1
|
Cai Y. Conjugation of primary amine groups in targeted proteomics. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39229771 DOI: 10.1002/mas.21906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/21/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
Primary amines, in the form of unmodified N-terminus of peptide/protein and unmodified lysine residue, are perhaps the most important functional groups that can serve as the starting points in proteomic analysis, especially via mass spectrometry-based approaches. A variety of multifunctional probes that conjugate primary amine groups through covalent bonds have been developed and employed to facilitate protein/protein complex characterization, including identification, quantification, structure and localization elucidation, protein-protein interaction investigation, and so forth. As an integral part of more accurate peptide quantification in targeted proteomics, isobaric stable isotope-coded primary amine labeling approaches eventually facilitated protein/peptide characterization at the single-cell level, paving the way for single-cell proteomics. The development and advances in the field can be reviewed in terms of key components of a multifunctional probe: functional groups and chemistry for primary amine conjugation; hetero-bifunctional moiety for separation/enrichment of conjugated protein/protein complex; and functionalized linker/spacer. Perspectives are primarily focused on optimizing primary amine conjugation under physiological conditions to improve characterization of native proteins, especially those associated with the surface of living cells/microorganisms.
Collapse
Affiliation(s)
- Yang Cai
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
2
|
Li M, Jia L, Zhu A, Li J, Li J, Liu X, Xie X. Engineered Leukocyte Biomimetic Colorimetric Sensor Enables High-Efficient Detection of Tumor Cells Based on Bioorthogonal Chemistry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36106-36116. [PMID: 38955781 DOI: 10.1021/acsami.4c06272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Accurate detection of heterogeneous circulating tumor cells (CTCs) is critical as they can make tumor cells more aggressive, drug-resistant, and metastasizing. Although the leukocyte membrane coating strategy is promising in meeting the challenge of detecting heterogeneous CTCs due to its inherent antiadhesive properties, it is still limited by the reduction or loss of expression of known markers. Bioorthogonal glycol-metabolic engineering is expected to break down this barrier by feeding the cells with sugar derivatives with a unique functional group to establish artificial targets on the surface of tumor cells. Herein, an engineered leukocyte biomimetic colorimetric sensor was accordingly fabricated for high-efficient detection of heterogeneous CTCs. Compared with conventional leukocyte membrane coating, the sensor could covalently bound to the heterogeneous CTCs models fed with Ac4ManNAz in vitro through the synergy of bioorthogonal chemistry and metabolic glycoengineering, ignoring the phenotypic changes of heterogeneous CTCs. Meanwhile, a sandwich structure composed of leukocyte biomimetic layer/CTCs/MoS2 nanosheet was formed for visual detection of HeLa cells as low as 10 cells mL-1. Overall, this approach can overcome the dependence of conventional cell membrane biomimetic technology on specific cell phenotypes and provide a new viewpoint to highly efficiently detect heterogeneous CTCs.
Collapse
Affiliation(s)
- Min Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Lanlan Jia
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Aihong Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiaqi Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Jing Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xia Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyu Xie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| |
Collapse
|
3
|
Liu Z, Wang M, Wu M, Yu X, Sun Q, Su C, Sun Y, Cao S, Niu N, Chen L. A sensitive coumarin fluorescence sensor designed for isoprene detection and imaging research in plants. Biosens Bioelectron 2024; 248:115998. [PMID: 38176254 DOI: 10.1016/j.bios.2024.115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
The release of isoprene by plants is considered to be an adaptation to the environment. Herein, a highly selective coumarin fluorescent probe (DMIC) was designed for detecting isoprene. When isoprene came into contact with the maleimide of DMIC, an electrophilic addition process took place. The powerful push-pull effect of DMIC was disrupted. Simultaneously, intramolecular charge transfer was initiated. This enabled DMIC to achieve rapid detection of isoprene within 5 min. Furthermore, excellent linearity was observed in the concentration range of 1-560 ppm (R2 = 0.996). A limit of detection is 1.6 ppm. DMIC was applied to in vitro studies of plant release of liberated isoprene. By monitoring the release of isoprene from different tree species throughout the day, the dynamics of isoprene release from plants throughout the day have been successfully revealed. In addition, the release of isoprene varied considerably among different tree species. In particular, the biocompatibility of DMIC allowed for the in vivo detection of isoprene using fluorescence imaging. The results successfully revealed the dynamics of isoprene release in plants under stress. The amount of isoprene that a plant produced increased with the severity of the stress it experienced. This suggested that the level of isoprene content in plants could be used as a preliminary indicator of the physiological health status of plants. This research demonstrates great potential for clarifying signal transduction in biological systems. It provided ideas for further understanding the biology of isoprene.
Collapse
Affiliation(s)
- Zhixin Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Mengyuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Meng Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Xueling Yu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Qijun Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Chenglin Su
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Yining Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Shuang Cao
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China.
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
4
|
Liu Y, Dong C, Ren J. In vivo monitoring of the ubiquitination of newly synthesized proteins in living cells by combining a click reaction with fluorescence cross-correlation spectroscopy (FCCS). Analyst 2023. [PMID: 37439656 DOI: 10.1039/d3an00890h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Newly synthesized proteins are closely related to a series of biological processes, including cell growth, differentiation, and signaling. The post-translational modifications (PTMs) of newly synthesized proteins help maintain normal cellular functions. Ubiquitination is one of the PTMs and plays a prominent role in regulating cellular functions. Although great progress has been made in studying the ubiquitination of newly synthesized proteins, the in vivo monitoring of the ubiquitination of newly synthesized proteins in living cells still remains challenging. In this study, we propose a new method for measuring the ubiquitination of newly synthesized proteins in living cells by combining a click reaction with fluorescence cross-correlation spectroscopy (FCCS). In this study, a puromycin derivative (Puro-TCO) and a fluorescence probe (Bodipy-TR-Tz) were synthesized, and then, the newly synthesized proteins in living cells were labelled with Bodipy-TR via the click reaction between Puro-TCO and Tz. Ubiquitin (Ub) in living cells was labelled with the enhanced green fluorescence protein (EGFP) by fusion using a gene engineering technique. FCCS was used to quantify the newly synthesized proteins with two labels (EGFP and Bodipy-TR) in living cells. After measurements, the cross-correlation (CC) value was used to evaluate the ubiquitination degree of proteins. Herein, we established a method for monitoring the ubiquitination of newly synthesized proteins with EGFP-Ub in living cells and studied the effects of the ubiquitin E1 enzyme inhibitor on newly synthesized proteins. Our preliminary results document that the combination of FCCS with a click reaction is an efficient strategy for studying the ubiquitination of newly synthesized proteins in vivo in living cells. This new method can be applied to basic research in protein ubiquitination and drug screening at the living-cell level.
Collapse
Affiliation(s)
- Yaoqi Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Chaoqing Dong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
5
|
Rosenberger JE, Xie Y, Fang Y, Lyu X, Trout WS, Dmitrenko O, Fox JM. Ligand-Directed Photocatalysts and Far-Red Light Enable Catalytic Bioorthogonal Uncaging inside Live Cells. J Am Chem Soc 2023; 145:6067-6078. [PMID: 36881718 PMCID: PMC10589873 DOI: 10.1021/jacs.2c10655] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Described are ligand-directed catalysts for live-cell, photocatalytic activation of bioorthogonal chemistry. Catalytic groups are localized via a tethered ligand either to DNA or to tubulin, and red light (660 nm) photocatalysis is used to initiate a cascade of DHTz oxidation, intramolecular Diels-Alder reaction, and elimination to release phenolic compounds. Silarhodamine (SiR) dyes, more conventionally used as biological fluorophores, serve as photocatalysts that have high cytocompatibility and produce minimal singlet oxygen. Commercially available conjugates of Hoechst dye (SiR-H) and docetaxel (SiR-T) are used to localize SiR to the nucleus and microtubules, respectively. Computation was used to assist the design of a new class of redox-activated photocage to release either phenol or n-CA4, a microtubule-destabilizing agent. In model studies, uncaging is complete within 5 min using only 2 μM SiR and 40 μM photocage. In situ spectroscopic studies support a mechanism involving rapid intramolecular Diels-Alder reaction and a rate-determining elimination step. In cellular studies, this uncaging process is successful at low concentrations of both the photocage (25 nM) and the SiR-H dye (500 nM). Uncaging n-CA4 causes microtubule depolymerization and an accompanying reduction in cell area. Control studies demonstrate that SiR-H catalyzes uncaging inside the cell, and not in the extracellular environment. With SiR-T, the same dye serves as a photocatalyst and the fluorescent reporter for microtubule depolymerization, and with confocal microscopy, it was possible to visualize microtubule depolymerization in real time as the result of photocatalytic uncaging in live cells.
Collapse
Affiliation(s)
- Julia E. Rosenberger
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Yixin Xie
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Yinzhi Fang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Xinyi Lyu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - William S. Trout
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Olga Dmitrenko
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
6
|
Torres-García D, van de Plassche MAT, van Boven E, van Leeuwen T, Groenewold MGJ, Sarris AJC, Klein L, Overkleeft HS, van Kasteren SI. Methyltetrazine as a small live-cell compatible bioorthogonal handle for imaging enzyme activities in situ. RSC Chem Biol 2022; 3:1325-1330. [PMID: 36349224 PMCID: PMC9627743 DOI: 10.1039/d2cb00120a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2024] Open
Abstract
Bioorthogonal chemistry combines well with activity-based protein profiling, as it allows for the introduction of detection tags without significantly influencing the physiochemical and biological functions of the probe. In this work, we introduced methyltetrazinylalanine (MeTz-Ala), a close mimic of phenylalanine, into a dipeptide fluoromethylketone cysteine protease inhibitor. Following covalent and irreversible inhibition, the tetrazine allows vizualisation of the captured cathepsin activity by means of inverse electron demand Diels Alder ligation in cell lysates and live cells, demonstrating that tetrazines can be used as live cell compatible, minimal bioorthogonal tags in activity-based protein profiling.
Collapse
Affiliation(s)
- Diana Torres-García
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Merel A T van de Plassche
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Emma van Boven
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Tyrza van Leeuwen
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Mirjam G J Groenewold
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Alexi J C Sarris
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Luuk Klein
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Sander I van Kasteren
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
7
|
Chen Z, Wang WT, Wang W, Huang J, Liao JY, Zeng S, Qian L. Sensitive Imaging of Cellular RNA via Cascaded Proximity-Induced Fluorogenic Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44054-44064. [PMID: 36153979 DOI: 10.1021/acsami.2c10355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Owing to its important biological functions, RNA has become a promising molecular biomarker of various diseases. With a dynamic change in its expression level and a relatively low amount within the complicated biological matrix, signal amplification detection based on DNA probes has been put forward, which is helpful for early diagnosis and prognostic prediction. However, conventional methods are confined to cell lysates or dead cells and are not only time-consuming in sample preparation but also inaccessible to the spatial-temporal information of target RNAs. To achieve live-cell imaging of specific RNAs, both the detection sensitivity and intracellular delivery issues should be addressed. Herein, a new cascaded fluorogenic system based on the combination of hybridization chain reactions (HCRs) and proximity-induced bioorthogonal chemistry is developed, in which a bioorthogonal reaction pair (a tetrazine-quenched dye and its complementary dienophile) is brought into spatial proximity upon target RNA triggering the HCR to turn on and amplify the fluorescence in one step, sensitively indicating the cellular distribution of RNA with minimal false positive results caused by unspecific degradation. Facilitated by a biodegradable carrier based on black phosphorus with high loading capacity and excellent biocompatibility, the resulting imaging platform allows wash-free tracking of target RNAs inside living cells.
Collapse
Affiliation(s)
- Zhiyan Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wen-Tao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wenchao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Huang
- Department of Liver Disease, Hangzhou Xixi Hospital, Hangzhou 310023, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Gupta M, Levine SR, Spitale RC. Probing Nascent RNA with Metabolic Incorporation of Modified Nucleosides. Acc Chem Res 2022; 55:2647-2659. [PMID: 36073807 DOI: 10.1021/acs.accounts.2c00347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The discovery of previously unknown functional roles of RNA in biological systems has led to increased interest in revealing novel RNA molecules as therapeutic targets and the development of tools to better understand the role of RNA in cells. RNA metabolic labeling broadens the scope of studying RNA by incorporating of unnatural nucleobases and nucleosides with bioorthogonal handles that can be utilized for chemical modification of newly synthesized cellular RNA. Such labeling of RNA provides access to applications including measurement of the rates of synthesis and decay of RNA, cellular imaging for RNA localization, and selective enrichment of nascent RNA from the total RNA pool. Several unnatural nucleosides and nucleobases have been shown to be incorporated into RNA by endogenous RNA synthesis machinery of the cells. RNA metabolic labeling can also be performed in a cell-specific manner, where only cells expressing an essential enzyme incorporate the unnatural nucleobase into their RNA. Although several discoveries have been enabled by the current RNA metabolic labeling methods, some key challenges still exist: (i) toxicity of unnatural analogues, (ii) lack of RNA-compatible conjugation chemistries, and (iii) background incorporation of modified analogues in cell-specific RNA metabolic labeling. In this Account, we showcase work done in our laboratory to overcome these challenges faced by RNA metabolic labeling.To begin, we discuss the cellular pathways that have been utilized to perform RNA metabolic labeling and study the interaction between nucleosides and nucleoside kinases. Then we discuss the use of vinyl nucleosides for metabolic labeling and demonstrate the low toxicity of 5-vinyluridine (5-VUrd) compared to other widely used nucleosides. Next, we discuss cell-specific RNA metabolic labeling with unnatural nucleobases, which requires the expression of a specific phosphoribosyl transferase (PRT) enzyme for incorporation of the nucleobase into RNA. In the course of this work, we discovered the enzyme uridine monophosphate synthase (UMPS), which is responsible for nonspecific labeling with modified uracil nucleobases. We were able to overcome this background labeling by discovering a mutant uracil PRT (UPRT) that demonstrates highly specific RNA metabolic labeling with 5-vinyluracil (5-VU). Furthermore, we discuss the optimization of inverse-electron-demand Diels-Alder (IEDDA) reactions for performing chemical modification of vinyl nucleosides to achieve covalent conjugation of RNA without transcript degradation. Finally, we highlight our latest endeavor: the development of mutually orthogonal chemical reactions for selective labeling of 5-VUrd and 2-vinyladenosine (2-VAdo), which allows for potential use of multiple vinyl nucleosides for simultaneous investigation of multiple cellular processes involving RNA. We hope that our methods and discoveries encourage scientists studying biological systems to include RNA metabolic labeling in their toolkit for studying RNA and its role in biological systems.
Collapse
|
9
|
Structures, biomimetic synthesis, and anti-SARS-CoV-2 activity of two pairs of enantiomeric phenylpropanoid-conjugated protoberberine alkaloids from the rhizomes of Corydalis decumbens. Arch Pharm Res 2022; 45:631-643. [PMID: 36121609 PMCID: PMC9484358 DOI: 10.1007/s12272-022-01401-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 08/03/2022] [Indexed: 11/13/2022]
Abstract
(±)-Decumicorine A (1) and (±)-epi-decumicorine A (2), two pairs of enantiomeric isoquinoline alkaloids featuring a novel phenylpropanoid-conjugated protoberberine skeleton, were isolated and purified from the rhizomes of Corydalis decumbens. The separation of (±)-1 and (±)-2 was achieved by chiral HPLC to produce four optically pure enantiomers. The structures and absolute configurations of compounds (−)-1, (+)-1, (−)-2, and (+)-2 were elucidated by spectroscopic analysis, ECD calculations, and X-ray crystallographic analyses. The two racemates were generated from a Diels-Alder [4 + 2] cycloaddition between jatrorrhizine and ferulic acid in the proposed biosynthetic pathways, which were fully verified by a biomimetic synthesis. Moreover, compound (+)-1 exhibited an antiviral entry effect on SARS-CoV-2 pseudovirus by blocking spike binding to the ACE2 receptor on HEK-293T-ACE2h host cells.
Collapse
|
10
|
Marzabadi CH, Kelty SP, Altamura A. Inverse-electron demand Diels Alder Reactions between glycals and tetrazines. Carbohydr Res 2022; 519:108623. [PMID: 35738050 DOI: 10.1016/j.carres.2022.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
The inverse-electron demand Diels Alder reaction (IEDDA) of substituted tetrazines with 2,3-unsaturated sugars (glycals) has been investigated to prepare novel carbohydrate-based heterocycles. The cycloaddition reactions occurred in moderate to good, isolated yields and gave acyclic, C-linked pyranose diazines as the major products (33-90%). The effects of variations in sugars, sugar protecting groups, and reaction solvents on the yields and products obtained in these reactions were studied. Lower yields of adducts were isolated for TBDMS-protected glucals and for 4,6-O-benzylidene protected glucals. When unprotected sugars were used, the reactions failed to give the desired cycloadducts. A range of substituted tetrazines were also evaluated in these reactions. For comparison, HOMO-[LUMO + 1] gaps for glycal-tetrazine pairs were calculated using Density Functional (DFT) calculations at the B3LYP/631G+ level.
Collapse
Affiliation(s)
- Cecilia H Marzabadi
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Ave., South Orange, NJ, 07079, USA.
| | - Stephen P Kelty
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Ave., South Orange, NJ, 07079, USA; Center for Computational Research, Seton Hall University, South Orange, NJ, 07079, USA
| | - Alexandra Altamura
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Ave., South Orange, NJ, 07079, USA; Hackensack Meridian Medical School, 340 Kingsland St, Nutley, NJ, 07110, USA
| |
Collapse
|
11
|
Miao YH, Hua YZ, Gao HJ, Mo NN, Wang MC, Mei GJ. Catalytic asymmetric inverse-electron-demand aza-Diels-Alder reaction of 1,3-diazadienes with 3-vinylindoles. Chem Commun (Camb) 2022; 58:7515-7518. [PMID: 35687078 DOI: 10.1039/d2cc02458f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A facile chiral phosphoric-acid catalyzed asymmetric inverse-electron-demand aza-Diels-Alder reaction of 1,3-diazadienes with 3-vinylindoles was established. By using this mild and practical protocol, a broad range of benzothiazolopyrimidines with three contiguous stereogenic centers were prepared in good yields and excellent diastereo- and enantio-selectivities (43 examples, up to 83% yield, >99% ee and all >20 : 1 dr). A plausible concerted reaction pathway enabled by the dual hydrogen-bonding effect was proposed to account for the observed excellent enantioselectivity and specific trans-trans diastereoselectivity.
Collapse
Affiliation(s)
- Yu-Hang Miao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuan-Zhao Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Hao-Jie Gao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Nan-Nan Mo
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
12
|
Meyvacı E, Öztürk T. Modification of Poly(Styrene‐co‐Acrylonitrile) with Tetrazine by Inverse Electron Demand Diels‐Alder Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202200668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ergül Meyvacı
- Giresun University Department of Chemistry 28200 Giresun Turkey
| | - Temel Öztürk
- Giresun University Department of Chemistry 28200 Giresun Turkey
| |
Collapse
|
13
|
Yip AMH, Lai CKH, Yiu KSM, Lo KKW. Phosphorogenic Iridium(III) bis-Tetrazine Complexes for Bioorthogonal Peptide Stapling, Bioimaging, Photocytotoxic Applications, and the Construction of Nanosized Hydrogels. Angew Chem Int Ed Engl 2022; 61:e202116078. [PMID: 35119163 DOI: 10.1002/anie.202116078] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/28/2022]
Abstract
The dual functionality of 1,2,4,5-tetrazine as a bioorthogonal reactive unit and a luminescence quencher has shaped tetrazine-based probes as attractive candidates for luminogenic labeling of biomolecules in living systems. In this work, three cyclometalated iridium(III) complexes featuring two tetrazine units were synthesized and characterized. Upon photoexcitation, the complexes were non-emissive but displayed up to 3900-fold emission enhancement upon the inverse electron-demand Diels-Alder (IEDDA) [4+2] cycloaddition with (1R,8S,9s)-bicyclo[6.1.0]non-4-yne (BCN) substrates. The rapid reaction kinetics (k2 up to 1.47×104 M-1 s-1 ) of the complexes toward BCN substrates allowed effective peptide labeling. The complexes were also applied as live cell bioimaging reagents and photocytotoxic agents. One of the complexes was utilized in the preparation of luminescent nanosized hydrogels that exhibited interesting cargo delivery properties.
Collapse
Affiliation(s)
- Alex Man-Hei Yip
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Calvin Kin-Ho Lai
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Ken Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.,State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.,Center for Functional Photonics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
14
|
Yip AMH, Lai CKH, Yiu KSM, Lo KKW. Phosphorogenic Iridium(III) bis‐Tetrazine Complexes for Bioorthogonal Peptide Stapling, Bioimaging, Photocytotoxic Applications, and the Construction of Nanosized Hydrogels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Kenneth Kam-Wing Lo
- City University of Hong Kong Department of Chemistry Tat Chee AvenueKowloon Tong N. A. Hong Kong HONG KONG
| |
Collapse
|
15
|
Jemas A, Xie Y, Pigga JE, Caplan JL, am Ende CW, Fox JM. Catalytic Activation of Bioorthogonal Chemistry with Light (CABL) Enables Rapid, Spatiotemporally Controlled Labeling and No-Wash, Subcellular 3D-Patterning in Live Cells Using Long Wavelength Light. J Am Chem Soc 2022; 144:1647-1662. [PMID: 35072462 PMCID: PMC9364228 DOI: 10.1021/jacs.1c10390] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Described is the spatiotemporally controlled labeling and patterning of biomolecules in live cells through the catalytic activation of bioorthogonal chemistry with light, referred to as "CABL". Here, an unreactive dihydrotetrazine (DHTz) is photocatalytically oxidized in the intracellular environment by ambient O2 to produce a tetrazine that immediately reacts with a trans-cyclooctene (TCO) dienophile. 6-(2-Pyridyl)dihydrotetrazine-3-carboxamides were developed as stable, cell permeable DHTz reagents that upon oxidation produce the most reactive tetrazines ever used in live cells with Diels-Alder kinetics exceeding k2 of 106 M-1 s-1. CABL photocatalysts are based on fluorescein or silarhodamine dyes with activation at 470 or 660 nm. Strategies for limiting extracellular production of singlet oxygen are described that increase the cytocompatibility of photocatalysis. The HaloTag self-labeling platform was used to introduce DHTz tags to proteins localized in the nucleus, mitochondria, actin, or cytoplasm, and high-yielding subcellular activation and labeling with a TCO-fluorophore were demonstrated. CABL is light-dose dependent, and two-photon excitation promotes CABL at the suborganelle level to selectively pattern live cells under no-wash conditions. CABL was also applied to spatially resolved live-cell labeling of an endogenous protein target by using TIRF microscopy to selectively activate intracellular monoacylglycerol lipase tagged with DHTz-labeled small molecule covalent inhibitor. Beyond spatiotemporally controlled labeling, CABL also improves the efficiency of "ordinary" tetrazine ligations by rescuing the reactivity of commonly used 3-aryl-6-methyltetrazine reporters that become partially reduced to DHTzs inside cells. The spatiotemporal control and fast rates of photoactivation and labeling of CABL should enable a range of biomolecular labeling applications in living systems.
Collapse
Affiliation(s)
- Andrew Jemas
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Yixin Xie
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Jessica E. Pigga
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Jeffrey L. Caplan
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Christopher W. am Ende
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
16
|
Krell K, Pfeuffer B, Rönicke F, Chinoy ZS, Favre C, Friscourt F, Wagenknecht H. Fast and Efficient Postsynthetic DNA Labeling in Cells by Means of Strain-Promoted Sydnone-Alkyne Cycloadditions. Chemistry 2021; 27:16093-16097. [PMID: 34633713 PMCID: PMC9297951 DOI: 10.1002/chem.202103026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 12/16/2022]
Abstract
Sydnones are highly stable mesoionic 1,3-dipoles that react with cyclooctynes through strain-promoted sydnone-alkyne cycloaddition (SPSAC). Although sydnones have been shown to be valuable bioorthogonal chemical reporters for the labeling of proteins and complex glycans, nucleic acids have not yet been tagged by SPSAC. Evaluation of SPSAC kinetics with model substrates showed fast reactions with cyclooctyne probes (up to k=0.59 M-1 s-1 ), and two different sydnones were effectively incorporated into both 2'-deoxyuridines at position 5, and 7-deaza-2'-deoxyadenosines at position 7. These modified nucleosides were synthetically incorporated into single-stranded DNAs, which were successfully postsynthetically labeled with cyclooctyne probes both in vitro and in cells. These results show that sydnones are versatile bioorthogonal tags and have the premise to become essential tools for tracking DNA and potentially RNA in living cells.
Collapse
Affiliation(s)
- Katja Krell
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Bastian Pfeuffer
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Franziska Rönicke
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Zoeisha S. Chinoy
- Institut Européen de Chimie et Biologie and ISM CNRS UMR5255Université de Bordeaux2 Rue Robert Escarpit33607PessacFrance
| | - Camille Favre
- Institut Européen de Chimie et Biologie and ISM CNRS UMR5255Université de Bordeaux2 Rue Robert Escarpit33607PessacFrance
| | - Frédéric Friscourt
- Institut Européen de Chimie et Biologie and ISM CNRS UMR5255Université de Bordeaux2 Rue Robert Escarpit33607PessacFrance
| | - Hans‐Achim Wagenknecht
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| |
Collapse
|
17
|
Ketkaew R, Creazzo F, Luber S. Closer Look at Inverse Electron Demand Diels–Alder and Nucleophilic Addition Reactions on s-Tetrazines Using Enhanced Sampling Methods. Top Catal 2021; 65:1-17. [PMID: 35153451 PMCID: PMC8816378 DOI: 10.1007/s11244-021-01516-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 12/30/2022]
Abstract
Inverse electron demand [4+2] Diels–Alder (iEDDA) reactions as well as unprecedented nucleophilic (azaphilic) additions of R-substituted silyl-enol ethers (where R is Phenyl, Methyl, and Hydrogen) to 1,2,4,5-tetrazine (s-tetrazine) catalyzed by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {BF}_{3}$$\end{document}BF3 have recently been discovered (Simon et al. in Org Lett 23(7):2426–2430, 2021), where static calculations were employed for calculation of activation energies. In order to have a more realistic dynamic description of these reactions in explicit solution at ambient conditions, in this work we use a semiempirical tight-binding method combined with enhanced sampling techniques to calculate free energy surfaces (FESs) of the iEDDA and azaphilic addition reactions. Relevant products of not only s-tetrazine but also its derivatives such as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {BF}_{3}$$\end{document}BF3-mediated s-tetrazine adducts are investigated. We reconstruct the FESs of the iEDDA and azaphilic addition reactions using metadynamics and blue moon ensemble, and compare the ability of different collective variables (CVs) including bond distances, Social PeRmutation INvarianT (SPRINT) coordinates, and path-CV to describe the reaction pathway. We find that when a bulky Phenyl is used as a substituent at the dienophile the azaphilic addition is preferred over the iEDDA reaction. In addition, we also investigate the effect of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {BF}_{3}$$\end{document}BF3 in the diene and steric hindrance in the dienophile on the competition between the iEDDA and azaphilic addition reactions, providing chemical insight for reaction design.
Collapse
Affiliation(s)
- Rangsiman Ketkaew
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Fabrizio Creazzo
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
18
|
Xu Q, Torres JE, Hakim M, Babiak PM, Pal P, Battistoni CM, Nguyen M, Panitch A, Solorio L, Liu JC. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 146:100641. [PMID: 34483486 PMCID: PMC8409465 DOI: 10.1016/j.mser.2021.100641] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.
Collapse
Affiliation(s)
- Qinghua Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mazin Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pallabi Pal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Nguyen
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
19
|
Laina-Martín V, Humbrías-Martín J, Mas-Ballesté R, Fernández-Salas JA, Alemán J. Enantioselective Inverse-Electron Demand Aza-Diels-Alder Reaction: ipso,α-Selectivity of Silyl Dienol Ethers. ACS Catal 2021; 11:12133-12145. [PMID: 34621594 PMCID: PMC8491166 DOI: 10.1021/acscatal.1c03390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 12/27/2022]
Abstract
![]()
A highly
efficient enantioselective inverse-electron-demand aza-Diels–Alder
reaction between aza-sulfonyl-1-aza-1,3-butadienes and silyl (di)enol
ethers has been developed. The presented methodology allows the synthesis
of benzofuran-fused 2-piperidinol derivatives with three contiguous
stereocenters in a highly selective manner, as even the hemiaminal
center is completely stereocontrolled. Density functional theory (DFT)
calculations support that the hydrogen-bond donor-based bifunctional
organocatalyst selectively triggers the reaction through the ipso,α-position
of the dienophile, in contrast to the reactivity observed for dienolates
in situ generated from β,γ-unsaturated derivatives. Moreover,
the calculations have clarified the mechanism of the reaction and
the ability of the hydrogen-bond donor core to hydrolyze selectively
the E isomer of the dienol ether. Furthermore, to
demonstrate the applicability of silyl enol ethers as nucleophiles
in the asymmetric synthesis of interesting benzofuran-fused derivatives,
the catalytic system has also been implemented for the highly efficient
installation of an aromatic ring in the piperidine adducts.
Collapse
Affiliation(s)
- Víctor Laina-Martín
- Departamento de Química Orgánica (módulo 1), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Jorge Humbrías-Martín
- Departamento de Química Orgánica (módulo 1), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Rubén Mas-Ballesté
- Departamento de Química Inorgánica (módulo 7), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jose A. Fernández-Salas
- Departamento de Química Orgánica (módulo 1), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Departamento de Química Inorgánica (módulo 7), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José Alemán
- Departamento de Química Orgánica (módulo 1), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Departamento de Química Inorgánica (módulo 7), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
20
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
21
|
Laina‐Martín V, Fernández‐Salas JA, Alemán J. Organocatalytic Strategies for the Development of the Enantioselective Inverse-electron-demand Hetero-Diels-Alder Reaction. Chemistry 2021; 27:12509-12520. [PMID: 34132427 PMCID: PMC8456916 DOI: 10.1002/chem.202101696] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Cycloaddition reactions, in particular Diels-Alder reactions, have attracted a lot of attention from organic chemists since they represent one of the most powerful methodologies for the construction of carbon-carbon bonds. In particular, inverse-electron-demand hetero-Diels-Alder reactions have been an important breakthrough for the synthesis of heterocyclic compounds. Among all their variants, the organocatalytic enantioselective version has been widely explored since the asymmetric construction of diversely functionalized scaffolds under reaction conditions encompassed within the green chemistry field is of great interest. In this review, a profound revision on the latest advances on the organocatalytic asymmetric inverse-electron demand hetero-Diels-Alder reaction is shown.
Collapse
Affiliation(s)
- Víctor Laina‐Martín
- Departamento de Química Orgánica (módulo 1) Facultad de CienciasUniversidad Autónoma de Madrid28049-MadridSpain
| | - Jose A. Fernández‐Salas
- Departamento de Química Orgánica (módulo 1) Facultad de CienciasUniversidad Autónoma de Madrid28049-MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049-MadridSpain
| | - José Alemán
- Departamento de Química Orgánica (módulo 1) Facultad de CienciasUniversidad Autónoma de Madrid28049-MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049-MadridSpain
| |
Collapse
|
22
|
Wang C, Zhang H, Zhang T, Zou X, Wang H, Rosenberger J, Vannam R, Trout WS, Grimm JB, Lavis LD, Thorpe C, Jia X, Li Z, Fox JM. Enabling In Vivo Photocatalytic Activation of Rapid Bioorthogonal Chemistry by Repurposing Silicon-Rhodamine Fluorophores as Cytocompatible Far-Red Photocatalysts. J Am Chem Soc 2021; 143:10793-10803. [PMID: 34250803 PMCID: PMC8765119 DOI: 10.1021/jacs.1c05547] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chromophores that absorb in the tissue-penetrant far-red/near-infrared window have long served as photocatalysts to generate singlet oxygen for photodynamic therapy. However, the cytotoxicity and side reactions associated with singlet oxygen sensitization have posed a problem for using long-wavelength photocatalysis to initiate other types of chemical reactions in biological environments. Herein, silicon-Rhodamine compounds (SiRs) are described as photocatalysts for inducing rapid bioorthogonal chemistry using 660 nm light through the oxidation of a dihydrotetrazine to a tetrazine in the presence of trans-cyclooctene dienophiles. SiRs have been commonly used as fluorophores for bioimaging but have not been applied to catalyze chemical reactions. A series of SiR derivatives were evaluated, and the Janelia Fluor-SiR dyes were found to be especially effective in catalyzing photooxidation (typically 3%). A dihydrotetrazine/tetrazine pair is described that displays high stability in both oxidation states. A protein that was site-selectively modified by trans-cyclooctene was quantitatively conjugated upon exposure to 660 nm light and a dihydrotetrazine. By contrast, a previously described methylene blue catalyst was found to rapidly degrade the protein. SiR-red light photocatalysis was used to cross-link hyaluronic acid derivatives functionalized by dihydrotetrazine and trans-cyclooctenes, enabling 3D culture of human prostate cancer cells. Photoinducible hydrogel formation could also be carried out in live mice through subcutaneous injection of a Cy7-labeled hydrogel precursor solution, followed by brief irradiation to produce a stable hydrogel. This cytocompatible method for using red light photocatalysis to activate bioorthogonal chemistry is anticipated to find broad applications where spatiotemporal control is needed in biological environments.
Collapse
Affiliation(s)
- Chuanqi Wang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Tao Zhang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Xiaoyu Zou
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Hui Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Julia Rosenberger
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Raghu Vannam
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - William S. Trout
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn Virginia, 20147, USA
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn Virginia, 20147, USA
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
- Delaware Biotechnology Institute, Newark, Delaware 19711, USA
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
23
|
Abstract
The merging of click chemistry with discrete photochemical processes has led to the creation of a new class of click reactions, collectively known as photoclick chemistry. These light-triggered click reactions allow the synthesis of diverse organic structures in a rapid and precise manner under mild conditions. Because light offers unparalleled spatiotemporal control over the generation of the reactive intermediates, photoclick chemistry has become an indispensable tool for a wide range of spatially addressable applications including surface functionalization, polymer conjugation and cross-linking, and biomolecular labeling in the native cellular environment. Over the past decade, a growing number of photoclick reactions have been developed, especially those based on the 1,3-dipolar cycloadditions and Diels-Alder reactions owing to their excellent reaction kinetics, selectivity, and biocompatibility. This review summarizes the recent advances in the development of photoclick reactions and their applications in chemical biology and materials science. A particular emphasis is placed on the historical contexts and mechanistic insights into each of the selected reactions. The in-depth discussion presented here should stimulate further development of the field, including the design of new photoactivation modalities, the continuous expansion of λ-orthogonal tandem photoclick chemistry, and the innovative use of these unique tools in bioconjugation and nanomaterial synthesis.
Collapse
Affiliation(s)
- Gangam Srikanth Kumar
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
24
|
Haiber LM, Kufleitner M, Wittmann V. Application of the Inverse-Electron-Demand Diels-Alder Reaction for Metabolic Glycoengineering. Front Chem 2021; 9:654932. [PMID: 33928067 PMCID: PMC8076787 DOI: 10.3389/fchem.2021.654932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
The inverse electron-demand Diels-Alder (IEDDA or DAinv) reaction is an emerging bioorthogonal ligation reaction that finds application in all areas of chemistry and chemical biology. In this review we highlight its application in metabolic glycoengineering (MGE). MGE is a versatile tool to introduce unnatural sugar derivatives that are modified with a chemical reporter group into cellular glycans. The IEDDA reaction can then be used to modify the chemical reporter group allowing, for instance, the visualization or isolation of glycoconjugates. During the last years, many different sugar derivatives as well as reporter groups have been published. These probes are summarized, and their chemical and biological properties are discussed. Furthermore, we discuss examples of MGE and subsequent IEDDA reaction that highlight its suitability for application within living systems.
Collapse
Affiliation(s)
| | | | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| |
Collapse
|
25
|
Singha M, Spitalny L, Nguyen K, Vandewalle A, Spitale RC. Chemical methods for measuring RNA expression with metabolic labeling. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1650. [PMID: 33738981 DOI: 10.1002/wrna.1650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022]
Abstract
Tracking the expression of RNA in a cell-specific manner is a major challenge in basic and disease research. Herein we outline the current state of employing chemical approaches for cell-specific RNA expression studies. We define the utility of metabolic labels for tracking RNA synthesis, the approaches for characterizing metabolic incorporation and enrichment of labeled RNAs, and finally outline how these approaches have been used to study biological systems by providing mechanistic insights into transcriptional dynamics. Further efforts on this front will be the continued development of novel chemical handles for RNA enrichment and profiling as well as innovative approaches to control cell-specific incorporation of chemically modified metabolic probes. These advancements in RNA metabolic labeling techniques permit sensitive detection of RNA expression dynamics within relatively small subsets of cells in living tissues and organisms that are critical to performing complex developmental and pathological processes. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Evolution and Genomics > Ribonomics RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Monika Singha
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Leslie Spitalny
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Kim Nguyen
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Abigail Vandewalle
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA.,Department of Developmental and Cellular Biology, University of California, Irvine, Irvine, California, USA.,Department of Chemistry, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
26
|
Walunj MB, Srivatsan SG. Posttranscriptional Suzuki-Miyaura Cross-Coupling Yields Labeled RNA for Conformational Analysis and Imaging. Methods Mol Biol 2021; 2166:473-486. [PMID: 32710426 DOI: 10.1007/978-1-0716-0712-1_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chemical labeling of RNA by using chemoselective reactions that work under biologically benign conditions is increasingly becoming valuable in the in vitro and in vivo analysis of RNA. Here, we describe a modular RNA labeling method based on a posttranscriptional Suzuki-Miyaura coupling reaction, which works under mild conditions and enables the direct installation of various biophysical reporters and tags. This two-part procedure involves the incorporation of a halogen-modified UTP analog (5-iodouridine-5'-triphosphate) by a transcription reaction. Subsequent posttranscriptional coupling with boronic acid/ester substrates in the presence of a palladium catalyst provides access to RNA labeled with (a) fluorogenic environment-sensitive nucleosides for probing nucleic acid structure and recognition, (b) fluorescent probes for microscopy, and (3) affinity tags for pull-down and immunoassays. It is expected that this method could also become useful for imaging nascent RNA transcripts in cells if the nucleotide analog can be metabolically incorporated and coupled with reporters by metal-assisted cross-coupling reactions.
Collapse
Affiliation(s)
- Manisha B Walunj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, India.
| |
Collapse
|
27
|
George JT, Srivatsan SG. Bioorthogonal chemistry-based RNA labeling technologies: evolution and current state. Chem Commun (Camb) 2020; 56:12307-12318. [PMID: 33026365 PMCID: PMC7611129 DOI: 10.1039/d0cc05228k] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To understand the structure and ensuing function of RNA in various cellular processes, researchers greatly rely on traditional as well as contemporary labeling technologies to devise efficient biochemical and biophysical platforms. In this context, bioorthogonal chemistry based on chemoselective reactions that work under biologically benign conditions has emerged as a state-of-the-art labeling technology for functionalizing biopolymers. Implementation of this technology on sugar, protein, lipid and DNA is fairly well established. However, its use in labeling RNA has posed challenges due to the fragile nature of RNA. In this feature article, we provide an account of bioorthogonal chemistry-based RNA labeling techniques developed in our lab along with a detailed discussion on other technologies put forward recently. In particular, we focus on the development and applications of covalent methods to label RNA by transcription and posttranscription chemo-enzymatic approaches. It is expected that existing as well as new bioorthogonal functionalization methods will immensely advance our understanding of RNA and support the development of RNA-based diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune 411008, India.
| | | |
Collapse
|
28
|
Schnierle M, Blickle S, Filippou V, Ringenberg MR. Tetrazine metallation boosts rate and regioselectivity of inverse electron demand Diels-Alder (iEDDA) addition of dienophiles. Chem Commun (Camb) 2020; 56:12033-12036. [PMID: 32902528 DOI: 10.1039/d0cc03805a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reported herein is the coordination of rhenium complexes to tetrazine ligand in [ReCl(CO)3(TzPy)] [1] (TzPy = 3-(2-pyridyl)-1,2,4,5-tetrazine) and the rates of addition of different dienophiles to the tetrazine. Tetrazine coordiation lowers the ΔS‡ contribution to ΔG‡ for iEDDA addition.
Collapse
Affiliation(s)
- Marc Schnierle
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| | | | | | | |
Collapse
|
29
|
Ancajas CF, Ricks TJ, Best MD. Metabolic labeling of glycerophospholipids via clickable analogs derivatized at the lipid headgroup. Chem Phys Lipids 2020; 232:104971. [PMID: 32898510 PMCID: PMC7606648 DOI: 10.1016/j.chemphyslip.2020.104971] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 02/09/2023]
Abstract
Metabolic labeling, in which substrate analogs containing diminutive tags can infiltrate biosynthetic pathways and generate labeled products in cells, has led to dramatic advancements in the means by which complex biomolecules can be detected and biological processes can be elucidated. Within this realm, metabolic labeling of lipid products, particularly in a manner that is headgroup-specific, brings about a number of technical challenges including the complexity of lipid metabolic pathways as well as the simplicity of biosynthetic precursors to headgroup functionality. As such, only a handful of strategies for metabolic labeling of lipids have thus far been reported. However, these approaches provide enticing examples of how strategic modifications to substrate structures, particularly by introducing clickable moieties, can enable the hijacking of lipid biosynthesis. Furthermore, early work in this field has led to an explosion in diverse applications by which these techniques have been exploited to answer key biological questions or detect and track various lipid-containing biological entities. In this article, we review these efforts and emphasize recent advancements in the development and application of lipid metabolic labeling strategies.
Collapse
Affiliation(s)
- Christelle F Ancajas
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Tanei J Ricks
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
30
|
Levandowski BJ, Abularrage NS, Raines RT. Differential Effects of Nitrogen Substitution in 5- and 6-Membered Aromatic Motifs. Chemistry 2020; 26:8862-8866. [PMID: 32166866 PMCID: PMC7374023 DOI: 10.1002/chem.202000825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/30/2022]
Abstract
The replacement of carbon with nitrogen can affect the aromaticity of organic rings. Nucleus-independent chemical shift (NICS) calculations at the center of the aromatic π-systems reveal that incorporating nitrogen into 5-membered heteroaromatic dienes has only a small influence on aromaticity. In contrast, each nitrogen incorporated into benzene results in a sequential and substantial loss of aromaticity. The contrasting effects of nitrogen substitution in 5-membered dienes and benzene are reflected in their Diels-Alder reactivities as dienes. 1,2-Diazine experiences a 1011 -fold increase in reactivity upon nitrogen substitution at the 4- and 5-positions, whereas a 5-membered heteroaromatic diene, furan, experiences a comparatively incidental 102 -fold increase in reactivity upon nitrogen substitution at the 3- and 4-positions.
Collapse
Affiliation(s)
- Brian J. Levandowski
- Dedicated to Rolf Huisgen in honor of his 100 birthday and contributions to cycloaddition chemistry
| | - Nile S. Abularrage
- Dedicated to Rolf Huisgen in honor of his 100 birthday and contributions to cycloaddition chemistry
| | - Ronald T. Raines
- Dedicated to Rolf Huisgen in honor of his 100 birthday and contributions to cycloaddition chemistry
| |
Collapse
|
31
|
Gil de Montes E, Martı Nez-Bailén M, Carmona AT, Robina I, Moreno-Vargas AJ. Regioselectivity of the 1,3-Dipolar Cycloaddition of Organic Azides to 7-Heteronorbornadienes. Synthesis of β-Substituted Furans/Pyrroles. J Org Chem 2020; 85:8923-8932. [PMID: 32519876 DOI: 10.1021/acs.joc.0c00810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient procedure for the preparation of β-substituted furans/pyrroles is presented. The methodology is based on the use of 7-oxa/azanorbornadienes as dipolarophiles in 1,3-dipolar cycloaddition with benzyl azide. The triazoline cycloadduct thus formed spontaneously decomposes via a retro-Diels-Alder (rDA) reaction to afford a β-substituted furan/pyrrole derivative and a stable triazole. The scope of this tandem 1,3-dipolar cycloaddition/rDA reaction was studied with thirteen 7-heteronorbornadienes. This study allowed a deep knowledge of the regioselectivity of the reaction, which can be tuned through the substituents of the heteronorbornadienic systems.
Collapse
Affiliation(s)
- Enrique Gil de Montes
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Universidad de Sevilla, C/ Prof. Garcı́a González, 1, Sevilla 41012, Spain
| | - Macarena Martı Nez-Bailén
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Universidad de Sevilla, C/ Prof. Garcı́a González, 1, Sevilla 41012, Spain
| | - Ana T Carmona
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Universidad de Sevilla, C/ Prof. Garcı́a González, 1, Sevilla 41012, Spain
| | - Inmaculada Robina
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Universidad de Sevilla, C/ Prof. Garcı́a González, 1, Sevilla 41012, Spain
| | - Antonio J Moreno-Vargas
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Universidad de Sevilla, C/ Prof. Garcı́a González, 1, Sevilla 41012, Spain
| |
Collapse
|
32
|
Synthesis of pH-degradable polyglycerol-based nanogels by iEDDA-mediated crosslinking for encapsulation of asparaginase using inverse nanoprecipitation. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04675-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractBiocompatible, environmentally responsive, and scalable nanocarriers are needed for targeted and triggered delivery of therapeutic proteins. Suitable polymers, preparation methods, and crosslinking chemistries must be considered for nanogel formation. Biocompatible dendritic polyglycerol (dPG) is used in the mild, surfactant-free inverse nanoprecipitation method for nanogel preparation. The biocompatible, fast, and bioorthogonal inverse electron demand Diels-Alder (iEDDA) crosslinking chemistry is used. In this work, the synthesis of pH-degradable nanogels, based on tetrazine, norbonene, and bicyclo[6.1.0]nonyne (BCN) functionalized macromonomers, is reported. The macromonomers are non-toxic up to 2.5 mg mL−1 in three different cell lines. Nanogels are obtained in the size range of 47 to 200 nm and can be degraded within 48 h at pH 4.5 (BA-gels), and pH 3 (THP-gels), respectively. Encapsulation of asparaginase (32 kDa) yield encapsulation efficiencies of up to 93% at 5 wt.% feed. Overall, iEDDA-crosslinked pH-degradable dPG-nanogels from inverse nanoprecipitation are promising candidates for biomedical applications.
Collapse
|
33
|
Abularrage NS, Levandowski BJ, Raines RT. Synthesis and Diels-Alder Reactivity of 4-Fluoro-4-Methyl-4 H-Pyrazoles. Int J Mol Sci 2020; 21:ijms21113964. [PMID: 32486503 PMCID: PMC7312747 DOI: 10.3390/ijms21113964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 02/01/2023] Open
Abstract
4H-Pyrazoles are emerging scaffolds for “click” chemistry. Late-stage fluorination with Selectfluor® is found to provide a reliable route to 4-fluoro-4-methyl-4H-pyrazoles. 4-Fluoro-4-methyl-3,5-diphenyl-4H-pyrazole (MFP) manifested 7-fold lower Diels–Alder reactivity than did 4,4-difluoro-3,5-diphenyl-4H-pyrazole (DFP), but higher stability in the presence of biological nucleophiles. Calculations indicate that a large decrease in the hyperconjugative antiaromaticity in MFP relative to DFP does not lead to a large loss in Diels–Alder reactivity because the ground-state structure of MFP avoids hyperconjugative antiaromaticity by distorting into an envelope-like conformation like that in the Diels–Alder transition state. This predistortion enhances the reactivity of MFP and offsets the decrease in reactivity from the diminished hyperconjugative antiaromaticity.
Collapse
|
34
|
Zhao D, Kong Y, Zhao S, Xing H. Engineering Functional DNA–Protein Conjugates for Biosensing, Biomedical, and Nanoassembly Applications. Top Curr Chem (Cham) 2020; 378:41. [DOI: 10.1007/s41061-020-00305-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
|
35
|
Tei R, Baskin JM. Spatiotemporal control of phosphatidic acid signaling with optogenetic, engineered phospholipase Ds. J Cell Biol 2020; 219:e201907013. [PMID: 31999306 PMCID: PMC7054994 DOI: 10.1083/jcb.201907013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/09/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Phosphatidic acid (PA) is both a central phospholipid biosynthetic intermediate and a multifunctional lipid second messenger produced at several discrete subcellular locations. Organelle-specific PA pools are believed to play distinct physiological roles, but tools with high spatiotemporal control are lacking for unraveling these pleiotropic functions. Here, we present an approach to precisely generate PA on demand on specific organelle membranes. We exploited a microbial phospholipase D (PLD), which produces PA by phosphatidylcholine hydrolysis, and the CRY2-CIBN light-mediated heterodimerization system to create an optogenetic PLD (optoPLD). Directed evolution of PLD using yeast membrane display and IMPACT, a chemoenzymatic method for visualizing cellular PLD activity, yielded a panel of optoPLDs whose range of catalytic activities enables mimicry of endogenous, physiological PLD signaling. Finally, we applied optoPLD to elucidate that plasma membrane, but not intracellular, pools of PA can attenuate the oncogenic Hippo signaling pathway. OptoPLD represents a powerful and precise approach for revealing spatiotemporally defined physiological functions of PA.
Collapse
Affiliation(s)
| | - Jeremy M. Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| |
Collapse
|
36
|
Pigga JE, Fox JM. Flow Photochemical Syntheses of trans-Cyclooctenes and trans-Cycloheptenes Driven by Metal Complexation. Isr J Chem 2020; 60:207-218. [PMID: 34108738 PMCID: PMC8186252 DOI: 10.1002/ijch.201900085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 12/19/2022]
Abstract
trans-Cyclooctenes and trans-cycloheptenes have long been the subject of physical organic study, but the broader application had been limited by synthetic accessibility. This account describes the development of a general, flow photochemical method for the preparative synthesis of trans-cycloalkene derivatives. Here, photoisom erization takes place in a closed-loop flow reactor where the reaction mixture is continuously cycled through Ag(I) on silica gel. Selective complexation of the trans-isomer by Ag(I) during flow drives an otherwise unfavorable isomeric ratio toward the trans-isomer. Analogous photoreactions under batch-conditions are low yielding, and flow chemistry is necessary in order to obtain trans-cycloalkenes in preparatively useful yields. The applications of the method to bioorthogonal chemistry and stereospecific transannulation chemistry are described.
Collapse
Affiliation(s)
- Jessica E Pigga
- Department of Chemistry and Biochemistry University of Delaware, Newark DE 19716
| | - Joseph M Fox
- Department of Chemistry and Biochemistry University of Delaware, Newark DE 19716
| |
Collapse
|
37
|
Qu Y, Pander P, Vybornyi O, Vasylieva M, Guillot R, Miomandre F, Dias FB, Skabara P, Data P, Clavier G, Audebert P. Donor-Acceptor 1,2,4,5-Tetrazines Prepared by the Buchwald-Hartwig Cross-Coupling Reaction and Their Photoluminescence Turn-On Property by Inverse Electron Demand Diels-Alder Reaction. J Org Chem 2020; 85:3407-3416. [PMID: 31975598 DOI: 10.1021/acs.joc.9b02817] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A facile efficient synthetic tool, Buchwald-Hartwig cross-coupling reaction, for the functionalization of 1,2,4,5-tetrazines is presented. Important factors affecting the Buchwald-Hartwig cross-coupling reaction have been optimized. Seven new donor-acceptor tetrazine molecules (TA1-TA7) were conveniently prepared in good to high yields (61-72%). They have been subsequently engaged in the inverse electron demand Diels-Alder (iEDDA) reaction with cyclooctyne. The photophysical and electrochemical properties of the new pyridazines have been studied. Some are fluorescent acting as turn-on probes. More importantly, two pyridazines (DA3 and DA6) exhibit room-temperature phosphorescence (RTP) properties.
Collapse
Affiliation(s)
- Yangyang Qu
- PPSM, CNRS, ENS Paris-Saclay, 61 Avenue Président Wilson, 94235 Cachan, France
| | - Piotr Pander
- Physics Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Oleh Vybornyi
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Marharyta Vasylieva
- Silesian University of Technology, Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, M. Stzody 9, 44-100 Gliwice, Poland.,Centre of Polymer and Carbon Materials of the Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Sud 11, Université Paris-Saclay, UMR CNRS 8182, Rue du doyen Georges Poitou, 91405 Orsay Cedex, France
| | - Fabien Miomandre
- PPSM, CNRS, ENS Paris-Saclay, 61 Avenue Président Wilson, 94235 Cachan, France
| | - Fernando B Dias
- Physics Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Peter Skabara
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Przemyslaw Data
- Silesian University of Technology, Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, M. Stzody 9, 44-100 Gliwice, Poland
| | - Gilles Clavier
- PPSM, CNRS, ENS Paris-Saclay, 61 Avenue Président Wilson, 94235 Cachan, France
| | - Pierre Audebert
- PPSM, CNRS, ENS Paris-Saclay, 61 Avenue Président Wilson, 94235 Cachan, France
| |
Collapse
|
38
|
Tu J, Svatunek D, Parvez S, Eckvahl HJ, Xu M, Peterson RT, Houk KN, Franzini RM. Isonitrile-responsive and bioorthogonally removable tetrazine protecting groups. Chem Sci 2020; 11:169-179. [PMID: 32110368 PMCID: PMC7012038 DOI: 10.1039/c9sc04649f] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/05/2019] [Indexed: 11/21/2022] Open
Abstract
In vivo compatible reactions have a broad range of possible applications in chemical biology and the pharmaceutical sciences. Here we report tetrazines that can be removed by exposure to isonitriles under very mild conditions. Tetrazylmethyl derivatives are easily accessible protecting groups for amines and phenols. The isonitrile-induced removal is rapid and near-quantitative. Intriguingly, the deprotection is especially effective with (trimethylsilyl)methyl isocyanide, and serum albumin can catalyze the elimination under physiological conditions. NMR and computational studies revealed that an imine-tautomerization step is often rate limiting, and the unexpected cleavage of the Si-C bond accelerates this step in the case with (trimethylsilyl)methyl isocyanide. Tetrazylmethyl-removal is compatible with use on biomacromolecules, in cellular environments, and in living organisms as demonstrated by cytotoxicity experiments and fluorophore-release studies on proteins and in zebrafish embryos. By combining tetrazylmethyl derivatives with previously reported tetrazine-responsive 3-isocyanopropyl groups, it was possible to liberate two fluorophores in vertebrates from a single bioorthogonal reaction. This chemistry will open new opportunities towards applications involving multiplexed release schemes and is a valuable asset to the growing toolbox of bioorthogonal dissociative reactions.
Collapse
Affiliation(s)
- Julian Tu
- Department of Medicinal Chemistry , College of Pharmacy , University of Utah , Salt Lake City , 84112 , USA .
| | - Dennis Svatunek
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , USA
| | - Saba Parvez
- Department of Pharmacology and Toxicology , College of Pharmacy , University of Utah , Salt Lake City , 84112 , USA
| | - Hannah J Eckvahl
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , USA
| | - Minghao Xu
- Department of Medicinal Chemistry , College of Pharmacy , University of Utah , Salt Lake City , 84112 , USA .
| | - Randall T Peterson
- Department of Pharmacology and Toxicology , College of Pharmacy , University of Utah , Salt Lake City , 84112 , USA
| | - K N Houk
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , USA
| | - Raphael M Franzini
- Department of Medicinal Chemistry , College of Pharmacy , University of Utah , Salt Lake City , 84112 , USA .
| |
Collapse
|
39
|
Ivancová I, Leone DL, Hocek M. Reactive modifications of DNA nucleobases for labelling, bioconjugations, and cross-linking. Curr Opin Chem Biol 2019; 52:136-144. [DOI: 10.1016/j.cbpa.2019.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/26/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
|
40
|
Kugele A, Silkenath B, Langer J, Wittmann V, Drescher M. Protein Spin Labeling with a Photocaged Nitroxide Using Diels-Alder Chemistry. Chembiochem 2019; 20:2479-2484. [PMID: 31090999 PMCID: PMC6790680 DOI: 10.1002/cbic.201900318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 12/31/2022]
Abstract
EPR spectroscopy of diamagnetic bio-macromolecules is based on site-directed spin labeling (SDSL). Herein, a novel labeling strategy for proteins is presented. A nitroxide-based spin label has been developed and synthesized that can be ligated to proteins by an inverse-electron-demand Diels-Alder (DAinv ) cycloaddition to genetically encoded noncanonical amino acids. The nitroxide moiety is shielded by a photoremovable protecting group with an attached tetra(ethylene glycol) unit to achieve water solubility. SDSL is demonstrated on two model proteins with the photoactivatable nitroxide for DAinv reaction (PaNDA) label. The strategy features high reaction rates, combined with high selectivity, and the possibility to deprotect the nitroxide in Escherichia coli lysate.
Collapse
Affiliation(s)
- Anandi Kugele
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Bjarne Silkenath
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Jakob Langer
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Valentin Wittmann
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Malte Drescher
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
41
|
Kubota M, Nainar S, Parker SM, England W, Furche F, Spitale RC. Expanding the Scope of RNA Metabolic Labeling with Vinyl Nucleosides and Inverse Electron-Demand Diels-Alder Chemistry. ACS Chem Biol 2019; 14:1698-1707. [PMID: 31310712 PMCID: PMC8061575 DOI: 10.1021/acschembio.9b00079] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Optimized and stringent chemical methods to profile nascent RNA expression are still in demand. Herein, we expand the toolkit for metabolic labeling of RNA through application of inverse electron demand Diels-Alder (IEDDA) chemistry. Structural examination of metabolic enzymes guided the design and synthesis of vinyl-modified nucleosides, which we systematically tested for their ability to be installed through cellular machinery. Further, we tested these nucleosides against a panel of tetrazines to identify those which are able to react with a terminal alkene, but are stable enough for selective conjugation. The selected pairings then facilitated RNA functionalization with biotin and fluorophores. We found that this chemistry not only is amenable to preserving RNA integrity but also endows the ability to both tag and image RNA in cells. These key findings represent a significant advancement in methods to profile the nascent transcriptome using chemical approaches.
Collapse
|
42
|
Fang Y, Judkins JC, Boyd SJ, Am Ende CW, Rohlfing K, Huang Z, Xie Y, Johnson DS, Fox JM. Studies on the Stability and Stabilization of trans-Cyclooctenes through Radical Inhibition and Silver (I) Metal Complexation. Tetrahedron 2019; 75:4307-4317. [PMID: 32612312 PMCID: PMC7328862 DOI: 10.1016/j.tet.2019.05.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Conformationally strained trans-cyclooctenes (TCOs) engage in bioorthogonal reactions with tetrazines with second order rate constants that can exceed 106 M-1s-1. The goal of this study was to provide insight into the stability of TCO reagents and to develop methods for stabilizing TCO reagents for long-term storage. The radical inhibitor Trolox suppresses TCO isomerization under high thiol concentrations and TCO shelf-life can be greatly extended by protecting them as stable Ag(I) metal complexes. 1H NMR studies show that Ag-complexation is thermodynamically favorable but the kinetics of dissociation are very rapid, and TCO•AgNO3 complexes are immediately dissociated upon addition of NaCl which is present in high concentration in cell media. The AgNO3 complex of a highly reactive s-TCO-TAMRA conjugate was shown to label a protein-tetrazine conjugate in live cells with faster kinetics and similar labeling yield relative to a 'traditional' TCO-TAMRA conjugate.
Collapse
Affiliation(s)
- Yinzhi Fang
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| | - Joshua C Judkins
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and Groton, Connecticut 06340
- current address: Thermo Fisher Scientific, 5791 Van Allen Way, Carlsbad, CA 92008, United States
| | - Samantha J Boyd
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| | - Christopher W Am Ende
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and Groton, Connecticut 06340
| | - Katarina Rohlfing
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| | - Zhen Huang
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and Groton, Connecticut 06340
| | - Yixin Xie
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| | - Douglas S Johnson
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and Groton, Connecticut 06340
- current address: Chemical Biology and Proteomics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| |
Collapse
|
43
|
Dong P, Wang X, Zheng J, Zhang X, Li Y, Wu H, Li L. Recent Advances in Targeting Nuclear Molecular Imaging Driven by Tetrazine Bioorthogonal Chemistry. Curr Med Chem 2019; 27:3924-3943. [PMID: 31267851 DOI: 10.2174/1386207322666190702105829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023]
Abstract
Molecular imaging techniques apply sophisticated technologies to monitor, directly or indirectly, the spatiotemporal distribution of molecular or cellular processes for biomedical, diagnostic, or therapeutic purposes. For example, Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) imaging, the most representative modalities of molecular imaging, enable earlier and more accurate diagnosis of cancer and cardiovascular diseases. New possibilities for noninvasive molecular imaging in vivo have emerged with advances in bioorthogonal chemistry. For example, tetrazine-related Inverse Electron Demand Diels-Alder (IEDDA) reactions can rapidly generate short-lived radioisotope probes in vivo that provide strong contrast for SPECT and PET. Here, we review pretargeting strategies for molecular imaging and novel radiotracers synthesized via tetrazine bioorthogonal chemistry. We systematically describe advances in direct radiolabeling and pretargeting approaches in SPECT and PET using metal and nonmetal radioisotopes based on tetrazine bioorthogonal reactions, and we discuss prospects for the future of such contrast agents.
Collapse
Affiliation(s)
- Ping Dong
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueyi Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junwei Zheng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoyang Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
44
|
Tu J, Svatunek D, Parvez S, Liu ACG, Levandowski BJ, Eckvahl HJ, Peterson RT, Houk KN, Franzini RM. Stable, Reactive, and Orthogonal Tetrazines: Dispersion Forces Promote the Cycloaddition with Isonitriles. Angew Chem Int Ed Engl 2019; 58:9043-9048. [PMID: 31062496 PMCID: PMC6615965 DOI: 10.1002/anie.201903877] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/25/2019] [Indexed: 12/11/2022]
Abstract
The isocyano group is a structurally compact bioorthogonal functional group that reacts with tetrazines under physiological conditions. Now it is shown that bulky tetrazine substituents accelerate this cycloaddition. Computational studies suggest that dispersion forces between the isocyano group and the tetrazine substituents in the transition state contribute to the atypical structure-activity relationship. Stable asymmetric tetrazines that react with isonitriles at rate constants as high as 57 L mol-1 s-1 were accessible by combining bulky and electron-withdrawing substituents. Sterically encumbered tetrazines react selectively with isonitriles in the presence of strained alkenes/alkynes, which allows for the orthogonal labeling of three proteins. The established principles will open new opportunities for developing tetrazine reactants with improved characteristics for diverse labeling and release applications with isonitriles.
Collapse
Affiliation(s)
- Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112 (USA)
| | - Dennis Svatunek
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569 (USA)
| | - Saba Parvez
- Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112 (USA)
| | - Albert C. G. Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569 (USA)
| | - Brian J. Levandowski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569 (USA)
| | - Hannah J. Eckvahl
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569 (USA)
| | - Randall T. Peterson
- Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112 (USA)
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569 (USA)
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112 (USA)
| |
Collapse
|
45
|
Tu J, Svatunek D, Parvez S, Liu AC, Levandowski BJ, Eckvahl HJ, Peterson RT, Houk KN, Franzini RM. Stable, Reactive, and Orthogonal Tetrazines: Dispersion Forces Promote the Cycloaddition with Isonitriles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Julian Tu
- Department of Medicinal ChemistryUniversity of Utah 30 S 2000 E Salt Lake City UT 84112 USA
| | - Dennis Svatunek
- Department of Chemistry and BiochemistryUniversity of California, Los Angeles Los Angeles CA 90095-1569 USA
| | - Saba Parvez
- Department of Pharmacology and ToxicologyUniversity of Utah 30 S 2000 E Salt Lake City UT 84112 USA
| | - Albert C. Liu
- Department of Chemistry and BiochemistryUniversity of California, Los Angeles Los Angeles CA 90095-1569 USA
| | - Brian J. Levandowski
- Department of Chemistry and BiochemistryUniversity of California, Los Angeles Los Angeles CA 90095-1569 USA
| | - Hannah J. Eckvahl
- Department of Chemistry and BiochemistryUniversity of California, Los Angeles Los Angeles CA 90095-1569 USA
| | - Randall T. Peterson
- Department of Pharmacology and ToxicologyUniversity of Utah 30 S 2000 E Salt Lake City UT 84112 USA
| | - Kendall N. Houk
- Department of Chemistry and BiochemistryUniversity of California, Los Angeles Los Angeles CA 90095-1569 USA
| | - Raphael M. Franzini
- Department of Medicinal ChemistryUniversity of Utah 30 S 2000 E Salt Lake City UT 84112 USA
| |
Collapse
|
46
|
Ravasco JMJM, Coelho JAS, Trindade AF, Afonso CAM. Synthesis and reactivity/stability study of double-functionalizable strained trans-cyclooctenes for tetrazine bioorthogonal reactions. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-0201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
The unique ability of the bioorthogonal pairs to withstand and unaffect biological processes while maintaining high selectivity towards each other sparked the interest in better probing and controlling biological functions. In early years, trans-cyclooctene (TCO)/tetrazine ligation readily standed out by encompassing most of the bioorthogonal criteria such as its excellent biocompatibility, selectivity and efficiency, and as a result of high HOMO-LUMO gap. Modifications on the TCO scaffold such as cyclopropanation render bicyclononene-based TCOs with high enhancement of its reactivity, whereas other modifications focused on improving the solubility, stability, or enabling the scaffold to act as click-to-release drug delivery system. The implementation of facile methods to enhance its versatility is essential for potentiating drug-delivery strategies and expanding the dynamic range of bioorthogonal on/off control. Considering the remarkable properties of bicyclononene-based TCOs we envisioned that the incorporation of an additional vector for functionalization at the cyclopropane moiety could allow access to more complex and double-functionalized TCO probes. Herein we report the synthesis and study of a double-functionalizable strained trans-cyclooctenes for tetrazine bioorthogonal reactions.
Collapse
Affiliation(s)
- João M. J. M. Ravasco
- Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto , 1649-003 Lisboa , Portugal
| | - Jaime A. S. Coelho
- Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto , 1649-003 Lisboa , Portugal
| | - Alexandre F. Trindade
- Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto , 1649-003 Lisboa , Portugal
- School of Chemistry , University of Leeds , Leeds LS2 9JT , UK
| | - Carlos A. M. Afonso
- Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto , 1649-003 Lisboa , Portugal
| |
Collapse
|
47
|
Abstract
Bioorthogonal reactions that proceed readily under physiological conditions without interference from biomolecules have found widespread application in the life sciences. Complementary to the bioorthogonal reactions that ligate two molecules, reactions that release a molecule or cleave a linker are increasingly attracting interest. Such dissociative bioorthogonal reactions have a broad spectrum of uses, for example, in controlling bio-macromolecule activity, in drug delivery, and in diagnostic assays. This review article summarizes the developed bioorthogonal reactions linked to a release step, outlines representative areas of the applications of such reactions, and discusses aspects that require further improvement.
Collapse
Affiliation(s)
- Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| | - Minghao Xu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| | - Raphael M Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
48
|
Kumar P, Zainul O, Camarda FM, Jiang T, Mannone JA, Huang W, Laughlin ST. Caged Cyclopropenes with Improved Tetrazine Ligation Kinetics. Org Lett 2019; 21:3721-3725. [DOI: 10.1021/acs.orglett.9b01177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Pratik Kumar
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Omar Zainul
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Frank M. Camarda
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Ting Jiang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - John A. Mannone
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Wei Huang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Scott T. Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| |
Collapse
|
49
|
Destito P, Sousa-Castillo A, Couceiro JR, López F, Correa-Duarte MA, Mascareñas JL. Hollow nanoreactors for Pd-catalyzed Suzuki-Miyaura coupling and O-propargyl cleavage reactions in bio-relevant aqueous media. Chem Sci 2019; 10:2598-2603. [PMID: 30996975 PMCID: PMC6419927 DOI: 10.1039/c8sc04390f] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/25/2018] [Indexed: 12/20/2022] Open
Abstract
We describe the fabrication of hollow microspheres consisting of mesoporous silica nanoshells decorated with an inner layer of palladium nanoparticles and their use as Pd-nanoreactors in aqueous media. These palladium-equipped capsules can be used to promote the uncaging of propargyl-protected phenols, as well as Suzuki-Miyaura cross-coupling, in water and at physiologically compatible temperatures. Importantly, the depropargylation reaction can be accomplished in a bioorthogonal manner in the presence of relatively high concentrations of biomolecular components and even in the presence of mammalian cells.
Collapse
Affiliation(s)
- Paolo Destito
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidad de Santiago de Compostela , 15782 , Santiago de Compostela , Spain .
| | - Ana Sousa-Castillo
- Department of Physical Chemistry , Center for Biomedical Research (CINBIO) , Southern Galicia Institute of Health Research (IISGS) , Biomedical Research Networking Center for Mental Health (CIBERSAM) , Universidade de Vigo , 36310 Vigo , Spain .
| | - José R Couceiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidad de Santiago de Compostela , 15782 , Santiago de Compostela , Spain .
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidad de Santiago de Compostela , 15782 , Santiago de Compostela , Spain .
- Instituto de Química Orgánica General CSIC , Juan de la Cierva 3 , 28006 , Madrid , Spain .
| | - Miguel A Correa-Duarte
- Department of Physical Chemistry , Center for Biomedical Research (CINBIO) , Southern Galicia Institute of Health Research (IISGS) , Biomedical Research Networking Center for Mental Health (CIBERSAM) , Universidade de Vigo , 36310 Vigo , Spain .
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidad de Santiago de Compostela , 15782 , Santiago de Compostela , Spain .
| |
Collapse
|
50
|
Canovas C, Moreau M, Vrigneaud JM, Bellaye PS, Collin B, Denat F, Goncalves V. Modular Assembly of Multimodal Imaging Agents through an Inverse Electron Demand Diels-Alder Reaction. Bioconjug Chem 2019; 30:888-897. [PMID: 30742423 DOI: 10.1021/acs.bioconjchem.9b00017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The combination of two imaging probes on the same biomolecule gives access to targeted bimodal imaging agents that can provide more accurate diagnosis, complementary information, or that may be used in different applications, such as nuclear imaging and fluorescence guided surgery. In this study, we demonstrate that dichlorotetrazine, a small, commercially available compound, can be used as a modular platform to easily assemble various imaging probes. Doubly labeled tetrazines can then be conjugated to a protein through a biorthogonal IEDDA reaction. A series of difunctionalized tetrazine compounds containing various chelating agents and fluorescent dyes was synthesized. As a proof of concept, one of these bimodal probes was conjugated to trastuzumab, previously modified with a constrained alkyne group, and the resulting dual-labeled antibody was evaluated in a mouse model, bearing a HER2-positive tumor. A significant uptake into tumor tissues was observed in vivo, by both SPECT-CT and fluorescence imaging, and confirmed ex vivo in biodistribution studies.
Collapse
Affiliation(s)
- Coline Canovas
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR6302, CNRS , Université Bourgogne Franche-Comté , 9 avenue Alain Savary , 21000 , Dijon , France
| | - Mathieu Moreau
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR6302, CNRS , Université Bourgogne Franche-Comté , 9 avenue Alain Savary , 21000 , Dijon , France
| | - Jean-Marc Vrigneaud
- Georges-François LECLERC Cancer Center - UNICANCER , 1 rue Pr Marion , 21079 , Dijon , France
| | - Pierre-Simon Bellaye
- Georges-François LECLERC Cancer Center - UNICANCER , 1 rue Pr Marion , 21079 , Dijon , France
| | - Bertrand Collin
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR6302, CNRS , Université Bourgogne Franche-Comté , 9 avenue Alain Savary , 21000 , Dijon , France.,Georges-François LECLERC Cancer Center - UNICANCER , 1 rue Pr Marion , 21079 , Dijon , France
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR6302, CNRS , Université Bourgogne Franche-Comté , 9 avenue Alain Savary , 21000 , Dijon , France
| | - Victor Goncalves
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR6302, CNRS , Université Bourgogne Franche-Comté , 9 avenue Alain Savary , 21000 , Dijon , France
| |
Collapse
|