1
|
Wang Z, Chen Y, Li X, Wang L, Binks BP, Wang T. Janus Protein Nanoparticles Tailoring Bicontinuous Aerogels for Efficient Heavy Metal Ion Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408770. [PMID: 39828524 DOI: 10.1002/smll.202408770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/29/2024] [Indexed: 01/22/2025]
Abstract
Bicontinuous structures are exquisite interpenetrating constructs with an optimal balance between connectivity and surface area. Such unique geometry favors exceptional mechanical properties and efficient inward mass diffusion essential for an absorbent material. Although bicontinuous structures are found across many length scales in nature, synthesizing artificial analogs using biological building blocks remains largely unexplored. In this study, it is shown that manipulation of the surface chemistry of rapeseed cruciferin nanoparticles (≈50 nm) leads to the formation of a highly amphiphilic stabilizer, ensuring equal wetting of water and oil phases in a demixed system, thereby enabling the formation of bicontinuous emulsions. By further eliminating both volatile liquid phases (water and toluene) through freeze-drying, bicontinuous emulsions are transformed into bicontinuous aerogels featuring highly interpenetrating networks with uniform domain size. These materials, characterized by high surface area (224 m2 g-1) and mechanical robustness, can efficiently absorb various heavy metal ions multiple times displaying excellent absorption capacity (up to 200 mg g-1) and efficiency (less than 30 min). This study is at the forefront of constructing biomacromolecular bicontinuous structures, potentially expanding their applications in diverse fields such as food, cosmetics, and medicine.
Collapse
Affiliation(s)
- Zhigao Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Yao Chen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Xuyuan Li
- School of Food Science and Technology, Jiangnan University, Wuxi, 21422, China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull, HU6 7RX, UK
| | - Tao Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 21422, China
| |
Collapse
|
2
|
Rašović I, Piacenti AR, Contera S, Porfyrakis K. Hierarchical Self-Assembly of Water-Soluble Fullerene Derivatives into Supramolecular Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401963. [PMID: 38850187 DOI: 10.1002/smll.202401963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Indexed: 06/10/2024]
Abstract
Controlling the self-assembly of nanoparticle building blocks into macroscale soft matter structures is an open question and of fundamental importance to fields as diverse as nanomedicine and next-generation energy storage. Within the vast library of nanoparticles, the fullerenes-a family of quasi-spherical carbon allotropes-are not explored beyond the most common, C60. Herein, a facile one-pot method is demonstrated for functionalizing fullerenes of different sizes (C60, C70, C84, and C90-92), yielding derivatives that self-assemble in aqueous solution into supramolecular hydrogels with distinct hierarchical structures. It is shown that the mechanical properties of these resultant structures vary drastically depending on the starting material. This work opens new avenues in the search for control of macroscale soft matter structures through tuning of nanoscale building blocks.
Collapse
Affiliation(s)
- Ilija Rašović
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
- School of Metallurgy and Materials, University of Birmingham, Elms Road, Birmingham, B15 2TT, UK
- EPSRC Centre for Doctoral Training in Topological Design, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alba R Piacenti
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Sonia Contera
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Kyriakos Porfyrakis
- Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
3
|
Shan W, Thomas EL. Gradient Transformation of the Double Gyroid to the Double Diamond in Soft Matter. ACS NANO 2024; 18:9443-9450. [PMID: 38466943 PMCID: PMC10993642 DOI: 10.1021/acsnano.3c11101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Transitions between gyroid and diamond intercatenated double network phases occur in many types of soft matter, but to date, the structural pathway and the crystallographic relationships remain unclear. Slice and view scanning electron microscopy tomography of a diblock copolymer affords monitoring of the evolving shape of the intermaterial dividing surface, allowing structural characterization of both the majority and minority domains. Two trihedral malleable mesoatoms combine to form a single tetrahedral mesoatom in a volume additive manner while preserving network topology, as the types of loops, the number of mesoatoms in a loop, minority domain strut lengths, and directions that connect a given mesoatom to its neighbors evolve across a 150 nm wide transition zone (TZ). The [111]DD direction is coincident with the [110]DG direction so that the (111)DD and (110)DG planes define the boundaries of the TZ. Selection of the particular crystal orientations and direction and width of the transition zone is to minimize the cost of morphing the mesoatoms from one structure to the other, by maximizing like-block continuity and minimizing the variation of the surface curvature and thickness of the domains across the TZ. Such coherent continuity of the independent, intercatenated networks across the transition zone is critical for applications such as graded mechanical trusses where the pair of different networks are joined to provide different mechanical properties for adjacent grains or could serve as a nanoscale anode/cathode allowing super charging and discharging provided the networks are continuous and rigorously separate.
Collapse
Affiliation(s)
- Wenpeng Shan
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77840, United States
- Biomaterials
and Tissue Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Edwin L. Thomas
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77840, United States
| |
Collapse
|
4
|
Huang C, Zhang X, Lyu X. Encounter between Gyroid and Lamellae in Janus Colloidal Particles Self-Assembled by a Rod-Coil Block Copolymer. Macromol Rapid Commun 2024; 45:e2300696. [PMID: 38160322 DOI: 10.1002/marc.202300696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Controlling the internal structure of block copolymer (BCP) particles has a significant influence on its functionalities. Here, a structure-controlling method is proposed to regulate the internal structure of BCP Janus colloidal particles using different surfactants. Different microphase separation processes take place in two connected halves of the Janus particles. An order-order transition between gyroid and lamellar phases is observed in polymeric colloids. The epitaxial growth during the structural transformation from gyroid to lamellar phase undergoes a two-layered rearrangement to accommodate the interdomain spacing mismatch between these two phases. This self-assembly behavior can be ascribed to the preferential wetting of BCP chains at the interface, which can change the chain conformation of different blocks. The Janus colloidal particles can further experience a reversible phase transition by restructuring the polymer particles under solvent vapor. It is anticipated that the new phase behavior found in Janus particles can not only enrich the self-assembly study of BCPs but also provide opportunities for various applications based on Janus particles with ordered structures.
Collapse
Affiliation(s)
- Chunzhi Huang
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xinyue Zhang
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xiaolin Lyu
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
5
|
Su L, Lu F, Li Y, Wang Y, Li X, Zheng L, Gao X. Gyroid Liquid Crystals as Quasi-Solid-State Electrolytes Toward Ultrastable Zinc Batteries. ACS NANO 2024; 18:7633-7643. [PMID: 38411092 DOI: 10.1021/acsnano.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The potential for optimizing ion transport through triply periodic minimal surface (TPMS) structures renders promising electrochemical applications. In this study, as a proof-of-concept, we extend the inherent efficiency and mathematical beauty of TPMS structures to fabricate liquid-crystalline electrolytes with high ionic conductivity and superior structural stability for aqueous rechargeable zinc-ion batteries. The specific topological configuration of the liquid-crystalline electrolytes, featuring a Gyroid geometry, enables the formation of a continuous ion conduction pathway enriched with confined water. This, in turn, promotes the smooth transport of charge carriers and contributes to high ionic conductivity. Meanwhile, the quasi-solid hydrophobic phase assembled by hydrophobic alkyl chains exhibits notable rigidity and toughness, enabling uniform and compact dendrite-free Zn deposition. These merits synergistically enhance the overall performance of the corresponding full batteries. This work highlights the distinctive role of TPMS structures in developing high-performance, liquid-crystalline electrolytes, which can provide a viable route for the rational design of next-generation quasi-solid-state electrolytes.
Collapse
Affiliation(s)
- Long Su
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| | - Fei Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| | - Yanrui Li
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| | - Yuanqi Wang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| | - Xia Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| | - Xinpei Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| |
Collapse
|
6
|
Yi K, Wang X, Filippov SK, Zhang H. Emerging ctDNA detection strategies in clinical cancer theranostics. SMART MEDICINE 2023; 2:e20230031. [PMID: 39188296 PMCID: PMC11235813 DOI: 10.1002/smmd.20230031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 08/28/2024]
Abstract
Circulating tumor DNA (ctDNA) is naked DNA molecules shed from the tumor cells into the peripheral blood circulation. They contain tumor-specific gene mutations and other valuable information. ctDNA is considered to be one of the most significant analytes in liquid biopsies. Over the past decades, numerous researchers have developed various detection strategies to perform quantitative or qualitative ctDNA analysis, including PCR-based detection and sequencing-based detection. More and more studies have illustrated the great value of ctDNA as a biomarker in the diagnosis, prognosis and heterogeneity of tumor. In this review, we first outlined the development of digital PCR (dPCR)-based and next generation sequencing (NGS)-based ctDNA detection systems. Besides, we presented the introduction of the emerging ctDNA analysis strategies based on various biosensors, such as electrochemical biosensors, fluorescent biosensors, surface plasmon resonance and Raman spectroscopy, as well as their applications in the field of biomedicine. Finally, we summarized the essentials of the preceding discussions, and the existing challenges and prospects for the future are also involved.
Collapse
Affiliation(s)
- Kexin Yi
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Xiaoju Wang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Sergey K. Filippov
- DWI‐Leibniz Institute for Interactive Materials e. V.AachenGermany
- School of PharmacyUniversity of ReadingReadingUK
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
7
|
Schamberger B, Ziege R, Anselme K, Ben Amar M, Bykowski M, Castro APG, Cipitria A, Coles RA, Dimova R, Eder M, Ehrig S, Escudero LM, Evans ME, Fernandes PR, Fratzl P, Geris L, Gierlinger N, Hannezo E, Iglič A, Kirkensgaard JJK, Kollmannsberger P, Kowalewska Ł, Kurniawan NA, Papantoniou I, Pieuchot L, Pires THV, Renner LD, Sageman-Furnas AO, Schröder-Turk GE, Sengupta A, Sharma VR, Tagua A, Tomba C, Trepat X, Waters SL, Yeo EF, Roschger A, Bidan CM, Dunlop JWC. Curvature in Biological Systems: Its Quantification, Emergence, and Implications across the Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206110. [PMID: 36461812 DOI: 10.1002/adma.202206110] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.
Collapse
Affiliation(s)
- Barbara Schamberger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Ricardo Ziege
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Karine Anselme
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Martine Ben Amar
- Department of Physics, Laboratoire de Physique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
- ESTS, Instituto Politécnico de Setúbal, 2914-761, Setúbal, Portugal
| | - Amaia Cipitria
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Group of Bioengineering in Regeneration and Cancer, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Rhoslyn A Coles
- Cluster of Excellence, Matters of Activity, Humboldt-Universität zu Berlin, 10178, Berlin, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Michaela Eder
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sebastian Ehrig
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 10115, Berlin, Germany
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Myfanwy E Evans
- Institute for Mathematics, University of Potsdam, 14476, Potsdam, Germany
| | - Paulo R Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, 4000, Liège, Belgium
| | - Notburga Gierlinger
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (Boku), 1190, Vienna, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
| | - Jacob J K Kirkensgaard
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
- Ingredients and Dairy Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, University of Würzburg, 97074, Würzburg, Germany
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, PB 813, 3000, Leuven, Belgium
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology (FORTH), Stadiou Str., 26504, Patras, Greece
| | - Laurent Pieuchot
- IS2M (CNRS - UMR 7361), Université de Haute-Alsace, F-68100, Mulhouse, France
- Université de Strasbourg, F-67081, Strasbourg, France
| | - Tiago H V Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | | | - Gerd E Schröder-Turk
- School of Physics, Chemistry and Mathematics, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT, 2600, Australia
| | - Anupam Sengupta
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Grand Duchy of Luxembourg
| | - Vikas R Sharma
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Universidad de Sevilla, 41013, Seville, Spain
- Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Caterina Tomba
- Univ Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69622, Villeurbanne, France
| | - Xavier Trepat
- ICREA at the Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028, Barcelona, Spain
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Edwina F Yeo
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, UK
| | - Andreas Roschger
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Cécile M Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - John W C Dunlop
- Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
8
|
Cai X, Hauche S, Poppe S, Cao Y, Zhang L, Huang C, Tschierske C, Liu F. Network Phases with Multiple-Junction Geometries at the Gyroid-Diamond Transition. J Am Chem Soc 2023; 145:1000-1010. [PMID: 36603102 DOI: 10.1021/jacs.2c10462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel phase sequence for the transition from the double diamond to the double gyroid cubic phases via two non-cubic intermediate phases, an orthorhombic Fmmm (O69) phase and a hexagonal P63/m (H176) phase, is reported for specifically designed bolapolyphiles composed of a linear rod-like bistolane core with sticky glycerol ends and two branched central and two linear peripheral side chains. These liquid crystalline (LC) phases represent members of a new class of unicontinuous network phases, formed by longitudinal rod bundles with polar spheres acting as junctions and the alkyl chains forming the continuum around them. In contrast to previously known bicontinuous cubic networks, they combine different junctions with different angles in a common structure, and one of them even represents a triple network instead of the usually found double networks. This provides new perspectives for the design of soft network phases with enhanced structural complexity, inspiring the search for new supramolecular networks, nano-particle arrays, and photonic band-gap materials.
Collapse
Affiliation(s)
- Xiaoqian Cai
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviors of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Sebastian Hauche
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kur-Mother Str. 2, Halle (Saale) 06120, Germany
| | - Silvio Poppe
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kur-Mother Str. 2, Halle (Saale) 06120, Germany
| | - Yu Cao
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviors of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Chang Huang
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Carsten Tschierske
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kur-Mother Str. 2, Halle (Saale) 06120, Germany
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behaviors of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
9
|
Jaber M, Poh PSP, Duda GN, Checa S. PCL strut-like scaffolds appear superior to gyroid in terms of bone regeneration within a long bone large defect: An in silico study. Front Bioeng Biotechnol 2022; 10:995266. [PMID: 36213070 PMCID: PMC9540363 DOI: 10.3389/fbioe.2022.995266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
The treatment of large bone defects represents a major clinical challenge. 3D printed scaffolds appear as a promising strategy to support bone defect regeneration. The 3D design of such scaffolds impacts the healing path and thus defect regeneration potential. Among others, scaffold architecture has been shown to influence the healing outcome. Gyroid architecture, characterized by a zero mean surface curvature, has been discussed as a promising scaffold design for bone regeneration. However, whether gyroid scaffolds are favourable for bone regeneration in large bone defects over traditional strut-like architecture scaffolds remains unknown. Therefore, the aim of this study was to investigate whether gyroid scaffolds present advantages over more traditional strut-like scaffolds in terms of their bone regeneration potential. Validated bone defect regeneration principles were applied in an in silico modeling approach that allows to predict bone formation in defect regeneration. Towards this aim, the mechano-biological bone regeneration principles were adapted to allow simulating bone regeneration within both gyroid and strut-like scaffolds. We found that the large surface curvatures of the gyroid scaffold led to a slower tissue formation dynamic and conclusively reduced bone regeneration. The initial claim, that an overall reduced zero mean surface curvature would enhance bone formation, could not be confirmed. The here presented approach illustrates the potential of in silico tools to evaluate in pre-clinical studies scaffold designs and eventually lead to optimized architectures of 3D printed implants for bone regeneration.
Collapse
Affiliation(s)
- Mahdi Jaber
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - Patrina S. P. Poh
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Georg N. Duda
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- BIH Center for Regenerative Therapies, Berlin, Germany
| | - Sara Checa
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- *Correspondence: Sara Checa,
| |
Collapse
|
10
|
Electrochemical Biosensors for Circulating Tumor DNA Detection. BIOSENSORS 2022; 12:bios12080649. [PMID: 36005048 PMCID: PMC9406149 DOI: 10.3390/bios12080649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
Early diagnosis and treatment have always been highly desired in the fight against cancer, and detection of circulating tumor DNA (ctDNA) has recently been touted as highly promising for early cancer-screening. Consequently, the detection of ctDNA in liquid biopsy is gaining much attention in the field of tumor diagnosis and treatment, which has also attracted research interest from industry. However, it is difficult to achieve low-cost, real-time, and portable measurement of ctDNA in traditional gene-detection technology. Electrochemical biosensors have become a highly promising solution to ctDNA detection due to their unique advantages such as high sensitivity, high specificity, low cost, and good portability. Therefore, this review aims to discuss the latest developments in biosensors for minimally invasive, rapid, and real-time ctDNA detection. Various ctDNA sensors are reviewed with respect to their choices of receptor probes, designs of electrodes, detection strategies, preparation of samples, and figures of merit, sorted by type of electrode surface recognition elements. The development of biosensors for the Internet of Things, point-of-care testing, big data, and big health is analyzed, with a focus on their portable, real-time, and non-destructive characteristics.
Collapse
|
11
|
Lettau M, Timm S, Dittmayer C, Lopez-Rodriguez E, Ochs M. The ultrastructural heterogeneity of lung surfactant revealed by serial section electron tomography: Insights into the 3D architecture of human tubular myelin. Am J Physiol Lung Cell Mol Physiol 2022; 322:L873-L881. [PMID: 35438000 DOI: 10.1152/ajplung.00020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Weibel's hypothetical 3D model in 1966 provided first ultrastructural details into tubular myelin (TM), a unique, complex surfactant subtype found in the hypophase of the alveolar lining layer. Although initial descriptions by electron microscopy (EM) were already published in the 1950s, a uniform morphological differentiation from other intraalveolar surfactant subtypes is still missing and potential structure-function relationships remain enigmatic. Technical developments in volume EM methods now allow a more detailed reinvestigation. To address unanswered ultrastructural questions, we analyzed ultrathin sections of humanized SP-A1/SP-A2 co-expressing mouse as well as human lung samples by conventional transmission EM. We combined these 2D information with 3D analysis of single- and dual-axis electron tomography of serial sections for high z-resolution (in a range of a few nm) and extended volumes of up to 1 µm total z-information. This study reveals that TM constitutes a heterogeneous surfactant organization mainly comprised of distorted parallel membrane planes with local intersections, which are distributed all over the TM substructure. These intersecting membrane planes form, among other various polygons, the well-known 2D "lattice", respectively 3D quadratic tubules, which in many analyzed spots of human alveoli appear to be less abundant than also observed non-concentric 3D lamellae. The additional application of serial section electron tomography to conventional transmission EM demonstrates a high heterogeneity of TM membrane networks, which indicates dynamic transformations between its substructures. Our method provides an ideal basis for further in and ex vivo structural analyses of surfactant under various conditions at nanometer scale.
Collapse
Affiliation(s)
- Marie Lettau
- Institute of Functional Anatomy, Charité , Berlin, Germany
| | - Sara Timm
- Core Facility Electron Microscopy, Charité , Berlin, Germany
| | | | | | - Matthias Ochs
- Institute of Functional Anatomy, Charité , Berlin, Germany.,German Center for Lung Research, Berlin, Germany
| |
Collapse
|
12
|
Hain TM, Bykowski M, Saba M, Evans ME, Schröder-Turk GE, Kowalewska Ł. SPIRE-a software tool for bicontinuous phase recognition: application for plastid cubic membranes. PLANT PHYSIOLOGY 2022; 188:81-96. [PMID: 34662407 PMCID: PMC8774748 DOI: 10.1093/plphys/kiab476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Bicontinuous membranes in cell organelles epitomize nature's ability to create complex functional nanostructures. Like their synthetic counterparts, these membranes are characterized by continuous membrane sheets draped onto topologically complex saddle-shaped surfaces with a periodic network-like structure. Their structure sizes, (around 50-500 nm), and fluid nature make transmission electron microscopy (TEM) the analysis method of choice to decipher their nanostructural features. Here we present a tool, Surface Projection Image Recognition Environment (SPIRE), to identify bicontinuous structures from TEM sections through interactive identification by comparison to mathematical "nodal surface" models. The prolamellar body (PLB) of plant etioplasts is a bicontinuous membrane structure with a key physiological role in chloroplast biogenesis. However, the determination of its spatial structural features has been held back by the lack of tools enabling the identification and quantitative analysis of symmetric membrane conformations. Using our SPIRE tool, we achieved a robust identification of the bicontinuous diamond surface as the dominant PLB geometry in angiosperm etioplasts in contrast to earlier long-standing assertions in the literature. Our data also provide insights into membrane storage capacities of PLBs with different volume proportions and hint at the limited role of a plastid ribosome localization directly inside the PLB grid for its proper functioning. This represents an important step in understanding their as yet elusive structure-function relationship.
Collapse
Affiliation(s)
- Tobias M Hain
- Institute of Mathematics, University of Potsdam, Potsdam D-14476, Germany
- College of Science, Health, Engineering and Education, Mathematics and Statistics, Murdoch University, Murdoch WA 6150, Australia
- Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund 22100, Sweden
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Matthias Saba
- Adolphe Merkle Institute, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Myfanwy E Evans
- Institute of Mathematics, University of Potsdam, Potsdam D-14476, Germany
| | - Gerd E Schröder-Turk
- College of Science, Health, Engineering and Education, Mathematics and Statistics, Murdoch University, Murdoch WA 6150, Australia
- Department of Applied Mathematics, The Australian National University, Research School of Physics, Canberra 2601, Australia
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| |
Collapse
|