1
|
Yan P, Wu C, Yao H, Qiu H, Hao F. Self-assembled monolayers for tin perovskite solar cells: challenges and opportunities. MATERIALS HORIZONS 2025; 12:3188-3200. [PMID: 39967518 DOI: 10.1039/d4mh01603c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Large-scale implementation of emerging halide perovskite solar cells (PSCs) has been restrained by environmental and health concerns stemming from the use of lead in their composition. In contrast, tin perovskite solar cells (TPSCs) have been widely recognized as viable alternatives owing to their ideal optical band gap, high carrier mobility and excellent optoelectronic properties. However, TPSCs encounter significant open-circuit voltage (Voc) deficits due to the spontaneous oxidation of Sn2+ and uncontrolled crystallization process. Hence, self-assembled monolayers (SAMs) are now explored as a solution to optimize the perovskite/transport layer interface and improve Voc. Despite the potential advantages and wide applications of SAMs in other optoelectronic devices, their application in TPSCs is relatively scarce. In this review, we elucidated the working mechanism of SAMs in improving device efficiency, summarized the recent progresses, and outlined the challenges in their application in TPSCs. We also discussed strategies for leveraging SAMs to mitigate the Voc deficit in TPSCs. We hope that this review would offer a unique perspective for the ongoing research endeavors focused on the application of SAMs in TPSCs.
Collapse
Affiliation(s)
- Pengyu Yan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Cheng Wu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Huanhuan Yao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Hongju Qiu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Feng Hao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
2
|
Wang Y, Bi R, Dou W. Manipulating Nonadiabatic Dynamics by Plasmonic Nanocavity. J Phys Chem Lett 2025; 16:4139-4147. [PMID: 40244259 DOI: 10.1021/acs.jpclett.5c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
In recent years, plasmonic nanocavities have emerged as powerful tools for controlling and enhancing light-matter interactions on the nanoscale. This study explores the role of plasmonic nanocavities in manipulating nonadiabatic dynamics, particularly in systems where fast electronic transitions are crucial. By coupling molecular states to the plasmonic resonances of metallic nanocavities, we demonstrate that the local electromagnetic fields generated by plasmons can significantly influence the rates and pathways of nonadiabatic transitions, including electron transfer and excitation relaxation processes. Using the Floquet quantum master equation (FQME) and Floquet surface hopping (FSH) methods that we previously developed, we find that plasmonic nanocavities can enhance nonadiabatic effects by tuning the plasmonic coupling strength, the molecule-metal interaction strength, and the material properties. These approaches offer a new perspective for predicting molecular dynamics in ultrafast processes. Our findings pave the way for designing novel plasmonic devices capable of controlling electron and energy transfer in chemical reactions, optoelectronic applications, and quantum information processing.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Ruihao Bi
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Wenjie Dou
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
3
|
Feng X, Li X, Li Z, Xue Y, Chen X, Sun X, Tang J, Liu S, Wang Z, Xie Y, Jia R, Dai S, Gao G, Cai M. Dual Field Passivation Strategy for High-Performance Wide-Bandgap Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25883-25893. [PMID: 40258122 DOI: 10.1021/acsami.4c20406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Wide-bandgap perovskite solar cells (WBG PSCs) have been receiving increasing focus due to the ideal application in tandem photovoltaics. Nonetheless, WBG perovskites tend to form high-density trap states, causing serious nonradiative recombination and phase segregation, which is detrimental to the efficiency and stability of WBG PSCs. In this work, a dual-field passivation strategy facilitated by isopropylamine hydroiodide (i-PAI) is introduced, in effect, showing both the molecular dipole field passivation and interface electric field passivation. This strategy reduces the charge trap density of WBG perovskite and suppresses the phase segregation, which is supported by the analysis of the experimental data and simulation results. Moreover, the dual functional passivation mitigates the open-circuit-voltage (VOC) deficit of the WBG (1.65 eV) PSCs to 0.39 V and increases the efficiency to a competitive value of 22.21%. The device also exhibits excellent photostability, maintaining 84.2% of the initial efficiency after 1080 h of illumination under 1-sun white LED. This work showcases a pivotal pathway to defect passivation that can markedly enhancing both the efficiency and stability of wide-bandgap perovskite solar cells.
Collapse
Affiliation(s)
- Xuzheng Feng
- New Energy School, North China Electric Power University, Beijing 102206, China
| | - Xing Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Zhuoxin Li
- New Energy School, North China Electric Power University, Beijing 102206, China
| | - Yufei Xue
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xianggang Chen
- New Energy School, North China Electric Power University, Beijing 102206, China
| | - Xiaoxu Sun
- New Energy School, North China Electric Power University, Beijing 102206, China
| | - Jixiang Tang
- New Energy School, North China Electric Power University, Beijing 102206, China
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Shuyi Liu
- New Energy School, North China Electric Power University, Beijing 102206, China
| | - Zishuo Wang
- New Energy School, North China Electric Power University, Beijing 102206, China
| | - Yuhang Xie
- New Energy School, North China Electric Power University, Beijing 102206, China
| | - Rui Jia
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Songyuan Dai
- New Energy School, North China Electric Power University, Beijing 102206, China
- Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University, Beijing 102206, China
| | - Guoping Gao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Molang Cai
- New Energy School, North China Electric Power University, Beijing 102206, China
- Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
4
|
O’Mari O, Yang MY, Goddard W, Vullev VI. How Rigid Are Anthranilamide Molecular Electrets? J Phys Chem B 2025; 129:1750-1759. [PMID: 39564657 PMCID: PMC11831674 DOI: 10.1021/acs.jpcb.4c04103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
As important as molecular electrets are for electronic materials and devices, conformational fluctuations strongly impact their macrodipoles and intrinsic properties. Herein, we employ molecular dynamics (MD) simulations with the polarizable charge equilibrium (PQEq) method to investigate the persistence length (LP) of molecular electrets composed of anthranilamide (Aa) residues. The PQEq-MD dissipates the accepted static notions about Aa macromolecules, and LP represents the shortest Aa rigid segments. The classical model with a single LP value does not describe these oligomers. Introducing multiple LP values for the same macromolecule follows the observed trends and discerns the enhanced rigidity in their middle sections from the reduced stiffness at their terminal regions. Furthermore, LP distinctly depends on solvent polarity. The Aa oligomers maintain extended conformations in nonpolar solvents with LP exceeding 4 nm, while in polar media, increased conformational fluctuations reduce LP to about 2 nm. These characteristics set key guidelines about the utility of Aa conjugates for charge-transfer systems within organic electronics and energy engineering.
Collapse
Affiliation(s)
- Omar O’Mari
- Department
of Bioengineering, University of California, Riverside, California 92521, United States
| | - Moon Young Yang
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - William Goddard
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - Valentine I. Vullev
- Department
of Bioengineering, University of California, Riverside, California 92521, United States
- Department
of Chemistry, University of California, Riverside, California 92521, United States
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
- Materials
Science and Engineering Program, University
of California, Riverside, California 92521, United States
| |
Collapse
|
5
|
Lee H, Moon T, Lee Y, Kim J. Structural Mechanisms of Quasi-2D Perovskites for Next-Generation Photovoltaics. NANO-MICRO LETTERS 2025; 17:139. [PMID: 39920413 PMCID: PMC11806192 DOI: 10.1007/s40820-024-01609-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/27/2024] [Indexed: 02/09/2025]
Abstract
Quasi-two-dimensional (2D) perovskite embodies characteristics of both three-dimensional (3D) and 2D perovskites, achieving the superior external environment stability structure of 2D perovskites alongside the high efficiency of 3D perovskites. This effect is realized through critical structural modifications in device fabrication. Typically, perovskites have an octahedral structure, generally ABX3, where an organic ammonium cation (A') participates in forming the perovskite structure, with A'(n) (n = 1 or 2) sandwiched between A(n-1)B(n)X(3n+1) perovskite layers. Depending on whether A' is a monovalent or divalent cation, 2D perovskites are classified into Ruddlesden-Popper perovskite or Dion-Jacobson perovskite, each generating different structures. Although each structure achieves similar effects, they incorporate distinct mechanisms in their formation. And according to these different structures, various properties appear, and additive and optimizing methods to increase the efficiency of 3D perovskites also exist in 2D perovskites. In this review, scientific understanding and engineering perspectives of the quasi-2D perovskite is investigated, and the optimal structure quasi-2D and the device optimization is also discussed to provide the insight in the field.
Collapse
Affiliation(s)
- Hyeonseok Lee
- Department of Chemistry, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Taeho Moon
- Department of Materials Science and Engineering, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Younghyun Lee
- Center for Semiconductor Technology, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Jinhyun Kim
- Department of Chemistry, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
6
|
Peng Y, Chen Y, Zhou J, Luo C, Tang W, Duan Y, Wu Y, Peng Q. Enlarging moment and regulating orientation of buried interfacial dipole for efficient inverted perovskite solar cells. Nat Commun 2025; 16:1252. [PMID: 39893189 PMCID: PMC11787323 DOI: 10.1038/s41467-024-55653-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025] Open
Abstract
Carrier transport and recombination at the buried interface of perovskite have seriously restricted the further development of inverted perovskite solar cells (PSCs). Herein, an interfacial dipolar chemical bridge strategy to address this issue is presented. 2-(Diphenylphosphino) acetic acid (2DPAA) is selected as the linker to reconstruct the interfacial dipole, which effectively enlarges the interfacial dipole moment to 5.10 D and optimizes to a positive dipole orientation, thereby accelerating vertical hole transport, suppressing nonradiative recombination and promoting the perovskite crystallization. The champion inverted device yields a high power conversion efficiency (PCE) of 26.53% (certified 26.02%). Moreover, this strategy is extended to the wide-bandgap perovskite and large-area devices, which delivers high PCEs of 22.02% and 24.11%, respectively. The optimized devices without encapsulation also demonstrate great long-term shelf and operational stability. Our work highlights the importance of interfacial dipole moment and orientation at the buried interface to realize efficient and stable inverted PSCs.
Collapse
Affiliation(s)
- Yang Peng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Yu Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, PR China.
| | - Jing Zhou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Chuan Luo
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Weijian Tang
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yuwei Duan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Yihui Wu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Qiang Peng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, PR China.
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
7
|
Zhu J, Huang X, Luo Y, Jiao W, Xu Y, Wang J, Gao Z, Wei K, Ma T, You J, Jin J, Wu S, Zhang Z, Liang W, Wang Y, Ren S, Wang C, Chen C, Zhang J, Zhao D. Self-assembled hole-selective contact for efficient Sn-Pb perovskite solar cells and all-perovskite tandems. Nat Commun 2025; 16:240. [PMID: 39747127 PMCID: PMC11696209 DOI: 10.1038/s41467-024-55492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Self-assembled monolayers (SAMs) have displayed unpredictable potential in efficient perovskite solar cells (PSCs). Yet most of SAMs are largely suitable for pure Pb-based devices, precisely developing promising hole-selective contacts (HSCs) for Sn-based PSCs and exploring the underlying general mechanism are fundamentally desired. Here, based on the prototypical donor-acceptor SAM MPA-BT-BA (BT), oligoether side chains with different length (i.e., methoxy, 2-methoxyethoxy, 2-(2-methoxyethoxy)ethoxy group) were custom-introduced on the benzothiadiazole unit to produce the target SAMs with acronyms MPA-MBT-BA (MBT), MPA-EBT-BA (EBT), and MPA-MEBT-BA (MEBT), respectively, and acting as HSCs for efficient Sn-Pb PSCs and all-perovskite tandems. The introduction of oligoether side chains enables HSCs effectively accelerate hole extraction, regulate the crystal growth and passivate surface defects of Sn-Pb perovskites. In particular, benefiting from the enhanced Sn-Pb perovskite film quality and the suppressed interfacial non-radiative recombination losses, EBT-tailored LBG devices yield a champion efficiency of 23.54%, enabling 28.61% efficient monolithic all-perovskite tandems with an impressive VOC of 2.155 V and excellent operational stability as well as 28.22%-efficiency 4-T tandems.
Collapse
Affiliation(s)
- Jingwei Zhu
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaozhen Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, China
| | - Yi Luo
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China
| | - Wenbo Jiao
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China
| | - Yuliang Xu
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China
| | - Juncheng Wang
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhiyu Gao
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China
| | - Kun Wei
- College of Materials, Xiamen University, Xiamen, China
| | - Tianshu Ma
- School of Optoelectronic Science and Engineering, Soochow University, Suzhou, China
- Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, China
| | - Jiayu You
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China
| | - Jialun Jin
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China
| | - Shenghan Wu
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhihao Zhang
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China
| | - Wenqing Liang
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China
| | - Yang Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China.
| | - Shengqiang Ren
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China
| | - Changlei Wang
- School of Optoelectronic Science and Engineering, Soochow University, Suzhou, China
- Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, China
| | - Cong Chen
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China.
| | - Jinbao Zhang
- College of Materials, Xiamen University, Xiamen, China.
| | - Dewei Zhao
- College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Yang H, Xu Z, Wang H, Qaid SMH, Mohammed OF, Zang Z. Iodide Management and Oriented Crystallization Modulation for High-Performance All-Air Processed Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411721. [PMID: 39449237 DOI: 10.1002/adma.202411721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/22/2024] [Indexed: 10/26/2024]
Abstract
Halide-related defects at the buried interface not only cause nonradiative recombination, but also seriously impair the long-term stability of perovskite solar cells (PSCs). Herein, a bottom-up, all-in-one modification strategy is proposed by introducing a multisite antioxidant ergothioneine (EGT) at the buried interface to manage iodide ions and manipulate crystallization dynamics. The findings demonstrate that EGT not only passivates uncoordinated Sn4+/Pb2+ defects, but also firmly anchors iodide ions and inhibits their oxidation to I2. Additionally, the modification by EGT enhances the oriented crystallization of perovskite, improves the carrier dynamics, and releases residual stresses. Consequently, the optimized all-air processed device (Rb0.02(FA0.95Cs0.05)0.98PbI2.91Br0.03Cl0.06) achieves a remarkable power conversion efficiency (PCE) of 25.13%, which is among the highest values reported for devices fabricated in air, along with ultrahigh open-circuit voltage (VOC) of 1.191 V and fill factor (FF) of 84.9%. The optimized device without encapsulation exhibits strong humidity, thermal, and operational stability under ISOS protocol. Specifically, the initial efficiency of the device is retained at 90.12% after 1512 h of thermal ageing at 65 °C and 90.14% after 930 h of continuous maximum power point tracking (MPPT) under simulated AM1.5 illumination.
Collapse
Affiliation(s)
- Haichao Yang
- College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Zhiyuan Xu
- College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Huaxin Wang
- College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Saif M H Qaid
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Zhigang Zang
- College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R. China
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| |
Collapse
|
9
|
Dong K, Zhu L, Yang G, Zheng L, Wang Y, Zhang B, Zhou J, Bian J, Zhang F, Yu S, Liu S, Wang M, Xiao JD, Guo X, Jiang X. Influence of F-Containing Materials on Perovskite Solar Cells. CHEMSUSCHEM 2024; 17:e202400038. [PMID: 38771426 DOI: 10.1002/cssc.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/21/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Perovskite solar cells (PSCs) are usually modified and passivated to improve their performance and stability. The interface modification and bulk doping are the two basic strategies. Fluorine (F)-containing materials are highly favored because of their unique hydrophobicity and coordination ability. This review discusses the basic characteristics of F, and the basic principles of improving the photovoltaic performance and stability of PSC devices using F-containing materials. We systematically summarized the latest progress in the application of F-containing materials to achieve efficient and stable PSCs on several key interface layers. It is believed that this work will afford significant understanding and inspirations toward the future application directions of F-containing materials in PSCs, and provide profound insights for the development of efficient and stable PSCs.
Collapse
Affiliation(s)
- Kaiwen Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lina Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Guangyue Yang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Likai Zheng
- Laboratory of Photonics and Interfaces, École polytechnique fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Yuehui Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Bingqian Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jierui Zhou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jiming Bian
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd & Shandong Yellow Triangle Biotechnology Industry Research Institute Co., LTD, Dongying, 257335, P. R. China
| | - Shitao Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Shiwei Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Minhuan Wang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Juan-Ding Xiao
- Anhui Graphene Carbon Fiber Materials Research Center, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xin Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Xiaoqing Jiang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
10
|
Shi J, Samad MW, Li F, Guo C, Liu C, Guo J, Zhang Y, Zeng J, Wang D, Ma W, Xu B, Yuan J. Dual-Site Molecular Dipole Enables Tunable Interfacial Field Toward Efficient and Stable Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410464. [PMID: 39235583 DOI: 10.1002/adma.202410464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Indexed: 09/06/2024]
Abstract
The interfacial management in perovskite solar cells (PSCs), including mitigating the carrier transport barrier and suppressing non-radiative recombination, still remains a significant challenge for efficiency and stability enhancement. Herein, by screening a family of fluorine (F) terminated dual-site organic dipole molecules, the study aims to gain insight into the molecular dipole array toward tunable interfacial field. Both experimental and theoretical results reveal that these functional interfacial dipole molecules can effectively anchor on perovskite surface through Lewis acid-base interaction. In addition, the tailored side-chain with terminated F atoms allows for altering and constructing a well matched perovskite/Spiro-OMeTAD interfacial contact. As a result, the inserting dual-site organic dipole array effectively modulates the interface to deliver a gradient energy level alignment, facilitating carrier extraction and transport. The optimal dual-site dipole trifluoro-methanesulfonamide mediated N-i-P PSCs achieve the highest efficiency of 25.47%, together with enhanced operational stability under 1000 h of the simulated 1-sun illumination exposure. These findings are believed to provide insight into the design of dual-site molecular dipole with sufficient interfacial tunability for perovskite-based optoelectronic devices.
Collapse
Affiliation(s)
- Junwei Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Muhammad Waqas Samad
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Fangchao Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Chenxi Guo
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Cheng Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Junjun Guo
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Yong Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jie Zeng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Deng Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Wanli Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Baomin Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| |
Collapse
|
11
|
Yang G, Liu X, Wang L, Dong K, Zhang B, Jiang X, Yin Y, Wang M, Niu W, Zheng L, Yu S, Liu S, Zakeeruddin SM, Guo X, Pang S, Sun L, Grätzel M, Wei M. Tailored Supramolecular Interactions in Host-Guest Complexation for Efficient and Stable Perovskite Solar Cells and Modules. Angew Chem Int Ed Engl 2024; 63:e202410454. [PMID: 38994649 DOI: 10.1002/anie.202410454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Host-guest complexation offers a promising approach for mitigating surface defects in perovskite solar cells (PSCs). Crown ethers are the most widely used macrocyclic hosts for complexing perovskite surfaces, yet their supramolecular interactions and functional implications require further understanding. Here we show that the dipole moment of crown ethers serves as an indicator of supramolecular interactions with both perovskites and precursor salts. A larger dipole moment, achieved through the substitution of heteroatoms, correlates with enhanced coordination with lead cations. Perovskite films incorporating aza-crown ethers as additives exhibited improved morphology, reduced defect densities, and better energy-level alignment compared to those using native crown ethers. We report power-conversion efficiencies (PCEs) exceeding 25 % for PSCs, which show enhanced long-term stability, and a record PCE of 21.5 % for host-guest complexation-based perovskite solar modules with an active area of 14.0 cm2.
Collapse
Affiliation(s)
- Guangyue Yang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, China
| | - Kaiwen Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Bingqian Zhang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao New Energy Shandong Laboratory, Shandong Energy Institute, Qingdao, 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaoqing Jiang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- Laboratory of Photonics and Interfaces, École polytechnique fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Yanfeng Yin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhong Shan Rd., Dalian, 116023, China
| | - Minhuan Wang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Wenzhe Niu
- Laboratory of Photonics and Interfaces, École polytechnique fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Likai Zheng
- Laboratory of Photonics and Interfaces, École polytechnique fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Shitao Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shiwei Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces, École polytechnique fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Xin Guo
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shuping Pang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao New Energy Shandong Laboratory, Shandong Energy Institute, Qingdao, 266101, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, China
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, École polytechnique fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Mingyang Wei
- Laboratory of Photonics and Interfaces, École polytechnique fédérale de Lausanne, 1015, Lausanne, Switzerland
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
12
|
Zhang Q, Liu H, Wei X, Song Y, Lv C, Li W, Zhu L, Lan Y, Du Y, Wang K, Yin P, Lin C, Lin Z, Bai Y, Chen Q, Yang S, Chen H. Deploying a Dipole Electric Field at the CsPbI 3 Perovskite/Carbon Interface for Enhancing Hole Extraction and Photovoltaic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402061. [PMID: 38805742 DOI: 10.1002/smll.202402061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Carbon-based CsPbI3 perovskite solar cells without hole transporter (C-PSCs) have achieved intense attention due to its simple device structure and high chemical stability. However, the severe interface energy loss at the CsPbI3/carbon interface, attributed to the lower hole selectivity for inefficient charge separation, greatly limits device performance. Hence, dipole electric field (DEF) is deployed at the above interface to address the above issue by using a pole molecule, 4-trifluoromethyl-Phenylammonium iodide (CF3-PAI), in which the ─NH3 group anchors on the perovskite surface and the ─CF3 group extends away from it and connects with carbon electrode. The DEF is proven to align with the built-in electric field, that is pointing toward carbon electrode, which well enhances hole selectivity and charge separation at the interface. Besides, CF3-PAI molecules also serve as defect passivator for reducing trap state density, which further suppresses defect-induced non-radiative recombination. Consequently, the CsPbI3 C-PSCs achieve an excellent efficiency of 18.33% with a high VOC of 1.144 V for inorganic C-PSCs without hole transporter.
Collapse
Affiliation(s)
- Qixian Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Huicong Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Xiaozhen Wei
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yongfa Song
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Chunyu Lv
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Weiping Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Liqun Zhu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yisha Lan
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yujiang Du
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Kexiang Wang
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Penggang Yin
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Changqing Lin
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zedong Lin
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Yang Bai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qi Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shihe Yang
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Haining Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
13
|
Zhan M, Yuan S, Wu W, Wang M, Yang W, Xiong H, Tan Z, Li W, Fan J. In-Situ Self-Assembly Dipole Shielding Layer Toward Efficient and Stable Inorganic Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402997. [PMID: 38794867 DOI: 10.1002/smll.202402997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Despite CsPbI2.75Br0.25 inorganic perovskites exhibit high potential for single-junction and/or tandem solar cells, unexpected non-radiative recombination, and mismatched interfacial band alignment within the inorganic perovskite solar cells (PSCs) disadvantageously affect their photovoltaic performance. Rational design of the dipole shielding layer (DSL) is vital to realize a win-win situation for the defect passivation and band alignment. Herein, A-site dipole molecules, that is, neopentylamine and 2-methylbutylamine, are employed for in-situ self-assembly of a thus-far unreported DSL at the interface between 3D perovskite and hole transport layer. The as-prepared DSL demonstrates a 2D RP phase perovskite and the lattice-matching structurally-stable DSL@3D perovskite enables to alleviate the unexpected surface defects and suppress the spontaneous non-radiative recombination by means of effectively tuning the surface work function via regulating the dipole moment length and Van der Waals gap. Accordingly, the top dipole-modified inorganic PSCs exhibit a champion power conversion efficiency (PSC) as high as 19.77% and a fill factor over 83%. Equally importantly, the corresponding solar cells demonstrate a remarkable enhanced stability, maintaining 90% of its initial efficiency for more than 1200 h without encapsulation under a 20% ± 5% relative humidity.
Collapse
Affiliation(s)
- Mengdi Zhan
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Songyang Yuan
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wenwen Wu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Mengqi Wang
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wenjian Yang
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hui Xiong
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ziyu Tan
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wenzhe Li
- Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Key Laboratory of New Semiconductors and Devices of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Jinan University, Guangzhou, 511443, China
| | - Jiandong Fan
- Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Key Laboratory of New Semiconductors and Devices of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
14
|
Wang H, Wang J, He Q, Chang J, Chen S, Zhong C, Wu M, Zhao X, Chen H, Tian Q, Li M, Lai J, Yang Y, Li R, Wu B, Huang W, Qin T, Wang F. Interface Dipole Management of D-A-Type Molecules for Efficient Perovskite Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202404289. [PMID: 38712497 DOI: 10.1002/anie.202404289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Interfacial engineering of perovskite films has been the main strategies in improving the efficiency and stability of perovskite solar cells (PSCs). In this study, three new donor-acceptor (D-A)-type interfacial dipole (DAID) molecules with hole-transporting and different anchoring units are designed and employed in PSCs. The formation of interface dipoles by the DAID molecules on the perovskite film can efficiently modulate the energy level alignment, improve charge extraction, and reduce non-radiative recombination. Among the three DAID molecules, TPA-BAM with amide group exhibits the best chemical and optoelectrical properties, achieving a champion PCE of 25.29 % with the enhanced open-circuit voltage of 1.174 V and fill factor of 84.34 %, due to the reduced defect density and improved interfacial hole extraction. Meanwhile, the operational stability of the unencapsulated device has been significantly improved. Our study provides a prospect for rationalized screening of interfacial dipole materials for efficient and stable PSCs.
Collapse
Affiliation(s)
- Hongze Wang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Junbo Wang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Qingyun He
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Jingxi Chang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Shaoyu Chen
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Chongyu Zhong
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Mengyang Wu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Xiangru Zhao
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Haoyu Chen
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Qiushuang Tian
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Mubai Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Jingya Lai
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Yingguo Yang
- School of Microelectronics, Fudan University, Shanghai, 200433>, China
| | - Renzhi Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Bo Wu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| | - Wei Huang
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies (OEMT), Sun Yat-sen University, Guangdong, 510275, China
| | - Tianshi Qin
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies (OEMT), Sun Yat-sen University, Guangdong, 510275, China
| | - Fangfang Wang
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, Jiangsu, 210009, China
| |
Collapse
|
15
|
Dong K, Yang G, Wang M, Bian J, Zhu L, Zhang F, Yu S, Liu S, Xiao JD, Guo X, Jiang X. Impact of Dipole Effect on Perovskite Solar Cells. CHEMSUSCHEM 2024; 17:e202301497. [PMID: 38446050 DOI: 10.1002/cssc.202301497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/23/2024] [Indexed: 03/07/2024]
Abstract
Interface modification and bulk doping are two major strategies to improve the photovoltaic performance of perovskite solar cells (PSCs). Dipolar molecules are highly favored due to their unique dipolarity. This review discusses the basic concepts and characteristics of dipoles. In addition, the role of dipoles in PSCs and the corresponding conventional characterization methods for dipoles are introduced. Then, we systematically summarize the latest progress in achieving efficient and stable PSCs in dipole materials at several key interfaces. Finally, we look forward to the future application directions of dipole molecules in PSCs, aiming at providing deep insight and inspiration for developing efficient and stable PSCs.
Collapse
Affiliation(s)
- Kaiwen Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Guangyue Yang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Minhuan Wang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Jiming Bian
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Lina Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., LTD & Shandong Yellow Triangle Biotechnology Industry Research Institute Co., LTD, Dongying, 257335, China
| | - Shitao Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shiwei Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui Graphene Materials Research Center, Anhui University Hefei, Anhui, 230601, P. R. China
| | - Xin Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Xiaoqing Jiang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
16
|
Chen Y, Meng Y, Zhang J, Xie Y, Guo H, He M, Shi X, Mei Y, Sheng X, Xie D. Leakage Proof, Flame-Retardant, and Electromagnetic Shield Wood Morphology Genetic Composite Phase Change Materials for Solar Thermal Energy Harvesting. NANO-MICRO LETTERS 2024; 16:196. [PMID: 38753068 PMCID: PMC11099002 DOI: 10.1007/s40820-024-01414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/07/2024] [Indexed: 05/19/2024]
Abstract
Phase change materials (PCMs) offer a promising solution to address the challenges posed by intermittency and fluctuations in solar thermal utilization. However, for organic solid-liquid PCMs, issues such as leakage, low thermal conductivity, lack of efficient solar-thermal media, and flammability have constrained their broad applications. Herein, we present an innovative class of versatile composite phase change materials (CPCMs) developed through a facile and environmentally friendly synthesis approach, leveraging the inherent anisotropy and unidirectional porosity of wood aerogel (nanowood) to support polyethylene glycol (PEG). The wood modification process involves the incorporation of phytic acid (PA) and MXene hybrid structure through an evaporation-induced assembly method, which could impart non-leaking PEG filling while concurrently facilitating thermal conduction, light absorption, and flame-retardant. Consequently, the as-prepared wood-based CPCMs showcase enhanced thermal conductivity (0.82 W m-1 K-1, about 4.6 times than PEG) as well as high latent heat of 135.5 kJ kg-1 (91.5% encapsulation) with thermal durability and stability throughout at least 200 heating and cooling cycles, featuring dramatic solar-thermal conversion efficiency up to 98.58%. In addition, with the synergistic effect of phytic acid and MXene, the flame-retardant performance of the CPCMs has been significantly enhanced, showing a self-extinguishing behavior. Moreover, the excellent electromagnetic shielding of 44.45 dB was endowed to the CPCMs, relieving contemporary health hazards associated with electromagnetic waves. Overall, we capitalize on the exquisite wood cell structure with unidirectional transport inherent in the development of multifunctional CPCMs, showcasing the operational principle through a proof-of-concept prototype system.
Collapse
Affiliation(s)
- Yuhui Chen
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The International Joint Laboratory for Sustainable Polymers of Yunnan Province, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yang Meng
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The International Joint Laboratory for Sustainable Polymers of Yunnan Province, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Jiangyu Zhang
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The International Joint Laboratory for Sustainable Polymers of Yunnan Province, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yuhui Xie
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The International Joint Laboratory for Sustainable Polymers of Yunnan Province, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Xuetao Shi
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Yi Mei
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The International Joint Laboratory for Sustainable Polymers of Yunnan Province, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Xinxin Sheng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Delong Xie
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The International Joint Laboratory for Sustainable Polymers of Yunnan Province, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
17
|
Ren Y, Fu H, Li Y, Li Z, Li C, An X. Interfacial engineering eliminates energy loss at perovskite/HTL junction. Chem Commun (Camb) 2024; 60:2938-2941. [PMID: 38372697 DOI: 10.1039/d3cc05572h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Realizing efficient FAPbI3-based devices with high open-circuit voltage (VOC) is still challenging, due to severe energy loss between the n-type perovskite and p-type hole-transporting layer (HTL). Here, we developed a strategy involving controlling the formation of iodine vacancies in order to induce formation of p-type perovskite and hence mitigate such energy loss. Post-deposition of n-butylamine iodide was discovered to induce an n-to-p-type transition in the FAPbI3 perovskite and hence form the p-type perovskite/p-type HTL junction. The resultant device realized a VOC of as high as 1.12 V, a value ∼14.3% higher than that of the corresponding n-type FAPbI3 device (0.98 V).
Collapse
Affiliation(s)
- Yingke Ren
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Hongyang Fu
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Yun Li
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Zhaoqian Li
- Key Laboratory of Photovoltaic and Energy Conservation Materials, CAS, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Cong Li
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Xingtao An
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
18
|
Lee GH, Kim K, Kim Y, Yang J, Choi MK. Recent Advances in Patterning Strategies for Full-Color Perovskite Light-Emitting Diodes. NANO-MICRO LETTERS 2023; 16:45. [PMID: 38060071 PMCID: PMC10704014 DOI: 10.1007/s40820-023-01254-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/08/2023]
Abstract
Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability, pure color emission with remarkably narrow bandwidths, high quantum yield, and solution processability. Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes (PeLEDs) to their theoretical limits, their current fabrication using the spin-coating process poses limitations for fabrication of full-color displays. To integrate PeLEDs into full-color display panels, it is crucial to pattern red-green-blue (RGB) perovskite pixels, while mitigating issues such as cross-contamination and reductions in luminous efficiency. Herein, we present state-of-the-art patterning technologies for the development of full-color PeLEDs. First, we highlight recent advances in the development of efficient PeLEDs. Second, we discuss various patterning techniques of MPHs (i.e., photolithography, inkjet printing, electron beam lithography and laser-assisted lithography, electrohydrodynamic jet printing, thermal evaporation, and transfer printing) for fabrication of RGB pixelated displays. These patterning techniques can be classified into two distinct approaches: in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals. This review highlights advancements and limitations in patterning techniques for PeLEDs, paving the way for integrating PeLEDs into full-color panels.
Collapse
Affiliation(s)
- Gwang Heon Lee
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kiwook Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Yunho Kim
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Moon Kee Choi
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
| |
Collapse
|
19
|
Dallaev R, Pisarenko T, Papež N, Holcman V. Overview of the Current State of Flexible Solar Panels and Photovoltaic Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5839. [PMID: 37687532 PMCID: PMC10488543 DOI: 10.3390/ma16175839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
The rapid growth and evolution of solar panel technology have been driven by continuous advancements in materials science. This review paper provides a comprehensive overview of the diverse range of materials employed in modern solar panels, elucidating their roles, properties, and contributions to overall performance. The discussion encompasses both traditional crystalline silicon-based panels and emerging thin-film technologies. A detailed examination of photovoltaic materials, including monocrystalline and polycrystalline silicon as well as alternative materials such as cadmium telluride (CdTe), copper indium gallium selenide (CIGS), and emerging perovskite solar cells, is presented. Furthermore, the impact of transparent conductive materials, encapsulation polymers, and antireflective coatings on solar panel efficiency and durability is explored. The review delves into the synergistic interplay between material properties, manufacturing processes, and environmental considerations. Through a comprehensive survey of materials utilized in modern solar panels, this paper provides insights into the current state of the field, highlighting avenues for future advancements and sustainable solar energy solutions.
Collapse
Affiliation(s)
- Rashid Dallaev
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 616 00 Brno, Czech Republic; (T.P.); (N.P.); (V.H.)
| | | | | | | |
Collapse
|