- Wenqin Shao
- College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xutao Zhang
- College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiao Liang
- College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wenting Tao
- College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yanqin Shi
- College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Huiwen He
- College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yulu Zhu
- College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
26
|
Meng L, Ma Y, Zou Y, Zhang B, Chen G, Dong C, Wang L, Guan H. Lightweight, breathable and self-cleaning polypyrrole-modified multifunctional cotton fabric for flexible electromagnetic interference shielding. Int J Biol Macromol 2024; 274:133347. [PMID: 38917920 DOI: 10.1016/j.ijbiomac.2024.133347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
The thriving of wearable electronics and the emerging new requirements for electromagnetic interference (EMI) shielding have driven the innovation of EMI shielding materials towards lightweight, wearability and multifunctionality. Herein, the hierarchical polypyrrole nanotubes (PNTs)/PDMS structures are rationally constructed on the textile for obtaining multifunctional and flexible EMI shielding textiles by in-situ polymerization and surface coating. The modified cotton fabric possesses a conductivity of about 2715.8 S/m and an SET of 28.2 dB in the X band when the thickness is only 0.5 mm. After ultrasonic treatment, cyclic bending and washing, the conductivity and EMI shielding performance remain stable and exhibit long-term durability. Importantly, the textile's inherent lightweight, breathable and soft properties have been completely retained after modification. This work shows application potentiality in the field of EMI pollution protection and affords a novel path for the construction of multifunctionally wearable and durable EMI shielding materials.
Collapse
Affiliation(s)
- Lingsai Meng
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Yu Ma
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Yupeng Zou
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Bozhao Zhang
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Gang Chen
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Chengjun Dong
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Lihong Wang
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Hongtao Guan
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China.
| |
Collapse
|
27
|
Lu Y, Akhtar MN, Yousaf M, Katubi KM, Irfan M, Khan MA, Mahmoud M, Almohammedi A, Ullah S, Alrowaili Z, Al-Buriahi M. Structural, morphological, and EMI shielding evaluations of Sm-Mn co-doped Sr-based M-type hexaferrite for Ku band applications. JOURNAL OF ALLOYS AND COMPOUNDS 2024; 994:174627. [DOI: 10.1016/j.jallcom.2024.174627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
28
|
Roy SS, Ghosh K, Meyyappan M, Giri PK. High green index electromagnetic interference shields with semiconducting Bi 2S 3 fillers in a PEDOT:PSS matrix. MATERIALS HORIZONS 2024; 11:3695-3705. [PMID: 38770582 DOI: 10.1039/d4mh00273c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Conventional metallic electromagnetic interference (EMI) shields, as well as the emerging 2D material-based shields, meet the shielding effectiveness (SE) needs of most applications. However, their shielding performance is dominated by the reflection of incoming radiation due to their high electrical conductivity, which leads to secondary pollution. This problem is getting exacerbated with the proliferation of electronics and communication networks in modern society. Thus, EMI shields that function dominantly by the absorption of incoming radiation are highly desirable. Such shields would be characterized by a green index, which is the ratio of absorbance over reflectance, close to or greater than one. For nonmagnetic materials, the best way to reduce the undesirable large impedance mismatch is to reduce the effective permittivity of the shield material. Here, we present a new EMI shield with a semiconductor Bi2S3 filler in a conducting PEDOT:PSS polymer matrix, instead of the conventional conductive fillers, to reduce the effective permittivity and demonstrate that even a light loading of only 10% Bi2S3 provides high SE of over 40 dB with a green index value of 0.75. Increasing the filler content to 15 wt% increases the green index close to unity while dropping the SE to 30 dB. The shielding mechanism is explained through electromagnetic parameter measurements and supplemented by density functional theory calculations. This work lays the foundation for the advancement of lightweight and ultrathin green EMI shields with minimum secondary pollution.
Collapse
Affiliation(s)
- Sanjoy Sur Roy
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| | - Koushik Ghosh
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| | - M Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
29
|
Jiang H, Yuan B, Guo H, Pan F, Meng F, Wu Y, Wang X, Ruan L, Zheng S, Yang Y, Xiu Z, Li L, Wu C, Gong Y, Yang M, Lu W. Malleable, printable, bondable, and highly conductive MXene/liquid metal plasticine with improved wettability. Nat Commun 2024; 15:6138. [PMID: 39033166 PMCID: PMC11271265 DOI: 10.1038/s41467-024-50541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Integration of functional fillers into liquid metals (LM) induces rheology modification, enabling the free-form shaping of LM at the micrometer scale. However, integrating non-chemically modified low-dimensional materials with LM to form stable and uniform dispersions remain a great challenge. Herein, we propose a solvent-assisted dispersion (SAD) method that utilizes the fragmentation and reintegration of LM in volatile solvents to engulf and disperse fillers. This method successfully integrates MXene uniformly into LM, achieving better internal connectivity than the conventional dry powder mixing (DPM) method. Consequently, the MXene/LM (MLM) coating exhibits high electromagnetic interference (EMI) shielding performance (105 dB at 20 μm, which is 1.6 times that of coatings prepared by DPM). Moreover, the rheological characteristic of MLM render it malleable and facilitates direct printing and adaptation to diverse structures. This study offers a convenient method for assembling LM with low-dimensional materials, paving the way for the development of multifunctional soft devices.
Collapse
Affiliation(s)
- Haojie Jiang
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Bin Yuan
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Hongtao Guo
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Fei Pan
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Fanmao Meng
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Yongpeng Wu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiao Wang
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Lingyang Ruan
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Shuhuai Zheng
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Yang Yang
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Zheng Xiu
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Lixin Li
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Changsheng Wu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, 117599, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, 117456, Singapore
| | - Yongqing Gong
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Menghao Yang
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Wei Lu
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China.
| |
Collapse
|
30
|
Chen L, Yu X, Gao M, Xu C, Zhang J, Zhang X, Zhu M, Cheng Y. Renewable biomass-based aerogels: from structural design to functional regulation. Chem Soc Rev 2024; 53:7489-7530. [PMID: 38894663 DOI: 10.1039/d3cs01014g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Global population growth and industrialization have exacerbated the nonrenewable energy crises and environmental issues, thereby stimulating an enormous demand for producing environmentally friendly materials. Typically, biomass-based aerogels (BAs), which are mainly composed of biomass materials, show great application prospects in various fields because of their exceptional properties such as biocompatibility, degradability, and renewability. To improve the performance of BAs to meet the usage requirements of different scenarios, a large number of innovative works in the past few decades have emphasized the importance of micro-structural design in regulating macroscopic functions. Inspired by the ubiquitous random or regularly arranged structures of materials in nature ranging from micro to meso and macro scales, constructing different microstructures often corresponds to completely different functions even with similar biomolecular compositions. This review focuses on the preparation process, design concepts, regulation methods, and the synergistic combination of chemical compositions and microstructures of BAs with different porous structures from the perspective of gel skeleton and pore structure. It not only comprehensively introduces the effect of various microstructures on the physical properties of BAs, but also analyzes their potential applications in the corresponding fields of thermal management, water treatment, atmospheric water harvesting, CO2 absorption, energy storage and conversion, electromagnetic interference (EMI) shielding, biological applications, etc. Finally, we provide our perspectives regarding the challenges and future opportunities of BAs. Overall, our goal is to provide researchers with a thorough understanding of the relationship between the microstructures and properties of BAs, supported by a comprehensive analysis of the available data.
Collapse
Affiliation(s)
- Linfeng Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xinhai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
31
|
Gong X, Hu T, Zhang Y, Zeng Y, Zhang Y, Jiang Z, Tan Y, Zou Y, Wang J, Dai J, Chu Z. Trunk-Inspired SWCNT-Based Wrinkled Films for Highly-Stretchable Electromagnetic Interference Shielding and Wearable Thermotherapy. NANO-MICRO LETTERS 2024; 16:243. [PMID: 38990359 PMCID: PMC11239633 DOI: 10.1007/s40820-024-01454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
Nowadays, the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health, so stretchable electromagnetic interference (EMI) shielding materials are highly demanded. Elephant trunks are capable of grabbing fragile vegetation and tearing trees thanks not only to their muscles but also to their folded skins. Inspired by the wrinkled skin of the elephant trunks, herein, we propose a winkled conductive film based on single-walled carbon nanotubes (SWCNTs) for multifunctional EMI applications. The conductive film has a sandwich structure, which was prepared by coating SWCNTs on both sides of the stretched elastic latex cylindrical substrate. The shrinking-induced winkled conductive network could withstand up to 200% tensile strain. Typically, when the stretching direction is parallel to the polarization direction of the electric field, the total EMI shielding effectiveness could surprisingly increase from 38.4 to 52.7 dB at 200% tensile strain. It is mainly contributed by the increased connection of the SWCNTs. In addition, the film also has good Joule heating performance at several voltages, capable of releasing pains in injured joints. This unique property makes it possible for strain-adjustable multifunctional EMI shielding and wearable thermotherapy applications.
Collapse
Affiliation(s)
- Xiaofeng Gong
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Tianjiao Hu
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - You Zhang
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Yanan Zeng
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China
| | - Ye Zhang
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Zhenhua Jiang
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Yinlong Tan
- Beijing Interdisciplinary Research Center, National University of Defense Technology, Changsha, 410073, People's Republic of China.
| | - Yanhong Zou
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China
| | - Jing Wang
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Jiayu Dai
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China.
| | - Zengyong Chu
- College of Science, National University of Defense Technology, Changsha, 410073, People's Republic of China.
| |
Collapse
|
32
|
Li Y, Yu W, Ruan Q, Li K, Guo X, Bai Z, Chen J. Enhanced High-Performance iPP/TPU/MWCNT Nanocomposite for Electromagnetic Interference Shielding. Polymers (Basel) 2024; 16:1837. [PMID: 39000692 PMCID: PMC11244000 DOI: 10.3390/polym16131837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
The rapid development of electronic communication technology has led to an undeniable issue of electromagnetic pollution, prompting widespread attention from researchers to the study of electromagnetic shielding materials. Herein, a simple and feasible method of melt blending was applied to prepare iPP/TPU/MWCNT nanocomposites with excellent electromagnetic shielding performance. The addition of maleic anhydride-grafted polypropylene (PP-g-MAH) effectively improved the interface compatibility of iPP and TPU. A double continuous structure within the matrix was achieved by controlling the iPP/TPU ratio at 4:6, while the incorporation of multi-walled carbon nanotubes endowed the composites with improved electromagnetic shielding properties. Furthermore, by regulating the addition sequence of raw materials during the melt-blending process, a selective distribution of carbon nanotubes in the TPU matrix was achieved, thereby constructing interconnected conductive networks within the composites, significantly enhancing the electromagnetic shielding performance of iPP/TPU/MWCNTs, which achieved a maximum EMI shielding efficiency of 37.8 dB at an iPP/TPU ratio of 4:6 and an MWCNT concentration of 10 wt.%.
Collapse
Affiliation(s)
- Yanru Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenting Yu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Ruan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kun Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoqin Guo
- School of Mechatronics Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
| | - Zhongyi Bai
- School of Mechatronics Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
| | - Jingbo Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
33
|
Yu Y, Zhang Y, Zhou Y, Xia J, Chen M, Fu H, Cao Y, Wang T, Wu C, Luo Z, Zhang Y. Enhanced Electromagnetic Interference Shielding Properties of CNT/Carbon Composites by Designing a Hierarchical Porous Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1099. [PMID: 38998704 PMCID: PMC11243308 DOI: 10.3390/nano14131099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
With the widespread use of electronic devices, electromagnetic interference (EMI) has become an increasingly severe issue, adversely affecting device performance and human health. Carbon nanotubes (CNTs) are recognized for their electrical conductivity, flexibility, and stability, making them promising candidates for EMI shielding applications. This research developed hierarchical porous-structured CNT/carbon composites for enhancing electromagnetic interference (EMI) shielding properties. Featuring a CNT film with nano-scale pores and an amorphous carbon layer with micro-scale pores, the CNT/carbon composites are strategically arranged to promote the penetration of EM waves into the composite's interior and facilitate multiple reflections, thereby improving the EMI shielding performance. An impressive EMI shielding effectiveness of 61.4 dB was achieved by the CNT/carbon composites, marking a significant improvement over the 36.5 dB measured for the pristine CNT film. Owing to the micro pores in the amorphous carbon layer, a notable reduction in the reflection shielding efficiency (SER) but, concurrently, a substantial increase in the absorption shielding efficiency (SEA) compared with the pristine CNT film was realized in the composites. This study successfully validated the effectiveness of the hierarchical porous structure in enhancing the EMI shielding performance, providing a promising new strategy for the development of lightweight, flexible, and efficient EMI shielding materials.
Collapse
Affiliation(s)
- Yingying Yu
- College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China; (Y.Y.); (Y.Z.); (T.W.)
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.Z.); (J.X.); (H.F.); (C.W.); (Y.Z.)
| | - Yaxi Zhang
- College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China; (Y.Y.); (Y.Z.); (T.W.)
| | - Yurong Zhou
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.Z.); (J.X.); (H.F.); (C.W.); (Y.Z.)
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| | - Jiajia Xia
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.Z.); (J.X.); (H.F.); (C.W.); (Y.Z.)
| | - Minghui Chen
- Shaanxi Yuanfeng Textile Technology Research Co., Ltd., Xi’an 710038, China;
| | - Huli Fu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.Z.); (J.X.); (H.F.); (C.W.); (Y.Z.)
| | - Yufang Cao
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.Z.); (J.X.); (H.F.); (C.W.); (Y.Z.)
| | - Tao Wang
- College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China; (Y.Y.); (Y.Z.); (T.W.)
| | - Cao Wu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.Z.); (J.X.); (H.F.); (C.W.); (Y.Z.)
- School of Materials Science and Engineering, Anhui University of Technology, Ma’an Shan 243002, China
| | - Zhenmin Luo
- College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China; (Y.Y.); (Y.Z.); (T.W.)
| | - Yongyi Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.Z.); (J.X.); (H.F.); (C.W.); (Y.Z.)
| |
Collapse
|
34
|
Liu Z, Song M, Liang W, Gao X, Zhu B. Effect of Carbon Fiber Paper with Thickness Gradient on Electromagnetic Shielding Performance of X-Band. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2767. [PMID: 38894030 PMCID: PMC11173914 DOI: 10.3390/ma17112767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Flexible paper-based materials play a crucial role in the field of flexible electromagnetic shielding due to their thinness and controllable shape. In this study, we employed the wet paper forming technique to prepare carbon fiber paper with a thickness gradient. The electromagnetic shielding performance of the carbon fiber paper varies with the ladder-like thickness distribution. Specifically, an increase in thickness gradient leads to higher reflectance of the carbon fiber paper. Within the X-band frequency range (8.2-12.4 GHz), reflectivity decreases as electromagnetic wave frequency increases, indicating enhanced penetration of electromagnetic waves into the interior of the carbon fiber paper. This enhancement is attributed to an increased fiber content per unit area resulting from a greater thickness gradient, which further enhances reflection loss and promotes internal multiple reflections and scattering effects, leading to increased absorption loss. Notably, at a 5 mm thickness, our carbon fiber paper exhibits an impressive average overall shielding performance, reaching 63.46 dB. Moreover, it exhibits notable air permeability and mechanical properties, thereby assuming a pivotal role in the realm of flexible wearable devices in the foreseeable future.
Collapse
Affiliation(s)
- Zhi Liu
- Key Laboratory for Liquid Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
- Carbon Fiber Engineering Research Center, Shandong University, Jinan 250061, China
| | - Meiping Song
- Key Laboratory for Liquid Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
- Carbon Fiber Engineering Research Center, Shandong University, Jinan 250061, China
| | - Weiqi Liang
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Xueping Gao
- Key Laboratory for Liquid Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
- Carbon Fiber Engineering Research Center, Shandong University, Jinan 250061, China
| | - Bo Zhu
- Key Laboratory for Liquid Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
- Carbon Fiber Engineering Research Center, Shandong University, Jinan 250061, China
| |
Collapse
|
35
|
Han Z, Niu Y, Shi X, Pan D, Liu H, Qiu H, Chen W, Xu BB, El-Bahy ZM, Hou H, Elsharkawy ER, Amin MA, Liu C, Guo Z. MXene@c-MWCNT Adhesive Silica Nanofiber Membranes Enhancing Electromagnetic Interference Shielding and Thermal Insulation Performance in Extreme Environments. NANO-MICRO LETTERS 2024; 16:195. [PMID: 38743205 PMCID: PMC11557810 DOI: 10.1007/s40820-024-01398-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/15/2024] [Indexed: 05/16/2024]
Abstract
A lightweight flexible thermally stable composite is fabricated by combining silica nanofiber membranes (SNM) with MXene@c-MWCNT hybrid film. The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination; the MXene@c-MWCNTx:y films are prepared by vacuum filtration technology. In particular, the SNM and MXene@c-MWCNT6:4 as one unit layer (SMC1) are bonded together with 5 wt% polyvinyl alcohol (PVA) solution, which exhibits low thermal conductivity (0.066 W m-1 K-1) and good electromagnetic interference (EMI) shielding performance (average EMI SET, 37.8 dB). With the increase in functional unit layer, the overall thermal insulation performance of the whole composite film (SMCx) remains stable, and EMI shielding performance is greatly improved, especially for SMC3 with three unit layers, the average EMI SET is as high as 55.4 dB. In addition, the organic combination of rigid SNM and tough MXene@c-MWCNT6:4 makes SMCx exhibit good mechanical tensile strength. Importantly, SMCx exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment. Therefore, this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.
Collapse
Affiliation(s)
- Ziyuan Han
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Yutao Niu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, People's Republic of China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China
| | - Xuetao Shi
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Duo Pan
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China.
| | - Hu Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China.
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Weihua Chen
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8, UK
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Hua Hou
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8, UK
| | | | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Zhanhu Guo
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8, UK
| |
Collapse
|
36
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
37
|
Wan J, Sun D, Li P, Huang J, Chen Z. Design and Analysis of a Textured Cu-Encapsulated Ni Tube for Low-Reflection Electromagnetic Interference Shielding Material. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9244-9254. [PMID: 38639003 DOI: 10.1021/acs.langmuir.4c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
With the frequent increase and update of electromagnetic interference (EMI) shielding materials, a low-resolution material that can absorb most electromagnetic waves, thereby effectively reducing the secondary pollution, is urgently needed. However, the excellent performance, flexibility, and low cost of these methods are usually incompatible with current reports. To address the above dilemma, we reported a facile solution for fabricating a low-reflection and high-performance EMI shielding composite by means of electroless nickel plating (EP-Ni), electroless copper plating (EP-Cu), annealing, and coating with a polydimethylsiloxane (PDMS) polymer with the structure of a Ni@Cu tube encapsulated with PDMS. The results indicate that the active groups on vegetable wool can act as active sites for the absorption of the Pd catalyst, thereby catalyzing the reduction of Ni2+, Cu2+, and the subsequent deposition on the plant fiber surface. Notably, the Ni@Cu-encapsulated plant fibers decreased during annealing at 100 °C. According to the segregated network and synergistic effect of the porous structure, the as-fabricated EMI shielding material demonstrated high absorption and low reflection, in which the power coefficient of the T value was approximately 0.0001, the R value was about 0.1764 (a decrease of 27.5% compared that of EP-Ni cotton), and the A value was approximately 0.8235.
Collapse
Affiliation(s)
- Jiajia Wan
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City 230601, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City 542899, China
| | - Di Sun
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City 230601, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City 542899, China
| | - Peng Li
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City 542899, China
| | - Junjun Huang
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City 230601, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City 542899, China
| | - Zhenming Chen
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei City 230601, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City 542899, China
| |
Collapse
|
38
|
Ren N, Ai Y, Yue N, Cui M, Huang R, Qi W, Su R. Shear-Induced Fabrication of Cellulose Nanofibril/Liquid Metal Nanocomposite Films for Flexible Electromagnetic Interference Shielding and Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17904-17917. [PMID: 38511485 DOI: 10.1021/acsami.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
To address electromagnetic interference (EMI) pollution in modern society, the development of ultrathin, high-performance, and highly stable EMI shielding materials is highly desired. Liquid metal (LM) based conductive materials have received enormous amounts of attention. However, the processing approach of LM/polymer composites represents great challenges due to the high surface tension and cohesive energy of LMs. In this study, we develop a universal one-step fabrication strategy to directly process composites containing LMs and cellulose nanofibrils (CNFs) and successfully fabricate the ultrathin, flexible, and stable EMI shielding films with an average specific EMI shielding efficiency (EMI SE) value of 429 dB/mm and small thickness of only 70 μm in the wide frequency range of 8.2-18 GHz. In addition, the resulting films also exhibit excellent mechanical performance and flexibility, which endow the film with the ability to withstand repeated folding, bending, and folding into complex shapes without producing cracks or fractures. Besides, the resulting films display excellent thermal conductivity with a λ of 4.90 W/(m K) and an α of 3.17 mm2/s. Thus, the presented approach shows great potential in fabricating advanced materials for EMI shielding applications.
Collapse
Affiliation(s)
- Ning Ren
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yusen Ai
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Ning Yue
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Renliang Huang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
| |
Collapse
|
39
|
Yan S, Li L, Zhang H, Fu Q, Ge X. Flexible Sandwich-Shaped Cellulose Nanocrystals/Silver Nanowires/MXene Films Exhibit Efficient Electromagnetic-Shielding Interference Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:647. [PMID: 38607181 PMCID: PMC11013409 DOI: 10.3390/nano14070647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
The electromagnetic pollution problem is becoming increasingly serious due to the speedy advance of electronic communication devices. There are broad application prospects for the development of flexible, wearable composite films with high electromagnetic interference (EMI)-shielding performance. The MX@AC composite films were prepared from MXene, silver nanowires (AgNWs) and cellulose nanocrystals (CNCs) with a sandwich structure. Benefiting from the upper and lower frame structure formed by winding 1D AgNWs and CNC, the tensile strength of the MX@AC was improved to 35 MPa (12.5 wt% CNC content) from 4 MPa (0 wt% CNC content). The high conductivity of MXene and AgNWs resulted in the MX@AC composite film conductivity up to 90,670 S/m, EMI SE for 90 dB, as well as SSE/t up to 7797 dB cm2 g-1. And the MX@AC composite film was tested for practical application, showing that it can effectively isolate electromagnetic waves in practical application.
Collapse
Affiliation(s)
- Shasha Yan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; (S.Y.); (L.L.); (H.Z.)
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Ling Li
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; (S.Y.); (L.L.); (H.Z.)
| | - Hong Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; (S.Y.); (L.L.); (H.Z.)
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Qiubo Fu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xingbo Ge
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; (S.Y.); (L.L.); (H.Z.)
| |
Collapse
|
40
|
Pan F, Shi Y, Yang Y, Guo H, Li L, Jiang H, Wang X, Zeng Z, Lu W. Porifera-Inspired Lightweight, Thin, Wrinkle-Resistance, and Multifunctional MXene Foam. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311135. [PMID: 38146773 DOI: 10.1002/adma.202311135] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Transition metal carbides/nitrides (MXenes) demonstrate a massive potential in constructing lightweight, multifunctional wearable electromagnetic interference (EMI) shields for application in various fields. Nevertheless, it remains challenging to develop a facile, scalable approach to prepare the MXene-based macrostructures characterized by low density, low thickness, high mechanical flexibility, and high EMI SE at the same time. Herein, the ultrathin MXene/reduced graphene oxide (rGO)/Ag foams with a porifera-inspired hierarchically porous microstructure are prepared by combining Zn2+ diffusion induction and hard template methods. The hierarchical porosity, which includes a mesoporous skeleton and a microporous MXene network within the skeleton, not only exerts a regulatory effect on stress distribution during compression, making the foams rubber-like resistant to wrinkling but also provides more channels for multiple reflections of electromagnetic waves. Due to the interaction between Ag nanosheets, MXene/rGO, and porous structure, it is possible to produce an outstanding EMI shielding performance with the specific surface shielding effectiveness reaching 109152.4 dB cm2 g-1. Furthermore, the foams exhibit multifunctionalities, such as transverse Joule heating, longitudinal heat insulation, self-cleaning, fire resistance, and motion detection. These discoveries open up a novel pathway for the development of lightweight MXene-based materials with considerable application potential in wearable electromagnetic anti-interference devices.
Collapse
Affiliation(s)
- Fei Pan
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, P.R. China
| | - Yuyang Shi
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, P.R. China
| | - Yang Yang
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, P.R. China
| | - Hongtao Guo
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, P.R. China
| | - Lixin Li
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, P.R. China
| | - Haojie Jiang
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, P.R. China
| | - Xiao Wang
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, P.R. China
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University Jinan, Jinan, 250061, P. R. China
| | - Wei Lu
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, P.R. China
| |
Collapse
|
41
|
Li S, Tang C, Song Y, Zhang S, Hang ZH, Zhang X, Li Y, Yang Z. Tailoring Interfaces of All-Carbon Electromagnetic Interference Shielding Materials for Boosting Comprehensive Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11821-11834. [PMID: 38407077 DOI: 10.1021/acsami.3c18895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Electromagnetic interference (EMI) shielding materials with lightweight, high shielding effectiveness, excellent chemical stability, especially minimized secondary electromagnetic pollution, are urgently desired for integrated electronic systems operating in harsh working environments. Here in this study, by systematically engineering and matching the interfacial properties of carbon-based membrane materials, i.e., graphite paper, whisker carbon nanotube paper (WCNT paper), carbon nanotube film (CNT film), bucky paper (BP), and carbon cloth (CC) with three-dimensional (3D) porous carbon nanotube sponge (CNTS), we successfully constructed a series of multifunctional all-carbon EMI shielding materials, which exhibit excellent average shielding effectiveness of over 90 dB with a thickness of about 1 mm and dramatically minimized secondary electromagnetic reflection. Moreover, benefiting from the all-carbon nature and engineered interfaces, our CMC materials also exhibit excellent photothermal and Joule heating performances. These results not only provide guidance for designing advanced multifunctional all-carbon EMI shielding materials but also shed light on the hidden mechanism between interfaces and performances of composite materials.
Collapse
Affiliation(s)
- Shengjie Li
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Chengqing Tang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, P. R. China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, Shandong, P. R. China
| | - Yaoqieyu Song
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Institute for Advanced Study, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Sheng Zhang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Institute for Advanced Study, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Zhi Hong Hang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Institute for Advanced Study, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Xiaohua Zhang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Yitan Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, P. R. China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, Shandong, P. R. China
| | - Zhaohui Yang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
42
|
Li P, Wang H, Ju Z, Jin Z, Ma J, Yang L, Zhao X, Xu H, Liu Y. Ti 3C 2T x MXene- and Sulfuric Acid-Treated Double-Network Hydrogel with Ultralow Conductive Filler Content for Stretchable Electromagnetic Interference Shielding. ACS NANO 2024; 18:2906-2916. [PMID: 38252027 DOI: 10.1021/acsnano.3c07233] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Hydrogels are emerging as stretchable electromagnetic interference (EMI) shielding materials because of their tissue-like mechanical properties and water-rich porous cellular structures. However, achieving high-performance hydrogel shields remains a challenge because enhancing conductivity often results in a compromise in deformation adoptability. This work proposes a treatment strategy involving sulfuric acid/titanium carbide MXene, which can simultaneously enhance the conductivity and stretchability of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/poly(vinyl alcohol) (PVA) double-network hydrogels. Multiple spectroscopic characterizations reveal that sulfuric acid promotes the linear conformation transition of the PEDOT molecular chain, while MXene increases charge delocalization and hydrogen bond cross-linking sites. The hydrogels, synthesized with a combined content of 0.6 wt % of MXene and PEDOT:PSS, exhibit an average X-band EMI SE of 41 dB. This performance is sustained at 94.5%, even following stretching and release at a strain of 200%. Interestingly, the EMI SE is found to linearly increase, reaching a value of 99 dB as the frequency is increased to 26.5 GHz. This increase is attributed to the enhanced water molecular polarization process, as supported by theoretical calculations of the impedance and attenuation constant. This work introduces a post-treatment technique that optimizes double-network hydrogels, providing deep insights into their EMI shielding mechanism and enabling high-performance EMI shielding with an ultralow conductive filler content.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Henan Wang
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhongshi Ju
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhongzheng Jin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jiangang Ma
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Lin Yang
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiaoning Zhao
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Haiyang Xu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
43
|
Zecchi S, Cristoforo G, Bartoli M, Tagliaferro A, Torsello D, Rosso C, Boccaccio M, Acerra F. A Comprehensive Review of Electromagnetic Interference Shielding Composite Materials. MICROMACHINES 2024; 15:187. [PMID: 38398916 PMCID: PMC10891677 DOI: 10.3390/mi15020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
The interaction between matter and microwaves assumes critical significance due to the ubiquity of wireless communication technology. The selective shielding of microwaves represents the only way to achieve the control on crucial technological sectors. The implementation of microwave shielding ensures the proper functioning of electronic devices. By preventing electromagnetic pollution, shielding safeguards the integrity and optimal performances of devices, contributing to the reliability and efficiency of technological systems in various sectors and allowing the further step forwards in a safe and secure society. Nevertheless, the microwave shielding research is vast and can be quite hard to approach due to the large number and variety of studies regarding both theory and experiments. In this review, we focused our attention on the comprehensive discussion of the current state of the art of materials used for the production of electromagnetic interference shielding composites, with the aim of providing a solid reference point to explore this research field.
Collapse
Affiliation(s)
- Silvia Zecchi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.Z.); (G.C.); (D.T.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Firenze, Italy;
| | - Giovanni Cristoforo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.Z.); (G.C.); (D.T.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Firenze, Italy;
| | - Mattia Bartoli
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Firenze, Italy;
- Italian Institute of Technology, Via Livorno 60, 10144 Torino, Italy
| | - Alberto Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.Z.); (G.C.); (D.T.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Firenze, Italy;
| | - Daniele Torsello
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.Z.); (G.C.); (D.T.)
- Istituto Nazionale di Fisica Nucleare, Sez. Torino, Via P. Giuria 1, 10125 Torino, Italy
| | - Carlo Rosso
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| | - Marco Boccaccio
- Leonardo Labs, OGR Tech, Corso Castelfidardo 22, 10138 Torino, Italy
| | - Francesco Acerra
- Leonardo Aircraft, Viale dell’Aeronautica Sns, 80038 Pomigliano d’Arco, Italy;
| |
Collapse
|
44
|
Chen Z, Yang S, Huang J, Gu Y, Huang W, Liu S, Lin Z, Zeng Z, Hu Y, Chen Z, Yang B, Gui X. Flexible, Transparent and Conductive Metal Mesh Films with Ultra-High FoM for Stretchable Heating and Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2024; 16:92. [PMID: 38252258 PMCID: PMC10803711 DOI: 10.1007/s40820-023-01295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/21/2023] [Indexed: 01/23/2024]
Abstract
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference (EMI) shielding, achieving a flexible EMI shielding film, while maintaining a high transmittance remains a significant challenge. Herein, a flexible, transparent, and conductive copper (Cu) metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique. The Cu mesh film shows an ultra-low sheet resistance (0.18 Ω □-1), high transmittance (85.8%@550 nm), and ultra-high figure of merit (> 13,000). It also has satisfactory stretchability and mechanical stability, with a resistance increases of only 1.3% after 1,000 bending cycles. As a stretchable heater (ε > 30%), the saturation temperature of the film can reach over 110 °C within 60 s at 1.00 V applied voltage. Moreover, the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5 μm. As a demonstration, it is used as a transparent window for shielding the wireless communication electromagnetic waves. Therefore, the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.
Collapse
Affiliation(s)
- Zibo Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shaodian Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Junhua Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yifan Gu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Weibo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shaoyong Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhiqiang Lin
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Zhiping Zeng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yougen Hu
- Guangdong Provincial Key Laboratory of Materials for High Density Electronic Packing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Zimin Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Boru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
45
|
Zhang K, Liu Y, Liu Y, Yan Y, Ma G, Zhong B, Che R, Huang X. Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption. NANO-MICRO LETTERS 2024; 16:66. [PMID: 38175333 PMCID: PMC10767016 DOI: 10.1007/s40820-023-01280-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide (RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss (RLmin) of Fe/RGO-2 composite reaches - 53.38 dB (2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz (2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content, which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.
Collapse
Affiliation(s)
- Kaili Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Yuhao Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Yanan Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Yuefeng Yan
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Guansheng Ma
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Bo Zhong
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai, 264209, People's Republic of China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China.
| | - Xiaoxiao Huang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
46
|
Cheng X, Cai J, Liu P, Chen T, Chen B, Gong D. Multifunctional Flexible MXene/AgNW Composite Thin Film with Ultrahigh Conductivity Enabled by a Sandwich-Structured Assembly Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304327. [PMID: 37699748 DOI: 10.1002/smll.202304327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Flexible composite films have attracted considerable attention due to great potential for healthcare, telecommunication, and aerospace. However, it is still challenging to achieve high conductivity and multifunctional integration, mainly due to poorly designed composite structures of these films. Herein, a novel sandwich-structured assembly strategy is proposed to fabricate flexible composite thin films made of Ag nanowire (AgNW) core and MXene layers by combination of spray coating and vacuum filtration process. In this case, ultrathin MXene layers play crucial roles in constructing compact composite structures strongly anchored to substrate with extensive hydrogen-bonding interactions. The resultant sandwich-structured MXene/AgNW composite thin films (SMAFs) exhibit ultrahigh electrical conductivity (up to 27193 S cm-1 ), resulting in exceptional electromagnetic interference shielding effectiveness of 16 223.3 dB cm2 g-1 and impressive Joule heating performance with rapid heating rate of 10.4 °C s-1 . Moreover, the uniform SMAFs can also be facilely cut into kirigami-patterned interconnects, which indicate superior strain-insensitive conductance even after long-term exposure to extreme temperatures. The demonstrated strategy offers a significant paradigm to construct multifunctional composite thin films for next-generation integrated flexible electronics with practical applications.
Collapse
Affiliation(s)
- Xiang Cheng
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Peng Liu
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Teng Chen
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Bo Chen
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - De Gong
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
47
|
Atay M, Duran Kaya D, Ülker A. Development of Electromagnetic Shielding Composites Reinforced with Nonwovens Produced from Recycled Fibers. Polymers (Basel) 2023; 15:4469. [PMID: 38006193 PMCID: PMC10674624 DOI: 10.3390/polym15224469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
As a light-weight solution for electromagnetic shielding, this paper aims to investigate the development of electrically conductive composites that shield from electromagnetic radiation while providing sustainability by using recycled fibers in the structure of nonwoven reinforcement materials. The main novelty of this research is the conversion of waste fabrics into functional composites via a fast and inexpensive method. For this purpose, waste fabrics were recycled into fibers, and the recycled fibers were processed into needle-punched nonwovens to be used as reinforcement materials for electromagnetic shielding composites. Electrically conductive composite structures were obtained by adding copper (II) sulfate and graphite conductive particles with different ratios to polyester resin. The hand lay-up method was used for the production of composites. Electromagnetic shielding, electrical resistivity, and some mechanical properties of the composites were investigated. The results were analyzed statistically using IBM SPSS software version 18. The results have shown that up to 31.43 dB of electromagnetic shielding effectiveness was obtained in the 1-6 GHz frequency range. This result corresponds to a very good grade for general use and a moderate grade for professional use, according to FTTS-FA-003, exceeding the acceptable range for industrial and commercial applications of 20 dB. The composites developed in this research are good candidates to be used in various general and professional applications, such as plastic parts in household applications, electronic industry, building and construction industries, and other applications where light weight shielding materials are needed.
Collapse
Affiliation(s)
- Melisa Atay
- Graduate School of Natural and Applied Sciences, Ege University, 35100 Izmir, Turkey;
| | - Deniz Duran Kaya
- Department of Textile Engineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Aydın Ülker
- Department of Mechanical Engineering, Faculty of Engineering and Architecture, İzmir Katip Çelebi University, 35620 Izmir, Turkey;
| |
Collapse
|
48
|
Ban Q, Li L, Li Y, Liu H, Zheng Y, Qin Y, Zhang H, Kong J. Polymer self-assembly guided heterogeneous structure engineering towards high-performance low-frequency electromagnetic wave absorption. J Colloid Interface Sci 2023; 650:1434-1445. [PMID: 37481781 DOI: 10.1016/j.jcis.2023.07.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Magnetic-dielectric synergy is currently regarded as among the most effective approaches to achieve low-frequency electromagnetic wave absorption (EMA). However, designing and fabricating EMA materials with tunable magnetic-dielectric balance towards high-performance low-frequency EMA remains challenging. Herein, a polymer self-assembly guided heterogeneous structure engineering strategy is proposed to fabricate hierarchical magnetic-dielectric nanocomposite. Polymer assemblies not only can be employed as intermediates to encapsulate metal-organic frameworks and load metal hydroxide, but also that they play a crucial role for the in-situ formation of polycrystalline FeCo/Co composite nanoparticles. As a result, the minimum reflection loss (RLmin) can reach -59.61 dB at 5.4 GHz (4.8 mm) with a 20 wt% filler loading, while the effective absorption bandwidth (EAB, RLmin ≤ -10 dB) is 2.16 GHz, exhibiting excellent low-frequency EMA performance. Systematic investigations demonstrate that hierarchical mesoporous carbon matrix that supports FeCo/Co composite nanoparticles is beneficial for optimizing impedance matching and increasing attenuation capacity. In general, this study opens up new prospects for developing magnetic-dielectric EMA materials using a polymer self-assembly guided heterogeneous structure engineering strategy, which may receive significant attention in future research.
Collapse
Affiliation(s)
- Qingfu Ban
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, PR China.
| | - Luwei Li
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, PR China
| | - Yan Li
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, PR China
| | - Huimin Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yaochen Zheng
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, PR China
| | - Yusheng Qin
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, PR China
| | - Hongru Zhang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, PR China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
49
|
Liu Y, Wang Y, Wu N, Han M, Liu W, Liu J, Zeng Z. Diverse Structural Design Strategies of MXene-Based Macrostructure for High-Performance Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2023; 15:240. [PMID: 37917275 PMCID: PMC10622396 DOI: 10.1007/s40820-023-01203-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/09/2023] [Indexed: 11/04/2023]
Abstract
There is an urgent demand for flexible, lightweight, mechanically robust, excellent electromagnetic interference (EMI) shielding materials. Two-dimensional (2D) transition metal carbides/nitrides (MXenes) have been potential candidates for the construction of excellent EMI shielding materials due to their great electrical electroconductibility, favorable mechanical nature such as flexibility, large aspect ratios, and simple processability in aqueous media. The applicability of MXenes for EMI shielding has been intensively explored; thus, reviewing the relevant research is beneficial for advancing the design of high-performance MXene-based EMI shields. Herein, recent progress in MXene-based macrostructure development is reviewed, including the associated EMI shielding mechanisms. In particular, various structural design strategies for MXene-based EMI shielding materials are highlighted and explored. In the end, the difficulties and views for the future growth of MXene-based EMI shields are proposed. This review aims to drive the growth of high-performance MXene-based EMI shielding macrostructures on basis of rational structural design and the future high-efficiency utilization of MXene.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China
| | - Yadi Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China
| | - Na Wu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, People's Republic of China.
- School of Chemistry and Chemical Engineering, Shandong University, Shandong, 250100, China.
| | - Mingrui Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong, 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen, China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China.
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China.
| |
Collapse
|
50
|
Deng Z, Jiang P, Wang Z, Xu L, Yu ZZ, Zhang HB. Scalable Production of Catecholamine-Densified MXene Coatings for Electromagnetic Shielding and Infrared Stealth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304278. [PMID: 37431209 DOI: 10.1002/smll.202304278] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Processing transition metal carbides/nitrides (MXenes) inks into large-area functional coatings expects promising potential for electromagnetic interference (EMI) shielding and infrared stealth. However, the coating performances, especially for scalable fabrication techniques, are greatly constrained by the flake size and stacking manner of MXene. Herein, the large-area production of highly densified and oriented MXene coatings is demonstrated by engineering interfacial interactions of small MXene flakes with catecholamine molecules. The catecholamine molecules can micro-crosslink MXene nanosheets, significantly improving the ink's rheological properties. It favors the shear-induced sheet arrangement and inhibition of structural defects in the blade coating process, making it possible to achieve high orientation and densification of MXene assembly by either large-area coating or patterned printing. Interestingly, the MXene/catecholamine coating exhibits high conductivity of up to 12 247 S cm-1 and ultrahigh specific EMI shielding effectiveness of 2.0 ×10 5 dB cm2 g-1 , obviously superior to most of the reported MXene materials. Furthermore, the regularly assembled structure also endows the MXene coatings with low infrared emissivities for infrared stealth applications. Therefore, MXene/catecholamine coatings with ultraefficient EMI shielding and low infrared emissivity prove the feasibility of applications in aerospace, military, and wearable devices.
Collapse
Affiliation(s)
- Zhiming Deng
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peizhu Jiang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenguo Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Xu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|