1
|
Xu J, Chen R, Song J, Liu S, Shen Y, Zhang Y. Emerging techniques and scenarios of scanning electrochemical microscopy for the characterization of electrocatalytic reactions. Chem Sci 2025:d5sc01854d. [PMID: 40406210 PMCID: PMC12093058 DOI: 10.1039/d5sc01854d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 05/12/2025] [Indexed: 05/26/2025] Open
Abstract
To fulfill the evergrowing energy consumption demands and the pursuit of sustainable and renewable energy, electrocatalytic reactions such as the water electrocatalysis reaction, the O2 reduction reaction, the N2 reduction reaction (NRR), the CO2 reduction reaction (CO2RR), etc., have drawn a lot of attention. Scanning electrochemical microscopy (SECM) is a powerful technique for in situ surface characterization, providing critical information about the local reactivity of electrocatalysts and unveiling key information about the reaction mechanisms, which are essential for the rational design of novel electrocatalysts. There has been a growing trend of SECM-based studies in electrocatalytic reactions, with a major focus on water splitting and O2 reduction reactions, and relying mostly on conventional SECM techniques. Recently, novel operation modes of SECM have emerged, adding new features to the functionality of SECM and successfully expanding the scope of SECM to other electrocatalytic reactions, i.e., the NRR, the NO3 - reduction reaction (NO3RR), the CO2RR and so on, as well as more complicated electrolysis systems, i.e. gas diffusion electrodes. In this perspective, we summarized recent progress in the development of novel SECM techniques and recent SECM-based research studies on the NRR, NO3RR, CO2RR, and so on, where quantitative information on the reaction mechanism and catalyst reactivity was uncovered through SECM. The development of novel SECM techniques and the application of these techniques can provide new insights into the reaction mechanisms of diverse electrocatalytic reactions as well as the in situ characterization of electrocatalysts, facilitating the pursuit of sustainable and renewable energy.
Collapse
Affiliation(s)
- Jinming Xu
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Ran Chen
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Juanxian Song
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Songqin Liu
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Yanfei Shen
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Yuanjian Zhang
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| |
Collapse
|
2
|
Xu K, Yin J, Li L, Li X, Liang X, Liang J, Lu J, Liu Z, Zhang H, Lv T, Mu X, Liu J. Phase Transition Engineering of Metal-Organic Frameworks Induces Multiphase Complexation for Enhancing the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19692-19700. [PMID: 40112151 DOI: 10.1021/acsami.5c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Phase transition engineering of metal-organic frameworks (MOFs) presents a promising strategy for enhancing electrocatalytic performance in water splitting applications. In this study, we demonstrate a controlled phase transition strategy to synthesize a multiphase composite (op&cp) composed of open phase (op) and closed phase (cp) through precise desolvation treatment. When used as an alkaline water electrocatalyst, op&cp exhibits exceptional oxygen evolution reaction (OER) performance, achieving a remarkably low overpotential of 140 mV under 10 mA cm-2 and maintaining stable operation for over 75 h at 100 mA cm-2. In situ Raman spectroscopy and X-ray photoelectron spectroscopy show that the catalytically active substance NiOOH is formed on the engineered phase with a lower potential (1.2 V vs RHE) than the single-phase material (1.3 V vs RHE). This work establishes phase transition engineering as a viable strategy for improving MOF-based catalysis and explores the fundamental mechanism of the dynamic evolution of active sites during the OER.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| | - Jie Yin
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| | - Linzi Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| | - Xiaozhen Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| | - Xiaolong Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| | - Jing Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| | - Jun Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| | - Zhiwen Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| | - Huanyue Zhang
- Instrumental Analysis Center, Dalian University of Technology/DUT Instrumental Analysis Center, 116024 Dalian, China
| | - Tianming Lv
- Instrumental Analysis Center, Dalian University of Technology/DUT Instrumental Analysis Center, 116024 Dalian, China
| | - Xueliang Mu
- Leicester International Institute, Dalian University of Technology, 124010 Panjin, China
| | - Jinxuan Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
- Leicester International Institute, Dalian University of Technology, 124010 Panjin, China
| |
Collapse
|
3
|
Shaik S, Kim J, Kabiraz MK, Aziz F, Park JY, Anne BR, Li M, Huang H, Nam KM, Jo D, Choi SI. Rapid Outgassing of Hydrophilic TiO 2 Electrodes Achieves Long-Term Stability of Anion Exchange Membrane Water Electrolyzers. NANO-MICRO LETTERS 2025; 17:186. [PMID: 40080227 PMCID: PMC11906940 DOI: 10.1007/s40820-025-01696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/15/2025] [Indexed: 03/15/2025]
Abstract
The state-of-the-art anion-exchange membrane water electrolyzers (AEMWEs) require highly stable electrodes for prolonged operation. The stability of the electrode is closely linked to the effective evacuation of H2 or O2 gas generated from electrode surface during the electrolysis. In this study, we prepared a super-hydrophilic electrode by depositing porous nickel-iron nanoparticles on annealed TiO2 nanotubes (NiFe/ATNT) for rapid outgassing of such nonpolar gases. The super-hydrophilic NiFe/ATNT electrode exhibited an overpotential of 235 mV at 10 mA cm-2 for oxygen evolution reaction in 1.0 M KOH solution, and was utilized as the anode in the AEMWE to achieve a current density of 1.67 A cm-2 at 1.80 V. In addition, the AEMWE with NiFe/ATNT electrode, which enables effective outgassing, showed record stability for 1500 h at 0.50 A cm-2 under harsh temperature conditions of 80 ± 3 °C.
Collapse
Affiliation(s)
- Shajahan Shaik
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, South Korea
| | - Jeonghyeon Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, South Korea
| | - Mrinal Kanti Kabiraz
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, South Korea
| | - Faraz Aziz
- Department of Mechanical Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Joon Yong Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, South Korea
| | - Bhargavi Rani Anne
- Department of Metallurgical and Materials Engineering, National Institute of Technology, Raipur, 492010, India
| | - Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, Hunan, People's Republic of China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, Hunan, People's Republic of China
| | - Ki Min Nam
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, South Korea
| | - Daeseong Jo
- Department of Mechanical Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
4
|
Yang C, Pang H, Li X, Zheng X, Wei T, Ma X, Wang Q, Wang C, Wang D, Xu B. Scalable Electrocatalytic Urea Wastewater Treatment Coupled with Hydrogen Production by Regulating Adsorption Behavior of Urea Molecule. NANO-MICRO LETTERS 2025; 17:159. [PMID: 39992549 PMCID: PMC11850677 DOI: 10.1007/s40820-024-01585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/01/2024] [Indexed: 02/25/2025]
Abstract
Electrocatalytic urea wastewater treatment technology has emerged as a promising method for environmental remediation. However, the realization of highly efficient and scalable electrocatalytic urea wastewater treatment (SEUWT) is still an enormous challenge. Herein, through regulating the adsorption behavior of urea functional groups, the efficient SEUWT coupled hydrogen production is realized in anion exchange membrane water electrolyzer (AEMWE). Density functional theory calculations indicate that self-driven electron transfer at the heterogeneous interface (NiO/Co3O4) can induce charge redistribution, resulting in electron-rich NiO and electron-deficient Co3O4, which are superior to adsorbing C=O (electron-withdrawing group) and -NH2 (electron-donating group), respectively, regulating the adsorption behavior of urea molecule and accelerating the reaction kinetics of urea oxidation. This viewpoint is further verified by temperature-programmed desorption experiments. The SEUWT coupled hydrogen production in AEMWE assembled with NiO/Co3O4 (anode) and NiCoP (cathode) can continuously treat urea wastewater at an initial current density of 600 mA cm-2, with the average urea treatment efficiency about 53%. Compared with overall water splitting, the H2 production rate (8.33 mmol s-1) increases by approximately 3.5 times. This work provides a cost-effective strategy for scalable purifying urea-rich wastewater and energy-saving hydrogen production.
Collapse
Affiliation(s)
- Chunming Yang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, People's Republic of China.
- Hubei Three Gorges Laboratory, Yichang, 443007, People's Republic of China.
| | - Huijuan Pang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, People's Republic of China
| | - Xiang Li
- Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, People's Republic of China
| | - Xueyan Zheng
- Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, People's Republic of China
| | - Tingting Wei
- Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, People's Republic of China
| | - Xu Ma
- Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, People's Republic of China
| | - Qi Wang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, People's Republic of China
| | - Chuantao Wang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, People's Republic of China.
| | - Danjun Wang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, People's Republic of China.
| | - Bin Xu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, People's Republic of China.
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
5
|
Wang Y, Wang T, Xu M, Li B, Gao Z, Zhang W, Li Z, Qu C, Feng M. Polyoxometalate superlattices derived bimetallic sulfides to accelerate acidic and alkaline hydrogen evolution reaction. J Colloid Interface Sci 2025; 679:760-768. [PMID: 39481350 DOI: 10.1016/j.jcis.2024.10.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Over the years, polyoxometalates (POMs) have been advocated as one of the most promising classes of molecular preassembly platform for the fabrication of highly efficient metal sulfide electrocatalysts. However, designing POMs-derived metal sulfides with high intrinsic activity, good site accessibility and structural stability for both acidic and alkaline hydrogen evolution reaction (HER) remains a great challenge because of the self-aggregation and random distribution of traditional POM precursors. Herein, we have designed a bimetallic sulfide eventually encapsulated by C3N4 walls (CoMoS@CN) for efficient HER based on a simple hydrothermal and subsequent high-temperature vulcanization using the well-designed POM superlattice assembly as precursor. The organized superlattice structure with long-range ordered arrangements of POM units provide chance to prevent the agglomeration of metal sites. The in-situ formed exterior C3N4 protective wall can accelerate the electron transfer and protect catalyst from chemical corrosion in different electrolyte. The merits combining with a large specific surface area enable CoMoS@CN with remarked HER performance of low overpotentials of 164 and 95 mV at 10 mA cm-2 in acidic and alkaline conditions. Such results are better than that of p-CoMoS@CN synthesized by pyrolysis of the corresponding physical mixtures and other comparative single metal sulfides.
Collapse
Affiliation(s)
- Yuqi Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Ting Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| | - Ming Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Bowen Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Ze Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; School of Science, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Wenjing Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Zhaoxing Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Chaoqun Qu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| |
Collapse
|
6
|
Zhou Q, Hu H, Chen Z, Ren X, Ma D. Enhancing electrocatalytic hydrogen evolution via engineering unsaturated electronic structures in MoS 2. Chem Sci 2025; 16:1597-1616. [PMID: 39776652 PMCID: PMC11701923 DOI: 10.1039/d4sc07309f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The search for efficient, earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) has identified unsaturated molybdenum disulfide (MoS2) as a leading candidate. This review synthesises recent advancements in the engineering of MoS2 to enhance its electrocatalytic properties. It focuses on strategies for designing an unsaturated electronic structure on metal catalytic centers and their role in boosting the efficiency of the hydrogen evolution reaction (HER). It also considers how to optimize the electronic structures of unsaturated MoS2 for enhanced catalytic performance. This review commences with an examination of the fundamental crystal structure of MoS2; it elucidates the classical unsaturated electron configurations and the intrinsic factors that contribute to such electronic structures. Furthermore, it introduces popular strategies for constructing unsaturated electronic structures at the atomic level, such as nanostructure engineering, surface chemical modification and interlayer coupling engineering. It also discusses the challenges and future research directions in the study of MoS2 electronic structures, with the aim of broadening their application in sustainable hydrogen production.
Collapse
Affiliation(s)
- Qingqing Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Hao Hu
- College of Environment, Zhejiang University of Technology Hangzhou 310012 PR China
| | - Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Xiao Ren
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
7
|
Wang L, Liu Y, Liu C. Green Catalysis in Nanomaterials-Photocatalysis and Electrocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:5. [PMID: 39791765 PMCID: PMC11722054 DOI: 10.3390/nano15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
At present, the world is facing urgent challenges of energy shortages and environmental pollution, which drives the need for green and sustainable solutions [...].
Collapse
Affiliation(s)
- Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Yongqi Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Chengbin Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Li Y, Liu X, Xu J, Chen S. Ruthenium-Based Electrocatalysts for Hydrogen Evolution Reaction: from Nanoparticles to Single Atoms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402846. [PMID: 39072957 DOI: 10.1002/smll.202402846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Benefiting from similar hydrogen bonding energy to Pt and much lower price compare with Pt, Ru based catalysts are promising candidates for electrocatalytic hydrogen evolution reaction (HER). The catalytic activity of Ru nanoparticles can be enhanced through improving their dispersion by using different supports, and the strong metal supports interaction can further regulate their catalytic performance. In addition, single-atom catalysts (SACs) with almost 100% atomic utilization attract great attention and the coordinative atmosphere of single atoms can be adjusted by supports. Moreover, the syngenetic effects of nanoparticles and single atoms can further improve the catalytic performance of Ru based catalysts. In this review, the progress of Ru based HER electrocatalysts are summarized according to their existing forms, including nanoparticles (NPs), single atoms (SAs) and the combination of both NPs and SAs. The common supports such as carbon materials, metal oxides, metal phosphides and metal sulfides are classified to clarify the metal supports interaction and coordinative atmosphere of Ru active centers. Especially, the possible catalytic mechanisms and the reasons for the improved catalytic performance are discussed from both experimental results and theoretical calculations. Finally, some challenges and opportunities are prospected to facilitate the development of Ru based catalysts for HER.
Collapse
Affiliation(s)
- Yanqiang Li
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China
| | - Xuan Liu
- School of Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin, 124221, China
| | - Junlong Xu
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Siru Chen
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| |
Collapse
|
9
|
Saji VS. Nanocarbons-Based Trifunctional Electrocatalysts for Overall Water Splitting and Metal-Air Batteries: Metal-Free and Hybrid Electrocatalysts. Chem Asian J 2024; 19:e202400712. [PMID: 39037924 DOI: 10.1002/asia.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Trifunctional electrocatalysts, an exciting class of materials that can simultaneously catalyze hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR), can significantly enhance the performance and economic viability of electrochemical energy storage and conversion technologies such as water-splitting electrolyzers, metal-air batteries, fuel cells and their integrated devices. Such multifunctional electrocatalysts encompass multiple active sites that can simultaneously catalyze two or more different electrochemical reactions and are feasible routes for addressing global energy and environmental challenges. This review accounts for nanocarbons-based trifunctional electrocatalysts reported for electrolyzers, metal-air batteries and integrated electrolyzer-battery systems, providing a practical perspective. Metal-free and hybrid (hybrids of nanocarbons and transition metals/compounds) trifunctional electrocatalysts are covered. Given the growing importance of green technologies, we discuss biomass-derived carbon-based trifunctional electrocatalysts separately. The collective information provided in the review could help researchers derive more effective and durable trifunctional electrocatalysts suitable for commercial use.
Collapse
Affiliation(s)
- Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
10
|
Deshmukh MA, Bakandritsos A, Zbořil R. Bimetallic Single-Atom Catalysts for Water Splitting. NANO-MICRO LETTERS 2024; 17:1. [PMID: 39317789 PMCID: PMC11422407 DOI: 10.1007/s40820-024-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/10/2024] [Indexed: 09/26/2024]
Abstract
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society. The field of catalysis has been revolutionized by single-atom catalysts (SACs), which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports. Recently, bimetallic SACs (bimSACs) have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports. BimSACs offer an avenue for rich metal-metal and metal-support cooperativity, potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton-electron exchanges, substrate activation with reversible redox cycles, simultaneous multi-electron transfer, regulation of spin states, tuning of electronic properties, and cyclic transition states with low activation energies. This review aims to encapsulate the growing advancements in bimSACs, with an emphasis on their pivotal role in hydrogen generation via water splitting. We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs, elucidate their electronic properties, and discuss their local coordination environment. Overall, we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction, the two half-reactions of the water electrolysis process.
Collapse
Affiliation(s)
- Megha A Deshmukh
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| |
Collapse
|
11
|
Gao X, Chen Y, Wang Y, Zhao L, Zhao X, Du J, Wu H, Chen A. Next-Generation Green Hydrogen: Progress and Perspective from Electricity, Catalyst to Electrolyte in Electrocatalytic Water Splitting. NANO-MICRO LETTERS 2024; 16:237. [PMID: 38967856 PMCID: PMC11226619 DOI: 10.1007/s40820-024-01424-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 07/06/2024]
Abstract
Green hydrogen from electrolysis of water has attracted widespread attention as a renewable power source. Among several hydrogen production methods, it has become the most promising technology. However, there is no large-scale renewable hydrogen production system currently that can compete with conventional fossil fuel hydrogen production. Renewable energy electrocatalytic water splitting is an ideal production technology with environmental cleanliness protection and good hydrogen purity, which meet the requirements of future development. This review summarizes and introduces the current status of hydrogen production by water splitting from three aspects: electricity, catalyst and electrolyte. In particular, the present situation and the latest progress of the key sources of power, catalytic materials and electrolyzers for electrocatalytic water splitting are introduced. Finally, the problems of hydrogen generation from electrolytic water splitting and directions of next-generation green hydrogen in the future are discussed and outlooked. It is expected that this review will have an important impact on the field of hydrogen production from water.
Collapse
Affiliation(s)
- Xueqing Gao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yutong Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yujun Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Luyao Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Xingyuan Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Haixia Wu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
12
|
Chen Z, Ma T, Wei W, Wong WY, Zhao C, Ni BJ. Work Function-Guided Electrocatalyst Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401568. [PMID: 38682861 DOI: 10.1002/adma.202401568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Indexed: 05/01/2024]
Abstract
The development of high-performance electrocatalysts for energy conversion reactions is crucial for advancing global energy sustainability. The design of catalysts based on their electronic properties (e.g., work function) has gained significant attention recently. Although numerous reviews on electrocatalysis have been provided, no such reports on work function-guided electrocatalyst design are available. Herein, a comprehensive summary of the latest advancements in work function-guided electrocatalyst design for diverse electrochemical energy applications is provided. This includes the development of work function-based catalytic activity descriptors, and the design of both monolithic and heterostructural catalysts. The measurement of work function is first discussed and the applications of work function-based catalytic activity descriptors for various reactions are fully analyzed. Subsequently, the work function-regulated material-electrolyte interfacial electron transfer (IET) is employed for monolithic catalyst design, and methods for regulating the work function and optimizing the catalytic performance of catalysts are discussed. In addition, key strategies for tuning the work function-governed material-material IET in heterostructural catalyst design are examined. Finally, perspectives on work function determination, work function-based activity descriptors, and catalyst design are put forward to guide future research. This work paves the way to the work function-guided rational design of efficient electrocatalysts for sustainable energy applications.
Collapse
Affiliation(s)
- Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong, P. R. China
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
13
|
Xu N, Lv JY, Sun HY, Tian XJ, Yu WL, Li X, Liu CY, Chai YM, Dong B. Ultrasmall Ru nanoparticles-decorated nickel/nickel oxide three phase heterojunctions to boost alkaline hydrogen evolution. J Colloid Interface Sci 2024; 664:704-715. [PMID: 38492371 DOI: 10.1016/j.jcis.2024.02.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
The rational design and optimization of heterogeneous interface for low loading noble metal HER eletrocatalysts to facilitate the upscaling of alkaline water/seawater electrolysis is highly challenging. Herein, we present a facile deep corrosion strategy induced by NaBH4 to precisely construct an ultrasmall Ru nanoparticle-decorated Ni/NiO hybrid (r-Ru-Ni/NiO) with highly dispersed triple-phase heterostructures. Remarkably, it exhibits superior activity with only 53 mV and 70 mV at 100 mA cm-2 for hydrogen evolution reaction (HER) in alkaline water and seawater, respectively, surpassing the performance of Pt/C (109.7 mV, 100 mA cm-2, 1 M KOH). It is attributed to collaborative optimization of electroactive interfaces between well-distributed ultrasmall Ru nanoparticles and Ni/NiO hybrid. Moreover, the assembled r-Ru-Ni/NiO system just require 2.03 V at 1000 mA cm-2 in anion exchange membrane (AEM) electrolyzer, outperforming a RuO2/NF || Pt/C system, while exhibiting outstanding stability at high current densities. This study offers a logical design for accurate construction of interfacial engineering, showing promise for large-scale hydrogen production via electrochemical water splitting.
Collapse
Affiliation(s)
- Na Xu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Jing-Yi Lv
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Hai-Yi Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xin-Jie Tian
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Wen-Li Yu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xin Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Chun-Ying Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
14
|
Le-Khac UN, Bolton M, Boxall NJ, Wallace SMN, George Y. Living review framework for better policy design and management of hazardous waste in Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171556. [PMID: 38458450 DOI: 10.1016/j.scitotenv.2024.171556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The significant increase in hazardous waste generation in Australia has led to the discussion over the incorporation of artificial intelligence into the hazardous waste management system. Recent studies explored the potential applications of artificial intelligence in various processes of managing waste. However, no study has examined the use of text mining in the hazardous waste management sector for the purpose of informing policymakers. This study developed a living review framework which applied supervised text classification and text mining techniques to extract knowledge using the domain literature data between 2022 and 2023. The framework employed statistical classification models trained using iterative training and the best model XGBoost achieved an F1 score of 0.87. Using a small set of 126 manually labelled global articles, XGBoost automatically predicted the labels of 678 Australian articles with high confidence. Then, keyword extraction and unsupervised topic modelling with Latent Dirichlet Allocation (LDA) were performed. Results indicated that there were 2 main research themes in Australian literature: (1) the key waste streams and (2) the resource recovery and recycling of waste. The implication of this framework would benefit the policymakers, researchers, and hazardous waste management organisations by serving as a real time guideline of the current key waste streams and research themes in the literature which allow robust knowledge to be applied to waste management and highlight where the gap in research remains.
Collapse
Affiliation(s)
- Uyen N Le-Khac
- Data Science and AI Department, Faculty of Information Technology, Monash University, Australia.
| | - Mitzi Bolton
- Monash Sustainable Development Institute, Monash University, Australia
| | - Naomi J Boxall
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia
| | - Stephanie M N Wallace
- Centre for Anthropogenic Pollution Impact and Management (CAPIM), School of BioSciences, University of Melbourne, Australia
| | - Yasmeen George
- Data Science and AI Department, Faculty of Information Technology, Monash University, Australia
| |
Collapse
|
15
|
Ma X, Liu X, Shang X, Zhao Y, Zhang Z, Lin C, He M, Ouyang W. Efficient roxarsone degradation by low-dose peroxymonosulfate with the activation of recycling iron-base composite material: Critical role of electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134087. [PMID: 38518697 DOI: 10.1016/j.jhazmat.2024.134087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Pollutant degradation via electron transfer based on advanced oxidation processes (AOPs) provides an economical and energy-efficient method for pollution control. In this study, an iron-rich waste, heating pad waste (HPW), was recycled as a raw material, and a strong magnetic catalyst (Fe-HPW) was synthesized at high temperature (900 °C). Results showed that in the constructed Fe-HPW/PMS system, effective roxarsone (ROX) degradation and TOC removal (72.54%) were achieved at a low-dose of oxidant (PMS, 0.05 mM) and catalyst (Fe-HPW, 0.05 g L-1), the ratio of PMS to ROX was only 2.5:1. In addition, the released inorganic arsenic was effectively removed from the solution. The analysis of the experimental results showed that ROX was effectively degraded by forming PMS/catalyst surface complexes (Fe-HPW-PMS*) to mediate electron transfer in the Fe-HPW/PMS system. Besides, this system performed effective ROX degradation over a wide pH range (pH=3-9) and showed high resistance to different water parameters. Overall, this study not only provides a new direction for the recycling application of HPW but also re-emphasizes the neglected nonradical pathway in advanced oxidation processes.
Collapse
Affiliation(s)
- Xiaoyu Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875.
| | - Xiao Shang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Yanwei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Zhenguo Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
16
|
Yang S, Ming H, Zhu C, Wang Z, Xin H, Ge Z, Li D, Zhang J, Qin X. High Thermoelectric Performance of n-type BiTeSe-Based Composites Incorporated with Both Inorganic and Organic Nanoinclusions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16732-16743. [PMID: 38506353 DOI: 10.1021/acsami.4c02032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
N-type Bi2Te2.7Se0.3 (BTS) alloy has relatively low thermoelectric performance as compared to its p-type counterpart, which restricts its widespread applications. Herein, we designed and prepared a novel composite system, which consists of an n-type BTS matrix incorporated with both inorganic and organic nanoinclusions. The results indicate that the thermopower of the composite samples can be enhanced by more than 19% upon incorporating inorganic nanophase AgBi3S5 (ABS) due to the energy-dependent carrier scattering, which ensures a high power factor. On the other hand, further incorporation of organic nanophase polypyrrole (PPy) can drastically reduce its lattice thermal conductivity owing to the strong scattering of mid- and low-frequency phonons at these nanoinclusions. As a result, high figures of merit ZTmax = 1.3 at 348 K and ZTave = 1.17 (300-500 K) are achieved with improved mechanical properties in BTS-based composites incorporated with 1.5 wt % ABS and 0.5 wt % PPy, demonstrating that the incorporation of both inorganic and organic nanoinclusions is an effective way to improve its thermoelectric performance.
Collapse
Affiliation(s)
- Shuhuan Yang
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongwei Ming
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chen Zhu
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ziyuan Wang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Hongxing Xin
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhenhua Ge
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Di Li
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jian Zhang
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaoying Qin
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
17
|
Pattanshetti A, Koli A, Dhabbe R, Yu XY, Motkuri RK, Chavan VD, Kim DK, Sabale S. Polymer Waste Valorization into Advanced Carbon Nanomaterials for Potential Energy and Environment Applications. Macromol Rapid Commun 2024; 45:e2300647. [PMID: 38243849 DOI: 10.1002/marc.202300647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/23/2023] [Indexed: 01/22/2024]
Abstract
The rise in universal population and accompanying demands have directed toward an exponential surge in the generation of polymeric waste. The estimate predicts that world-wide plastic production will rise to ≈590 million metric tons by 2050, whereas 5000 million more tires will be routinely abandoned by 2030. Handling this waste and its detrimental consequences on the Earth's ecosystem and human health presents a significant challenge. Converting the wastes into carbon-based functional materials viz. activated carbon, graphene, and nanotubes is considered the most scientific and adaptable method. Herein, this world provides an overview of the various sources of polymeric wastes, modes of build-up, impact on the environment, and management approaches. Update on advances and novel modifications made in methodologies for converting diverse types of polymeric wastes into carbon nanomaterials over the last 5 years are given. A remarkable focus is made to comprehend the applications of polymeric waste-derived carbon nanomaterials (PWDCNMs) in the CO2 capture, removal of heavy metal ions, supercapacitor-based energy storage and water splitting with an emphasis on the correlation between PWDCNMs' properties and their performances. This review offers insights into emerging developments in the upcycling of polymeric wastes and their applications in environment and energy.
Collapse
Affiliation(s)
- Akshata Pattanshetti
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, 416101, India
| | - Amruta Koli
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, 416101, India
| | - Rohant Dhabbe
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, 416101, India
| | - Xiao-Ying Yu
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Radha Kishan Motkuri
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, 99354, USA
| | - Vijay D Chavan
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, 05006, South Korea
| | - Deok-Kee Kim
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, 05006, South Korea
| | - Sandip Sabale
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, 416101, India
| |
Collapse
|
18
|
Omar RA, Talreja N, Chuhan D, Ashfaq M. Waste-derived carbon nanostructures (WD-CNs): An innovative step toward waste to treasury. ENVIRONMENTAL RESEARCH 2024; 246:118096. [PMID: 38171470 DOI: 10.1016/j.envres.2023.118096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
With the growing population, the accumulation of waste materials (WMs) (industrial/household waste) in the environment incessantly increases, affecting human health. Additionally, it affects the climate and ecosystem of terrestrial and water habitats, thereby needing effective management technology to control environmental pollution. In this aspect, managing these WMs to develop products that mitigate the associated issues is necessary. Researchers continue to focus on WMs management by adopting a circular economy. These WMs convert into useful/value-added products such as polymers and nanomaterials (NMs), especially carbon nanomaterials (CNs). The conversion/transformation of waste material into useful products is one of the best solutions for managing waste. Waste-derived CNs (WD-CNs) have established boundless promises for numerous applications like environmental remediation, energy, catalysts, sensors, and biomedical applications. This review paper discusses the several sources of waste material (agricultural, plastic, industrial, biomass, and other) transforming into WD-CNs, such as carbon nanotubes (CNTs), biochar, graphene, carbon nanofibers (CNFs), carbon dots, etc., are extensively elaborated and their application. The impact of metal doping within the WD-CNs is briefly discussed, along with their applicability to end applications.
Collapse
Affiliation(s)
- Rishabh Anand Omar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Neetu Talreja
- Department of Science, Faculty of Science and Technology, Alliance University, Anekal, Bengaluru-562 106, Karnataka, India.
| | - Divya Chuhan
- Department of Drinking Water and Sanitation, Ministry of Jal Shakti, 1208-A, Pandit Deendayal Antyodaya Bhawan, CGO Complex, Lodhi Road, New Delhi 110003 India
| | - Mohammad Ashfaq
- Department of Biotechnology, University Centre for Research & Development (UCRD), Chandigarh University, Gharaun, Mohali, 140413, Punjab, India.
| |
Collapse
|
19
|
Sah MK, Thakuri BS, Pant J, Gardas RL, Bhattarai A. The Multifaceted Perspective on the Role of Green Synthesis of Nanoparticles in Promoting a Sustainable Green Economy. SUSTAINABLE CHEMISTRY 2024; 5:40-59. [DOI: 10.3390/suschem5020004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The current economic development paradigm, which is based on steadily rising resource consumption and pollution emissions, is no longer viable in a world with limited resources and ecological capacity. The “green economy” idea has presented this context with a chance to alter how society handles the interplay between the environmental and economic spheres. The related concept of “green nanotechnology” aims to use nano-innovations within the fields of materials science and engineering to generate products and processes that are economically and ecologically sustainable, enabling society to establish and preserve a green economy. Many different economic sectors are anticipated to be impacted by these applications, including those related to corrosion inhibitor nanofertilizers, nanoremediation, biodegradation, heavy metal detection, biofuel, insecticides and pesticides, and catalytic CO2 reduction. These innovations might make it possible to use non-traditional water sources safely and to create construction materials that are enabled by nanotechnology, improving living and ecological conditions. Therefore, our aim is to highlight how nanotechnology is being used in the green economy and to present promises for nano-applications in this domain. In the end, it emphasizes how critical it is to attain a truly sustainable advancement in nanotechnology.
Collapse
Affiliation(s)
- Manish Kumar Sah
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Biraj Shah Thakuri
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Jyoti Pant
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44613, Nepal
| | - Ramesh L. Gardas
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
20
|
Sukhbaatar B, Qing W, Seo J, Yoon S, Yoo B. Uniformly dispersed ruthenium nanoparticles on porous carbon from coffee waste outperform platinum for hydrogen evolution reaction in alkaline media. Sci Rep 2024; 14:5850. [PMID: 38462651 PMCID: PMC10925596 DOI: 10.1038/s41598-024-56510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Biowaste-derived carbon materials are a sustainable, environmentally friendly, and cost-effective way to create valuable materials. Activated carbon can be a supporting material for electrocatalysts because of its large specific surface area and porosity. However, activated carbon has low catalytic activity and needs to be functionalized with heteroatoms, metals, and combinations to improve conductivity and catalytic activity. Ruthenium (Ru) catalysts have great potential to replace bench market catalysts in hydrogen evolution reaction (HER) applications due to their similar hydrogen bond strength and relatively lower price. This study reports on the synthesis and characterizations of carbon-supported Ru catalysts with large surface areas (~ 1171 m2 g-1) derived from coffee waste. The uniformly dispersed Ru nanoparticles on the porous carbon has excellent electrocatalytic activity and outperformed the commercial catalyst platinum on carbon (Pt/C) toward the HER. As-synthesized catalyst needed only 27 mV to reach a current density of 10 mA cm-2, 58.4 mV dec-1 Tafel slope, and excellent long-term stability. Considering these results, the Ru nanoparticles on coffee waste-derived porous carbon can be utilized as excellent material that can replace platinum-based catalysts for the HER and contribute to the development of eco-friendly and low-cost electrocatalyst materials.
Collapse
Affiliation(s)
- Bayaraa Sukhbaatar
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Korea
| | - Wang Qing
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Korea
| | - Jinmyeong Seo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Korea
| | - Sanghwa Yoon
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Korea.
| | - Bongyoung Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Korea.
| |
Collapse
|
21
|
Xu Y, Yang L, Li M, Shu H, Jia N, Gao Y, Shi R, Yang X, Zhang Z, Zhang L. Anti-osteosarcoma trimodal synergistic therapy using NiFe-LDH and MXene nanocomposite for enhanced biocompatibility and efficacy. Acta Pharm Sin B 2024; 14:1329-1344. [PMID: 38486993 PMCID: PMC10935502 DOI: 10.1016/j.apsb.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 03/17/2024] Open
Abstract
Osteosarcoma is usually resistant to immunotherapy and, thus primarily relies on surgical resection and high-dosage chemotherapy. Unfortunately, less invasive or toxic therapies such as photothermal therapy (PTT) and chemodynamic therapy (CDT) generally failed to show satisfactory outcomes. Adequate multimodal therapies with proper safety profiles may provide better solutions for osteosarcoma. Herein, a simple nanocomposite that synergistically combines CDT, PTT, and chemotherapy for osteosarcoma treatment was fabricated. In this composite, small 2D NiFe-LDH flakes were processed into 3D hollow nanospheres via template methods to encapsulate 5-Fluorouracil (5-FU) with high loading capacity. The nanospheres were then adsorbed onto larger 2D Ti3C2 MXene monolayers and finally shielded by bovine serum albumin (BSA) to form 5-FU@NiFe-LDH/Ti3C2/BSA nanoplatforms (5NiTiB). Both in vitro and in vivo data demonstrated that the 5-FU induced chemotherapy, NiFe-LDH driven chemodynamic effects, and MXene-based photothermal killing collectively exhibited a synergistic "all-in-one" anti-tumor effect. 5NiTiB improved tumor suppression rate from <5% by 5-FU alone to ∼80.1%. This nanotherapeutic platform achieved higher therapeutic efficacy with a lower agent dose, thereby minimizing side effects. Moreover, the composite is simple to produce, enabling the fine-tuning of dosages to suit different requirements. Thus, the platform is versatile and efficient, with potential for further development.
Collapse
Affiliation(s)
- Yani Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Min Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haozhou Shu
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Na Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yunzhen Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rongying Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaojia Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
22
|
Li Y, Li Y, Sun H, Gao L, Jin X, Li Y, Lv Z, Xu L, Liu W, Sun X. Current Status and Perspectives of Dual-Atom Catalysts Towards Sustainable Energy Utilization. NANO-MICRO LETTERS 2024; 16:139. [PMID: 38421549 PMCID: PMC10904713 DOI: 10.1007/s40820-024-01347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
The exploration of sustainable energy utilization requires the implementation of advanced electrochemical devices for efficient energy conversion and storage, which are enabled by the usage of cost-effective, high-performance electrocatalysts. Currently, heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications. Compared to conventional catalysts, atomically dispersed metal atoms in carbon-based catalysts have more unsaturated coordination sites, quantum size effect, and strong metal-support interactions, resulting in exceptional catalytic activity. Of these, dual-atomic catalysts (DACs) have attracted extensive attention due to the additional synergistic effect between two adjacent metal atoms. DACs have the advantages of full active site exposure, high selectivity, theoretical 100% atom utilization, and the ability to break the scaling relationship of adsorption free energy on active sites. In this review, we summarize recent research advancement of DACs, which includes (1) the comprehensive understanding of the synergy between atomic pairs; (2) the synthesis of DACs; (3) characterization methods, especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy; and (4) electrochemical energy-related applications. The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules, such as oxygen reduction reaction, CO2 reduction reaction, hydrogen evolution reaction, and N2 reduction reaction. The future research challenges and opportunities are also raised in prospective section.
Collapse
Affiliation(s)
- Yizhe Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yajie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Hao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Liyao Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiangrong Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhi Lv
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lijun Xu
- Xinjiang Coal Mine Mechanical and Electrical Engineering Technology Research Center, Xinjiang Institute of Engineering, Ürümqi, 830023, Xinjiang Uygur Autonomous Region, People's Republic of China.
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
23
|
Liu X, Chen Z, Lu S, Shi X, Qu F, Cheng D, Wei W, Shon HK, Ni BJ. Persistent free radicals on biochar for its catalytic capability: A review. WATER RESEARCH 2024; 250:120999. [PMID: 38118258 DOI: 10.1016/j.watres.2023.120999] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023]
Abstract
Biochar is an economical carbon material for water pollution control, which shows great promise to be applied in the up-scale wastewater remediation processes. Previous studies demonstrate that persistent free radicals (PFRs) on biochar are critical to its reactivity for wastewater remediation. A series of studies have revealed the important roles of PFRs when biochar was applied for organic pollutants degradation as well as the removal of Cr (VI) and As (III) from wastewater. Therefore, this review comprehensively concludes the significance of PFRs for the catalytic capabilities of biochar in advanced oxidation processes (AOPs)-driven organic pollutant removal, and applied in redox processes for Cr (VI) and As (III) remediation. In addition, the mechanisms for PFRs formation during biochar synthesis are discussed. The detection methods are reviewed for the quantification of PFRs on biochar. Future research directions were also proposed on underpinning the knowledge base to forward the applications of biochar in practical real wastewater treatment.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Xingdong Shi
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Fulin Qu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; UNSW Water Research Centre, School of Civil and Environmental Engineering, The University New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
24
|
He Q, Ye N, Han L, Tao K. Sulfur Vacancy-Engineered Co 3S 4/MoS 2-Interfaced Nanosheet Array for Enhanced Alkaline Overall Water Splitting. Inorg Chem 2023; 62:21240-21246. [PMID: 38079591 DOI: 10.1021/acs.inorgchem.3c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Electrochemical water splitting, a crucial reaction for renewable energy storage, demands highly efficient and stable catalysts. Defect and interface engineering has been widely acknowledged to play a pivotal role in improving electrocatalytic performance. Herein, we demonstrate a facile strategy to construct sulfur vacancy (Sv)-engineered Co3S4/MoS2-interfaced nanosheet arrays to modulate the interface electronic structure in situ reduction with NaBH4. The abundant sulfur vacancies and well-arranged nanosheet arrays in Sv-Co3S4/MoS2 lead to pronounced electrocatalytic properties for hydrogen and oxygen evolution reactions (HER/OER) in an alkaline medium, with observed overpotentials of 156 and 209 mV at 10 mA cm-2, respectively. Additionally, as a bifunctional electrocatalyst, Sv-Co3S4/MoS2 requires a cell voltage of 1.67 V at 10 mA cm-2 for overall water splitting and exhibits long-term stability with activity sustained for more than 20 h. This study provides a novel approach to producing transition metal compound-interfaced electrocatalysts with rich vacancies under mild conditions, showcasing their potential for efficient water splitting applications.
Collapse
Affiliation(s)
- Qianyun He
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ning Ye
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lei Han
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kai Tao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
25
|
Minchón-Medina CA, Timaná-Palacios DJ, Alvarez-Risco A, Del-Aguila-Arcentales S, Yáñez JA. Factors associated with citations of articles on circular economy in the Web of Science: modeling for main publishers. Front Artif Intell 2023; 6:1217210. [PMID: 37841231 PMCID: PMC10570727 DOI: 10.3389/frai.2023.1217210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction The publication of articles on the circular economy has different associated factors to explain the citations registered in the Web of Science. Method Articles from the publishers Elsevier, MDPI, Taylor & Francis, Wiley, and Springer Nature were evaluated. Results It was expected that the older the article was, the more citations it had received, but this was not always the case. It was also recognized that there was a lower number of citations if the articles were too large or if they had too many references. Discussion This analysis helps to establish the factors that must be addressed in order to publish in journals that have a high citation rate. Conclusion: Based on speci?c articles and with speci?c references, it will be possible to increase the probability of citations.
Collapse
Affiliation(s)
- Carlos Alberto Minchón-Medina
- Departamento de Estadística, Facultad de Ciencias Físicas y Matemática, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Daphne Jannet Timaná-Palacios
- Departamento de Estadística, Facultad de Ciencias Físicas y Matemática, Universidad Nacional de Trujillo, Trujillo, Perú
| | | | | | - Jaime A. Yáñez
- Vicerrectorado de Investigación, Universidad Norbert Wiener, Lima, Perú
| |
Collapse
|
26
|
Chen Z, Zheng R, Bao T, Ma T, Wei W, Shen Y, Ni BJ. Dual-Doped Nickel Sulfide for Electro-Upgrading Polyethylene Terephthalate into Valuable Chemicals and Hydrogen Fuel. NANO-MICRO LETTERS 2023; 15:210. [PMID: 37695408 PMCID: PMC10495299 DOI: 10.1007/s40820-023-01181-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Electro-upcycling of plastic waste into value-added chemicals/fuels is an attractive and sustainable way for plastic waste management. Recently, electrocatalytically converting polyethylene terephthalate (PET) into formate and hydrogen has aroused great interest, while developing low-cost catalysts with high efficiency and selectivity for the central ethylene glycol (PET monomer) oxidation reaction (EGOR) remains a challenge. Herein, a high-performance nickel sulfide catalyst for plastic waste electro-upcycling is designed by a cobalt and chloride co-doping strategy. Benefiting from the interconnected ultrathin nanosheet architecture, dual dopants induced up-shifting d band centre and facilitated in situ structural reconstruction, the Co and Cl co-doped Ni3S2 (Co, Cl-NiS) outperforms the single-doped and undoped analogues for EGOR. The self-evolved sulfide@oxyhydroxide heterostructure catalyzes EG-to-formate conversion with high Faradic efficiency (> 92%) and selectivity (> 91%) at high current densities (> 400 mA cm-2). Besides producing formate, the bifunctional Co, Cl-NiS-assisted PET hydrolysate electrolyzer can achieve a high hydrogen production rate of 50.26 mmol h-1 in 2 M KOH, at 1.7 V. This study not only demonstrates a dual-doping strategy to engineer cost-effective bifunctional catalysts for electrochemical conversion processes, but also provides a green and sustainable way for plastic waste upcycling and simultaneous energy-saving hydrogen production.
Collapse
Affiliation(s)
- Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Renji Zheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China.
| | - Teng Bao
- School of Biology, Food and Environment Engineering, Hefei University, Hefei, 230601, People's Republic of China
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3000, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yansong Shen
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
27
|
Han N, Zhang W, Guo W, Pan H, Jiang B, Xing L, Tian H, Wang G, Zhang X, Fransaer J. Designing Oxide Catalysts for Oxygen Electrocatalysis: Insights from Mechanism to Application. NANO-MICRO LETTERS 2023; 15:185. [PMID: 37515746 PMCID: PMC10387042 DOI: 10.1007/s40820-023-01152-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/17/2023] [Indexed: 07/31/2023]
Abstract
The electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are fundamental processes in a range of energy conversion devices such as fuel cells and metal-air batteries. ORR and OER both have significant activation barriers, which severely limit the overall performance of energy conversion devices that utilize ORR/OER. Meanwhile, ORR is another very important electrochemical reaction involving oxygen that has been widely investigated. ORR occurs in aqueous solutions via two pathways: the direct 4-electron reduction or 2-electron reduction pathways from O2 to water (H2O) or from O2 to hydrogen peroxide (H2O2). Noble metal electrocatalysts are often used to catalyze OER and ORR, despite the fact that noble metal electrocatalysts have certain intrinsic limitations, such as low storage. Thus, it is urgent to develop more active and stable low-cost electrocatalysts, especially for severe environments (e.g., acidic media). Theoretically, an ideal oxygen electrocatalyst should provide adequate binding to oxygen species. Transition metals not belonging to the platinum group metal-based oxides are a low-cost substance that could give a d orbital for oxygen species binding. As a result, transition metal oxides are regarded as a substitute for typical precious metal oxygen electrocatalysts. However, the development of oxide catalysts for oxygen reduction and oxygen evolution reactions still faces significant challenges, e.g., catalytic activity, stability, cost, and reaction mechanism. We discuss the fundamental principles underlying the design of oxide catalysts, including the influence of crystal structure, and electronic structure on their performance. We also discuss the challenges associated with developing oxide catalysts and the potential strategies to overcome these challenges.
Collapse
Affiliation(s)
- Ning Han
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Wei Zhang
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Wei Guo
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Hui Pan
- Department of Physics and Astronomy, KU Leuven, 3001, Leuven, Belgium
| | - Bo Jiang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, People's Republic of China
| | - Lingbao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China.
| | - Hao Tian
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, PO Box 123, Ultimo, NSW, 2007, Australia.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, PO Box 123, Ultimo, NSW, 2007, Australia
| | - Xuan Zhang
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, People's Republic of China.
| | - Jan Fransaer
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
28
|
Ding L, Xie Z, Yu S, Wang W, Terekhov AY, Canfield BK, Capuano CB, Keane A, Ayers K, Cullen DA, Zhang FY. Electrochemically Grown Ultrathin Platinum Nanosheet Electrodes with Ultralow Loadings for Energy-Saving and Industrial-Level Hydrogen Evolution. NANO-MICRO LETTERS 2023; 15:144. [PMID: 37269447 PMCID: PMC10239421 DOI: 10.1007/s40820-023-01117-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 06/05/2023]
Abstract
Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings, high catalyst utilization and facile fabrication are urgently needed to enable cost-effective, green hydrogen production via proton exchange membrane electrolyzer cells (PEMECs). Herein, benefitting from a thin seeding layer, bottom-up grown ultrathin Pt nanosheets (Pt-NSs) were first deposited on thin Ti substrates for PEMECs via a fast, template- and surfactant-free electrochemical growth process at room temperature, showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies. Combined with an anode-only Nafion 117 catalyst-coated membrane (CCM), the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm-2 demonstrates superior cell performance to the commercial CCM (3.0 mgPt cm-2), achieving 99.5% catalyst savings and more than 237-fold higher catalyst utilization. The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction. Overall, this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.
Collapse
Affiliation(s)
- Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Alexander Y Terekhov
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Brian K Canfield
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | | | - Alex Keane
- Nel Hydrogen, Wallingford, CT, 06492, USA
| | | | - David A Cullen
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA.
| |
Collapse
|
29
|
Tian Y, Deng D, Xu L, Li M, Chen H, Wu Z, Zhang S. Strategies for Sustainable Production of Hydrogen Peroxide via Oxygen Reduction Reaction: From Catalyst Design to Device Setup. NANO-MICRO LETTERS 2023; 15:122. [PMID: 37160560 PMCID: PMC10169199 DOI: 10.1007/s40820-023-01067-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/06/2023] [Indexed: 05/11/2023]
Abstract
An environmentally benign, sustainable, and cost-effective supply of H2O2 as a rapidly expanding consumption raw material is highly desired for chemical industries, medical treatment, and household disinfection. The electrocatalytic production route via electrochemical oxygen reduction reaction (ORR) offers a sustainable avenue for the on-site production of H2O2 from O2 and H2O. The most crucial and innovative part of such technology lies in the availability of suitable electrocatalysts that promote two-electron (2e-) ORR. In recent years, tremendous progress has been achieved in designing efficient, robust, and cost-effective catalyst materials, including noble metals and their alloys, metal-free carbon-based materials, single-atom catalysts, and molecular catalysts. Meanwhile, innovative cell designs have significantly advanced electrochemical applications at the industrial level. This review summarizes fundamental basics and recent advances in H2O2 production via 2e--ORR, including catalyst design, mechanistic explorations, theoretical computations, experimental evaluations, and electrochemical cell designs. Perspectives on addressing remaining challenges are also presented with an emphasis on the large-scale synthesis of H2O2 via the electrochemical route.
Collapse
Affiliation(s)
- Yuhui Tian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, 4222, Australia
| | - Daijie Deng
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Li Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Meng Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Hao Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhenzhen Wu
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, 4222, Australia
| | - Shanqing Zhang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, 4222, Australia.
| |
Collapse
|
30
|
Kim Y, Jun SE, Lee G, Nam S, Jang HW, Park SH, Kwon KC. Recent Advances in Water-Splitting Electrocatalysts Based on Electrodeposition. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3044. [PMID: 37109879 PMCID: PMC10147088 DOI: 10.3390/ma16083044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Green hydrogen is being considered as a next-generation sustainable energy source. It is created electrochemically by water splitting with renewable electricity such as wind, geothermal, solar, and hydropower. The development of electrocatalysts is crucial for the practical production of green hydrogen in order to achieve highly efficient water-splitting systems. Due to its advantages of being environmentally friendly, economically advantageous, and scalable for practical application, electrodeposition is widely used to prepare electrocatalysts. There are still some restrictions on the ability to create highly effective electrocatalysts using electrodeposition owing to the extremely complicated variables required to deposit uniform and large numbers of catalytic active sites. In this review article, we focus on recent advancements in the field of electrodeposition for water splitting, as well as a number of strategies to address current issues. The highly catalytic electrodeposited catalyst systems, including nanostructured layered double hydroxides (LDHs), single-atom catalysts (SACs), high-entropy alloys (HEAs), and core-shell structures, are intensively discussed. Lastly, we offer solutions to current problems and the potential of electrodeposition in upcoming water-splitting electrocatalysts.
Collapse
Affiliation(s)
- Yujin Kim
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
- Department of Materials Science and Engineering, Andong National University, Andong 36729, Republic of Korea
| | - Sang Eon Jun
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Goeun Lee
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - Seunghoon Nam
- Department of Materials Science and Engineering, Andong National University, Andong 36729, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Hwa Park
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - Ki Chang Kwon
- Smart Device Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| |
Collapse
|
31
|
Chen H, Huang HB, Li HH, Zhao SZ, Wang LD, Zhang J, Zhong SL, Lao CF, Cao LM, He CT. Self-Supporting Co/CeO 2 Heterostructures for Ampere-Level Current Density Alkaline Water Electrolysis. Inorg Chem 2023; 62:3297-3304. [PMID: 36758163 DOI: 10.1021/acs.inorgchem.2c04525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Remodeling the active surface through fabricating heterostructures can substantially enhance alkaline water electrolysis driven by renewable electrical energy. However, there are still great challenges in the synthesis of highly reactive and robust heterostructures to achieve both ampere-level current density hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, we report a new Co/CeO2 heterojunction self-supported electrode for sustainable overall water splitting. The self-supporting Co/CeO2 heterostructures required only low overpotentials of 31.9 ± 2.2, 253.3 ± 2.7, and 316.7 ± 3 mV for HER and 214.1 ± 1.4, 362.3 ± 1.9, and 400.3 ± 3.7 mV for OER at 0.01, 0.5, and 1.0 A·cm-2, respectively, being one of the best Co-based bifunctional electrodes. Electrolyzer constructed from this electrode acting as an anode and cathode merely required cell voltages of 1.92 ± 0.02 V at 1.0 A·cm-2 for overall water splitting. Multiple characterization techniques combined with density functional theory calculations disclosed the different active sites on the anode and cathode, and the charge redistributions on the heterointerfaces that can optimize the adsorption of H and oxygen-containing intermediates, respectively. This study presents the tremendous prospective of self-supporting heterostructures for effective and economical overall water splitting.
Collapse
Affiliation(s)
- Hao Chen
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Hui-Bin Huang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Hai-Hong Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Shui-Zhong Zhao
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Li-Dong Wang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jia Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Sheng-Liang Zhong
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Cheng-Feng Lao
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Li-Ming Cao
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Chun-Ting He
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
32
|
Synthesis and Application of Catalytic Materials in Energy and Environment. Catalysts 2023. [DOI: 10.3390/catal13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Catalytic materials have become prominent in many high-tech fields in recent years [...]
Collapse
|