1
|
Ghadei SK, Ficek M, Sethy SK, Ryl J, Gupta M, Sakthivel R, Sankaran KJ, Bogdanowicz R. Schottky Junction-Driven Photocatalytic Effect in Boron-Doped Diamond-Graphene Core-Shell Nanoarchitectures: An sp 3/sp 2 Framework for Environmental Remediation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52220-52232. [PMID: 39358895 DOI: 10.1021/acsami.4c08707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Self-formation of boron-doped diamond (BDD)-multilayer graphene (MLG) core-shell nanowalls (BDGNWs) via microwave plasma-enhanced chemical vapor deposition is systematically investigated. Here, the incorporation of nitrogen brings out the origin of MLG shells encapsulating the diamond core, resulting in unique sp3/sp2 hybridized frameworks. The evolution mechanism of the nanowall-like morphology with the BDD-MLG core-shell composition is elucidated through a variety of spectroscopic studies. The photocatalytic performance of these core-shell nanowalls is examined by the deterioration of methylene blue (MB) and rhodamine B (RhB) dyes beneath low-power ultraviolet (UV) light irradiation. Starting with 5 ppm dye solutions and employing BDGNWs as the photocatalyst, remarkable degradation efficiencies of 95% for MB within 100 min and 91% for RhB within 220 min are achieved. The effect of varying dye concentrations was also examined. The enhanced photocatalytic activity is driven by carrier photogeneration and mediated by the Schottky junction formed between BDD and MLG, promoting efficient photoinduced charge separation. The stability of the BDGNW photocatalyst is examined, and after five test runs, the photocatalytic behavior for MB and RhB degradation decreases to 87 and 85%, respectively, from initial values of 96 and 91%, demonstrating excellent photostability. These findings underscore the significance of diamond-graphene nanoarchitectures as promising green carbonaceous photocatalysts.
Collapse
Affiliation(s)
- Surya Kanta Ghadei
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mateusz Ficek
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Salila Kumar Sethy
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Institute of Nanotechnology and Materials Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mukul Gupta
- UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Ramasamy Sakthivel
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kamatchi Jothiramalingam Sankaran
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Robert Bogdanowicz
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland
| |
Collapse
|
2
|
Li H, Xu M, Zhang T. g-C 3N 4 modified with non-precious metal Al with LSPR as an efficient visible light catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16795-16804. [PMID: 38324156 DOI: 10.1007/s11356-024-32017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
The issue of water pollution has emerged as a formidable challenge, prompting a pressing need for solutions. The utilization of metal nanoparticles with surface plasmon resonance and semiconductor composite photocatalysts is regarded as a highly effective approach to solve this problem. g-C3N4 is an effective catalyst for the degradation of organic pollutants. Its photocatalytic performance is usually enhanced by the use of the noble metal Au Ag. However, the high cost of these materials limits their application. In this study, we present the synthesis of Al NPs/g-C3N4 nanocomposites using the bridging effect of ligands. The characterized of transmission electron microscopy (TEM), X-ray diffractometer (XRD) and ultraviolet-visible spectroscopy (UV-Vis) proved that Al NPs/g-C3N4 with a wider light absorption range were successfully synthesized. The effects of ligands, (glutathione (GSH), glutamic acid (GAG), and cysteine (CYS)), Al diameter (40 to 200 nm) and the ratio of Al to g-C3N4 (1:1 to 5:1) on the photocatalytic degradation of methylene blue (MB) by Al NPs/g-C3N4 were also evaluated. The results showed that the optimum degradation efficiency of Al NPs/g-C3N4 for MB at 5 mg/L reached 100% within 60 min, which was 11 times higher than that of pure g-C3N4. The principal analysis of Al enhancing the photocatalytic performance of g-C3N4 was studied through transient photocurrent spectroscopy (TPC), electrochemical impedance spectroscopy (EIS), and steady-state transient fluorescence spectroscopy (PL). The results confirmed that hot carriers generated by localized surface plasmon resonance (LSPR) of Al nanoparticles increase the carrier concentration. In addition, the Schottky barrier generated by Al and g-C3N4 could also improve the carrier separation rate and increase the carrier lifetime. This work is expected to solve the problem of organic wastewater treatment and lay the foundation for subsequent research on photocatalysis.
Collapse
Affiliation(s)
- Haiyu Li
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Mingze Xu
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China.
| | - Tingsong Zhang
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| |
Collapse
|
3
|
Melnikova A, Faggiano A, Visconti M, Cucciniello R, Iannece P, Kostryukova N, Proto A, Fiorentino A, Rizzo L. Photo driven homogeneous advanced oxidation coupled to adsorption process for an effective arsenic removal from drinking water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119568. [PMID: 37976644 DOI: 10.1016/j.jenvman.2023.119568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
The presence of arsenic (As) in drinking water is a major concern for human health. As(III) is the most toxic water-soluble form and it is hard to remove by separation methods, including adsorption, while As(V) is less toxic and easily removable by adsorption. In this work homogenous photo driven advanced oxidation processes (HP-AOPs), namely UVC/H2O2 and UVC/NaOCl, have been investigated in the oxidation of As(III) (initial concentration of 0.1 mg/L) to As(V) and commercial available adsorbents (γ-Al2O3, Bayoxide E33, MgAl-LDHs and ZnAl-LDHs) were tested for subsequent As(V) removal. UVC/H2O2 (99% of As removal, 19 mg/L of H2O2, 2 min of treatment time) and UVC/NaOCl (99% of As removal, 5.1 mg/L of NaOCl, 2 min of treatment time) were found to be more effective than H2O2 (2% of As removal in the same condition of UVC/H2O2) and NaOCl (6% of As removal in the same condition of UVC/NaOCl), respectively and the optimum operation conditions were identified by response surface methodology (RSM) in distilled water and subsequently confirmed in real drinking water (with differences of less than 1%). UVC/NaOCl was the most suitable process being a good compromise among oxidation efficiency, oxidant dose and treatment time. The best results in terms of subsequent removal of As(V) by adsorption were obtained using ZnAl-LDH (88% in both distilled and drinking water). Accordingly, UVC/NaOCl advanced oxidation coupled to ZnAl-LDH adsorption is the best combination for an effective removal of arsenic from drinking water.
Collapse
Affiliation(s)
- Anna Melnikova
- Department of Environmental Health & Safety, Ufa University of Science and Technology, Zaki Validi 32, 450076, Ufa, Republic of Bashkortostan, Russian Federation
| | - Antonio Faggiano
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Marco Visconti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Raffaele Cucciniello
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Patrizia Iannece
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Natalia Kostryukova
- Department of Environmental Health & Safety, Ufa University of Science and Technology, Zaki Validi 32, 450076, Ufa, Republic of Bashkortostan, Russian Federation
| | - Antonio Proto
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Antonino Fiorentino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Luigi Rizzo
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
4
|
Nady N, Abdel Rehim MH, Badawy AA. Dye removal membrane from electrospun nanofibers of blended polybutylenesuccinate and sulphonated expanded polystyrene waste. Sci Rep 2023; 13:15455. [PMID: 37723280 PMCID: PMC10507098 DOI: 10.1038/s41598-023-42424-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023] Open
Abstract
Polystyrene (PS) is a thermoplastic polymer used in food packaging and the manufacture of trays and cups, among other applications. In this work, the preparation of a membrane by electrospinning blended sulphonated expanded PS waste and polybutylenesuccinate (PBS) is described. The fiber quality is controlled by selecting the right polymers' ratios and solvents. Investigation of the structure of the produced membranes by Fourier transform infrared spectroscopy-attenuated total reflectance confirmed the successful sulphonation of expanded PS and the appearance of characteristic (PBS) bands in the prepared blends. Morphology study of the electrospun membranes using a scanning electron microscope revealed that the quality of the fibers is improved significantly by increasing the amount of PBS in the blend solution. Moreover, continuous and more homogenous fibers are produced by increasing the ratio of PBS to 2%. The efficiency of the prepared membranes in dye removal was tested using methylene blue. The effects of different parameters such as, pH, contact time, temperature, and dye concentration have been studied. Also, kinetic and adsorption isotherm models as well as the durability of the prepared membranes were investigated. The membrane prepared from PSS/1% PBS demonstrated the highest dye uptake (846 mol) with good regeneration efficiency. The adsorption process was found to be endothermic and fits the Freundlich isotherm and pseudo-second-order kinetic model. The values of activation energy for the adsorption process are 36.98, 30.70, and 43.40 kJ/mol over PSS, PSS/1% PBS and PSS/2% PBS, respectively.
Collapse
Affiliation(s)
- Norhan Nady
- Polymeric Material Research Department, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Mona H Abdel Rehim
- Packaging Materials Department, National Research Center, Institute of Chemical Industries Research, 33 El Behooth St., Dokki Giza, Egypt.
| | - Abdelrahman A Badawy
- Physical Chemistry Department, National Research Centre, Advanced Materials Technology and Mineral Resources Research Institute, Giza, 12622, Egypt.
| |
Collapse
|
5
|
Vaiano V, De Marco I. Removal of Azo Dyes from Wastewater through Heterogeneous Photocatalysis and Supercritical Water Oxidation. SEPARATIONS 2023. [DOI: 10.3390/separations10040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Azo dyes are synthetic organic dyes used in the textile, leather, and paper industries. They pose environmental problems due to their toxic and persistent nature. The toxicity is due to the presence of azo groups in the dye molecule that can break down into aromatic amines, which are highly toxic to aquatic organisms and humans. Various treatment methods have been developed to remove azo dyes from wastewater. Conventional wastewater treatments have some drawbacks, such as high operating costs, long processing times, generation of sludge, and the formation of toxic by-products. For these reasons, a valid alternative is constituted by advanced oxidation processes. Good results have been obtained using heterogeneous photocatalysis and supercritical water oxidation. In the former method, a photocatalyst is in contact with wastewater, a suitable light activates the catalyst, and generated reactive oxygen species that react with pollutants through oxidative reactions to their complete mineralization; the latter involves pressurizing and heating wastewater to supercritical conditions in a reactor vessel, adding an oxidizing agent to the supercritical water, and allowing the mixture to react. In this review paper, works in the literature that deal with processing wastewater containing azo dyes through photocatalysts immobilized on macroscopic supports (structured photocatalysts) and the supercritical water oxidation technique have been critically analyzed. In particular, advancement in the formulation of structured photocatalysts for the degradation of azo dyes has been shown, underlying different important features, such as the type of support for the photoactive phase, reactor configuration, and photocatalytic efficiency in terms of dye degradation and photocatalyst stability. In the case of supercritical water oxidation, the main results regarding COD and TOC removal from wastewater containing azo dyes have been reported, taking into account the reactor type, operating pressure, and temperature, as well as the reaction time.
Collapse
|
6
|
Nazir A, Huo P, Wang H, Weiqiang Z, Wan Y. A review on plasmonic-based heterojunction photocatalysts for degradation of organic pollutants in wastewater. JOURNAL OF MATERIALS SCIENCE 2023; 58:6474-6515. [PMID: 37065680 PMCID: PMC10039801 DOI: 10.1007/s10853-023-08391-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
UNLABELLED Organic pollutants in wastewater are the biggest problem facing the world today due to population growth, rapid increase in industrialization, urbanization, and technological advancement. There have been numerous attempts to use conventional wastewater treatment techniques to address the issue of worldwide water contamination. However, conventional wastewater treatment has a number of shortcomings, including high operating costs, low efficiency, difficult preparation, fast recombination of charge carriers, generation of secondary waste, and limited light absorption. Therefore, plasmonic-based heterojunction photocatalysts have attracted much attention as a promising method to reduce organic pollutant problems in water due to their excellent efficiency, low operating cost, ease of fabrication, and environmental friendliness. In addition, plasmonic-based heterojunction photocatalysts contain a local surface plasmon resonance that enhances the performance of photocatalysts by improving light absorption and separation of photoexcited charge carriers. This review summarizes the major plasmonic effects in photocatalysts, including hot electron, local field effect, and photothermal effect, and explains the plasmonic-based heterojunction photocatalysts with five junction systems for the degradation of pollutants. Recent work on the development of plasmonic-based heterojunction photocatalysts for the degradation of various organic pollutants in wastewater is also discussed. Lastly, the conclusions and challenges are briefly described and the direction of future development of heterojunction photocatalysts with plasmonic materials is explored. This review could serve as a guide for the understanding, investigation, and construction of plasmonic-based heterojunction photocatalysts for various organic pollutants degradation. GRAPHICAL ABSTRACT Herein, the plasmonic effects in photocatalysts, such as hot electrons, local field effect, and photothermal effect, as well as the plasmonic-based heterojunction photocatalysts with five junction systems for the degradation of pollutants are explained. Recent work on plasmonic-based heterojunction photocatalysts for the degradation of various organic pollutants in wastewater such as dyes, pesticides, phenols, and antibiotics is discussed. Challenges and future developments are also described.
Collapse
Affiliation(s)
- Ahsan Nazir
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Huijie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Zhou Weiqiang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Yang Wan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| |
Collapse
|
7
|
Jeong Y, Gong G, Lee HJ, Seong J, Hong SW, Lee C. Transformation of microplastics by oxidative water and wastewater treatment processes: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130313. [PMID: 36372022 DOI: 10.1016/j.jhazmat.2022.130313] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are contaminants of emerging concern that accumulate in various environments, where they pose threats to both the ecosystem and public health. Since MPs have been detected in drinking water resources and wastewater effluents, more efficient treatment is needed at wastewater treatment plants (WWTPs) and drinking water treatment plants (DWTPs). This review discusses the potential of biological, photochemical, Fenton (-like) systems, ozonation, and other oxidation processes in the treatment of MPs in terms of their indicators of oxidation such as mass loss and surface oxidation. The oxidation processes were further analyzed in terms of limitations and environmental implications. Most previous studies examining MPs degradation using conventional treatments-such as UV disinfection, ozonation, and chlorination-employed significantly higher doses than the common doses applied in DWTPs and WWTPs. Owing to such dose gaps, the oxidative transformation of MPs observed in many previous studies are not likely to occur under practical conditions. Some novel oxidation processes showed promising MPs treatment efficiencies, while many of them have not yet been applied on a larger scale due to high costs and the lack of extensive basic research. Health and environmental impacts related to the discharge of oxidized MPs in effluents should be considered carefully in different aspects: the role as vectors of external pollutants, release of organic compounds (including organic byproducts from oxidation) and fragmentation into smaller particles as MPs circulate in the ecosystem as well as the possibility of bioaccumulation. Future research should also focus on ways to incorporate developed oxidation processes in DWTPs and WWTPs to mitigate MPs contamination.
Collapse
Affiliation(s)
- Yeonseo Jeong
- Department of Chemical Engineering and Materials Science, University of Minnesota, 21 Washington Ave. SE, Minneapolis, MN 55455-0132, United States
| | - Gyeongtaek Gong
- Clean Energy Research Center, Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hye-Jin Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jihye Seong
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seok Won Hong
- Center for Water Cycle Research, Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Boaretti C, Roso M, Modesti M, Lorenzetti A. Ultrasound-Promoted Abatement of Formaldehyde in Liquid Phase with Electrospun Nanostructured Membranes: The Synergy of Combined AOPs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:435. [PMID: 36770396 PMCID: PMC9920719 DOI: 10.3390/nano13030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The present work investigates the effect of ultrasounds in the performance of combined advanced oxidation processes (AOPs) on the degradation of formaldehyde (HCHO)-polluted aqueous solutions for potential application in wastewater treatment. Different heterogeneous nanostructured catalysts based on TiO2 and FeSO4 for photocatalysis and the Fenton process were employed after electrospray deposition on electrospun nanofibrous membranes. Such systems were tested, without the use of any added hydrogen peroxide, by varying the combinations among the selected AOPs in a batch reactor configuration. The results show that, in the absence of a Fenton reaction, ultrasounds provided a significantly increased formaldehyde photocatalytic abatement, probably by increasing the concentration of active species through a different set of reactions while providing a favorable mass transfer regime by the cavitational effect. Due to the faster kinetics of the photo-Fenton process, thanks to its partial homogeneous nature, such a beneficial effect is more limited for the sono-photo-Fenton configuration. On the other hand, the employment of a sono-photocatalytic-Fenton process revealed a synergic effect that provided the best results, reducing the formaldehyde concentration to less than 99% after 240 min. Further analysis showed that, due to a mutual influence, only a tailored TiO2/FeSO4 ratio on the membranes was able to display the best performance.
Collapse
Affiliation(s)
- Carlo Boaretti
- Correspondence: (C.B.); (A.L.); Tel.: +39-049-827-5544 (C.B.); +39-049-827-5556 (A.L.)
| | | | | | - Alessandra Lorenzetti
- Correspondence: (C.B.); (A.L.); Tel.: +39-049-827-5544 (C.B.); +39-049-827-5556 (A.L.)
| |
Collapse
|
9
|
A Novel High-Energy Vacuum Ultraviolet Light Photofunctionalization Approach for Decomposing Organic Molecules around Titanium. Int J Mol Sci 2023; 24:ijms24031978. [PMID: 36768297 PMCID: PMC9916712 DOI: 10.3390/ijms24031978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Titanium undergoes biological aging, represented by increased hydrophobicity and surface accumulation of organic molecules over time, which compromises the osseointegration of dental and orthopedic implants. Here, we evaluated the efficacy of a novel UV light source, 172 nm wavelength vacuum UV (VUV), in decomposing organic molecules around titanium. Methylene blue solution used as a model organic molecule placed in a quartz ampoule with and without titanium specimens was treated with four different UV light sources: (i) ultraviolet C (UVC), (ii) high-energy UVC (HUVC), (iii) proprietary UV (PUV), and (iv) VUV. After one minute of treatment, VUV decomposed over 90% of methylene blue, while there was 3-, 3-, and 8-fold more methylene blue after the HUVC, PUV, and UVC treatments, respectively. In dose-dependency experiments, maximal methylene blue decomposition occurred after one minute of VUV treatment and after 20-30 min of UVC treatment. Rapid and effective VUV-mediated organic decomposition was not influenced by the surface topography of titanium or its alloy and even occurred in the absence of titanium, indicating only a minimal photocatalytic contribution of titanium dioxide to organic decomposition. VUV-mediated but not other light source-mediated methylene blue decomposition was proportional to its concentration. Plastic tubes significantly reduced methylene blue decomposition for all light sources. These results suggest that VUV, in synergy with quartz ampoules, mediates rapid and effective organic decomposition compared with other UV sources. This proof-of-concept study paves the way for rapid and effective VUV-powered photofunctionalization of titanium to overcome biological aging.
Collapse
|
10
|
Pastre MMG, Cunha DL, Marques M. Design of biomass-based composite photocatalysts for wastewater treatment: a review over the past decade and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9103-9126. [PMID: 36441319 DOI: 10.1007/s11356-022-24089-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
This investigation applied a systematic review approach on publications covering primary data during 2012-2022 with a focus on photocatalytic degradation of pollutants in aqueous solution by composite materials synthesized with biomass and, at least, TiO2 and/or ZnO semiconductors to form biomass-based composite photocatalysts (BCPs). After applying a set of eligibility criteria, 107 studies including 832 observations/entries were analyzed. The average removal efficiency and degradation kinetic rate reported for all model pollutants and BCPs were 77.5 ± 21.5% and 0.064 ± 0.174 min-1, respectively. Principal component analysis (PCA) was applied to analyze BCPs synthesis methods, experimental conditions, and BCPs' characteristics correlated with the removal efficiency and photodegradation kinetics. The relevance of adsorption processes on the pollutants' removal efficiency was highlighted by PCA applied to all categories of pollutants (PCA_pol). The PCA applied to textile dyes (PCA_dyes) and pharmaceutical compounds (PCA_pharma) also indicate the influence of variables related to the composite synthesis (i.e., thermal treatment and time spent on BCPs synthesis) and photocatalytic experimental parameters (catalyst concentration, pollutant concentration, and irradiation time) on the degradation kinetic accomplished by BCPs. Furthermore, the multivariate analysis (PCA_pol) revealed that the specific surface area and the narrow band gap are key characteristics for BCPs to serve as a competitive photocatalyst. The effect of scavengers on pollutants' degradation and the recyclability of BCPs are also discussed, as necessary aspects for scalability trends. Further investigations are recommended to compare the performance of BCPs and commercial catalysts, as well as to assess the costs to treat real wastewater.
Collapse
Affiliation(s)
- Marina M G Pastre
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, CEP, Rio de Janeiro, RJ, 20550-900, Brazil.
| | - Deivisson Lopes Cunha
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, CEP, Rio de Janeiro, RJ, 20550-900, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, CEP, Rio de Janeiro, RJ, 20550-900, Brazil
| |
Collapse
|
11
|
Decomposing Organic Molecules on Titanium with Vacuum Ultraviolet Light for Effective and Rapid Photofunctionalization. J Funct Biomater 2022; 14:jfb14010011. [PMID: 36662058 PMCID: PMC9861116 DOI: 10.3390/jfb14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Ultraviolet (UV) photofunctionalization counteracts the biological aging of titanium to increase the bioactivity and osseointegration of titanium implants. However, UV photofunctionalization currently requires long treatment times of between 12 min and 48 h, precluding routine clinical use. Here, we tested the ability of a novel, xenon excimer lamp emitting 172 nm vacuum UV (VUV) to decompose organic molecules coated on titanium as a surrogate of photofunctionalization. Methylene blue as a model organic molecule was coated on grade 4 commercially pure titanium and treated with four UV light sources: (i) ultraviolet C (UVC), (ii) high-energy UVC (HUVC), (iii) proprietary UV (PUV), and (iv) VUV. After one minute of treatment, VUV decomposed 57% of methylene blue compared with 2%, 36%, and 42% for UVC, HUVC, and PUV, respectively. UV dose-dependency testing revealed maximal methylene blue decomposition with VUV within one minute. Equivalent decomposition was observed on grade 5 titanium alloy specimens, and placing titanium specimens in quartz ampoules did not compromise efficacy. Methylene blue was decomposed even on polymethyl methacrylate acrylic specimens at 20-25% lower efficiency than on titanium specimens, indicating a relatively small contribution of titanium dioxide-mediated photocatalytic decomposition to the total decomposition. Load-testing revealed that VUV maintained high efficacy of methylene blue decomposition regardless of the coating density, whereas other UV light sources showed low efficacy with thin coatings and plateauing efficacy with thicker coatings. This study provides foundational data on rapid and efficient VUV-mediated organic decomposition on titanium. In synergy with quartz ampoules used as containers, VUV has the potential to overcome current technical challenges hampering the clinical application of UV photofunctionalization.
Collapse
|
12
|
Preparation and Real World Applications of Titania Composite Materials for Photocatalytic Surface, Air, and Water Purification: State of the Art. INORGANICS 2022. [DOI: 10.3390/inorganics10090139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The semiconducting transition metal oxide TiO2 is a rather cheap and non-toxic material with superior photocatalytic properties. TiO2 thin films and nanoparticles are known to have antibacterial, antiviral, antifungal, antialgal, self, water, and air-cleaning properties under UV or sun light irradiation. Based on these excellent qualities, titania holds great promises in various fields of applications. The vast majority of published field and pilot scale studies are dealing with the modification of building materials or generally focus on air purification. Based on the reviewed papers, for the coating of glass, walls, ceilings, streets, tunnels, and other large surfaces, titania is usually applied by spray-coating due to the scalibility and cost-efficiency of this method compared to alternative coating procedures. In contrast, commercialized applications of titania in medical fields or in water purification are rarely found. Moreover, in many realistic test scenarios it becomes evident that the photocatalytic activity is often significantly lower than in laboratory settings. In this review, we will give an overview on the most relevant real world applications and commonly applied preparation methods for these purposes. We will also look at the relevant bottlenecks such as visible light photocatalytic activity and long-term stability and will make suggestions to overcome these hurdles for a widespread usage of titania as photocalyst.
Collapse
|
13
|
Borrás-Jiménez D, Silva-López W, Nieto-Londoño C. Towards the Configuration of a Photoelectrocatalytic Reactor: Part 2-Selecting Photoreactor Flow Configuration and Operating Variables by a Numerical Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3030. [PMID: 36080067 PMCID: PMC9457646 DOI: 10.3390/nano12173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
This work aims to select a photoreactor flow configuration and operational conditions that maximize the Photocatalytic Space-time Yield in a photoelectrocatalytic reactor to degrade Reactive Red 239 textile dye. A numerical study by Computational Fluid Dynamics (CFD) was carried out to model the phenomena of momentum and species transport and surface reaction kinetics. The photoreactor flow configuration was selected between axial (AF) and tangential (TF) inlet and outlet flow, and it was found that the TF configuration generated a higher Space-time Yield (STY) than the AF geometry in both laminar and turbulent regimes due to the formation of a helical movement of the fluid, which generates velocity in the circumferential and axial directions. In contrast, the AF geometry generates a purely axial flow. In addition, to maximize the Photocatalytic Space-time Yield (PSTY), it is necessary to use solar radiation as an external radiation source when the flow is turbulent. In conclusion, the PSTY can be maximized up to a value of 45 g/day-kW at an inlet velocity of 0.2 m/s (inlet Reynolds of 2830), solar radiation for external illumination, and internal illumination by UV-LEDs of 14 W/m2, using a photoreactor based on tangent inlet and outlet flow.
Collapse
Affiliation(s)
- Daniel Borrás-Jiménez
- Grupo de Investigación en Óptica y Espectroscopía, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - Wilber Silva-López
- Grupo de Investigación en Óptica y Espectroscopía, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - César Nieto-Londoño
- Grupo de Investigación en Energía y Termodinámica, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| |
Collapse
|
14
|
Zhang S, Malik S, Ali N, Khan A, Bilal M, Rasool K. Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration. Top Curr Chem (Cham) 2022; 380:44. [PMID: 35951126 PMCID: PMC9372017 DOI: 10.1007/s41061-022-00397-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/07/2022] [Indexed: 12/07/2022]
Abstract
Nanotechnology has emerged as an extraordinary and rapidly developing discipline of science. It has remolded the fate of the whole world by providing diverse horizons in different fields. Nanomaterials are appealing because of their incredibly small size and large surface area. Apart from the naturally occurring nanomaterials, synthetic nanomaterials are being prepared on large scales with different sizes and properties. Such nanomaterials are being utilized as an innovative and green approach in multiple fields. To expand the applications and enhance the properties of the nanomaterials, their functionalization and engineering are being performed on a massive scale. The functionalization helps to add to the existing useful properties of the nanomaterials, hence broadening the scope of their utilization. A large class of covalent and non-covalent functionalized nanomaterials (FNMs) including carbons, metal oxides, quantum dots, and composites of these materials with other organic or inorganic materials are being synthesized and used for environmental remediation applications including wastewater treatment. This review summarizes recent advances in the synthesis, reporting techniques, and applications of FNMs in adsorptive and photocatalytic removal of pollutants from wastewater. Future prospects are also examined, along with suggestions for attaining massive benefits in the areas of FNMs.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Sumeet Malik
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National and Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 5824, Doha, Qatar.
| |
Collapse
|
15
|
Kumar P, Verma S, Korošin NČ, Žener B, Štangar UL. Increasing the photocatalytic efficiency of ZnWO4 by synthesizing a Bi2WO6/ZnWO4 composite photocatalyst. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Zhou Y, Li WB, Kumar V, Necibi MC, Mu YJ, Shi CZ, Chaurasia D, Chauhan S, Chaturvedi P, Sillanpää M, Zhang Z, Awasthi MK, Sirohi R. Synthetic organic antibiotics residues as emerging contaminants waste-to-resources processing for a circular economy in China: Challenges and perspective. ENVIRONMENTAL RESEARCH 2022; 211:113075. [PMID: 35271831 DOI: 10.1016/j.envres.2022.113075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Synthetic antibiotics have been known for years to combat bacterial antibiotics. But their overuse and resistance have become a concern recently. The antibiotics reach the environment, including soil from the manufacturing process and undigested excretion by cattle and humans. It leads to overburden and contamination of the environment. These organic antibiotics remain in the environment for a very long period. During this period, antibiotics come in contact with various flora and fauna. The ill manufacturing practices and inadequate wastewater treatment cause a severe problem to the water bodies. After pretreatment from pharmaceutical industries, the effluents are released to the water bodies such as rivers. Even after pretreatment, effluents contain a significant number of antibiotic residues, which affect the living organisms living in the water bodies. Ultimately, river contaminated water reaches the ocean, spreading the contamination to a vast environment. This review paper discusses the impact of synthetic organic contamination on the environment and its hazardous effect on health. In addition, it analyzes and suggests the biotechnological strategies to tackle organic antibiotic residue proliferation. Moreover, the degradation of organic antibiotic residues by biocatalyst and biochar is analyzed. The circular economy approach for waste-to-resource technology for organic antibiotic residue in China is analyzed for a sustainable solution. Overall, the significant challenges related to synthetic antibiotic residues and future aspects are analyzed in this review paper.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Wen-Bing Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Mohamed Chaker Necibi
- International Water Research Institute, Mohammed VI Polytechnic University, 43150, Ben-Guerir, Morocco
| | - Yin-Jun Mu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chang-Ze Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136713, Republic of Korea.
| |
Collapse
|
17
|
Subtil GW, Vicentini JCM, de Oliveira DM, de Castro Hoshino LV, Cordeiro PHY, Vicentino RC, Scaliante MHNO. The influence of different zeolitic supports on hydrogen production and waste degradation. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
González-Burciaga LA, Núñez-Núñez CM, Proal-Nájera JB. Challenges of TiO 2 heterogeneous photocatalysis on cytostatic compounds degradation: state of the art. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42251-42274. [PMID: 34741739 DOI: 10.1007/s11356-021-17241-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
The following work provides a perspective on the degradation of cytostatic pollutants through TiO2 heterogeneous photocatalysis. Cytostatic drugs are emerging pollutants used for cancer treatment found in hospital and domestic wastewater. Small amounts of cytostatic pollutants may pose severe health problems in human beings, animals, and plants after prolonged contact. This research presents a general review of some water treatment methods, such as aerobic activated sludge, enzymatic degradation, nanofiltration and chlorination, that have been used for the degradation or elimination of cytostatic drugs in wastewater. In recent years, photocatalysis has become important to solve this problem; these advanced oxidation process uses pure and modified TiO2 to degrade cytostatic contaminants and convert them into non-harmful substances or to eliminate them completely. This work contains a comprehensive review of the heterogeneous photocatalysis process and mechanism, and its application on the removal of cytostatic pollutants. Even if research on the topic is still scarce, this literature review provides interesting highlights on the scope of the research field, and the path such research could follow.
Collapse
Affiliation(s)
- Luis A González-Burciaga
- Instituto Politécnico Nacional, CIIDIR-Unidad Durango, Calle Sigma 119, Fracc. 20 de Noviembre II, Durango, 34220, México
| | - Cynthia M Núñez-Núñez
- Universidad Politécnica de Durango, Carretera Durango-México km 9.5, Col. Dolores Hidalgo, Durango, 34300, México
| | - José B Proal-Nájera
- Instituto Politécnico Nacional, CIIDIR-Unidad Durango, Calle Sigma 119, Fracc. 20 de Noviembre II, Durango, 34220, México.
| |
Collapse
|
19
|
Comparative Efficiencies for Phenol Degradation on Solar Heterogeneous Photocatalytic Reactors: Flat Plate and Compound Parabolic Collector. Catalysts 2022. [DOI: 10.3390/catal12060575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phenol is a recalcitrant anthropogenic compound whose presence has been reported in both wastewater and drinking water; human exposure to phenolic substances can lead to health problems. The degradation of phenol (measured as COD decrease) through solar heterogeneous photocatalysis with immobilized TiO2 was performed in two different reactors: a flat-plate reactor (FPR) and a compound parabolic collector (CPC). A 23 full factorial experimental design was followed. The variables were the presence of TiO2, H2O2 addition, and the type of reactor. Data were fitted to the pseudo-first-order reaction-rate-kinetics model. The rate constant for photocatalytic phenol degradation with 1 mM of H2O2 was 6.6 × 10−3 min−1 for the FPR and 5.9 × 10−3 min−1 in the CPC. The calculated figures of merit were analyzed with a MANCOVA, with UV fluence as a covariate. An ANCOVA showed that the type of reactor, H2O2 addition, or fluence had no statistically significant effect on the results, but there was for the presence of TiO2. According to the MANCOVA, fluence and TiO2 presence were significant (p < 0.05). The CPC was on average 17.4% more efficient than the FPR when it came to collector area per order (ACO) by heterogeneous photocatalysis and 1 mM H2O2 addition.
Collapse
|
20
|
Xu M, Nan H, Yang H, Xue C, Fu H, Yang G, Chen H, Lin H. An Efficient, Multi‐element AC/TiO
2
/WO
3
Photocatalyst for the Degradation of Tetracycline Hydrochloride. ChemistrySelect 2022. [DOI: 10.1002/slct.202102883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mengdi Xu
- Qinghai University Xining 810016 China
| | - Hui Nan
- Qinghai University Xining 810016 China
| | - Hao Yang
- Qinghai University Xining 810016 China
| | | | - Hua Fu
- Qinghai University Xining 810016 China
| | | | | | - Hong Lin
- Key Laboratory of New Ceramics & Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
21
|
Chen J, Wang K, Tian J, Yu W, Chen Y, Li N, Qi Z, Wang C. Preparation of BiOCl/Bi 2WO 6 Photocatalyst for Efficient Fixation on Cotton Fabric: Applications in UV Shielding and Self-Cleaning Performances. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7002. [PMID: 34832402 PMCID: PMC8623855 DOI: 10.3390/ma14227002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
In this work, a visible-light-driven BiOCl/Bi2WO6 photocatalyst was obtained via a facile hydrothermal method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), ultraviolet/visible light diffuse reflection spectroscopy (UV/Vis), and photocurrent (PC). BiOCl/Bi2WO6 was modified with (3-chloro-2-hydroxypropyl) trimethyl ammonium chloride to obtain the cationized BiOCl/Bi2WO6. Cotton fabric was pretreated with sodium hydroxide (NaOH) and sodium chloroacetate solution to obtain carboxymethylated cotton fabric, which was further reacted with cationized BiOCl/Bi2WO6 to achieve finished cotton fabric. The cotton fabrics were characterized by Fourier-transform infrared spectroscopy (FT-IR), XRD, SEM, and EDS. The photocatalytic activity of the BiOCl/Bi2WO6 photocatalyst and cotton fabrics was assessed by photocatalytic degradation of MB (methylene blue) solution under simulated visible light. The self-cleaning property of cotton fabrics was evaluated by removing MB solution and red-wine stains. Results revealed that the coated cotton fabrics exhibited appreciable photocatalytic and self-cleaning performance. In addition, anti-UV studies showed that the finished cotton fabrics had remarkable UV blocking properties in the UVA and UVB regions. Therefore, the finished cotton fabric with BiOCl/Bi2WO6 can provide a framework for the development of multifunctional textiles.
Collapse
Affiliation(s)
- Jiayi Chen
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China; (J.C.); (K.W.); (J.T.); (W.Y.); (Y.C.); (N.L.); (Z.Q.)
| | - Kuang Wang
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China; (J.C.); (K.W.); (J.T.); (W.Y.); (Y.C.); (N.L.); (Z.Q.)
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Jialong Tian
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China; (J.C.); (K.W.); (J.T.); (W.Y.); (Y.C.); (N.L.); (Z.Q.)
| | - Wenhui Yu
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China; (J.C.); (K.W.); (J.T.); (W.Y.); (Y.C.); (N.L.); (Z.Q.)
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Yujie Chen
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China; (J.C.); (K.W.); (J.T.); (W.Y.); (Y.C.); (N.L.); (Z.Q.)
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Na Li
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China; (J.C.); (K.W.); (J.T.); (W.Y.); (Y.C.); (N.L.); (Z.Q.)
| | - Zhenming Qi
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China; (J.C.); (K.W.); (J.T.); (W.Y.); (Y.C.); (N.L.); (Z.Q.)
| | - Chunxia Wang
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China; (J.C.); (K.W.); (J.T.); (W.Y.); (Y.C.); (N.L.); (Z.Q.)
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| |
Collapse
|
22
|
Cationic Dye Degradation and Real Textile Wastewater Treatment by Heterogeneous Photo-Fenton, Using a Novel Natural Catalyst. Catalysts 2021. [DOI: 10.3390/catal11111358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A photo-Fenton process using a local iron oxide as a natural catalyst was compared to Fenton and UV/H2O2 advanced oxidation processes for degrading crystal violet (CV) dye in aqueous solutions. The catalyst was characterized by transmission electron microscopy (TEM), energy dispersive X-ray microanalysis (EDX), Fourier transform infrared spectroscopy (FT-IR), Raman spectrum, X-ray diffraction (XRD), UV-vis spectroscopy, and Brunauer–Emmett–Teller (BET) analysis. The optical properties proved that the catalyst represents a good candidate for photocatalytic activity. The impact of different parameters (catalyst dose, initial CV concentration, initial H2O2 concentration, pH) on the photo-Fenton efficiency was evaluated. A photo-Fenton process operated under UVC light irradiation, at spontaneous pH, with 1.0 g/L of catalyst and 30 mg/L of H2O2 was the most effective process, resulting in 98% CV dye removal within 3 h. LC-MS and ion-chromatography techniques were used to identify demethylated organic intermediates during the process. Furthermore, a regeneration study of the catalyst showed its stability and reusability (after three treatment cycles, CV dye degradation decreased from 94% to 83%). Finally, the photo-Fenton process was tested in the treatment of real textile wastewater, and the effluent was found to be in compliance with standards for industrial wastewater disposal into sewerage.
Collapse
|
23
|
Trawiński J, Szpot P, Zawadzki M, Skibiński R. Photochemical transformation of fentanyl under the simulated solar radiation - Enhancement of the process by heterogeneous photocatalysis and in silico analysis of toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148171. [PMID: 34119797 DOI: 10.1016/j.scitotenv.2021.148171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
In this study the photochemical transformation of fentanyl-a very potent opioid drug-under simulated solar radiation was investigated for the first time. This pharmaceutical is frequently detected in various environment samples at concentrations that should be regarded as potentially harmful. Nevertheless, to date, no drug phototransformation products (TPs) have been reported. Considering fentanyl's exceptionally high toxicity, knowledge of the properties of these potential TPs is essential in order to properly assess its pollution impact. In this study, all photolytic experiments were performed using a xenon lamp (D65 filter) and RP-UHPLC coupled with the ESI-high-resolution tandem mass spectrometry. The phototransformation of fentanyl in natural river water and the application of heterogeneous photocatalysis as a possible way of decontaminating water were also investigated. Fentanyl turned out to be photostable, but twenty-six previously unreported TPs (formed mainly as a consequence of hydroxylation and oxidation) were found and characterized. The applied catalysts-TiO2 and ZnO-showed very high effectiveness, and the presence of the natural water matrix further increased the photodecomposition rate (up to 600 times) relative to direct photolysis. Importantly, the almost complete degradation of the parent compound as well as its TPs after 16 min of irradiation indicated that heterogeneous photocatalysis can be considered an efficient way of treatment of fentanyl-contaminated water. The computational analysis of toxicity showed that fentanyl may be more harmful to rodents and aquatic species than its TPs. However, some of these products are probably more mutagenic and developmentally toxic. Additionally, one product in particular may be a strong estrogenic compound, proving the importance of assessing TPs' toxic properties. The evaluation of bioaccumulation, bioconcentration and biodegradability revealed that fentanyl possesses unfavorable properties compared to TPs.
Collapse
Affiliation(s)
- Jakub Trawiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Paweł Szpot
- Wroclaw Medical University, Department of Forensic Medicine, 4 J. Mikulicza-Radeckiego Street, Wroclaw 50-345, Poland; Institute of Toxicology Research, 45 Kasztanowa Street, Borowa 55-093, Poland
| | - Marcin Zawadzki
- Wroclaw Medical University, Department of Forensic Medicine, 4 J. Mikulicza-Radeckiego Street, Wroclaw 50-345, Poland; Institute of Toxicology Research, 45 Kasztanowa Street, Borowa 55-093, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.
| |
Collapse
|
24
|
Adhikari S, Mandal S, Kim DH. 1D/2D constructed Bi 2S 3/Bi 2O 2CO 3 direct Z-Scheme heterojunction: A versatile photocatalytic material for boosted photodegradation, photoreduction and photoelectrochemical detection of water-based contaminants. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126263. [PMID: 34111747 DOI: 10.1016/j.jhazmat.2021.126263] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
In this work, two-dimensional Bi2O2CO3 disk is synthesized, followed by the growth of Bi2S3 over Bi2O2CO3 via topotactic transformation by controlling the amount of thiourea under hydrothermal conditions. The synthesized composite catalyst is investigated for photocatalytic oxidation and reduction of tetracycline hydrochloride and hexavalent chromium under visible light irradiation. High interfacial contact between the Bi2O2CO3 disk0 and Bi2S3 fiber is confirmed via high-resolution microscopic imaging. Enhanced light absorption and increased charge carrier separation is observed after the formation of the Bi2S3/Bi2O2CO3 composite. The Bi2S3/Bi2O2CO3 composite grown using 1 mmol of thiourea shows approximately 98% degradation of tetracycline hydrochloride after 120 min and 99% Cr(VI) reduction after 90 min of photochemical reaction under visible light irradiation. The charge separation is due to the formed internal electric field at the interface, which upon light irradiation follows a z-scheme charge transfer hindering the recombination at the Bi2S3 and Bi2O2CO3 interface, thereby contributing efficiently to the photochemical process. In addition, the mechanism of the photochemical reaction for the degradation of pollutants is supported using quencher and probe experiments. Furthermore, photoelectrochemical detection of antibiotic in aqueous solution is conducted to understand the sensing feasibility of the synthesized system.
Collapse
Affiliation(s)
- Sangeeta Adhikari
- School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Catalyst Research Institute, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Sandip Mandal
- School of Earth Science and Environmental Engineering, GIST, S6 123 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 61005, Republic of Korea
| | - Do-Heyoung Kim
- School of Chemical Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
25
|
Danfá S, Martins RC, Quina MJ, Gomes J. Supported TiO 2 in Ceramic Materials for the Photocatalytic Degradation of Contaminants of Emerging Concern in Liquid Effluents: A Review. Molecules 2021; 26:molecules26175363. [PMID: 34500795 PMCID: PMC8434047 DOI: 10.3390/molecules26175363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/03/2022] Open
Abstract
The application of TiO2 as a slurry catalyst for the degradation of contaminants of emerging concern (CEC) in liquid effluents has some drawbacks due to the difficulties in the catalyst reutilization. Thus, sophisticated and expensive separation methods are required after the reaction step. Alternatively, several types of materials have been used to support powder catalysts, so that fixed or fluidized bed reactors may be used. In this context, the objective of this work is to systematize and analyze the results of research inherent to the application of ceramic materials as support of TiO2 in the photocatalytic CEC removal from liquid effluents. Firstly, an overview is given about the treatment processes able to degrade CEC. In particular, the photocatalysts supported in ceramic materials are analyzed, namely the immobilization techniques applied to support TiO2 in these materials. Finally, a critical review of the literature dedicated to photocatalysis with supported TiO2 is presented, where the performance of the catalyst is considered as well as the main drivers and barriers for implementing this process. A focal point in the future is to investigate the possibility of depurating effluents and promote water reuse in safe conditions, and the supported TiO2 in ceramic materials may play a role in this scope.
Collapse
|
26
|
Wastewater treatment with the advent of TiO2 endowed photocatalysts and their reaction kinetics with scavenger effect. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116479] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Kayani ABA, Kuriakose S, Monshipouri M, Khalid FA, Walia S, Sriram S, Bhaskaran M. UV Photochromism in Transition Metal Oxides and Hybrid Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100621. [PMID: 34105241 DOI: 10.1002/smll.202100621] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Limited levels of UV exposure can be beneficial to the human body. However, the UV radiation present in the atmosphere can be damaging if levels of exposure exceed safe limits which depend on the individual the skin color. Hence, UV photochromic materials that respond to UV light by changing their color are powerful tools to sense radiation safety limits. Photochromic materials comprise either organic materials, inorganic transition metal oxides, or a hybrid combination of both. The photochromic behavior largely relies on charge transfer mechanisms and electronic band structures. These factors can be influenced by the structure and morphology, fabrication, composition, hybridization, and preparation of the photochromic materials, among others. Significant challenges are involved in realizing rapid photochromic change, which is repeatable, reversible with low fatigue, and behaving according to the desired application requirements. These challenges also relate to finding the right synergy between the photochromic materials used, the environment it is being used for, and the objectives that need to be achieved. In this review, the principles and applications of photochromic processes for transition metal oxides and hybrid materials, photocatalytic applications, and the outlook in the context of commercialized sensors in this field are presented.
Collapse
Affiliation(s)
- Aminuddin Bin Ahmad Kayani
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Sruthi Kuriakose
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Mahta Monshipouri
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | | | - Sumeet Walia
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
- School of Engineering, RMIT University, Melbourne, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Madhu Bhaskaran
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| |
Collapse
|
28
|
Xu J, Olvera-Vargas H, Teo FYH, Lefebvre O. A comparison of visible-light photocatalysts for solar photoelectrocatalysis coupled to solar photoelectro-Fenton: Application to the degradation of the pesticide simazine. CHEMOSPHERE 2021; 276:130138. [PMID: 33740647 DOI: 10.1016/j.chemosphere.2021.130138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Three different visible-light photocatalysts (hematite (α-Fe2O3), bismuth vanadate (BiVO4) and Mo-doped bismuth vanadate (BiMoVO4)) deposited on transparent fluorine-doped SnO2 (FTO) were evaluated for the solar-driven photoelectrocatalytic treatment of emerging pollutants. BiMoVO4 was found to be the most effective photoanode, yielding the fastest degradation rate constant and highest mineralization efficiency using phenol as the oxidation probe. The BiMoVO4 photoanode was then used to degrade the herbicide simazine in a photoelectrolytic cell combining photoelectrocatalysis (PEC) with photoelectron-Fenton (PEF) under solar light (SPEC-SPEC). Total simazine removal was achieved within 1 min of treatment (kapp = 4.21 min-1) at the optimum electrode potential of 2.5 V vs Ag/AgCl, with complete TOC removal in 2 h. The analysis of anionic species in solution during treatment showed that most of the nitrogen heteroatoms in the simazine structure were converted into NO3- following •OH addition to organic N. This innovative process combining BiMoVO4-PEC with PEF using solar light as a sustainable source of energy (SPEC-SPEF) achieved the highest degradation/mineralization efficiency ever reported for simazine treatment. Besides, this is the first work reporting the photo(electrochemical) degradation of this toxic herbicide.
Collapse
Affiliation(s)
- Jianxiong Xu
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Hugo Olvera-Vargas
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore; Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos, 62580, Mexico
| | - Felix Yee Hao Teo
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Olivier Lefebvre
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore.
| |
Collapse
|
29
|
Peiris S, Silva HB, Ranasinghe KN, Bandara SV, Perera IR. Recent development and future prospects of
TiO
2
photocatalysis. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000465] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sasanka Peiris
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St Lucia Queensland Australia
| | - Haritha B. Silva
- Department of Chemistry, Faculty of Science University of Peradeniya Peradeniya Sri Lanka
| | - Kumudu N. Ranasinghe
- Department of Chemistry, Faculty of Science University of Peradeniya Peradeniya Sri Lanka
| | - Sanjaya V. Bandara
- Department of Chemistry, Faculty of Science University of Peradeniya Peradeniya Sri Lanka
| | | |
Collapse
|
30
|
Roy N, Alex SA, Chandrasekaran N, Mukherjee A, Kannabiran K. A comprehensive update on antibiotics as an emerging water pollutant and their removal using nano-structured photocatalysts. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:104796. [DOI: 10.1016/j.jece.2020.104796] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
31
|
Babu B, Koutavarapu R, Shim J, Kim J, Yoo K. Enhanced solar-light-driven photocatalytic and photoelectrochemical properties of zinc tungsten oxide nanorods anchored on bismuth tungsten oxide nanoflakes. CHEMOSPHERE 2021; 268:129346. [PMID: 33360940 DOI: 10.1016/j.chemosphere.2020.129346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
At present, sustainable water supply and energy generation are the most important challenges faced by humankind globally. Thus, it is crucial to progress ecological techniques for sustainable removal of organic pollutants from wastewater and generation of hydrogen as an alternative to fossil fuels. In this study, zinc tungsten oxide (ZnWO4) nanorods, bismuth tungsten oxide (Bi2WO6) nanoflakes, and Bi2WO6/ZnWO4 (BO-ZO) nanocomposites were prepared via a simple hydrothermal approach. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, diffuse reflectance spectroscopy, and electrochemical analyses were conducted to confirm the formation of the BO-ZO heterostructure. The structural and morphological analyses revealed that the ZnWO4 nanorods were moderately dispersed on the Bi2WO6 nanoflakes. The bandgap tuning of BO-ZO nanocomposite confirmed the establishment of the heterostructure with band bending properties. The BO-ZO nanocomposite could degrade 99.52% of methylene blue (MB) within 60 min upon solar-light illumination. The photoelectrochemical (PEC) measurement results showed that the BO-ZO nanocomposite showed low charge-transfer resistance and high photocurrent response with good stability. The BO-ZO photoanode showed a low charge-transfer resistance of 35.33 Ω and high photocurrent density of 0.1779 mA/cm2 in comparison with Ag/AgCl in a 0.1 M Na2SO3 electrolyte under solar-light illumination. The MB photocatalytic degradation and PEC water oxidation mechanisms of the nanocomposite were investigated.
Collapse
Affiliation(s)
- Bathula Babu
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| | | | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Jonghoon Kim
- Department of Electrical Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Kisoo Yoo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
32
|
Abstract
In this paper, the photocatalytic degradation of glyphosate by zinc oxide (ZnO) photocatalysts doped with tungsten (W) was investigated under solar simulated light. The photocatalysts were successfully synthesized through a simple precipitation method and subsequently characterized by different techniques: Raman spectroscopy, UV–Vis, N2 adsorption at −196 °C, X-ray diffraction, and SEM analysis. In particular, all the prepared catalysts were characterized by a crystallite size of about 28 nm and a hexagonal wurtzite structure. After the W doping, the bandgap energy decreased from 3.22 of pure ZnO to 3.19 for doped ZnO. This allowed us to obtain good results in terms of glyphosate degradation and simultaneous mineralization under solar simulated lamps, making the process environmentally friendly and with almost zero energy costs. In particular, the best photocatalytic performance was obtained with 100 W-ZnO (prepared with 1.5 mol% of W). With this catalyst, after 180 min of exposure to solar simulated light, the glyphosate degradation and mineralization was equal to 74% and 30%, respectively. Furthermore, it has been shown that the best catalyst dosage was equal to 1.5 g/L. The study on the influence of pH evidenced that the best photocatalytic performances are obtained at spontaneous (neutral) pH conditions. Finally, to determine the main reactive species in the glyphosate oxidation, the effects of different radical scavengers were tested. The results evidenced that the glyphosate oxidation mechanism seems to be related mainly to the O2•− generated under simulated solar light irradiation, but also in minor part to h+.
Collapse
|
33
|
Graphitic Carbon Nitride-Based Composite in Advanced Oxidation Processes for Aqueous Organic Pollutants Removal: A Review. Processes (Basel) 2020. [DOI: 10.3390/pr9010066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In recent decades, a growing number of organic pollutants released have raised worldwide concern. Graphitic carbon nitride (g-C3N4) has drawn increasing attention in environmental pollutants removal thanks to its unique electronic band structure and excellent physicochemical stability. This paper reviews the recent progress of g-C3N4-based composites as catalysts in various advanced oxidation processes (AOPs), including chemical, photochemical, and electrochemical AOPs. Strategies for enhancing catalytic performance such as element-doping, nanostructure design, and heterojunction construction are summarized in detail. The catalytic degradation mechanisms are also discussed briefly.
Collapse
|
34
|
Non-Thermal Plasma Coupled with Catalyst for the Degradation of Water Pollutants: A Review. Catalysts 2020. [DOI: 10.3390/catal10121438] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Non-thermal plasma is one of the most promising technologies used for the degradation of hazardous pollutants in wastewater. Recent studies evidenced that various operating parameters influence the yield of the Non-Thermal Plasma (NTP)-based processes. In particular, the presence of a catalyst, suitably placed in the NTP reactor, induces a significant increase in process performance with respect to NTP alone. For this purpose, several researchers have studied the ability of NTP coupled to catalysts for the removal of different kind of pollutants in aqueous solution. It is clear that it is still complicated to define an optimal condition that can be suitable for all types of contaminants as well as for the various types of catalysts used in this context. However, it was highlighted that the operational parameters play a fundamental role. However, it is often difficult to understand the effect that plasma can induce on the catalyst and on the production of the oxidizing species most responsible for the degradation of contaminants. For this reason, the aim of this review is to summarize catalytic formulations coupled with non-thermal plasma technology for water pollutants removal. In particular, the reactor configuration to be adopted when NTP was coupled with a catalyst was presented, as well as the position of the catalyst in the reactor and the role of the main oxidizing species. Furthermore, in this review, a comparison in terms of degradation and mineralization efficiency was made for the different cases studied.
Collapse
|
35
|
Santhanaraj D, Joseph NR, Ramkumar V, Selvamani A, Bincy IP, Rajakumar K. Influence of lattice strain on Fe 3O 4@carbon catalyst for the destruction of organic dye in polluted water using a combined adsorption and Fenton process. RSC Adv 2020; 10:39146-39159. [PMID: 35518406 PMCID: PMC9057358 DOI: 10.1039/d0ra07866b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/16/2020] [Indexed: 01/09/2023] Open
Abstract
In this study, 8, 25 and 50 wt% Fe3O4@activated carbon (AC) catalysts were prepared by simple coprecipitation method. The efficiency of the catalysts for the advanced Fenton's oxidation process using methylene blue (MB) as a model substrate was tested. Both modified and unmodified activated carbon catalysts exhibited similar activity towards the Fenton's oxidation process. Therefore, it is difficult to identify the role of the catalyst in this dye removal process. Hence, we proposed a new methodology to remove the MB by adopting the adsorption process initially, followed by the Fenton's oxidation process. The proposed process significantly improved the methylene blue decomposition reaction over the 25 wt% Fe3O4@AC catalyst. However, this trend was not seen in pure activated carbon and Fe3O4@AC (8 and 50 wt%) catalysts due to the instability of the material in the oxidizing medium. The possible reason for the deactivation of the catalysts was evaluated from lattice strain calculations, as derived from the modified W-H models (Uniform Deformational Model (UDM), Uniform Stress Deformation Model (USDM) and Uniform Deformation Energy Density Model (UDEDM)). These results provided a quantitative relationship between the experimentally calculated lattice strain values and Fenton's catalytic activity. Furthermore, the optimized strain value and crystalite size of Fe3O4 on the activated carbon matrix are responsible for the high catalytic activity.
Collapse
Affiliation(s)
- D Santhanaraj
- Department of Chemistry, Loyola College Chennai 600 034 Tamilnadu India
| | - N Ricky Joseph
- Department of Chemistry, Loyola College Chennai 600 034 Tamilnadu India
| | - V Ramkumar
- Department of Polymer Science and Technology, Council of Scientific and Industrial Research (CSIR) - Central Research Laboratory Adyar Chennai 600020 Tamilnadu India
| | - A Selvamani
- Catalytic Reforming Area, Light Stock Processing Division, CSIR - Indian Institute of Petroleum Dehradun-248005 Uttarakhand India
| | - I P Bincy
- Department of Physics, MES College Nedumkandam Kerala 685553 India
| | - K Rajakumar
- Nanotechnology Research & Education Centre South Ural State University Chelyabinsk-454080 Russia
| |
Collapse
|
36
|
Removal of Diclofenac in Effluent of Sewage Treatment Plant by Photocatalytic Oxidation. WATER 2020. [DOI: 10.3390/w12102902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diclofenac (DCF) has been widely found in sewage treatment plants and environmental water bodies, and has attracted worldwide attention. In this paper, the photocatalytic degradation of DCF was investigated using a laboratory-scale simulated solar experimental device. This study focused on exploring the effects of the actual secondary effluent from sewage treatment plants (SE-A and SE-B) on the photocatalytic degradation of DCF and the changes of dissolved organic matter (DOM) during the photocatalytic degradation process. The results showed when SE-A and SE-B were used as the background water of the DCF solution, they displayed a significant inhibitory effect on the degradation of DCF, and the values of k were 0.039 and 0.0113 min−1, respectively. Among them, DOM played a major inhibitory role in photocatalytic degradation of DCF in sewage. In the photocatalytic process, the biological toxicity of the DCF solution was the least after 30 min of reaction, and then gradually increased. Furthermore, the organic matters in the sewage were greatly degraded after the photocatalytic reaction, including 254 and 365 nm ultraviolet (UV254, UV365) and chemical oxygen demand (COD). Moreover, titanium dioxide (TiO2) first catalyzed the degradation of macromolecular organic matters, and then degraded the small molecular organic matters.
Collapse
|
37
|
Liu H, Wang C, Wang G. Photocatalytic Advanced Oxidation Processes for Water Treatment: Recent Advances and Perspective. Chem Asian J 2020; 15:3239-3253. [PMID: 32860468 DOI: 10.1002/asia.202000895] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Indexed: 11/10/2022]
Abstract
Nowadays, an ever-increasing variety of organic contaminants in water has caused hazards to the ecological environment and human health. Many of them are persistent and non-biodegradable. Various techniques have been studied for sewage treatment, including biological, physical and chemical methods. Photocatalytic advanced oxidation processes (AOPs) have received increasing attention due to their fast reaction rates and strong oxidation capability, low cost compared with the non-photolytic AOPs. This review is dedicated to summarizing up-to-date research progress in photocatalytic AOPs, such as Fenton or Fenton-like reaction, ozonation and sulfate radical-based advanced oxidation processes. Mechanisms and activation processes are discussed. Then, the paper summarizes photocatalytic materials and modification strategies, including defect chemistry, morphology control, heterostructure design, noble metal deposition. The future perspectives and challenges are also discussed.
Collapse
Affiliation(s)
- Hang Liu
- The College of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, P. R. China
| | - Chengyin Wang
- The College of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, P. R. China
| | - Guoxiu Wang
- School of Mathematical and Physical Sciences, University of Technology Sydney City Campus, Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
38
|
Fouda A, Salem SS, Wassel AR, Hamza MF, Shaheen T. Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon 2020; 6:e04896. [PMID: 32995606 PMCID: PMC7511830 DOI: 10.1016/j.heliyon.2020.e04896] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/26/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Herein, CuO/ZnO nanocomposites at different ratios were successfully synthesized through a green biosynthesis approach. This was performed by harnessing the fungal-secreted enzymes and proteins during the sol-gel process for nanocomposites seed growth. All fabricated nanoparticles/nanocomposites were characterized using Fourier Transform Infra-Red (FT-IR) Spectroscopy, X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) analyses. The photocatalytic degradation efficacy of the synthesized nanocomposites was evaluated using a cationic methylene blue (MB) dye as a model of reaction. Results obtained from the FT-IR and EDX analyses revealed that CuO-NPs, ZnO-NPs, CuO/ZnO50/50, CuO/ZnO80/20, and CuO/ZnO20/80 were successfully prepared by harnessing the biomass filtrate of Penicillium corylophilum As-1. Furthermore, XRD and TEM revealed the variation in the particle size of the nanocomposites (10-55 nm) with the ratio of the nanoparticles. Notably, the size of the nanocomposites was proportionally increased with an increasing ratio of ZnO-NPs. XPS analysis affirmed the presence of both Cu and Zn in the nanocomposites with varying binding energies compared with individual nanoparticles. Furthermore, a high photo-degradation efficacy was achieved by increasing the ratio of ZnO-NPs in the nanocomposite formulation, and 97% of organic MB dye was removed after 85 min of irradiation using the CuO/ZnO20/80 nanocomposite.
Collapse
Affiliation(s)
- Amr Fouda
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Salem S. Salem
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ahmed R. Wassel
- Electron Microscope and Thin Films Department, Physics Research Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mohammed F. Hamza
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Nuclear Materials Authority, POB 530, El-Maadi, Cairo, Egypt
| | - Th.I. Shaheen
- National Research Centre (Scopus affiliation ID 60014618), Textile Research Division, (former El-Tahrir str.), Dokki, P.O. 1C2622, Giza, Egypt
| |
Collapse
|
39
|
Vikrant K, Kim KH, Dong F, Giannakoudakis DA. Photocatalytic Platforms for Removal of Ammonia from Gaseous and Aqueous Matrixes: Status and Challenges. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02163] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | | |
Collapse
|
40
|
Abstract
Three different Advanced Oxidation Processes (AOPs) have been investigated for the degradation of the imidacloprid pesticide in water: photocatalysis, Fenton and photo-Fenton reactions. For these tests, we have compared the performance of two types of CeO2, employed as a non-conventional photocatalyst/Fenton-like material. The first one has been prepared by chemical precipitation with KOH, while the second one has been obtained by exposing the as-synthetized CeO2 to solar irradiation in H2 stream. This latter treatment led to obtain a more defective CeO2 (coded as “grey CeO2”) with the formation of Ce3+ sites on the surface of CeO2, as determined by Raman and X-ray Photoelectron Spectroscopy (XPS) characterizations. This peculiar feature has been demonstrated as beneficial for the solar photo–Fenton reaction, with the best performance exhibited by the grey CeO2. On the contrary, the bare CeO2 showed a photocatalytic activity higher with respect to the grey CeO2, due to the higher exposed surface area and the lower band-gap. The easy synthetic procedures of CeO2 reported here, allows to tune and modify the physico-chemical properties of CeO2, allowing a choice of different CeO2 samples on the basis of the specific AOPs for water remediation. Furthermore, neither of the samples have shown any critical toxicity.
Collapse
|
41
|
Surface Modification of Bacterial Cellulose by Copper and Zinc Oxide Sputter Coating for UV-Resistance/Antistatic/Antibacterial Characteristics. COATINGS 2020. [DOI: 10.3390/coatings10040364] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In our study, the surface of bacterial cellulose was successively modified by copper and zinc oxide nanoparticles using direct current (DC) magnetron sputtering and radio frequency (RF) reactive sputter coating techniques. The target materials, copper and zinc, were 99.99% pure and used in the presence of argon (Ar) gas, while zinc nanoparticles were sputtered in the presence of oxygen gas to make zinc oxide nanoparticles. The as-prepared bacterial cellulose/copper/zinc oxide nanocomposite has good ultraviolet resistance, anti-static and antibacterial characteristics. The surface morphology and chemical composition of the nanocomposite were examined by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopic (EDS) techniques. The prepared bacterial cellulose/copper/zinc oxide nanocomposite illustrates excellent ultraviolet resistance (T.UVA%; 0.16 ± 0.02, T.UVB%; 0.07 ± 0.01, ultraviolet protection factor (UPF); 1850.33 ± 2.12), antistatic behavior (S.H.P; 51.50 ± 4.10, I.E. V; 349.33 ± 6.02) and antibacterial behavior (Escherichia coli; 98.45%, Staphylococcus aureus; 98.11%). Our nanocomposite prepared by sputter coating method could be a promising and effective candidate for ultraviolet resistance, antistatic and antibacterial in term of functional, technical, medical and in many daily life applications.
Collapse
|
42
|
Xu HY, Lu D, Tan Q, He XL, Qi SY. Visible-light-driven photocatalytic degradation of rhodamine B in water by BiOCl xI 1-x solid solutions. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1080-1089. [PMID: 32541124 DOI: 10.2166/wst.2020.205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bismuth oxyhalides (BiOXs, X = Cl, Br and I) are emerging photocatalytic materials with unique layered structure, flexible band structure and superior photocatalytic activity. The purpose of this study was to develop a facile alcoholysis route to prepare BiOClxI1-x nanosheet solid solutions at room temperature. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence emission spectroscopy (PL) and Brunauer-Emmett-Teller (BET) surface area analyzer were used to characterize the as-prepared photocatalysts. These results revealed that two-dimension BiOClxI1-x nanosheet solid solutions could be obtained with high percentage of {001} crystal facets exposed. Moreover, the formation of solid solution could regularly change the optical absorption thresholds and band gaps of BiOClxI1-x photocatalysts. The photocatalytic experiments indicated that BiOCl0.75I0.25 exhibited the highest photocatalytic performance for the degradation of Rhodamine B (RhB) under simulated sunlight irradiation and the photocatalytic process followed a pseudo-first-order kinetic equation. A possible mechanism of RhB photodegradation over BiOClxI1-x solid solutions was proposed based on the structural properties of BiOClxI1-x solid solutions and RhB photosensitization.
Collapse
Affiliation(s)
- Huan-Yan Xu
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China E-mail:
| | - Dan Lu
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China E-mail:
| | - Qu Tan
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China E-mail:
| | - Xiu-Lan He
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China E-mail:
| | - Shu-Yan Qi
- School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China E-mail:
| |
Collapse
|