1
|
Azeem A, Mai W, Gul B, Rasheed A. Influence of Soil Amendment Application on Growth and Yield of Hedysarum scoparium Fisch. et Mey and Avena sativa L. Under Saline Conditions in Dry-Land Regions. PLANTS (BASEL, SWITZERLAND) 2025; 14:855. [PMID: 40265764 PMCID: PMC11945427 DOI: 10.3390/plants14060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/24/2025]
Abstract
Globally, salt stress is one of the most significant abiotic stresses limiting crop production in dry-land regions. Nowadays, growing crops in dry-land regions under saline irrigation is the main focus. Soil amendment with organic materials has shown the potential to mitigate the adverse effects of salinity on plants. This study aimed to examine the ameliorative impact of soil amendment (manure + sandy, compost + sandy, clay + sandy and sandy soil) on the growth, yield, physiological, and biochemical attributes of Hedysarum scoparium Fisch. et Mey (HS) and Avena sativa L. (OT) under fresh and saline water irrigation in dry-land regions. The results showed that salt stress negatively affected both plant species' growth, physiological traits, yield, and chloride ions. In response to saline irrigation, plants of both species increased catalase (CAT) and ascorbate peroxidase (APX) activities as part of a self-defense mechanism to minimize damage. Salt stress also significantly raised levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), and chloride ions (Cl). However, soil amendment treatments like manure + sandy and compost + sandy soil countered the negative effects of saline irrigation, significantly improving plant growth and yield compared with sandy soil. Thus, organic soil amendment is a promising strategy for sustainable crop production under saline irrigation in dry-land regions. This study provides valuable insights into enhancing agricultural production by fostering resilient halophytes and salt-tolerant plant species in challenging environments.
Collapse
Affiliation(s)
- Ahmad Azeem
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Wenxuan Mai
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Bilquees Gul
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| | - Aysha Rasheed
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
2
|
Chishti MS, Shahbaz M, Kaleem M, Shafi S, Mehmood A, Qingzhu Z, Mansha M, Shehzadi N, Rana S, Shahid H, Hashem A, Alfagham A, Abd-Allah EF. Fertigation with alpha-tocopherol enhances morphological, physiological, and antioxidant responses in radish (Raphanus sativus L.) under drought stress. BMC PLANT BIOLOGY 2025; 25:30. [PMID: 39780097 PMCID: PMC11715548 DOI: 10.1186/s12870-025-06052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Water scarcity is a foremost environmental concern and is expected to hasten in the forthcoming years due to severe fluctuations in weather patterns worldwide. The present work was designed to explore the potential role of alpha-tocopherol (α-Toc), a form of vitamin E, on the morphological, physio-biochemical, and cellular antioxidant responses of two radish genotypes grown under drought conditions (38 ± 3% of field capacity). The individual and combined applications of α-Toc (100 ppm) were used as T0- Control, T1- Control + TF (TF-alpha-tocopherol), T2- Drought (D), and T3- D + TF with three replications. In general, drought conditions cause a marked reduction in, growth traits such as root length (RL), shoot dry weight (SDW), and shoot fresh weight (SFW). However, the sole and combined applications of α-Toc significantly enhanced the SDW, SFW, and RL in both radish genotypes. Drought stress causes a significant upsurge in hydrogen peroxide (H2O2) and lipid peroxidation (LPX) in leaves. At the same time, exogenous fertigation of α-Toc protects the membranes by reducing the level of LPX, enhancing antioxidants such as catalase (CAT) and peroxidase (POX) to scavenge the reactive oxygen species (ROS), and enhancing the osmolyte as total soluble proteins to maintain cell internal osmotic potential. Also, the α-Toc enhanced the photosynthetic pigments and significantly increased photosynthetic activity in the Early Milo (G2) as compared to Laal Pari (G1) genotype under drought, enhancing water use efficiency by maintaining transpiration rate and stomatal conductance. The α-Toc also regulates the beneficial inorganic ions (K+, Ca2+, and PO₄³⁻) in the shoots of both genotypes. Our present findings demonstrate the potential role of α-Toc in mitigating drought stress and infer that it can enhance plant growth under drought conditions.
Collapse
Affiliation(s)
- Muhammad Shahbaz Chishti
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
- Department of Botany , University of Agriculture, Faisalabad , 38040, Pakistan.
| | - Muhammad Shahbaz
- Department of Botany , University of Agriculture, Faisalabad , 38040, Pakistan
| | - Muhammad Kaleem
- Department of Botany , University of Agriculture, Faisalabad , 38040, Pakistan.
| | - Saba Shafi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, China
| | - Anam Mehmood
- Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, 38040, Pakistan
| | - Zhang Qingzhu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Musarat Mansha
- Department of Botany , University of Agriculture, Faisalabad , 38040, Pakistan
| | - Nimra Shehzadi
- Department of Botany , University of Agriculture, Faisalabad , 38040, Pakistan
| | - Shamsa Rana
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Hina Shahid
- Department of Botany , University of Agriculture, Faisalabad , 38040, Pakistan
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Alanoud Alfagham
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Elsayed Fathi Abd-Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Macías-Rubalcava ML, Lappe-Oliveras P, Villanueva-Silva R. Disruption of cell wall and membrane integrity as antioomycete and antifungal mode of action by fusaric and 9,10-dehydrofusaric acids from endophytic fungus Fusarium lactis strain SME13-2. J Appl Microbiol 2025; 136:lxae301. [PMID: 39701832 DOI: 10.1093/jambio/lxae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/24/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
AIMS This study aimed to assess the mode of action of fusaric and 9,10-dehydrofusaric acids on cell respiration by measuring the hyphal oxygen consumption rate, and the effects on cell membrane integrity by determining the electrical conductivity of the mycelium. METHODS AND RESULTS Bioactivity-directed fractionation of the active culture medium and mycelium organic extracts from the Fusarium lactis strain SME13-2 isolated from Sapium macrocarpum led to the isolation of two known alkylpicolinic acid derivatives: fusaric acid and 9,10-dehydrofusaric acid, along with the known polyketide bikaverin. Fusaric acid and 9,10-dehydrofusaric acid exhibited antioomycete and antifungal activities, significantly inhibiting the radial growth of Phytophthora capsici, Pythium aphanidermatum, Alternaria alternata, and F. oxysporum. Additionally, they induced changes in colony morphology and negative effects on the ultrastructure of their hyphae. To date, the antimicrobial mode of action of fusaric acid and other alkylpicolinic acid derivatives is not thoroughly understood. Therefore, we investigated their effect on cellular respiration by measuring the oxygen consumption rate of the hyphae and their impact on cell membrane integrity by determining the electrical conductivity of the mycelium. Fusaric and 9,10-dehydrofusaric acids inhibited the respiration of the mycelium and altered the permeability of the cell membrane in the tested phytopathogenic microorganisms in a concentration and exposure time-dependent manner, exerting a greater effect on oomycetes. The disruption of cell membrane integrity resulted in the leakage of cytoplasmic electrolytes into the extracellular medium, which, coupled with respiratory inhibition, could lead to cell death. CONCLUSIONS Fusaric and 9,10-dehydrofusaric acids show potential for the development of new fungicides and anti-oomycetes agents.
Collapse
Affiliation(s)
- Martha Lydia Macías-Rubalcava
- Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Delegación Coyoacán, Ciudad de México 04510, México
| | - Patricia Lappe-Oliveras
- Instituto de Biología, Departamento de Botánica, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Delegación Coyoacán, Ciudad de México 04510, México
| | - Rodrigo Villanueva-Silva
- Instituto de Química, Departamento de Productos Naturales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Delegación Coyoacán, Ciudad de México 04510, México
| |
Collapse
|
4
|
Mousa WK, Ghemrawi R, Abu-Izneid T, Al Ramadan N, Al Sheebani F. The design and development of EcoBiomes: Multi-species synthetic microbial consortia inspired by natural desert microbiome to enhance the resilience of climate-sensitive ecosystems. Heliyon 2024; 10:e36548. [PMID: 39262988 PMCID: PMC11388679 DOI: 10.1016/j.heliyon.2024.e36548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Synthetic microbial communities, which simplify the complexity of natural ecosystems while retaining their key features, are gaining momentum in engineering and biotechnology applications. One potential application is the development of bioinoculants, offering an eco-friendly, sustainable solution to promote plant growth and increase resilience to abiotic stresses amidst climate change. A potential source for stress-tolerant microbes is those associated with desert plants, evolved and shaped by selective pressures to promote host health under harsh environmental conditions. In our research, we aim to design and develop synthetic microbial consortia inspired by the natural microbiota of four desert plants native to the Arabian Peninsula, inferred from our previous work identifying the structure and predicting the function of these microbial communities using high throughput eDNA barcoding. To obtain culturable microbes that are manageable and traceable yet still representative of natural microbial communities, we combined multiple experimental protocols coupled with compatibility and synergy assessments, along with in planta testing. We isolated a total of 75 bacteria and conducted detailed biological evaluations, revealing that an overwhelming majority (84 %) of all isolates produced indole acetic acid (IAA), with 73 % capable of solubilizing phosphate, 60 % producing siderophores, 47 % forming biofilms, and 35 % producing ACC deaminase, all contributing to plant growth and stress tolerance. We constructed four synthetic microbial consortia, named EcoBiomes, consisting of synergistic combinations of multiple species that can co-exist without significant antagonism. Our preliminary data indicate that EcoBiomes enhance the resilience of heterologous host plants under simulated environmental stresses, including drought, heat, and salinity. EcoBiomes offer a unique, sustainable, and eco-friendly solution to mitigate the impact of climate change on sensitive ecosystems, ultimately affecting global food security.
Collapse
Affiliation(s)
- Walaa K Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi, 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, 112612, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi, 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, 112612, United Arab Emirates
| | - Tareq Abu-Izneid
- Monash Rural Health, Churchill, School of Rural Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, 3844, Australia
| | - Najwa Al Ramadan
- College of Pharmacy, Al Ain University, Abu Dhabi, 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, 112612, United Arab Emirates
| | - Fatima Al Sheebani
- College of Pharmacy, Al Ain University, Abu Dhabi, 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, 112612, United Arab Emirates
| |
Collapse
|
5
|
Shehzadi N, Mahmood A, Kaleem M, Chishti MS, Bashir H, Hashem A, Abd-Allah EF, Shahid H, Ishtiaq A. Zinc and nitrogen mediate the regulation of growth, leading to the upregulation of antioxidant aptitude, physio-biochemical traits, and yield in wheat plants. Sci Rep 2024; 14:12897. [PMID: 38839939 PMCID: PMC11153612 DOI: 10.1038/s41598-024-63423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
An ample amount of water and soil nutrients is required for economic wheat production to meet the current food demands. Nitrogen (N) and zinc (Zn) fertigation in soils can produce a substantial wheat yield for a rapidly increasing population and bring a limelight to researchers. The present study was designed to ascertain N and Zn's synergistic role in wheat growth, yield, and physio-biochemical traits. A pot experiment was laid out under a complete randomized design with four N levels (N1-0, N2-60, N3- 120, and N4-180 kg ha-1), Zn (T1-0, T2-5, T3-10, and T4-15 kg ha-1) with four replications. After the emergence of the plants, N and Zn fertigation was applied in the soil. The growth traits were considerably increased by combined applications as compared to the sole applications of the N and Zn. The photosynthetic pigments were found maximum due to combined applications of N and Zn, which were positively associated with biomass, growth, yield, and wheat grain quality. The combined application also substantially enhances the antioxidant enzyme activities to scavenge the ROS as H2O2 and reduce lipid peroxidation to protect the permeability of the biologic membranes. The combined higher applications of N and Zn were more responsive to ionic balance in a shoot by maintaining the Na+ for osmotic adjustments, accumulating more Ca2+ for cellular signaling; but, combined applications resulted in K+ reduction. Our present results suggest that appropriate sole or combined applications of N and Zn improve wheat's growth, yield, and antioxidant mechanisms. Previous studies lack sufficient information on N and Zn combined fertigation. We intend to investigate both the sole and combined roles of N and Zn to exploit their potential synergistic effects on wheat.
Collapse
Affiliation(s)
- Nimra Shehzadi
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan.
| | | | - Humaira Bashir
- Government Graduate College for Women Wahdat Colony, Lahore, Pakistan
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd-Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia
| | - Hina Shahid
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Atiqa Ishtiaq
- Department of Botany, Government College University, Faisalabad, Pakistan
| |
Collapse
|
6
|
Cavazza A, Dal Mas F, Paoloni P, Manzo M. Artificial intelligence and new business models in agriculture: a structured literature review and future research agenda. BRITISH FOOD JOURNAL 2023; 125:436-461. [DOI: 10.1108/bfj-02-2023-0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
PurposeArtificial Intelligence (AI) is a growing technology impacting several business fields. The agricultural sector is facing several challenges, which may be supported by the use of such a new advanced technology. The aim of the paper is to map the state-of-the-art of AI applications in agriculture, their advantages, barriers, implications and the ability to lead to new business models, depicting a future research agenda.Design/methodology/approachA structured literature review has been conducted, and 37 contributions have been analyzed and coded using a detailed research framework.FindingsFindings underline the multiple uses and advantages of AI in agriculture and the potential impacts for farmers and entrepreneurs, even from a sustainability perspective. Several applications and algorithms are being developed and tested, but many barriers arise, starting from the lack of understanding by farmers and the need for global investments. A collaboration between scholars and practitioners is advocated to share best practices and lead to practical solutions and policies. The promising topic of new business models is still under-investigated and deserves more attention from scholars and practitioners.Originality/valueThe paper reports the state-of-the-art of AI in agriculture and its impact on the development of new business models. Several new research avenues have been identified.
Collapse
|
7
|
Sharma RK, Dhillon J, Kumar P, Bheemanahalli R, Li X, Cox MS, Reddy KN. Climate trends and maize production nexus in Mississippi: empirical evidence from ARDL modelling. Sci Rep 2023; 13:16641. [PMID: 37789065 PMCID: PMC10547789 DOI: 10.1038/s41598-023-43528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023] Open
Abstract
Climate change poses a significant threat to agriculture. However, climatic trends and their impact on Mississippi (MS) maize (Zea mays L.) are unknown. The objectives were to: (i) analyze trends in climatic variables (1970 to 2020) using Mann-Kendall and Sen slope method, (ii) quantify the impact of climate change on maize yield in short and long run using the auto-regressive distributive lag (ARDL) model, and (iii) categorize the critical months for maize-climate link using Pearson's correlation matrix. The climatic variables considered were maximum temperature (Tmax), minimum temperature (Tmin), diurnal temperature range (DTR), precipitation (PT), relative humidity (RH), and carbon emissions (CO2). The pre-analysis, post-analysis, and model robustness statistical tests were verified, and all conditions were met. A significant upward trend in Tmax (0.13 °C/decade), Tmin (0.27 °C/decade), and CO2 (5.1 units/decade), and a downward trend in DTR ( - 0.15 °C/decade) were noted. The PT and RH insignificantly increased by 4.32 mm and 0.11% per decade, respectively. The ARDL model explained 76.6% of the total variations in maize yield. Notably, the maize yield had a negative correlation with Tmax for June, and July, with PT in August, and with DTR for June, July, and August, whereas a positive correlation was noted with Tmin in June, July, and August. Overall, a unit change in Tmax reduced the maize yield by 7.39% and 26.33%, and a unit change in PT reduced it by 0.65% and 2.69% in the short and long run, respectively. However, a unit change in Tmin, and CO2 emissions increased maize yield by 20.68% and 0.63% in the long run with no short run effect. Overall, it is imperative to reassess the agronomic management strategies, developing and testing cultivars adaptable to the revealed climatic trend, with ability to withstand severe weather conditions in ensuring sustainable maize production.
Collapse
Affiliation(s)
| | - Jagmandeep Dhillon
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi, USA.
| | - Pushp Kumar
- Department of Economics, Manipal University Jaipur, Dhami Kalan, Rajasthan, India
| | - Raju Bheemanahalli
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi, USA
| | - Xiaofei Li
- Department of Agricultural Economics, Mississippi State University, Mississippi, USA
| | - Michael S Cox
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi, USA
| | - Krishna N Reddy
- Crop Production Systems Research Unit, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Stoneville, MS, USA
| |
Collapse
|
8
|
Wang H, Li J, Liu H, Chen S, Zaman QU, Rehman M, El-Kahtany K, Fahad S, Deng G, Yang J. Variability in morpho-biochemical, photosynthetic pigmentation, enzymatic and quality attributes of potato for salinity stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108036. [PMID: 37738866 DOI: 10.1016/j.plaphy.2023.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Salt stress has emerged as a growing global concern, exerting a significant impact on agricultural productivity. The challenges of salt stress on potatoes are crucial for ensuring food security and sustainable agriculture. To address this issue a pot trial was executed to evaluate the impacts of NaCl in the soil on the growth, photosynthetic pigments, and quality attributes of potato, plants were grown in soil spiked with various concentrations of NaCl (0, 1, 3, 5, 7 g kg-1 of soil). Results revealed that salt stress have negative impacts on the growth, biomass, photosynthesis and quality attributes of potato. Lower level of salt stress 1 g kg-1 of soil improved the fresh and dry biomass of leaves (78.70 and 47.74%) and tubers (86.04 and 88.92%) as compared to control, respectively. Higher levels of salt stress (7 g kg-1) increased lipid peroxidation in leaves and improved the enzymatic antioxidants. It was observed that enzyme activities i.e., SOD (134.97%), POD (101.02%), and CAT (28.87%) increased in leaves and are inversely related to the NaCl concentration. The combination of reduction in chlorophyll contents and soluble sugars resulted in lower levels of quality attributes i.e., amylose (68.90%) and amylopectin (16.70%) of potato. Linear relationship in growth, biomass and physiological attributes showed the strong association with increased salt stress. Furthermore, the PCA-heatmap synergy offers identifying clusters of co-regulated attributes, which pinpoint the physiological responses that exhibit the strongest correlation with increasing salt stress levels. Findings indicate that potato can be grown successfully with (1 g kg-1 of NaCl in soil) without negative impacts on plant quality. Furthermore, this study contributes valuable insights into the complexities of salt stress on potato plants and provides a foundation for developing strategies to enhance their resilience in salt-affected environments.
Collapse
Affiliation(s)
- Hongyang Wang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Junhua Li
- School of Agriculture, Yunnan University, Kunming, Yunnan 650504, China
| | - Hao Liu
- School of Agriculture, Yunnan University, Kunming, Yunnan 650504, China
| | - Shengnan Chen
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Muzammal Rehman
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Khaled El-Kahtany
- Geology and Geophysics Department, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Shah Fahad
- Geology and Geophysics Department, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia; Department of Agronomy, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa 23200, Pakistan.
| | - Gang Deng
- School of Agriculture, Yunnan University, Kunming, Yunnan 650504, China.
| | - Jing Yang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
9
|
Newton EE, Theodoridou K, Terré M, Huws S, Ray P, Reynolds CK, Prat N, Sabrià D, Stergiadis S. Effect of dietary seaweed (Ascophyllum nodosum) supplementation on milk mineral concentrations, transfer efficiency, and hematological parameters in lactating Holstein cows. J Dairy Sci 2023; 106:6880-6893. [PMID: 37210373 PMCID: PMC10570403 DOI: 10.3168/jds.2022-23074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/17/2023] [Indexed: 05/22/2023]
Abstract
This study investigated the effect of feeding seaweed (Ascophyllum nodosum) to dairy cows on milk mineral concentrations, feed-to-milk mineral transfer efficiencies, and hematological parameters. Lactating Holstein cows (n = 46) were allocated to 1 of 2 diets (n = 23 each): (1) control (CON; without seaweed) and (2) seaweed (SWD; replacing 330 g/d of dried corn meal in CON with 330 g/d dried A. nodosum). All cows were fed the CON diet for 4 wk before the experiment (adaptation period), and animals were then fed the experimental diets for 9 wk. Samples included sequential 3-wk composite feed samples, a composite milk sample on the last day of each week, and a blood sample at the end of the study. Data were statistically analyzed using a linear mixed effects model with diet, week, and their interaction as fixed factors; cow (nested within diet) as a random factor; and data collected on the last day of the adaptation period as covariates. Feeding SWD increased milk concentrations of Mg (+6.6 mg/kg), P (+56 mg/kg), and I (+1,720 μg/kg). It also reduced transfer efficiency of Ca, Mg, P, K, Mn, and Zn, and increased transfer efficiency of Mo. Feeding SWD marginally reduced milk protein concentrations, whereas there was no effect of SWD feeding on cows' hematological parameters. Feeding A. nodosum increased milk I concentrations, which can be beneficial when feed I concentration is limited or in demographics or populations with increased risk of I deficiency (e.g., female adolescents, pregnant women, nursing mothers). However, care should also be taken when feeding SWD to dairy cows because, in the present study, milk I concentrations were particularly high and could result in I intakes that pose a health risk for children consuming milk.
Collapse
Affiliation(s)
- E E Newton
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6EU, United Kingdom
| | - K Theodoridou
- Queen's University Belfast, Institute for Global Food Security, Belfast, BT9 5DL, United Kingdom.
| | - M Terré
- Department of Ruminant Production, Institute de Recerca i Tecnologia Agroalimentàries, Caldes de Montbui, 08140, Spain
| | - S Huws
- Queen's University Belfast, Institute for Global Food Security, Belfast, BT9 5DL, United Kingdom
| | - P Ray
- The Nature Conservancy, Arlington, VA 22203
| | - C K Reynolds
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6EU, United Kingdom
| | - N Prat
- Department of Ruminant Production, Institute de Recerca i Tecnologia Agroalimentàries, Caldes de Montbui, 08140, Spain
| | - D Sabrià
- Department of Ruminant Production, Institute de Recerca i Tecnologia Agroalimentàries, Caldes de Montbui, 08140, Spain
| | - S Stergiadis
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6EU, United Kingdom.
| |
Collapse
|
10
|
Ochar K, Kim SH. Conservation and Global Distribution of Onion ( Allium cepa L.) Germplasm for Agricultural Sustainability. PLANTS (BASEL, SWITZERLAND) 2023; 12:3294. [PMID: 37765458 PMCID: PMC10535454 DOI: 10.3390/plants12183294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Onion (Allium cepa L.) is recognized globally as a crucial vegetable crop, prized not only for its culinary applications but also for its numerous health-promoting properties. With climate change relentlessly exerting mounting challenges to agriculture, the preservation and deployment of onion germplasm has become critical to ensuring sustainable agriculture and safeguarding food security. Global onion germplasm collections function as repositories of genetic diversity, holding within them an extensive array of valuable traits or genes. These can be harnessed to develop varieties resilient to climate adversities. Therefore, detailed information concerning onion germplasm collections from various geographical regions can bolster their utility. Furthermore, an amplified understanding of the importance of fostering international and inter-institutional collaborations becomes essential. Sharing and making use of onion genetic resources can provide viable solutions to the looming agricultural challenges of the future. In this review, we have discussed the preservation and worldwide distribution of onion germplasm, along with its implications for agricultural sustainability. We have also underscored the importance of international and interinstitutional collaboration in onion germplasm collecting and conservation for agricultural sustainability.
Collapse
Affiliation(s)
- Kingsley Ochar
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana;
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea
| |
Collapse
|
11
|
Hasan M, Marjan MA, Uddin MP, Afjal MI, Kardy S, Ma S, Nam Y. Ensemble machine learning-based recommendation system for effective prediction of suitable agricultural crop cultivation. FRONTIERS IN PLANT SCIENCE 2023; 14:1234555. [PMID: 37636091 PMCID: PMC10449466 DOI: 10.3389/fpls.2023.1234555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023]
Abstract
Agriculture is the most critical sector for food supply on the earth, and it is also responsible for supplying raw materials for other industrial productions. Currently, the growth in agricultural production is not sufficient to keep up with the growing population, which may result in a food shortfall for the world's inhabitants. As a result, increasing food production is crucial for developing nations with limited land and resources. It is essential to select a suitable crop for a specific region to increase its production rate. Effective crop production forecasting in that area based on historical data, including environmental and cultivation areas, and crop production amount, is required. However, the data for such forecasting are not publicly available. As such, in this paper, we take a case study of a developing country, Bangladesh, whose economy relies on agriculture. We first gather and preprocess the data from the relevant research institutions of Bangladesh and then propose an ensemble machine learning approach, called K-nearest Neighbor Random Forest Ridge Regression (KRR), to effectively predict the production of the major crops (three different kinds of rice, potato, and wheat). KRR is designed after investigating five existing traditional machine learning (Support Vector Regression, Naïve Bayes, and Ridge Regression) and ensemble learning (Random Forest and CatBoost) algorithms. We consider four classical evaluation metrics, i.e., mean absolute error, mean square error (MSE), root MSE, and R 2, to evaluate the performance of the proposed KRR over the other machine learning models. It shows 0.009 MSE, 99% R 2 for Aus; 0.92 MSE, 90% R 2 for Aman; 0.246 MSE, 99% R 2 for Boro; 0.062 MSE, 99% R 2 for wheat; and 0.016 MSE, 99% R 2 for potato production prediction. The Diebold-Mariano test is conducted to check the robustness of the proposed ensemble model, KRR. In most cases, it shows 1% and 5% significance compared to the benchmark ML models. Lastly, we design a recommender system that suggests suitable crops for a specific land area for cultivation in the next season. We believe that the proposed paradigm will help the farmers and personnel in the agricultural sector leverage proper crop cultivation and production.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Department of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Md Abu Marjan
- Department of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Md Palash Uddin
- Department of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
- School of Information Technology, Deakin University, Geelong, VIC, Australia
| | - Masud Ibn Afjal
- Department of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Seifedine Kardy
- Department of Applied Data Science, Noroff University College, Kristiansand, Norway
- Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, United Arab Emirates
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos, Lebanon
| | - Shaoqi Ma
- Department of ICT Convergence, Soonchunhyang University, Asan, Republic of Korea
| | - Yunyoung Nam
- Department of ICT Convergence, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
12
|
Ammar KA, Kheir AMS, Ali BM, Sundarakani B, Manikas I. Developing an analytical framework for estimating food security indicators in the United Arab Emirates: A review. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2023; 26:1-20. [PMID: 36846351 PMCID: PMC9943759 DOI: 10.1007/s10668-023-03032-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Rapid population growth, climate change, limited natural resources, and the COVID-19 pandemic contribute to increased global hunger, necessitating intensive efforts to ensure food security and nutrition (FSN). Previous FSN approaches covered some dimensions, but not all, resulting in significant gaps in food security indicators. The Gulf Cooperation Council (GCC) and the Middle East and North Africa (MENA) regions have received less attention in food security studies, thus far necessitating considerable effort to develop an appropriate analytical framework. This study reviewed articles and international reports of FSN indicators, drivers and policies, methods, and models and extracted the challenges and gaps from the global and UAE contexts. The UAE and the world have gaps in FSN drivers, indicators, and methods, necessitating potential solutions to meet future challenges such as rapid population growth, pandemics, and limited natural resources. As a result, we created a newly developed analytical framework that addresses the shortcomings of previous approaches such as sustainable food systems developed by FAO and the Global Food Security Index (GFSI) and covers all aspects of food security. Gaps in knowledge in FSN drivers and policies, indicators, big data, methods, and models were considered in the developed framework, which has specific advantages. The novel developed framework addresses all food security dimensions (access, availability, stability, and utilization), ensuring poverty reduction, food security, and nutrition security while outperforming previous approaches (i.e., FAO and GFSI). The developed framework could be used successfully not only in the UAE and MENA, but also, globally, helping to solve food insecurity and malnutrition for future generations. The scientific community and policymakers should disseminate such solutions to address global food insecurity and ensure nutrition for future generations in the face of rapid population growth, limited natural resources, climate change, and spreading pandemics. Supplementary Information The online version contains supplementary material available at 10.1007/s10668-023-03032-3.
Collapse
Affiliation(s)
- Khalil A. Ammar
- International Center for Biosaline Agriculture, ICBA, Dubai, UAE
| | | | - Beshir M. Ali
- Faculty of Business, University of Wollongong in Dubai, Knowledge Park, Dubai, 20183 UAE
| | - Balan Sundarakani
- Faculty of Business, University of Wollongong in Dubai, Knowledge Park, Dubai, 20183 UAE
| | - Ioannis Manikas
- Faculty of Business, University of Wollongong in Dubai, Knowledge Park, Dubai, 20183 UAE
| |
Collapse
|
13
|
Gelaye Y. The status and natural impact of floriculture production in Ethiopia: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9066-9081. [PMID: 36437364 DOI: 10.1007/s11356-022-24279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Ethiopia's floriculture industry is exceedingly emerging, and, currently, it ranks as the sixth largest exporter of roses worldwide and second largest in Africa. Currently, many flowers, such as rose, gypsophila, carnations, and chrysanthemum, are growing. However, floriculture farms are contributing a high level of health risks and environmental problems in Ethiopia. Thus, the purpose of this paper is to scrutinize the status and impacts of floriculture industries in Ethiopia. The floriculture division is an emerging sector in Ethiopia, and the number of farms, income, job opportunities, and diversity of flowers are increasing. However, the health risks and environmental fates of the sector are also increasing. Ethiopian floriculture farms lack waste disposal technologies and workers' protective equipment and safety, and the chemicals, plastics, and corrugated irons used in the farms are carelessly disposed everywhere. Pesticides, plastics, and fertilizers are also freely discharged into water bodies and terrestrial land, which is causing the development of health risks; aquatic life hazards; and soil, water, and air pollution. However, Ethiopia has no strong and functional system or structure to control the impacts of floriculture farms. The government and the farm owners are not thoughtful about the environmental issues, health concerns, and socioeconomic impacts of the wastes. The government lacks regular control and assessment of farms, and the farms are engaging for their profit. Nevertheless, developed countries are currently using both natural and modern technologies to manage floricultural wastes. Ethiopia should therefore suggest manageable possible approaches and sound management strategies based on the findings of the analyses.
Collapse
Affiliation(s)
- Yohannes Gelaye
- Department of Horticulture, College of Agriculture and Natural Resources, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia.
| |
Collapse
|
14
|
Heat Shock Proteins and Antioxidant Genes Involved in Heat Combined with Drought Stress Responses in Perennial Rye Grass. Life (Basel) 2022; 12:life12091426. [PMID: 36143461 PMCID: PMC9506360 DOI: 10.3390/life12091426] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The frequent occurrence of heat and drought stress can severely reduce agricultural production of field crops. In comparison to a single stress, the combination of both heat (H) and drought (D) further reduce plant growth, survival and yield. This study aimed to explore the transcriptional responses of heat shock protein (HSP) and antioxidant genes under H combined D stress in perennial rye grass (PRG). The results demonstrated that oxidative stress indicators (hydrogen peroxide, lipid peroxidation) significantly increased, particularly in the case of combined H and D treatment, suggesting that oxidative stress-induced damage occurred in plants under the combined stresses. Transcriptional responses of heat shock protein 70 (HSP70), heat shock protein 90-6 (HSP90-6), and the mitochondrial small heat shock protein HSP26.2 (HSP26.2) occurred rapidly, and showed high level of expression particularly under H and D stress. Antioxidant genes including ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), copper–zinc superoxide dismutase (Cu/ZnSOD), peroxidase (POD), ferredoxin–thioredoxin (FTR), thioredoxin (Trx), 2-cysteine peroxiredoxin (2-Cys Prx) showed response to combined H and D, followed by either D or H stress alone in rye grass. An interactome map revealed the close partnership of these heat shock protein genes and antioxidant genes, respectively. These candidate genes were predominantly linked to stress responses and antioxidant defense in plants. These findings may advance our understanding about the HSP and the antioxidant genes underlying combined abiotic stress response and tolerance in perennial rye grass.
Collapse
|
15
|
Ahmad A, Liu Y. Phenology forcing model to estimate phenology shifting ability of extreme environmental events. FRONTIERS IN PLANT SCIENCE 2022; 13:961335. [PMID: 36160991 PMCID: PMC9493310 DOI: 10.3389/fpls.2022.961335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/15/2022] [Indexed: 05/17/2023]
Abstract
The current study considered the climate extreme index (CEI) values originated from extreme environmental events (EEEs) by following the National Oceanic and Atmospheric Administration (NOAA) guidelines. The EEEs were fractionated into six sub-categories (i.e., high temperature, low temperature, high precipitation, low precipitation, drought, and wind), and the combined impact of CEIs was utilized to develop an algorithm for the estimation of the phenology sensitivity index (P Si ). Finally, the CEIs, and the P Si were undergone the development of the phenology forcing (PF ) model. The developed model showed a high sensitivity at the CEI value of as low as ≥1.0. Furthermore, the uncertainty index varied between 0.03 and 0.07, making a parabolic curvature at increasing CEIs (1.0-15.0). The current study precisely estimates the tendency of EEEs for phenology change. It will assist in policy-making and planning crop cultivation plans for achieving sustainable development goal 2 (SDG2) of the Food and Agriculture Organization (FAO).
Collapse
Affiliation(s)
- Aqeel Ahmad
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Yujie Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- *Correspondence: Yujie Liu,
| |
Collapse
|