1
|
Liang Z, Lei H, Zheng H, Wang HY, Zhang W, Cao R. Selective two-electron and four-electron oxygen reduction reactions using Co-based electrocatalysts. Chem Soc Rev 2025. [PMID: 40259844 DOI: 10.1039/d4cs01199f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The oxygen reduction reaction (ORR) can take place via both four-electron (4e-) and two-electron (2e-) pathways. The 4e- ORR, which produces water (H2O) as the only product, is the key reaction at the cathode of fuel cells and metal-air batteries. On the other hand, the 2e- ORR can be used to electrocatalytically synthesize hydrogen peroxide (H2O2). For the practical applications of the ORR, it is very important to precisely control the selectivity. Understanding structural effects on the ORR provides the basis to control the selectivity. Co-based electrocatalysts have been extensively studied for the ORR due to their high activity, low cost, and relative ease of synthesis. More importantly, by appropriately designing their structures, Co-based electrocatalysts can become highly selective for either the 2e- or the 4e- ORR. Therefore, Co-based electrocatalysts are ideal models for studying fundamental structure-selectivity relationships of the ORR. This review starts by introducing the reaction mechanism and selectivity evaluation of the ORR. Next, Co-based electrocatalysts, especially Co porphyrins, used for the ORR with both 2e- and 4e- selectivity are summarized and discussed, which leads to the conclusion of several key structural factors for ORR selectivity regulation. On the basis of this understanding, future works on the use of Co-based electrocatalysts for the ORR are suggested. This review is valuable for the rational design of molecular catalysts and material catalysts with high selectivity for 4e- and 2e- ORRs. The structural regulation of Co-based electrocatalysts also provides insights into the design and development of ORR electrocatalysts based on other metal elements.
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Hong-Yan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
2
|
Simon S, Harikumar P, Sreeja PB. Green Power: The Role of Plant-Based Biochar in Advanced Energy Storage. Chemphyschem 2025; 26:e202400569. [PMID: 39327809 DOI: 10.1002/cphc.202400569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
This comprehensive review aims to provide an overview of recent progress in utilizing plant-based biochar for supercapacitors. It specifically focuses on biochar derived from plant biomass such as agricultural residues, weeds and aquatic plants, examining their potential in energy storage applications. It explores various synthesis methods like pyrolysis and hydrothermal carbonization and evaluates their impact on biochar's structure and electrochemical properties. Additionally, it examines the electrochemical performance of biochar-based supercapacitors, focusing on parameters such as capacitance, cycling stability, and rate capability. Strategies to enhance biochar's electrochemical performance, such as surface modification and composite fabrication, are also discussed. Furthermore, it addresses existing challenges and prospects in harnessing plant-based biochar for supercapacitor applications, highlighting its potential as a sustainable and efficient electrode material for next-generation energy storage devices.
Collapse
Affiliation(s)
- Shilpa Simon
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, 560029, IN
| | - Parvathy Harikumar
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, 560029, IN
| | - P B Sreeja
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, 560029, IN
| |
Collapse
|
3
|
Yaldagard M, Arkas M. Enhanced Mass Activity and Durability of Bimetallic Pt-Pd Nanoparticles on Sulfated-Zirconia-Doped Graphene Nanoplates for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell Applications. Molecules 2024; 29:2129. [PMID: 38731620 PMCID: PMC11085642 DOI: 10.3390/molecules29092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Developing highly active and durable Pt-based electrocatalysts is crucial for polymer electrolyte membrane fuel cells. This study focuses on the performance of oxygen reduction reaction (ORR) electrocatalysts composed of Pt-Pd alloy nanoparticles on graphene nanoplates (GNPs) anchored with sulfated zirconia nanoparticles. The results of field emission scanning electron microscopy and transmission electron microscopy showed that Pt-Pd and S-ZrO2 are well dispersed on the surface of the GNPs. X-ray diffraction revealed that the S-ZrO2 and Pt-Pd alloy coexist in the Pt-Pd/S-ZrO2-GNP nanocomposites without affecting the crystalline lattice of Pt and the graphitic structure of the GNPs. To evaluate the electrochemical activity and reaction kinetics for ORR, we performed cyclic voltammetry, rotating disc electrode, and EIS experiments in acidic solutions at room temperature. The findings showed that Pt-Pd/S-ZrO2-GNPs exhibited a better ORR performance than the Pt-Pd catalyst on the unsulfated ZrO2-GNP support and with Pt on S-ZrO2-GNPs and commercial Pt/C.
Collapse
Affiliation(s)
- Maryam Yaldagard
- Department of Chemical Engineering, Faculty of Engineering, Urmia University, Urmia 5766-151818, Iran
| | - Michael Arkas
- National Centre for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| |
Collapse
|
4
|
Chen Z, Liu J, Yang B, Lin M, Molochas C, Tsiakaras P, Shen P. Two-stage confinement derived small-sized highly ordered L1 0-PtCoZn for effective oxygen reduction catalysis in PEM fuel cells. J Colloid Interface Sci 2023; 652:388-404. [PMID: 37604051 DOI: 10.1016/j.jcis.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
Intermetallic ordered PtCo is effective for high oxygen reduction reaction (ORR) activity and stability. However, preparing small-sized, highly ordered PtM alloys is still challenging. Herein, we report a controlled two-stage confinement strategy, in which highly ordered PtCoZn/NC nanoparticles of 5.3 nm size were prepared in a scalable process. The contradiction between the high ordering degree with the small particle size as well as the atomic migration with the space confinement was well resolved. An outstanding PEMFC performance was achieved for L10-PtCoZn/NC with a high mass activity (MA) of 1.21 A/mgPt at 0.9 ViR-free, 80.1 % MA retention after 30 k cycles in H2-O2 operation, and a high mass-specific power density of 8.24 W mg-1Pt in H2-Air operation with a slight loss of cell voltage@0.8 A cm-2 of 28 mV after 30 k cycles. The high performance can be ascribed to the high Pt area exposure, the enhanced Pt-Co coupling, and the prevented agglomeration in the mesoporous carbon wall. Overall, this strategy may contribute to the commercialization of fuel cells.
Collapse
Affiliation(s)
- Zhenyu Chen
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Nanning 530004, China
| | - Jia Liu
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Nanning 530004, China
| | - Bin Yang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Nanning 530004, China
| | - Mingjie Lin
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Nanning 530004, China
| | - Costas Molochas
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, University of Thessaly, 1 Sekeri Str., 383 34 Volos, Greece
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, University of Thessaly, 1 Sekeri Str., 383 34 Volos, Greece.
| | - Peikang Shen
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education, Nanning 530004, China.
| |
Collapse
|
5
|
Electrolyte Effects on the Shape-Controlled Synthesis of Pt Nanocrystals by Electrochemical Square-Wave Potential Method. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Saelee T, Chotsawat M, Rittiruam M, Suthirakun S, Praserthdam S, Ruankaew N, Khajondetchairit P, Junkaew A. First-principles-driven catalyst design protocol of 2D/2D heterostructures for electro- and photocatalytic nitrogen reduction reaction. Phys Chem Chem Phys 2023; 25:5327-5342. [PMID: 36727640 DOI: 10.1039/d2cp05124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ammonia synthesis from nitrogen is a vital process and a necessity in a variety of applications including energy, pharmaceutical, agricultural, and chemical applications. The electro- and photocatalytic nitrogen reduction reactions (NRRs) are promising sustainable processes operated under milder conditions than the conventional Haber-Bosch process. However, the main pain points of these catalytic processes are their low selectivity and low efficiency. This perspective presents the recent status and the design protocols for developing promising 2D/2D heterojunction catalysts for the NRR, using the first-principles approach. The current theoretical studies are briefly discussed, and available methods are suggested for the development and design of new potential 2D/2D heterojunctions as efficient electro- and photo-NRR catalysts.
Collapse
Affiliation(s)
- Tinnakorn Saelee
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Maneerat Chotsawat
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| | - Meena Rittiruam
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suwit Suthirakun
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| | - Supareak Praserthdam
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nirun Ruankaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand.
| | - Patcharaporn Khajondetchairit
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anchalee Junkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand.
| |
Collapse
|
7
|
Charge transfer mechanisms in 40SiO2-40P2O5-20ZrO2 /sulfonated styrene-ethylene-butylene-styrene hybrid membranes for low temperature fuel cells. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Kong F, Liu X, Song Y, Qian Z, Li J, Zhang L, Yin G, Wang J, Su D, Sun X. Selectively Coupling Ru Single Atoms to PtNi Concavities for High‐Performance Methanol Oxidation via
d
‐Band Center Regulation. Angew Chem Int Ed Engl 2022; 61:e202207524. [DOI: 10.1002/anie.202207524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Fanpeng Kong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin China
- Department of Mechanical and Materials Engineering University of Western Ontario London Canada
| | - Xiaozhi Liu
- Institute of Physics Chinese Academy of Sciences Beijing China
| | - Yajie Song
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin China
| | - Zhengyi Qian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin China
| | - Junjie Li
- Department of Mechanical and Materials Engineering University of Western Ontario London Canada
| | - Lei Zhang
- Department of Mechanical and Materials Engineering University of Western Ontario London Canada
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin China
| | - Jiajun Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin China
- Chongqing Research Institute Harbin Institute of Technology Chongqing China
| | - Dong Su
- Institute of Physics Chinese Academy of Sciences Beijing China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering University of Western Ontario London Canada
| |
Collapse
|
9
|
Kong F, Liu X, Song Y, Qian Z, Li J, Zhang L, Yin G, Su D, Wang J, Sun X. Selectively Coupling Ru Single Atoms to PtNi Concavities for High Performance Methanol Oxidation via d‐Band Center Regulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fanpeng Kong
- Harbin Institute of Technology MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage No. 92, Xidazhi street 150000 Harbin CHINA
| | - Xiaozhi Liu
- Chinese Academy of Sciences Institute of Physics CHINA
| | - Yajie Song
- Harbin Institute of Technology MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage CHINA
| | - Zhengyi Qian
- Harbin Institute of Technology MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage CHINA
| | - Junjie Li
- Western University Department of Mechanical and Materials Engineering CANADA
| | - Lei Zhang
- Western University Department of Mechanical and Materials Engineering CANADA
| | - Geping Yin
- Harbin Institute of Technology MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage CHINA
| | - Dong Su
- Chinese Academy of Sciences Institute of Physics CANADA
| | - Jiajun Wang
- Harbin Institute of Technology MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage CHINA
| | - Xueliang Sun
- Western University 1151 Richmond Street N6A 3K7 London CANADA
| |
Collapse
|
10
|
A Comparative Study of Equivalent Circuit Models for Electro-Chemical Impedance Spectroscopy Analysis of Proton Exchange Membrane Fuel Cells. ENERGIES 2022. [DOI: 10.3390/en15010386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Electrochemical impedance spectroscopy is one of the important tools for the performance analysis and diagnosis of proton exchange membrane fuel cells. The equivalent circuit model is an effective method for electrochemical impedance spectroscopy resolution. In this paper, four typical equivalent circuit models are selected to comprehensively compare and analyze the difference in the fitting results of the models for the electrochemical impedance spectroscopy under different working conditions (inlet pressure, stoichiometry, and humidity) from the perspective of the fitting accuracy, change trend of the model parameters, and the goodness of fit. The results show that the fitting accuracy of the model with the Warburg element is the best for all under each working condition. When considering the goodness of fit, the model with constant phase components is the best choice for fitting electrochemical impedance spectroscopy under different inlet pressure and air stoichiometry. However, under different air humidity, the model with the Warburg element is best. This work can help to promote the development of internal state analysis, estimation, and diagnosis of the fuel cell based on the equivalent circuit modeling of electrochemical impedance spectroscopy.
Collapse
|
11
|
Plaza-Mayoral E, Sebastián-Pascual P, Dalby KN, Jensen KD, Chorkendorff I, Falsig H, Escudero-Escribano M. Preparation of high surface area Cu‐Au bimetallic nanostructured materials by co‐electrodeposition in a deep eutectic solvent. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Catalysts for Oxygen Reduction Reaction in the Polymer Electrolyte Membrane Fuel Cells: A Brief Review. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2040037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This mini-review presents a short account of materials with exceptional activity towards oxygen reduction reaction. Two main classes of catalytic materials are described, namely platinum group metal (PGM) catalyst and Non-precious metal catalyst. The classes are discussed in terms of possible application in low-temperature hydrogen fuel cells with proton exchange membrane and further commercialization of these devices. A short description of perspective approaches is provided and challenging issues associated with developed catalytic materials are discussed.
Collapse
|
13
|
Formic acid electrooxidation on small, {1 0 0} structured, and Pd decorated carbon-supported Pt nanoparticles. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Li Y, Wang X, Mei B, Wang Y, Luo Z, Luo E, Yang X, Shi Z, Liang L, Jin Z, Wu Z, Jiang Z, Liu C, Xing W, Ge J. Carbon monoxide powered fuel cell towards H 2-onboard purification. Sci Bull (Beijing) 2021; 66:1305-1311. [PMID: 36654152 DOI: 10.1016/j.scib.2021.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 01/20/2023]
Abstract
Proton exchange membrane fuel cells (PEMFCs) suffer extreme CO poisoning even at PPM level (<10 ppm), owning to the preferential CO adsorption and the consequential blockage of the catalyst surface. Herein, however, we report that CO itself can become an easily convertible fuel in PEMFC using atomically dispersed Rh catalysts (Rh-N-C). With CO to CO2 conversion initiates at 0 V, pure CO powered fuel cell attains unprecedented power density at 236 mW cm-2, with maximum CO turnover frequency (64.65 s-1, 363 K) far exceeding any chemical or electrochemical catalysts reported. Moreover, this feature enables efficient CO selective removal from H2 gas stream through the PEMFC technique, with CO concentration reduced by one order of magnitude through running only one single cell, while simultaneously harvesting electricity. We attribute such catalytic behavior to the weak CO adsorption and the co-activation of H2O due to the interplay between two adjacent Rh sites.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xian Wang
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Bingbao Mei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhaoyan Luo
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ergui Luo
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiaolong Yang
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhaoping Shi
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Liang Liang
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhao Jin
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhijian Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China; Shanghai Synchrotron Radiation Facility, Zhangjiang National Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201204, China.
| | - Changpeng Liu
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Xing
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Junjie Ge
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
15
|
Wu M, Chen C, Zhao Y, Zhu E, Li Y. Atomic Regulation of PGM Electrocatalysts for the Oxygen Reduction Reaction. Front Chem 2021; 9:699861. [PMID: 34295875 PMCID: PMC8290132 DOI: 10.3389/fchem.2021.699861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/31/2021] [Indexed: 12/02/2022] Open
Abstract
With the increasing enthusiasm for the hydrogen economy and zero-emission fuel cell technologies, intensive efforts have been dedicated to the development of high-performance electrocatalytic materials for the cathodic oxygen reduction reaction (ORR). Some major fundamental breakthroughs have been made in the past few years. Therefore, reviewing the most recent development of platinum-group-metal (PGM) ORR electrocatalysts is of great significance to pushing it forward. It is known that the ORR on the fuel cell electrode is a heterogeneous reaction occurring at the solid/liquid interface, wherein the electron reduces the oxygen along with species in the electrolyte. Therefore, the ORR kinetic is in close correlation with the electronic density of states and wave function, which are dominated by the localized atomic structure including the atomic distance and coordination number (CN). In this review, the recent development in the regulation over the localized state on the catalyst surface is narrowed down to the following structural factors whereby the corresponding strategies include: the crystallographic facet engineering, phase engineering, strain engineering, and defect engineering. Although these strategies show distinctive features, they are not entirely independent, because they all correlate with the atomic local structure. This review will be mainly divided into four parts with critical analyses and comparisons of breakthroughs. Meanwhile, each part is described with some more specific techniques as a methodological guideline. It is hoped that the review will enhance an insightful understanding on PGM catalysts of ORR with a visionary outlook.
Collapse
Affiliation(s)
| | | | | | - Enbo Zhu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yujing Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
16
|
Zhao Y, Zhang L, Liu J, Adair K, Zhao F, Sun Y, Wu T, Bi X, Amine K, Lu J, Sun X. Atomic/molecular layer deposition for energy storage and conversion. Chem Soc Rev 2021; 50:3889-3956. [PMID: 33523063 DOI: 10.1039/d0cs00156b] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Energy storage and conversion systems, including batteries, supercapacitors, fuel cells, solar cells, and photoelectrochemical water splitting, have played vital roles in the reduction of fossil fuel usage, addressing environmental issues and the development of electric vehicles. The fabrication and surface/interface engineering of electrode materials with refined structures are indispensable for achieving optimal performances for the different energy-related devices. Atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques, the gas-phase thin film deposition processes with self-limiting and saturated surface reactions, have emerged as powerful techniques for surface and interface engineering in energy-related devices due to their exceptional capability of precise thickness control, excellent uniformity and conformity, tunable composition and relatively low deposition temperature. In the past few decades, ALD and MLD have been intensively studied for energy storage and conversion applications with remarkable progress. In this review, we give a comprehensive summary of the development and achievements of ALD and MLD and their applications for energy storage and conversion, including batteries, supercapacitors, fuel cells, solar cells, and photoelectrochemical water splitting. Moreover, the fundamental understanding of the mechanisms involved in different devices will be deeply reviewed. Furthermore, the large-scale potential of ALD and MLD techniques is discussed and predicted. Finally, we will provide insightful perspectives on future directions for new material design by ALD and MLD and untapped opportunities in energy storage and conversion.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Mechanical & Materials Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li X, Peng X, Wang Y, Yan B. Synthesis of Pd nanonetworks with abundant defects for oxygen reduction electrocatalysis. NEW J CHEM 2021. [DOI: 10.1039/d0nj05881e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Pd nanonetworks with abundant defects were synthesized by a one-pot method for enhanced oxygen reduction reaction performance.
Collapse
Affiliation(s)
- Xiang Li
- School of Materials and Chemical Engineering, Xi'an Technological University
- Xi'an
- China
| | - Xinyuan Peng
- School of Materials and Chemical Engineering, Xi'an Technological University
- Xi'an
- China
| | - Yixuan Wang
- School of Materials and Chemical Engineering, Xi'an Technological University
- Xi'an
- China
| | - Bo Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University
- Yichang 443002
- China
| |
Collapse
|
18
|
Lu BA, Shen LF, Liu J, Zhang Q, Wan LY, Morris DJ, Wang RX, Zhou ZY, Li G, Sheng T, Gu L, Zhang P, Tian N, Sun SG. Structurally Disordered Phosphorus-Doped Pt as a Highly Active Electrocatalyst for an Oxygen Reduction Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03137] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bang-An Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lin-Fan Shen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia Liu
- Shanghai Hydrogen Propulsion Technology Co., Ltd., Shanghai 201800, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Li-Yang Wan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - David J. Morris
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Rui-Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi-You Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gen Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tian Sheng
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng Zhang
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Na Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
19
|
Song Z, Zhu YN, Liu H, Banis MN, Zhang L, Li J, Doyle-Davis K, Li R, Sham TK, Yang L, Young A, Botton GA, Liu LM, Sun X. Engineering the Low Coordinated Pt Single Atom to Achieve the Superior Electrocatalytic Performance toward Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003096. [PMID: 33015944 DOI: 10.1002/smll.202003096] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Configuring metal single-atom catalysts (SACs) with high electrocatalytic activity and stability is one efficient strategy in achieving the cost-competitive catalyst for fuel cells' applications. Herein, the atomic layer deposition (ALD) strategy for synthesis of Pt SACs on the metal-organic framework (MOF)-derived N-doped carbon (NC) is proposed. Through adjusting the ALD exposure time of the Pt precursor, the size-controlled Pt catalysts, from Pt single atoms to subclusters and nanoparticles, are prepared on MOF-NC support. X-ray absorption fine structure spectra determine the increased electron vacancy in Pt SACs and indicate the Pt-N coordination in the as-prepared Pt SACs. Benefiting from the low-coordination environment and anchoring interaction between Pt atoms and nitrogen-doping sites from MOF-NC support, the Pt SACs deliver an enhanced activity and stability with 6.5 times higher mass activity than that of Pt nanoparticle catalysts in boosting the oxygen reduction reaction (ORR). Density functional theory calculations indicate that Pt single atoms prefer to be anchored by the pyridinic N-doped carbon sites. Importantly, it is revealed that the electronic structure of Pt SAs can be adjusted by adsorption of hydroxyl and oxygen, which greatly lowers free energy change for the rate-determining step and enhances the activity of Pt SACs toward the ORR.
Collapse
Affiliation(s)
- Zhongxin Song
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Ya-Nan Zhu
- Beijing Computational Science Research Center, Beijing, 100193, China
- School of Physics, Beihang University, Beijing, 100083, China
| | - Hanshuo Liu
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Mohammad Norouzi Banis
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Lei Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Junjie Li
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Kieran Doyle-Davis
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Ruying Li
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Tsun-Kong Sham
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Lijun Yang
- Ballard Power Systems Inc., Burnaby, British Columbia, V5J 5J8, Canada
| | - Alan Young
- Ballard Power Systems Inc., Burnaby, British Columbia, V5J 5J8, Canada
| | - Gianluigi A Botton
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Li-Min Liu
- Beijing Computational Science Research Center, Beijing, 100193, China
- School of Physics, Beihang University, Beijing, 100083, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
20
|
Shan J, Zeng T, Wu W, Tan Y, Cheng N, Mu S. Enhancement of the performance of Pd nanoclusters confined within ultrathin silica layers for formic acid oxidation. NANOSCALE 2020; 12:12891-12897. [PMID: 32520062 DOI: 10.1039/d0nr00307g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The optimized design of highly active and stable anode electrocatalysts is essential for high performance direct formic acid fuel cells (DFAFCs). Herein, a facile and cost-effective strategy was proposed to fabricate a robust ultrasmall Pd nanocluster confined within ultrathin protective silica layers anchored on nitrogen doped reduced GO (NrGO) through generating amine functionalized graphene oxide with 3-aminopropyl triethoxysilane (APTES), followed by tuning the thickness of protective silica layers by precisely controlling the amount of tetraethylorthosilicate (TEOS). Amine functionalized graphene oxide generated by using APTES favors the formation of ultrasmall Pd nanoclusters due to the coordination of amine to PdCl24- while the confinement effect of ultrathin protective silica layers stabilizes ultrasmall Pd nanoclusters and impedes the agglomeration and sintering of ultrasmall Pd nanoclusters during electrocatalysis. As a result, the ultrasmall Pd nanoclusters (∼1.4 nm) confined in silica layers on NrGO (Pd/NrGO@SiO2) demonstrate a very high forward peak current density for formic acid oxidation (FAO) of 2.37 A mg-1, outperforming the Pd/C catalyst (0.30 A mg-1) and the Pd/rGO catalyst obtained by a conventional method (0.42 A mg-1). More importantly, our confined Pd catalysts show the highest stability of only 5% inconspicuous degradation of the initial mass activity after 1000 cycles, compared with Pd/C (almost 100% loss), Pd/rGO (61.5% loss) and Pd/NrGO (73.2% loss). These strategies in this work provide a new prospect for the design of excellent noble catalysts to overcome the challenges in the practical application of DFAFCs.
Collapse
Affiliation(s)
- Jiefei Shan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Tang Zeng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Wei Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Yangyang Tan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
21
|
Jilani SZ, Cohen CP, Iyanobor EE, Zager D, Zheng R, Frankenfield KM, Tong YJ. Surfactant-Free One-Pot Synthesis of Homogeneous Trimetallic PtNiCu Nanoparticles with Size Control by Using Glycine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5902-5907. [PMID: 32378413 DOI: 10.1021/acs.langmuir.0c00665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Homogeneous platinum alloy nanoparticles (NPs) are of great interest to the electrocatalytic community for potential use in various fuel cell electrodes. Increasing the surface area available per unit mass by decreasing the size of NPs while maintaining or improving activity is one of the key tasks of fuel cell catalysis. Achieving both in a synthesis of multielement NPs is still a challenging workup. In this investigation, we report the use of glycine as a size control agent to make ultrasmall homogeneous trimetallic PtNiCu NPs within 2-5 nm range. The mechanistic roles of dimethyl formamide (DMF), formaldehyde, water, and glycine are explored to understand the formation of these small NPs. Interestingly, it was observed that these PtNiCu NPs exhibited substantially enhanced mass activities toward the electro-oxidation of ethanol in comparison to commercial Pt black.
Collapse
Affiliation(s)
- Safia Z Jilani
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Carter P Cohen
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Esther E Iyanobor
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Daniel Zager
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Rongfeng Zheng
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - Kaitlyn M Frankenfield
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| | - YuYe J Tong
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057, United States
| |
Collapse
|
22
|
A Review of Composite/Hybrid Electrocatalysts and Photocatalysts for Nitrogen Reduction Reactions: Advanced Materials, Mechanisms, Challenges and Perspectives. ELECTROCHEM ENERGY R 2020. [DOI: 10.1007/s41918-020-00069-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Supported dual-atom catalysts: Preparation, characterization, and potential applications. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63536-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Yin S, Ding Y. Bimetallic PtAu electrocatalysts for the oxygen reduction reaction: challenges and opportunities. Dalton Trans 2020; 49:4189-4199. [PMID: 32191785 DOI: 10.1039/d0dt00205d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly active, durable oxygen reduction reaction (ORR) electrocatalysts have an essential role in promoting the continuous operation of advanced energy technologies such as fuel cells and metal-air batteries. Considering the scarce reserve of Pt and its unsatisfactory overall performance, there is an urgent demand for the development of new generation ORR electrocatalysts that are substantially better than the state-of-the-art supported Pt-based nanocatalysts, such as Pt/C. Among various nanostructures, bimetallic PtAu represents one unique alloy system where highly contradictory performance has been reported. While it is generally accepted that Au may contribute to stabilizing Pt, its role in modulating the intrinsic activity of Pt remains unclear. This perspective will discuss critical structural issues that affect the intrinsic ORR activities of bimetallic PtAu, with an eye on elucidating the origin of seemingly inconsistent experimental results from the literature. As a relatively new class of electrodes, we will also highlight the performance of dealloyed nanoporous gold (NPG) based electrocatalysts, which allow a unique combination of structural properties highly desired for this important reaction. Finally, we will put forward the challenges and opportunities for the incorporation of these advanced electrocatalysts into membrane electrode assemblies (MEA) for actual fuel cells.
Collapse
Affiliation(s)
- Shuai Yin
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Yi Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
25
|
Kong F, Ren Z, Norouzi Banis M, Du L, Zhou X, Chen G, Zhang L, Li J, Wang S, Li M, Doyle-Davis K, Ma Y, Li R, Young A, Yang L, Markiewicz M, Tong Y, Yin G, Du C, Luo J, Sun X. Active and Stable Pt–Ni Alloy Octahedra Catalyst for Oxygen Reduction via Near-Surface Atomical Engineering. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05133] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fanpeng Kong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Zhouhong Ren
- Ceter for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Mohammad Norouzi Banis
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Lei Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Xin Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Guangyu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Lei Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Junjie Li
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Sizhe Wang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Minsi Li
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Kieran Doyle-Davis
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Yulin Ma
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Ruying Li
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Alan Young
- Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, British Columbia V5J 5J8, Canada
| | - Lijun Yang
- Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, British Columbia V5J 5J8, Canada
| | - Matthew Markiewicz
- Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, British Columbia V5J 5J8, Canada
| | - Yujin Tong
- Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin 14195, Germany
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Chunyu Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, China
| | - Jun Luo
- Ceter for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
26
|
Wang C, Yu Z, Li G, Song Q, Li G, Luo C, Yin S, Lu B, Xiao C, Xu B, Zhou Z, Tian N, Sun S. Intermetallic PtBi Nanoplates with High Catalytic Activity towards Electro‐oxidation of Formic Acid and Glycerol. ChemElectroChem 2020. [DOI: 10.1002/celc.201901818] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chang‐Yi Wang
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Zhi‐Yuan Yu
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Gen Li
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Qian‐Tong Song
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Guang Li
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Chen‐Xu Luo
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Shu‐Hu Yin
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Bang‐An Lu
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Chi Xiao
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Bin‐Bin Xu
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Zhi‐You Zhou
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Na Tian
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Shi‐Gang Sun
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| |
Collapse
|
27
|
Li L, Ma HX, Jian XD, Qian P, Su YJ. Degradation of the transition metal@Pt core–shell nanoparticle catalyst: a DFT study. Phys Chem Chem Phys 2020; 22:9467-9476. [DOI: 10.1039/d0cp00888e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electrocatalysts in acidic media face the issues of inactivation and degradation with complex thermodynamic processes.
Collapse
Affiliation(s)
- Lu Li
- Beijing Advanced Innovation Center for Materials Genome Engineering
- University of Science and Technology Beijing
- Beijing
- China
- Department of Physics
| | - Hong xin Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering
- University of Science and Technology Beijing
- Beijing
- China
- Corrosion and Protection Center
| | | | - Ping Qian
- Beijing Advanced Innovation Center for Materials Genome Engineering
- University of Science and Technology Beijing
- Beijing
- China
- Department of Physics
| | - Yan jing Su
- Beijing Advanced Innovation Center for Materials Genome Engineering
- University of Science and Technology Beijing
- Beijing
- China
- Corrosion and Protection Center
| |
Collapse
|
28
|
Nanocomposite electrodes for high current density over 3 A cm -2 in solid oxide electrolysis cells. Nat Commun 2019; 10:5432. [PMID: 31780713 PMCID: PMC6883038 DOI: 10.1038/s41467-019-13426-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/07/2019] [Indexed: 12/03/2022] Open
Abstract
Solid oxide electrolysis cells can theoretically achieve high energy-conversion efficiency, but current density must be further increased to improve the hydrogen production rate, which is essential to realize widespread application. Here, we report a structure technology for solid oxide electrolysis cells to achieve a current density higher than 3 A cm−2, which exceeds that of state-of-the-art electrolyzers. Bimodal-structured nanocomposite oxygen electrodes are developed where nanometer-scale Sm0.5Sr0.5CoO3−δ and Ce0.8Sm0.2O1.9 are highly dispersed and where submicrometer-scale particles form conductive networks with broad pore channels. Such structure is realized by fabricating the electrode structure from the raw powder material stage using spray pyrolysis. The solid oxide electrolysis cells with the nanocomposite electrodes exhibit high current density in steam electrolysis operation (e.g., at 1.3 V), reaching 3.13 A cm−2 at 750 °C and 4.08 A cm−2 at 800 °C, corresponding to a hydrogen production rate of 1.31 and 1.71 L h−1 cm−2 respectively. High-temperature solid oxide electrolysis cells are a promising technology for energy conversion, but higher current density is needed to increase efficiency. Here the authors design nanocomposite electrodes to improve electronic and ionic conductivity to achieve a high current density.
Collapse
|
29
|
Shan J, Lei Z, Wu W, Tan Y, Cheng N, Sun X. Highly Active and Durable Ultrasmall Pd Nanocatalyst Encapsulated in Ultrathin Silica Layers by Selective Deposition for Formic Acid Oxidation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43130-43137. [PMID: 31652044 DOI: 10.1021/acsami.9b13451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The low performance of palladium (Pd) is a considerable challenge for direct formic acid fuel cells in practical applications. Herein, we develop a simple strategy to synthesize a highly active and durable Pd nanocatalyst encapsulated in ultrathin silica layers with vertically aligned nanochannels covered graphene oxides (Pd/rGO@pSiO2) without blocking active sites by selective deposition. The Pd/rGO@pSiO2 catalyst exhibits very high performance for a formic acid oxidation (FAO) reaction compared with the Pd/rGO without protective silica layers and commercial Pd/C catalysts. Pd/rGO@pSiO2 shows an FAO activity 3.9 and 3.8 times better than those of Pd/rGO and Pd/C catalysts, respectively. The Pd/rGO@pSiO2 catalysts are also almost 6-fold more stable than Pd/C and more than 3-fold more stable than Pd/rGO. The outstanding performance of our encapsulated Pd catalysts can be ascribed to the novel design of nanostructures by selective deposition fabricating ultrasmall Pd nanoparticles encapsulated in ultrathin silica layers with vertically aligned nanochannels, which not only avoid blocking the active sites but also facilitate the mass transfer in encapsulated catalysts. Our work indicates an important method to the rational design of high-performance catalysts for fuel cells in practical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueliang Sun
- Department of Mechanical and Materials Engineering , The University of Western Ontario , London , Ontario N6A 5B9 , Canada
| |
Collapse
|
30
|
Chen W, Lei Z, Zeng T, Wang L, Cheng N, Tan Y, Mu S. Structurally ordered PtSn intermetallic nanoparticles supported on ATO for efficient methanol oxidation reaction. NANOSCALE 2019; 11:19895-19902. [PMID: 31599300 DOI: 10.1039/c9nr07245d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of cost-effective methanol oxidation reaction (MOR) catalysts with a high activity and stability is highly desirable for direct methanol fuel cells. In this study, the structurally ordered PtSn intermetallic nanoparticles supported on Sb-doped SnO2 (ATO) have been successfully synthesized in ethylene glycol (EG) solution at 200 °C. Pt NPs were firstly formed on ATO, followed by the transformation from Pt into hexagonal PtSn on the surface of ATO. The obtained structurally ordered PtSn intermetallic NPs supported on ATO demonstrate significantly enhanced MOR activity and durability in comparison with commercial Pt/C. Our PtSn intermetallic NPs supported on ATO show a MOR activity 4.1 times higher than that of commercial Pt/C catalysts. Accelerated durability tests indicate that the commercial Pt/C catalysts lose about 50% of their initial current density after 500 cycles while the Pt/ATO-200-3 h catalyst loses only about 15% of its initial current density. Our PtSn intermetallic NPs supported on ATO are also found to have higher CO tolerance than commercial Pt/C. This work demonstrates an important strategy to rationally design high-performance structurally ordered Pt-based intermetallic NP catalysts for fuel cells and other applications.
Collapse
Affiliation(s)
- Wei Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China. and Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Zhao Lei
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China. and Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Tang Zeng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China. and Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Liang Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China. and Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China. and Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Yangyang Tan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China. and Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou, 350108, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
31
|
Zhang L, Si R, Liu H, Chen N, Wang Q, Adair K, Wang Z, Chen J, Song Z, Li J, Banis MN, Li R, Sham TK, Gu M, Liu LM, Botton GA, Sun X. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat Commun 2019; 10:4936. [PMID: 31666505 PMCID: PMC6821730 DOI: 10.1038/s41467-019-12887-y] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/25/2019] [Indexed: 11/08/2022] Open
Abstract
Single atom catalysts exhibit particularly high catalytic activities in contrast to regular nanomaterial-based catalysts. Until recently, research has been mostly focused on single atom catalysts, and it remains a great challenge to synthesize bimetallic dimer structures. Herein, we successfully prepare high-quality one-to-one A-B bimetallic dimer structures (Pt-Ru dimers) through an atomic layer deposition (ALD) process. The Pt-Ru dimers show much higher hydrogen evolution activity (more than 50 times) and excellent stability compared to commercial Pt/C catalysts. X-ray absorption spectroscopy indicates that the Pt-Ru dimers structure model contains one Pt-Ru bonding configuration. First principle calculations reveal that the Pt-Ru dimer generates a synergy effect by modulating the electronic structure, which results in the enhanced hydrogen evolution activity. This work paves the way for the rational design of bimetallic dimers with good activity and stability, which have a great potential to be applied in various catalytic reactions.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Rutong Si
- Beijing Computational Science Research Center, Beijing, 100193, China
- School of Physics, Beihang University, Beijing, 100083, China
| | - Hanshuo Liu
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Ning Chen
- Canadian Light Source Inc, Saskatoon, SK, S7N 2V3, Canada
| | - Qi Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Keegan Adair
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Zhiqiang Wang
- Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Jiatang Chen
- Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Zhongxin Song
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Junjie Li
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Mohammad Norouzi Banis
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Ruying Li
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Tsun-Kong Sham
- Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing, 100083, China.
| | - Gianluigi A Botton
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada.
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada.
| |
Collapse
|
32
|
Novel Composite Electrode of the Reduced Graphene Oxide Nanosheets with Gold Nanoparticles Modified by Glucose Oxidase for Electrochemical Reactions. Catalysts 2019. [DOI: 10.3390/catal9090764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Graphene-based composites have been widely explored for electrode and electrocatalyst materials for electrochemical energy systems. In this paper, a novel composite material of the reduced graphene oxide nanosheets (rGON) with gold nanoparticles (NPs) (rGON-AuNP) is synthesized, and its morphology, structure, and composition are characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopic (FTIR), Raman, and UV-Vis techniques. To confirm this material’s electrochemical activity, a glucose oxidase (GOD) is chosen as the target reagent to modify the rGON-AuNP layer to form GOD/rGON-AuNP/glassy carbon (GC) electrode. Two pairs of distinguishable redox peaks, corresponding to the redox processes of two different conformational GOD on AuNP, are observed on the cyclic voltammograms of GOD/rGON-AuNP/GC electrode. Both cyclic voltammetry and electrochemical impedance spectroscopy are employed to study the mechanism of direct electron transfer from GOD to GC electrode on the rGON-AuNP layer. In addition, this GOD/rGON-AuNP/GC electrode shows catalytic activity toward glucose oxidation reaction.
Collapse
|
33
|
Tang J, Wang Y, Zhao W, Zeng RJ, Liu T, Zhou S. Biomass-derived hierarchical honeycomb-like porous carbon tube catalyst for the metal-free oxygen reduction reaction. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113230] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Fabrication of Pt/IrO2Nb2O5–rGO Electrocatalyst by Support Improvement for Oxygen Reduction Reaction. Catal Letters 2019. [DOI: 10.1007/s10562-019-02875-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Chen Y, Liang L, Paredes Navia SA, Hinerman A, Gerdes K, Song X. Synergetic Interaction of Additive Dual Nanocatalysts to Accelerate Oxygen Reduction Reaction in Fuel Cell Cathodes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yun Chen
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Liang Liang
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sergio A. Paredes Navia
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Alec Hinerman
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Kirk Gerdes
- National Energy Technology Laboratory, United States Department of Energy, Morgantown, West Virginia 26507, United States
| | - Xueyan Song
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
36
|
Santos JRN, Viégas DSS, Alves ICB, Rabelo AD, Costa WM, Marques EP, Zhang L, Zhang J, Marques ALB. Reduced Graphene Oxide-Supported Nickel(II)-Bis(1,10-Phenanthroline) Complex as a Highly Active Electrocatalyst for Ethanol Oxidation Reaction. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00539-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Shen H, Thomas T, Rasaki SA, Saad A, Hu C, Wang J, Yang M. Oxygen Reduction Reactions of Fe-N-C Catalysts: Current Status and the Way Forward. ELECTROCHEM ENERGY R 2019. [DOI: 10.1007/s41918-019-00030-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
García-Cruz L, Montiel V, Solla-Gullón J. Shape-controlled metal nanoparticles for electrocatalytic applications. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2017-0124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
The application of shape-controlled metal nanoparticles is profoundly impacting the field of electrocatalysis. On the one hand, their use has remarkably enhanced the electrocatalytic activity of many different reactions of interest. On the other hand, their usage is deeply contributing to a correct understanding of the correlations between shape/surface structure and electrochemical reactivity at the nanoscale. However, from the point of view of an electrochemist, there are a number of questions that must be fully satisfied before the evaluation of the shaped metal nanoparticles as electrocatalysts including (i) surface cleaning, (ii) surface structure characterization, and (iii) correlations between particle shape and surface structure. In this chapter, we will cover all these aspects. Initially, we will collect and discuss about the different practical protocols and procedures for obtaining clean shaped metal nanoparticles. This is an indispensable requirement for the establishment of correct correlations between shape/surface structure and electrochemical reactivity. Next, we will also report how some easy-to-do electrochemical experiments including their subsequent analyses can enormously contribute to a detailed characterization of the surface structure of the shaped metal nanoparticles. At this point, we will remark that the key point determining the resulting electrocatalytic activity is the surface structure of the nanoparticles (obviously, the atomic composition is also extremely relevant) but not the particle shape. Finally, we will summarize some of the most significant advances/results on the use of these shaped metal nanoparticles in electrocatalysis covering a wide range of electrocatalytic reactions including fuel cell-related reactions (electrooxidation of formic acid, methanol and ethanol and oxygen reduction) and also CO2 electroreduction.
Graphical Abstract:
Collapse
|
39
|
Zhu G, Liu F, Wang Y, Wei Z, Wang W. Systematic exploration of N,C coordination effects on the ORR performance of Mn–Nx doped graphene catalysts based on DFT calculations. Phys Chem Chem Phys 2019; 21:12826-12836. [DOI: 10.1039/c9cp02155h] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five-coordination Mn–Nx experiences a significant increase in ORR catalytic activity due to its moderate binding ability compared with Mn–N4 and Mn–N3.
Collapse
Affiliation(s)
- Guangqi Zhu
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Fan Liu
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yicheng Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Zidong Wei
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- China
| | - Wei Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Key Laboratory of Metal Fuel Cell of Sichuan Province
| |
Collapse
|
40
|
Zhang M, Miao S, Xu BQ. Core@shell nanostructured Au-d@NimPtm for electrochemical oxygen reduction reaction: effect of the core size and shell thickness. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01056d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au-d@NimPtm nanostructures are studied to address the effects of the Au-core size (d) and NiPt-shell thickness (m) on the electrocatalytic performance of Pt for the ORR.
Collapse
Affiliation(s)
- Min Zhang
- Innovative Catalysis Program
- Key Lab of Organic Optoelectronics & Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| | - Shu Miao
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
| | - Bo-Qing Xu
- Innovative Catalysis Program
- Key Lab of Organic Optoelectronics & Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| |
Collapse
|