1
|
Li X, Lv G, Hu Y, Tsao YH, Hu R, Tian Z, Liu K, Ma H. High Through-Thickness Thermal Conductivity in an Edge-On Two-Dimensional Polyamide Thin Film. NANO LETTERS 2025. [PMID: 40387428 DOI: 10.1021/acs.nanolett.5c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
High thermal conductivity is essential for polymer applications such as electronic chip encapsulation, where efficient heat dissipation ensures system functionality and reliability. Here, we introduce a novel strategy to enhance through-plane thermal conductivity in 2D covalent organic frameworks (COFs). A highly crystalline edge-on 2D polyamide (v2DPA) film achieves a thermal conductivity of 1.16 ± 0.05 W/(mK) at 310 K, surpassing the previous record (1.03 W/(mK) in COF-5 [Evans et al. Nat. Mater. 2021, 20, 1142]) and aligning with molecular dynamics predictions (1.11 ± 0.07 W/(mK)). This value is nearly three times higher than that of bulk PA (0.34 ± 0.03 W/(mK)). Phonon dispersion calculations attribute this enhancement to strong covalent bonding, increasing phonon lifetimes, and group velocities. Our findings highlight the effectiveness of orienting 2D polymer and layer-stacked 2D COF films in an edge-on configuration to improve through-thickness thermal conductivity, offering a promising pathway for their integration into electronic thermal management applications.
Collapse
Affiliation(s)
- Xiuqiang Li
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Guangxin Lv
- School of Sustainable Energy and Resources, Nanjing University, Suzhou, Jiangsu 210023, P.R. China
| | - Yinglong Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yu-Hsuan Tsao
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Renjiu Hu
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zhiting Tian
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kejun Liu
- State Key Laboratory of Bioinspired Interfacial Materials Science, institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Hao Ma
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
2
|
Natarajan B, Kannan P, Maduraiveeran G, Alnaser AS. Polymer nanocomposite-based biomolecular sensor for healthcare monitoring. Adv Colloid Interface Sci 2025; 343:103557. [PMID: 40393187 DOI: 10.1016/j.cis.2025.103557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025]
Abstract
Polymer-derived nanocomposites have gained significant attention in biosensing due to their ability to integrate the mechanical flexibility of polymers with the high electrical conductivity, large surface area and porosity, enhanced catalytic activity, and excellent biocompatibility of nanoscale materials. When combined with biomolecules, these nanocomposites form advanced polymer-bio interfaces that enhance electrochemical signal transduction, molecular recognition, and surface stability critical factors for achieving high sensitivity and selectivity in diagnostic applications. This review provides a comprehensive overview of recent progress in the development and application of polymer-derived nanocomposites, such as conducting polymers, carbon nanotubes (CNTs), graphene, dendrimers, and molecularly imprinted polymers (MIPs), in the field of electrochemical biosensing. We delve into the fundamental interfacial mechanisms, including adsorption phenomena, electron transfer behavior, and catalytic activity that govern biosensor performance. The review also discusses the synthesis and functionalization of nanocomposites, sensor fabrication strategies, and mechanistic insights into their sensing/biosensing capabilities across various clinical and biomedical targets. Lastly, we evaluate key performance metrics ("figures of merit" refer to key sensing parameters such as materials, analytes, sensitivity, linear range, limit of detection (LOD), and real samples testing), address current challenges in optimizing polymer-bio interfaces, and highlight emerging opportunities for advancing next-generation diagnostic technologies.
Collapse
Affiliation(s)
- Bharathi Natarajan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China; College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province 314001, PR China
| | - Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chengalpattu, Tamil Nadu, India; Department of Physics, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates; Materials Research Center, American University of Sharjah, Sharjah, United Arab Emirates.
| | - Ali S Alnaser
- Department of Physics, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates; Materials Research Center, American University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
3
|
E S, Huang K, Gong W, Wang Y, Yang J, Ma J, Lu Z, Wang L. Polymer-Guided Exfoliation, Microstructure, Thermal Conduction, and Mechanical Behaviors of Boron Nitride Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11574-11583. [PMID: 40301002 DOI: 10.1021/acs.langmuir.5c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The size and surface properties of individual nanomaterials significantly influence the microstructures and the performance of their assemblies. Herein, we demonstrated that when using polymeric solutions as ball-milling media of hexagonal boron nitride (h-BN), the molecular structures of the employed polymers would have significant influences on the lateral sizes, surface charges, and attached polymer kinds and contents of the exfoliated boron nitride nanosheets (BNNSs), which in turn determine the microstructures and thermal conductivities (TCs) of the BNNS-based films. The polymers that have high binding energies and dipole-dipole interactions with h-BN are conducive to peeling off large-area BNNSs, but those having strong hydrogen bonding interactions with h-BN can attach more molecular chains on the exfoliated BNNSs and form dense and highly horizontally oriented structures in assembled BNNS films, of which the TCs are balanced by the lateral sizes, compactness, horizontal orientation, and interfacial interactions of the nanosheets. Density functional theory simulations confirmed that the exfoliation ability of the polymers is mainly determined by their binding energies with h-BN.
Collapse
Affiliation(s)
- Songfeng E
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Kaiyue Huang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China
| | - Yuanming Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jiaming Yang
- Shanghai Boron Matrix Advanced Material Technology Co., Ltd., 3938 Wenchuan Road, Shanghai 201906, China
| | - Junli Ma
- Shanghai Boron Matrix Advanced Material Technology Co., Ltd., 3938 Wenchuan Road, Shanghai 201906, China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lejia Wang
- Shanghai Boron Matrix Advanced Material Technology Co., Ltd., 3938 Wenchuan Road, Shanghai 201906, China
- School of Materials and Chemical Engineering, Ningbo University of Technology, 201 Fenghua Road, Ningbo 315211, China
| |
Collapse
|
4
|
Xie X, Wu J, Ma Y, Li S, Yan J. Low Dielectric and High Thermal Conductive Phononic Crystal Nanofiber Metamaterial Film. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502146. [PMID: 40269598 DOI: 10.1002/adma.202502146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/20/2025] [Indexed: 04/25/2025]
Abstract
The rapid advancement of 3D heterogeneous integration technology has created stringent requirements for the thermal conductivity of low dielectric materials. However, common low dielectric materials generally have low thermal conductivity, which hinders the ability to simultaneously optimize signal transmission and heat dissipation in integrated systems. Here, a crystallization control strategy is proposed to tackle the challenge of balancing high thermal conductivity with a low dielectric constant. Through precise control of synthesis parameters, a phononic crystal nanofiber (NF) metamaterial film composed of boron nitride nanosheets (BNNS) and crystalline polyimide (PI) bridges has been successfully developed. The crystalline PI bridging structure and BNNS synergistically form a phononic crystal-like metamaterial inside the fiber, enhancing lattice vibration and facilitating heat transfer. Meanwhile, the PI around the fiber maintains a long-range disordered structure, hindering the arrangement of dipoles. The synergistic effect enables the phononic crystal NF film to achieve a high thermal conductivity of up to 6.51 W/(m·k) and a relatively low dielectric constant of 2.63, thereby enhancing the energy efficiency of 3D integrated systems.
Collapse
Affiliation(s)
- Xiaoyun Xie
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jiawei Wu
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yanyan Ma
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Shouzhu Li
- Xinjiang Key Laboratory of New Energy and Energy Storage Technology, Xinjiang Institute of Technology, Akesu, 843100, China
| | - Jianhua Yan
- College of Textiles, Donghua University, Shanghai, 201620, China
- Xinjiang Key Laboratory of New Energy and Energy Storage Technology, Xinjiang Institute of Technology, Akesu, 843100, China
| |
Collapse
|
5
|
Li X, Jiao Y, Li Y, Pan C, Fan G, Long Y, Cheng Q, Yang H. Dual-drive mica-based magnetic composite phase-change materials for photothermal and magnetothermal conversion. RSC Adv 2025; 15:12713-12722. [PMID: 40264874 PMCID: PMC12013615 DOI: 10.1039/d4ra06902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/21/2025] [Indexed: 04/24/2025] Open
Abstract
To extend the applications of phase-change materials to multiple scenarios, Fe3O4 nanoparticles were deposited on the surface of mica with a layer-like structure using a simple method, and composite phase-change materials (CPCMs) with dual-driven energy conversion performance were subsequently obtained via vacuum impregnation. The addition of boron nitride (BN) and cellulose nanofibers (CNFs) endowed the CPCMs with higher thermal conductivity (0.85 W m-1 K-1) and lower specific heat capacity (1.42 MJ m-2 K-1), thereby constructing an effective heat transfer channel. The photothermal conversion efficiency of the CPCMs reached up to 88.36%. The magnetic Fe3O4 nanoparticles endowed the CPCMs with magnetic responsiveness, enabling the phase transition process to complete within just 112 s under a magnetic field. With a high phase-change material loading (82.65%), the CPCMs maintained excellent thermal stability during the energy conversion process. These results provide guidance for the preparation of CPCMs with multiple types of efficient energy conversion.
Collapse
Affiliation(s)
- Xiaofei Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| | - Yinao Jiao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China
| | - Yupeng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| | - Cheng Pan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China
| | - Guozhi Fan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China
| | - Yifei Long
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China
| | - Qunpeng Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 China
| | - Haitao Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
6
|
Song YY, Jiang N, Li SZ, Wang LN, Bai L, Yang J, Yang W. Ultra-high thermally conductive graphite microplatelet/aramid nanofiber composites with reduced interfacial thermal resistances by engineered interface π-π interactions. MATERIALS HORIZONS 2025. [PMID: 40123516 DOI: 10.1039/d5mh00070j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Polymer-based thermally conductive composites with ultrahigh in-plane thermal conductivity are ideal candidates for heat dissipation applications in electronics. However, the complex interfaces between the functional filler and polymer matrix limit the significant increase in thermal conductivity of the polymer composites. In this study, we developed a one-pot strategy to prepare highly thermally conductive composite films of freeze-expansion large-size graphite microplatelets (F-GMPs) and aramid nanofibers (ANFs) with π-π interactions. The obtained F-GMP/ANF nanocomposite films present salient in-plane thermal conductivity, considerable flexibility, and outstanding long-term stability. The π-π interactions between the F-GMPs and ANFs promote the freeze-expansion exfoliation of graphite, yielding stable F-GMP/ANF precursor pastes with high-quality graphite platelets. Moreover, the π-π interactions improve the filler-matrix interfacial compatibility and reduce the interfacial thermal resistance, while the large-size F-GMP particles are directly lapped to construct a thermal transfer pathway with a reduction in the filler-filler interfacial thermal resistance. Consequently, the F-GMP/ANF composite films with 30 wt% F-GMPs exhibit unprecedentedly high in-plane thermal conductivity (56.89 W m-1 K-1) and corresponding thermal conductivity enhancement efficiency, presenting great application potential for the effective thermal management of highly integrated electronics.
Collapse
Affiliation(s)
- Yu-Yang Song
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Niu Jiang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Shuang-Zhu Li
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Lu-Ning Wang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Lu Bai
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Jie Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, P. R. China.
| |
Collapse
|
7
|
Das M, Knapczyk-Korczak J, Moradi A, Pichór W, Stachewicz U. Enhanced thermal management of mats and yarns from polystyrene fibers through incorporation of exfoliated graphite. MATERIALS ADVANCES 2025; 6:1859-1868. [PMID: 40012835 PMCID: PMC11848512 DOI: 10.1039/d4ma01162g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
The energy crisis, driven by modern electronics and global warming from population growth, underscores the need for advanced textiles to regulate thermal environments. Researchers stress the need to improve high-performance polymer mats with enhanced thermal conductivity. This report delves into the morphological, mechanical, and thermal properties of exfoliated graphite (EG) when incorporated into polystyrene (PS) fiber mats and yarns through blend electrospinning. The incorporation of EG inside the fibers allowed us to obtain approximately twofold improvement in maximum stress and toughness compared to pristine PS mats. Thermal camera measurement showed significant improvement in heat transport for PS-EG fibers. The heating test showed a temperature increase of ∼2.5 °C for an EG-loaded PS mat, and in the case of a resistance wire coated with a PS fiber yarn, the increase reached 17 °C. The incorporation of EG into electrospun mats enables the recovery of more energy in the form of heat by enhancing the heating of the sample through infrared radiation. The temperature increased by 2 °C for PS and by 27 °C for PS-EG, respectively. The obtained results exhibit a great potential for the application of electrospun hybrid systems with EG in further advancement in the field of next-generation thermal management.
Collapse
Affiliation(s)
- Madhurima Das
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow Krakow 30-059 Poland
| | - Joanna Knapczyk-Korczak
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow Krakow 30-059 Poland
| | - Ahmadreza Moradi
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow Krakow 30-059 Poland
| | - Waldemar Pichór
- Faculty of Materials Science and Ceramics, AGH University of Krakow al. A. Mickiewicza 30 30-059 Kraków Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow Krakow 30-059 Poland
| |
Collapse
|
8
|
Guo Y, Xu K, Wang Y, Zhang Z, Gong P, Zhang J, Li L, Yang R, Qin Y, Wang X, Zhu B, Cai T, Lin CT, Nishimura K, Li M, Jiang N, Yu J. Light Weight Organic Composites with High Thermal Management Capability. NANO LETTERS 2025; 25:3405-3413. [PMID: 39918566 DOI: 10.1021/acs.nanolett.4c04601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
With the advancement of science and technology, effectively addressing the issue of heat dissipation in electronic equipment has become a key research topic. Polymers have attracted attention due to their low price, excellent flexibility, and lightweight characteristics, but thermal conductivity has a limitation. In this work, aiming for all-polymer composites with lightweight and high thermal conductivity, poly(p-phenylene benzobisoxazole) (PBO) fibers were used to construct a long-range ordered heat transfer path in the organosilicon matrix, and an all-organic composite material with a low density of 1.24 g cm-3 and thermal conductivity of 18.44 W/ (m K) was produced. At the same time, the composite material was applied to the cooling performance test of LED lamps, which was 4.8 °C lower than advanced commercial thermal conductive materials, demonstrating its potential in the field of thermal management materials.
Collapse
Affiliation(s)
- Yingying Guo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Kang Xu
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yandong Wang
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Zhenbang Zhang
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ping Gong
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jianxiang Zhang
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Linhong Li
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Rongjie Yang
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yue Qin
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xingye Wang
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Boda Zhu
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Tao Cai
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Cheng-Te Lin
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kazuhito Nishimura
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Maohua Li
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Nan Jiang
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinhong Yu
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Zheng H, He P, Yang S, Lu Y, Guo N, Li Y, Wang G, Ding G. Achieving Ultra-High Heat Flux Transfer in Graphene Films via Tunable Gas Escape Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410913. [PMID: 39527704 PMCID: PMC11714209 DOI: 10.1002/advs.202410913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Graphene films have been applied in the thermal management of electronic devices due to their high thermal conductivity. However, the ever-increasing power and local heat flux density of electronic chips require graphene films with excellent heat flux carrying capacity. Enhancing the heat flux carrying capacity is highly challenging, and the key is to maintain high thermal conductivity while increasing film thickness. Gases released during film assembly and the resulting catastrophic structural destruction should be responsible for the trade-off between film thickness and thermal conductivity. Herein, the evolution of the pore structure is investigated during the assembly of graphene films and propose the construction of gas escape channels for the preparation of thick graphene films. The process involves using humidification treatment and freeze-drying GO films to pre-construct the ordered flat pore structure. The microstructure optimization of graphene films with more order, fewer wrinkles and defects, and larger grain size is achieved. After optimization, graphene films with ultra-high thermal conductivity (1781 W m-1 K-1) and a thickness over 100 µm are realized. These films exhibit exceptional heat dissipation and cooling capabilities in high heat flux density (≈2000 W cm-2). This finding holds significant potential for guiding the thermal management of high-power devices.
Collapse
Affiliation(s)
- Haolong Zheng
- State Key Laboratory of Materials for Integrated CircuitsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050P. R. China
- College of Materials Science and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Peng He
- State Key Laboratory of Materials for Integrated CircuitsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050P. R. China
- College of Materials Science and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shujing Yang
- State Key Laboratory of Materials for Integrated CircuitsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050P. R. China
- College of Materials Science and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yonghua Lu
- State Key Laboratory of Materials for Integrated CircuitsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050P. R. China
- Zhongke Yueda Shanghai Material Technology Co. LtdShanghai201800P. R. China
| | - Na Guo
- State Key Laboratory of Materials for Integrated CircuitsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050P. R. China
- Zhongke Yueda Shanghai Material Technology Co. LtdShanghai201800P. R. China
| | - Yanhong Li
- State Key Laboratory of Materials for Integrated CircuitsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050P. R. China
- Zhongke Yueda Shanghai Material Technology Co. LtdShanghai201800P. R. China
| | - Gang Wang
- State Key Laboratory of Materials for Integrated CircuitsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050P. R. China
- School of Physical Science and TechnologyNingbo UniversityNingbo315211P. R. China
| | - Guqiao Ding
- State Key Laboratory of Materials for Integrated CircuitsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050P. R. China
- College of Materials Science and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
10
|
Luo W, Wei B, Luo T, Li B, Zhu G. 3D Network of Liquid Metal-Embedded Graphene via Surface Coating for Flexible Thermal Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406574. [PMID: 39363667 DOI: 10.1002/smll.202406574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Indexed: 10/05/2024]
Abstract
The rapid growth of flexible electronics has led to significant demand for relevant accessories, particularly highly efficient flexible heat dissipators. The fluidity of liquid metal (LM) makes it a candidate for realizing flexible thermal interface materials (TIMs). However, it is still challenging to combine LM with a conductive thermal network to achieve the synchronous improvement of thermal conductivity and flexibility. In this work, highly conductive flexible LM@GN/ANF films are made by coating LM nano-droplets with graphene nanosheets (GN) via sonication, and then they are combined with aramid nanofibers (ANF). The LM@GN/ANF film is found to have a thermal conductivity of 5.67 W m-1 K-1 and a 24.5% reduction in Young's modulus, making it suitable for various flexible electronic applications such as wearable devices and biosensors.
Collapse
Affiliation(s)
- Wenmei Luo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Baojie Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Tianlin Luo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Baowen Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen International Quantum Academy, Shenzhen, 518017, P. R. China
| | - Guimei Zhu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
11
|
Tao S, Yang Q, Zhou W, Zhu J, Pan H, Xu L, Zhao H, Zhou T, Wang J. Incorporation of polyvinyl alcohol in bacterial cellulose/polypyrrole flexible conductive films to enhance the mechanical and conductive performance. Int J Biol Macromol 2024; 282:137571. [PMID: 39542285 DOI: 10.1016/j.ijbiomac.2024.137571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/26/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The integration of polypyrrole (PPy) into bacterial cellulose (BC) has provided significant conductivity and cost benefits. However, this combination has led to a reduction in mechanical properties, particularly in terms of elongation at break and tensile strength. This study investigated the enhancement of BC/PPy composite films by incorporating polyvinyl alcohol (PVA). The resulting BC/PPy/PVA films demonstrated improvements in flexibility, tensile strength and thermal stability. Specifically, with 7 % PVA, the flexible films exhibited remarkable enhancements: tensile strength increased from 11.01 MPa (for BC/PPy) to 25.27 MPa and elongation at break rose from 5.81 % to 11.54 %. Additionally, the electrical conductivity of the BC/PPy/PVA films with a resistance of 38.5 Ω, surpassed that of the BC/PPy films. Furthermore, the equilibrium swelling water absorption rates of BC/PPy and BC/PPy/PVA films were 30.6 % and 81.4 %, respectively, with corresponding resistances of 530 Ω and 540 Ω. The variation in resistance between the dry and swollen states of the BC/PPy/PVA flexible conductive film resulted in differences in the brightness of the small light bulb. These findings highlighted the synergistic effects of PVA within the BC/PPy matrix, presenting a promising avenue for developing high-performance conductive materials suitable for flexible electronics and wearable devices.
Collapse
Affiliation(s)
- Sixuan Tao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Qun Yang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, Hubei, China; Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China.
| | - Weiman Zhou
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hong Pan
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Lihui Xu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hong Zhao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Tianchi Zhou
- Institute of Flexible Functional Materials, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Jiping Wang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China
| |
Collapse
|
12
|
Yang Q, Tan J, Tao S, Qiu H, Zhou W, Zhu J, Zhang H, Pei L, Zhou T, Wang J. Fabrication and properties of conductive films based on bacterial cellulose and poly-N-isopropylacrylamide-modified graphene oxide. Int J Biol Macromol 2024; 278:134867. [PMID: 39163963 DOI: 10.1016/j.ijbiomac.2024.134867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
A conductive film (PNIPAM-rGO/BC) was fabricated combining bacterial cellulose (BC) with poly-N-isopropylacrylamide-modified graphene oxide (PNIPAM-GO) through vacuum filtration and steam reduction techniques. The conductivity and performance of PNIPAM-GO composite and the resulting conductive film were studied. The key findings revealed that PNIPAM-GO composite exhibited a reversible temperature-sensitive behavior. Specifically, the lower critical solution temperature (LCST) increased upon the introduction of graphene oxide (GO). Detailed analyses confirmed uniform dispersion of GO nanosheets within the BC matrix. The incorporation of 10.0 % PNIPAM-GO (containing 7.0 % GO) led to a remarkable 19.6 % increase in tensile strength and approximately 37.0 % enhancement in elongation at break for the conductive film (PNIPAM-rGO/BC) compared to BC. After steam reduction, the electrical conductivity of PNIPAM-rGO/BC exhibited significant improvement over BC. Furthermore, the conductive film demonstrated temperature-dependent conductivity, with a resistivity value approximately 5.2 ± 0.2 KΩ at 25 °C. As the test temperature above the LCST of PNIPAM-GO composite, the resistance decreased. These intriguing temperature-sensitive conductive properties position PNIPAM-rGO/BC as a promising material for smart switches.
Collapse
Affiliation(s)
- Qun Yang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; Hubei Key Laboratory of Biomass Fibers & Eco-Dyeing &Finishing, Wuhan Textile University, Wuhan 430200, China; Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China.
| | - Jinhong Tan
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Sixuan Tao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huili Qiu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Weimian Zhou
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hongjuan Zhang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China
| | - Liujun Pei
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China
| | - Tianchi Zhou
- Institute of Flexible Functional Materials, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Jiping Wang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China
| |
Collapse
|
13
|
Hou X, Shen F, Chen M, Song L, Liu Q, Ren Y, Zhan X, Zhang Q. Bioinspired Functional Composites for Enhanced Thermally Conductivity via Fractal-Growth CuNP Fillers. ACS APPLIED BIO MATERIALS 2024; 7:6297-6305. [PMID: 39221820 DOI: 10.1021/acsabm.4c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Thermal conduction for electronic devices has attracted extensive attention in light of the development of 5G communication. Thermally conductive materials with high thermal conductivity and extensive mechanical flexibility are extremely desirable in practical applications. However, the construction of efficient interconnected conductive pathways and continuous conductive networks is inadequate for either processing or actual usage in existing technologies. In this work, spherical copper nanoparticles (S-CuNPs) and urchin-inspired fractal-growth CuNPs (U-CuNPs), thermally conductive metal fillers induced by ionic liquids, were fabricated successfully through the electrochemical deposition method. Compared to S-CuNPs, the U-CuNPs shows larger specific surface contact area, thus making it easier to build a continuous conductive pathway network in the corresponding U-CuNPs/liquid silicone rubber (LSR) thermally conductive composites. The optimal loading of CuNP fillers was determined by evaluating the rheological performance of the prepolymer and the mechanical properties and thermal conductivity performances of the composites. When the filler loading is 150 phr, the U-CuNPs/LSR produces optimal mechanical properties (e.g., tensile strength and modulus), thermal conductivity (above 1000% improvement compared to pure LSR), and heating/cooling efficiency. The enhanced thermal conductivity of U-CuNPs/LSR was also confirmed through the finite element analysis (FEA) overall temperature distribution, indicating that U-CuNPs with larger specific surface contact areas exhibit more advantages in forming a continuous network in composites than S-CuNPs, making U-CuNPs/LSR a promising and competitive alternative to traditional flexible thermally interface materials.
Collapse
Affiliation(s)
- Xiao Hou
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, Zhejiang 324000, China
| | - Fangming Shen
- Zhejiang Youngdream Li-ion Co., Ltd., Quzhou, Zhejiang 324000, China
| | - Mingzhou Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, Zhejiang 324000, China
| | - Lina Song
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Quan Liu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, Zhejiang 324000, China
| | - Yongyuan Ren
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, Zhejiang 324000, China
| | - Xiaoli Zhan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, Zhejiang 324000, China
| | - Qinghua Zhang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou, Zhejiang 324000, China
| |
Collapse
|
14
|
Ding Z, Li G, Wang Y, Du C, Ye Z, Liang L, Tang LC, Chen G. Ultrafast Response and Threshold Adjustable Intelligent Thermoelectric Systems for Next-Generation Self-Powered Remote IoT Fire Warning. NANO-MICRO LETTERS 2024; 16:242. [PMID: 38985378 PMCID: PMC11236834 DOI: 10.1007/s40820-024-01453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024]
Abstract
Fire warning is vital to human life, economy and ecology. However, the development of effective warning systems faces great challenges of fast response, adjustable threshold and remote detecting. Here, we propose an intelligent self-powered remote IoT fire warning system, by employing single-walled carbon nanotube/titanium carbide thermoelectric composite films. The flexible films, prepared by a convenient solution mixing, display p-type characteristic with excellent high-temperature stability, flame retardancy and TE (power factor of 239.7 ± 15.8 μW m-1 K-2) performances. The comprehensive morphology and structural analyses shed light on the underlying mechanisms. And the assembled TE devices (TEDs) exhibit fast fire warning with adjustable warning threshold voltages (1-10 mV). Excitingly, an ultrafast fire warning response time of ~ 0.1 s at 1 mV threshold voltage is achieved, rivaling many state-of-the-art systems. Furthermore, TE fire warning systems reveal outstanding stability after 50 repeated cycles and desired durability even undergoing 180 days of air exposure. Finally, a TED-based wireless intelligent fire warning system has been developed by coupling an amplifier, analog-to-digital converter and Bluetooth module. By combining TE characteristics, high-temperature stability and flame retardancy with wireless IoT signal transmission, TE-based hybrid system developed here is promising for next-generation self-powered remote IoT fire warning applications.
Collapse
Affiliation(s)
- Zhaofu Ding
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Gang Li
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Yejun Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Chunyu Du
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Zhenqiang Ye
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Lirong Liang
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Long-Cheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
| | - Guangming Chen
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
15
|
Peng Y, Dong J, Long J, Zhang Y, Tang X, Lin X, Liu H, Liu T, Fan W, Liu T, Huang Y. Thermally Conductive and UV-EMI Shielding Electronic Textiles for Unrestricted and Multifaceted Health Monitoring. NANO-MICRO LETTERS 2024; 16:199. [PMID: 38771428 PMCID: PMC11109083 DOI: 10.1007/s40820-024-01429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains, whereas susceptibility to electromagnetic interference (EMI), heat accumulation issues, and ultraviolet (UV)-induced aging problems pose significant constraints on their potential applications. Here, an ultra-elastic, highly breathable, and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals. Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles (NPs), an interwoven thermal conducting fiber network (0.72 W m-1 K-1) is constructed benefiting from the seamless thermal interfaces, facilitating unimpeded heat dissipation for comfort skin wearing. More excitingly, the elastomeric fiber substrates simultaneously achieve outstanding UV protection (UPF = 143.1) and EMI shielding (SET > 65, X-band) capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs. Furthermore, an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor, which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference. This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation.
Collapse
Affiliation(s)
- Yidong Peng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jiancheng Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jiayan Long
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yuxi Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xinwei Tang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xi Lin
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Haoran Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Tuoqi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Wei Fan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Yunpeng Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
16
|
Zhang P, Hao Y, Shi H, Lu J, Liu Y, Ming X, Wang Y, Fang W, Xia Y, Chen Y, Li P, Wang Z, Su Q, Lv W, Zhou J, Zhang Y, Lai H, Gao W, Xu Z, Gao C. Highly Thermally Conductive and Structurally Ultra-Stable Graphitic Films with Seamless Heterointerfaces for Extreme Thermal Management. NANO-MICRO LETTERS 2023; 16:58. [PMID: 38112845 PMCID: PMC10730789 DOI: 10.1007/s40820-023-01277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
Highly thermally conductive graphitic film (GF) materials have become a competitive solution for the thermal management of high-power electronic devices. However, their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety. Here, we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks (LNS), which reveals a bubbling process characterized by "permeation-diffusion-deformation" phenomenon. To overcome this long-standing structural weakness, a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film (GF@Cu) with seamless heterointerface. This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K. Moreover, GF@Cu maintains high thermal conductivity up to 1088 W m-1 K-1 with degradation of less than 5% even after 150 LNS cycles, superior to that of pure GF (50% degradation). Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.
Collapse
Affiliation(s)
- Peijuan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Yuanyuan Hao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Hang Shi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Jiahao Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, People's Republic of China.
| | - Xin Ming
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.
| | - Ya Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, 314400, People's Republic of China
| | - Wenzhang Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Yuxing Xia
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Yance Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Peng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Ziqiu Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Qingyun Su
- Beijing Spacecrafts Manufacturing Co., Ltd, Beijing Friendship Road 104, Haidian District, Beijing, 100094, People's Republic of China
| | - Weidong Lv
- Beijing Institute of Space Mechanics and Electricity, Beijing Friendship Road 104, Haidian District, Beijing, 100094, People's Republic of China
| | - Ji Zhou
- Beijing Institute of Space Mechanics and Electricity, Beijing Friendship Road 104, Haidian District, Beijing, 100094, People's Republic of China
| | - Ying Zhang
- China Academy of Aerospace Aerodynamics, Beijing, 100074, People's Republic of China
| | - Haiwen Lai
- Hangzhou Gaoxi Technol Co., Ltd, Hangzhou, 311113, People's Republic of China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, People's Republic of China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, People's Republic of China.
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, People's Republic of China.
| |
Collapse
|
17
|
Cao H, Li SZ, Yang J, Liu ZY, Bai L, Yang W. Thermally Conductive Magnetic Composite Phase Change Materials for Anisotropic Photo/Magnetic-to-Thermal Energy Conversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55723-55733. [PMID: 37992260 DOI: 10.1021/acsami.3c12302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The distinctive thermal energy storage properties of phase change materials (PCMs) are critical for solving energy issues. However, their inherently low thermal conductivity and limited energy conversion capability impede their applications in advanced thermal energy harvesting and storage systems. Herein, we developed magnetic composite PCMs with enhanced thermal conductivity for anisotropic photothermal and magnetic-to-thermal energy conversions. The hierarchically interconnected ferroferric oxide-coated boron nitride/poly(vinyl alcohol) (BN@Fe3O4/PVA) porous scaffolds were constructed by a unidirectional freeze-casting method to enhance the directional heat transfer capability of the composite PCMs with a through-plane thermal conductivity of 1.84 W m-1 K-1 at a BN@Fe3O4 loading of 25.4 wt %. The superparamagnetic Fe3O4 nanoparticles endow the composite PCMs with unique solar absorption and magnetic response properties, and the energy conversion efficiency can be regulated by controlling the orientation of the synthesized magnetic particles in the composite PCMs. As a consequence, the resulting composite PCMs exhibit superior photo/magnetic-to-thermal energy conversion efficiency along the direction of orientation of magnetic particles. These novel findings provide an instructive guide to yield composite PCMs for efficient energy conversion.
Collapse
Affiliation(s)
- Hong Cao
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Shuang-Zhu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jie Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zheng-Ying Liu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lu Bai
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Moradi A, Szewczyk PK, Stachewicz U. Bridging a Gap in Thermal Conductivity and Heat Transfer in Hybrid Fibers and Yarns via Polyimide and Silicon Nitride Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305104. [PMID: 37553775 DOI: 10.1002/smll.202305104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/21/2023] [Indexed: 08/10/2023]
Abstract
The pressing issues of the energy crisis and rapid electronics development have sparked a growing interest in the production of highly thermally conductive polymer composites. Due to the challenges related to the poor processability of hybrid materials and filler distribution to achieve high thermal conductivity, electrospinning is employed to create composite nanofibers and yarns using polyimide (PI) and thermally conductive silicon nitride (SiN) nanoparticles. The thermal performance of the individual nanofibers is evaluated using scanning thermal microscopy (SThM), providing significant insights into their heat transfer performance. Next, the nanofibers are applied as coatings on resistance wires to assess the thermal conductivity and insulation properties. Notably, the samples containing 35 wt.% of SiN exhibit a 25% increase in surface temperature. These innovative materials hold great promise as exceptional candidates for smart textiles and thermal management applications, addressing the growing demand for effective heat dissipation and regulation.
Collapse
Affiliation(s)
- Ahmadreza Moradi
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow, 30-059, Poland
| | - Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow, 30-059, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow, 30-059, Poland
| |
Collapse
|
19
|
Tang L, Ruan K, Liu X, Tang Y, Zhang Y, Gu J. Flexible and Robust Functionalized Boron Nitride/Poly(p-Phenylene Benzobisoxazole) Nanocomposite Paper with High Thermal Conductivity and Outstanding Electrical Insulation. NANO-MICRO LETTERS 2023; 16:38. [PMID: 38032407 PMCID: PMC10689708 DOI: 10.1007/s40820-023-01257-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
With the rapid development of 5G information technology, thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent. In this work, "high-temperature solid-phase & diazonium salt decomposition" method is carried out to prepare benzidine-functionalized boron nitride (m-BN). Subsequently, m-BN/poly(p-phenylene benzobisoxazole) nanofiber (PNF) nanocomposite paper with nacre-mimetic layered structures is prepared via sol-gel film transformation approach. The obtained m-BN/PNF nanocomposite paper with 50 wt% m-BN presents excellent thermal conductivity, incredible electrical insulation, outstanding mechanical properties and thermal stability, due to the construction of extensive hydrogen bonds and π-π interactions between m-BN and PNF, and stable nacre-mimetic layered structures. Its λ∥ and λ⊥ are 9.68 and 0.84 W m-1 K-1, and the volume resistivity and breakdown strength are as high as 2.3 × 1015 Ω cm and 324.2 kV mm-1, respectively. Besides, it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640 °C, showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
Collapse
Affiliation(s)
- Lin Tang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xi Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Yusheng Tang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
20
|
Xiao G, Li H, Yu Z, Niu H, Yao Y. Highly Thermoconductive, Strong Graphene-Based Composite Films by Eliminating Nanosheets Wrinkles. NANO-MICRO LETTERS 2023; 16:17. [PMID: 37975956 PMCID: PMC10656391 DOI: 10.1007/s40820-023-01252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices. However, when flexible graphene nanosheets are assembled into macroscopic thermally conductive composites, capillary forces induce shrinkage of graphene nanosheets to form wrinkles during solution-based spontaneous drying, which greatly reduces the thermal conductivity of the composites. Herein, graphene nanosheets/aramid nanofiber (GNS/ANF) composite films with high thermal conductivity were prepared by in-plane stretching of GNS/ANF composite hydrogel networks with hydrogen bonds and π-π interactions. The in-plane mechanical stretching eliminates graphene nanosheets wrinkles by suppressing inward shrinkage due to capillary forces during drying and achieves a high in-plane orientation of graphene nanosheets, thereby creating a fast in-plane heat transfer channel. The composite films (GNS/ANF-60 wt%) with eliminated graphene nanosheets wrinkles showed a significant increase in thermal conductivity (146 W m-1 K-1) and tensile strength (207 MPa). The combination of these excellent properties enables the GNS/ANF composite films to be effectively used for cooling flexible LED chips and smartphones, showing promising applications in the thermal management of high-power electronic devices.
Collapse
Affiliation(s)
- Guang Xiao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Hao Li
- Institute of Laser Manufacturing, Henan Academy of Sciences, Zhengzhou, 450052, People's Republic of China
| | - Zhizhou Yu
- Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Haoting Niu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Yagang Yao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
21
|
Jung Y, Kim M, Kim T, Ahn J, Lee J, Ko SH. Functional Materials and Innovative Strategies for Wearable Thermal Management Applications. NANO-MICRO LETTERS 2023; 15:160. [PMID: 37386321 PMCID: PMC10310690 DOI: 10.1007/s40820-023-01126-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/13/2023] [Indexed: 07/01/2023]
Abstract
Highlights This article systematically reviews the thermal management wearables with a specific emphasis on materials and strategies to regulate the human body temperature. Thermal management wearables are subdivided into the active and passive thermal managing methods. The strength and weakness of each thermal regulatory wearables are discussed in details from the view point of practical usage in real-life. Abstract Thermal management is essential in our body as it affects various bodily functions, ranging from thermal discomfort to serious organ failures, as an example of the worst-case scenario. There have been extensive studies about wearable materials and devices that augment thermoregulatory functionalities in our body, employing diverse materials and systematic approaches to attaining thermal homeostasis. This paper reviews the recent progress of functional materials and devices that contribute to thermoregulatory wearables, particularly emphasizing the strategic methodology to regulate body temperature. There exist several methods to promote personal thermal management in a wearable form. For instance, we can impede heat transfer using a thermally insulating material with extremely low thermal conductivity or directly cool and heat the skin surface. Thus, we classify many studies into two branches, passive and active thermal management modes, which are further subdivided into specific strategies. Apart from discussing the strategies and their mechanisms, we also identify the weaknesses of each strategy and scrutinize its potential direction that studies should follow to make substantial contributions to future thermal regulatory wearable industries.
Collapse
Affiliation(s)
- Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Minwoo Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Taegyeom Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jiyong Ahn
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
22
|
Guo Y, Ruan K, Wang G, Gu J. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci Bull (Beijing) 2023:S2095-9273(23)00290-6. [PMID: 37179235 DOI: 10.1016/j.scib.2023.04.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Polymer composites have essential applications in electronics due to their versatility, stable performance, and processability. However, with the increasing miniaturization and high power of electronics in the 5G era, there are significant challenges related to heat accumulation and electromagnetic wave (EMW) radiation in narrow spaces. Traditional solutions involve using either thermally conductive or EMW absorbing polymer composites, but these fail to meet the demand for multi-functional integrated materials in electronics. Therefore, designing thermal conduction and EMW absorption integrated polymer composites has become essential to solve the problems of heat accumulation and electromagnetic pollution in electronics and adapt to its development trend. Researchers have developed different approaches to fabricate thermal conduction and EMW absorption integrated polymer composites, including integrating functional fillers with both thermal conduction and EMW absorption functions and innovating processing methods. This review summarizes the latest research progress, factors that affect performance, and the mechanisms of thermal conduction and EMW absorption integrated polymer composites. The review also discusses problems that limit the development of these composites and potential solutions and development directions. The aim of this review is to provide references for the development of thermal conduction and EMW absorption integrated polymer composites.
Collapse
Affiliation(s)
- Yongqiang Guo
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Guangsheng Wang
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
23
|
Nan B, Zhan Y, Xu CA. A review on the thermal conductivity properties of polymer/ nanodiamond nanocomposites. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bingfei Nan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, Peking, China
- Department of Electronic and Biomedical Engineering, Universitat de Barcelona, Barcelona Spain
| | - Yingjie Zhan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, Peking, China
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, Kwangtung, China
| | - Chang-an Xu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, Peking, China
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, Kwangtung, China
- Key Laboratory for Bio-based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Kwangtung, China
| |
Collapse
|
24
|
Lan H, Wu B, Yan Y, Xia R, Qian J. Enhanced in-plane thermal conductivity of polyimide-based composites via in situ interfacial modification of graphene. NANOSCALE 2023; 15:4114-4122. [PMID: 36744939 DOI: 10.1039/d2nr06573h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Interfacial thermal resistance is the main barrier restricting the heat dissipation of thermal management materials in electronic equipment. The interface structure formed by covalent bonding is an effective way to promote interfacial heat transfer. Herein, an integrated composite with multi-aspect covalent bonding beneficial for heat transmission is constructed by polyimide (PI) polymerization with maleimide modified graphene nanosheets (M@GNS). The interfacial structure with low thermal resistance built by covalent bonding and oriented graphene arrangement initiated by the coating process makes the in-plane thermal conductivity of the composite as high as 16.10 W m-1 K-1. Finite element simulation and 1000 bending tests are carried out to further verify the performance advantages of the integrated structure in the internal thermal diffusion and long-term use of the composite. M@GNS/PI with integrated structure provides extra heat transfer channels for heat dissipation, possibly providing an effective way to address the traditional thermal accumulation issue of electronic devices.
Collapse
Affiliation(s)
- Huiya Lan
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China.
| | - Bin Wu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China.
| | - Yuye Yan
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China.
| | - Ru Xia
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China.
| | - Jiasheng Qian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China.
| |
Collapse
|
25
|
Ma J, Liu X, Wang R, Lu C, Wen X, Tu G. Research Progress and Application of Polyimide-Based Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040656. [PMID: 36839026 PMCID: PMC9961415 DOI: 10.3390/nano13040656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
Polyimide (PI) is one of the most dominant engineering plastics with excellent thermal, mechanical, chemical stability and dielectric performance. Further improving the versatility of PIs is of great significance, broadening their application prospects. Thus, integrating functional nanofillers can finely tune the individual characteristic to a certain extent as required by the function. Integrating the two complementary benefits, PI-based composites strongly expand applications, such as aerospace, microelectronic devices, separation membranes, catalysis, and sensors. Here, from the perspective of system science, the recent studies of PI-based composites for molecular design, manufacturing process, combination methods, and the relevant applications are reviewed, more relevantly on the mechanism underlying the phenomena. Additionally, a systematic summary of the current challenges and further directions for PI nanocomposites is presented. Hence, the review will pave the way for future studies.
Collapse
|
26
|
Han Y, Ruan K, Gu J. Multifunctional Thermally Conductive Composite Films Based on Fungal Tree-like Heterostructured Silver Nanowires@Boron Nitride Nanosheets and Aramid Nanofibers. Angew Chem Int Ed Engl 2023; 62:e202216093. [PMID: 36411269 DOI: 10.1002/anie.202216093] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Thermal conduction for electronic equipment has grown in importance in light of the burgeoning of 5G communication. It is imperatively desired to design highly thermally conductive fillers and polymer composite films with prominent Joule heating characteristics and extensive mechanical properties. In this work, "solvothermal & in situ growth" method is carried out to prepare "Fungal tree"-like hetero-structured silver nanowires@boron nitride nanosheet (AgNWs@BNNS) thermally conductive fillers. The thermally conductive AgNWs@BNNS/ANF composite films are obtained by the method of "suction filtration self-assembly and hot-pressing". When the mass fraction of AgNWs@BNNS is 50 wt%, AgNWs@BNNS/ANF composite film presents the optimal thermal conductivity coefficient of 9.44 W/(m ⋅ K) and excellent tensile strength of 136.6 MPa, good temperature-voltage response characteristics, superior electrical stability and reliability, which promise a wide application potential in 5G electronic devices.
Collapse
Affiliation(s)
- Yixin Han
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
27
|
Liu H, Zhou F, Shi X, Sun K, Kou Y, Das P, Li Y, Zhang X, Mateti S, Chen Y, Wu ZS, Shi Q. A Thermoregulatory Flexible Phase Change Nonwoven for All-Season High-Efficiency Wearable Thermal Management. NANO-MICRO LETTERS 2023; 15:29. [PMID: 36598606 PMCID: PMC9813330 DOI: 10.1007/s40820-022-00991-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Phase change materials have a key role for wearable thermal management, but suffer from poor water vapor permeability, low enthalpy value and weak shape stability caused by liquid phase leakage and intrinsic rigidity of solid-liquid phase change materials. Herein, we report for the first time a versatile strategy for designed assembly of high-enthalpy flexible phase change nonwovens (GB-PCN) by wet-spinning hybrid graphene-boron nitride (GB) fiber and subsequent impregnating paraffins (e.g., eicosane, octadecane). As a result, our GB-PCN exhibited an unprecedented enthalpy value of 206.0 J g-1, excellent thermal reliability and anti-leakage capacity, superb thermal cycling ability of 97.6% after 1000 cycles, and ultrahigh water vapor permeability (close to the cotton), outperforming the reported PCM films and fibers to date. Notably, the wearable thermal management systems based on GB-PCN for both clothing and face mask were demonstrated, which can maintain the human body at a comfortable temperature range for a significantly long time. Therefore, our results demonstrate huge potential of GB-PCN for human-wearable passive thermal management in real scenarios.
Collapse
Affiliation(s)
- Hanqing Liu
- Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Feng Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Xiaoyu Shi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Keyan Sun
- Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Yan Kou
- Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Yangeng Li
- Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Xinyu Zhang
- Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Srikanth Mateti
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Ying Chen
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia.
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| | - Quan Shi
- Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| |
Collapse
|
28
|
High-Temperature Response Polylactic Acid Composites by Tuning Double-Percolated Structures. Polymers (Basel) 2022; 15:polym15010138. [PMID: 36616486 PMCID: PMC9824055 DOI: 10.3390/polym15010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Due to the properties of a positive temperature coefficient (PTC) effect and a negative temperature coefficient (NTC) effect, electrically conductive polymer composites (CPCs) have been widely used in polymer thermistors. A dual percolated conductive microstructure was prepared by introducing the polybutylene adipate terephthalate phase (PBAT) into graphene nanoplatelets (GNPs)-filled polylactic acid (PLA) composites, intending to develop a favorable and stable PTC material. To achieve this strategy, GNPs were selectively distributed in the PBAT phase by injection molding. In this study, we investigated the crystallization behavior, electrical conductivity, and temperature response of GNP-filled PLA/PBAT composites. The introduction of GNPs into PLA significantly increased PLA crystallization capacity, where the crystallization onset temperature (To) is raised from 116.7 °C to 134.7 °C, and the crystallization half-time (t1/2) decreases from 35.8 min to 27.3 min. The addition of 5 wt% PBAT increases the electrical conductivity of PLA/PBAT/GNPs composites by almost two orders of magnitude when compared to PLA/GNPs counterparts. The temperature of the heat treatment is also found to play a role in affecting the electrical conductivity of PLA-based composites. Increasing crystallinity is favorable for increasing electrical conductivity. PLA/PBAT/GNPs composites also show a significant positive temperature coefficient, which is reflected in the temperature-electrical resistance cycling tests.
Collapse
|
29
|
Huang T, Zhang X, Wang T, Zhang H, Li Y, Bao H, Chen M, Wu L. Self-Modifying Nanointerface Driving Ultrahigh Bidirectional Thermal Conductivity Boron Nitride-Based Composite Flexible Films. NANO-MICRO LETTERS 2022; 15:2. [PMID: 36441263 PMCID: PMC9705632 DOI: 10.1007/s40820-022-00972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
While boron nitride (BN) is widely recognized as the most promising thermally conductive filler for rapidly developing high-power electronic devices due to its excellent thermal conductivity and dielectric properties, a great challenge is the poor vertical thermal conductivity when embedded in composites owing to the poor interfacial interaction causing severe phonon scattering. Here, we report a novel surface modification strategy called the "self-modified nanointerface" using BN nanocrystals (BNNCs) to efficiently link the interface between BN and the polymer matrix. Combining with ice-press assembly method, an only 25 wt% BN-embedded composite film can not only possess an in-plane thermal conductivity of 20.3 W m-1 K-1 but also, more importantly, achieve a through-plane thermal conductivity as high as 21.3 W m-1 K-1, which is more than twice the reported maximum due to the ideal phonon spectrum matching between BNNCs and BN fillers, the strong interaction between the self-modified fillers and polymer matrix, as well as ladder-structured BN skeleton. The excellent thermal conductivity has been verified by theoretical calculations and the heat dissipation of a CPU. This study provides an innovative design principle to tailor composite interfaces and opens up a new path to develop high-performance composites.
Collapse
Affiliation(s)
- Taoqing Huang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People's Republic of China
| | - Xinyu Zhang
- Department of Physics, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tian Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China
| | - Honggang Zhang
- Department of Physics, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yongwei Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hua Bao
- Department of Physics, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Min Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
30
|
Cao H, Li Y, Xu W, Yang J, Liu Z, Bai L, Yang W, Yang M. Leakage-Proof Flexible Phase Change Gels with Salient Thermal Conductivity for Efficient Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52411-52421. [PMID: 36370386 DOI: 10.1021/acsami.2c15602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phase change materials (PCMs) as one of the most potential latent heat storage techniques have been widely used for thermal management and energy storage. However, simultaneously imparting flexibility, high thermal conductivity, and considerable energy storage density to organic PCMs remains challenging. In this work, a coupling strategy combining substance exchange and magnetic orientation has been proposed to fabricate phase change gels (PCGs) with thermally induced flexibility and high through-plane thermal conductivity. In the PCGs, synthesized boron nitride/ferroferric oxide (BN@Fe3O4) particles and polyacrylic acid (PAA) precursor liquid are introduced to polyethylene glycol (PEG) aqueous solution, and a magnetic field is applied in the process of PAA network construction to promote ordered arrangement of BN@Fe3O4 along the direction of the magnetic field. Consequently, PEG is wrapped by the cross-linked PAA supporting network, forming PCGs with excellent shape stability and thermally induced flexibility. The vertical orientation structure of BN@Fe3O4 endows the PCGs with an enhanced through-plane thermal conductivity of up to 1.07 W m-1 K-1 at a BN@Fe3O4 loading of 25.6 wt % with an additional enhancement of 215% compared to the composite without BN. The thermally conductive leakage-proof PCGs present great application potential in heat storage and management.
Collapse
Affiliation(s)
- Hong Cao
- College of Polymer Science and Engineering, Sichuan University, Chengdu610065, China
| | - Yuan Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu610065, China
| | - Weidi Xu
- College of Polymer Science and Engineering, Sichuan University, Chengdu610065, China
| | - Jie Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu610065, China
| | - Zhengying Liu
- College of Polymer Science and Engineering, Sichuan University, Chengdu610065, China
| | - Lu Bai
- College of Polymer Science and Engineering, Sichuan University, Chengdu610065, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, China
| | - Mingbo Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, China
| |
Collapse
|
31
|
Wang J, Hu L, Li W, Ouyang Y, Bai L. Development and Perspectives of Thermal Conductive Polymer Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3574. [PMID: 36296762 PMCID: PMC9611299 DOI: 10.3390/nano12203574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
With the development of electronic appliances and electronic equipment towards miniaturization, lightweight and high-power density, the heat generated and accumulated by devices during high-speed operation seriously reduces the working efficiency and service life of the equipment. The key to solving this problem is to develop high-performance thermal management materials and improve the heat dissipation efficiency of the equipment. This paper mainly summarizes the research progress of polymer composites with high thermal conductivity and electrical insulation, including the thermal conductivity mechanism of composites, the factors affecting the thermal conductivity of composites, and the research status of thermally conductive and electrical insulation polymer composites in recent years. Finally, we look forward to the research focus and urgent problems that should be addressed of high-performance thermal conductive composites, which will provide strategies for further development and application of advanced thermal and electrical insulation composites.
Collapse
Affiliation(s)
- Jiaqi Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Lin Hu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Wenhao Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuge Ouyang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Liuyang Bai
- College of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| |
Collapse
|
32
|
Guo C, He L, Yao Y, Lin W, Zhang Y, Zhang Q, Wu K, Fu Q. Bifunctional Liquid Metals Allow Electrical Insulating Phase Change Materials to Dual-Mode Thermal Manage the Li-Ion Batteries. NANO-MICRO LETTERS 2022; 14:202. [PMID: 36214908 PMCID: PMC9551009 DOI: 10.1007/s40820-022-00947-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/17/2022] [Indexed: 06/01/2023]
Abstract
Phase change materials (PCMs) are expected to achieve dual-mode thermal management for heating and cooling Li-ion batteries (LIBs) according to real-time thermal conditions, guaranteeing the reliable operation of LIBs in both cold and hot environments. Herein, we report a liquid metal (LM) modified polyethylene glycol/LM/boron nitride PCM, capable of dual-mode thermal managing the LIBs through photothermal effect and passive thermal conduction. Its geometrical conformation and thermal pathways fabricated through ice-template strategy are conformable to the LIB's structure and heat-conduction characteristic. Typically, soft and deformable LMs are modified on the boron nitride surface, serving as thermal bridges to reduce the contact thermal resistance among adjacent fillers to realize high thermal conductivity of 8.8 and 7.6 W m-1 K-1 in the vertical and in-plane directions, respectively. In addition, LM with excellent photothermal performance provides the PCM with efficient battery heating capability if employing a controllable lighting system. As a proof-of-concept, this PCM is manifested to heat battery to an appropriate temperature range in a cold environment and lower the working temperature of the LIBs by more than 10 °C at high charging/discharging rate, opening opportunities for LIBs with durable working performance and evitable risk of thermal runaway.
Collapse
Affiliation(s)
- Cong Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Lu He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yihang Yao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Weizhi Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yongzheng Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Department of Polymer Science and Engineering, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Qin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|