1
|
Shivappa S, Amritha KP, Nayak S, Chandrashekar HK, Thorat SA, Kaniyassery A, Govender N, Thiruvengadam M, Muthusamy A. Integration of physio-biochemical, biological and molecular approaches to improve heavy metal tolerance in plants. 3 Biotech 2025; 15:76. [PMID: 40060292 PMCID: PMC11885775 DOI: 10.1007/s13205-025-04248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/16/2025] [Indexed: 04/13/2025] Open
Abstract
Heavy metal toxicity hinders plant growth and development by inducing oxidative stress, decreasing biomass, impairing photosynthesis, and potentially leading to plant death. The inherent defense mechanisms employed by plants, including metal sequestration into vacuoles, phytochelation, cell wall metal adsorption and an enhanced antioxidant system can be improved via various approaches to mitigate heavy metal toxicity. This review primarily outlines plants direct and indirect responses to HM stress and the tolerance mechanisms by which plants combat the toxic effects of metals and metalloids to understand the effective management of HMs and metalloids in the soil system. Furthermore, this review highlights measures to mitigate metal and metalloid toxicity and improve metal tolerance through various physio-biochemical, biological, and molecular approaches. This review also provides a comprehensive account of all the mitigative approaches by comparing physio-biochemical, biological and molecular approaches. Finally, we compared all the mitigative approaches used in monocotyledonous and dicotyledonous to increase their metal tolerance. Although many studies have compared monocot and dicot plants based on metal toxicity and tolerance effects, comparisons of these mitigative approaches have not been explored.
Collapse
Affiliation(s)
- Swathi Shivappa
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - K. P. Amritha
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Siddharth Nayak
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Harsha K. Chandrashekar
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Sachin Ashok Thorat
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Arya Kaniyassery
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Nisha Govender
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Selangor Malaysia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029 South Korea
| | - Annamalai Muthusamy
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| |
Collapse
|
2
|
Cao X, Hu X, Efrizal E, Hayati I, Yang J, Tan C, Zhang M. Tradeoffs among yield, cadmium bioavailability, nitrous oxide emission and bacterial community stability: Effects of iron-modified woody peat and nitrification inhibitors on soil-vegetable systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123379. [PMID: 39550941 DOI: 10.1016/j.jenvman.2024.123379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/19/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Cadmium (Cd) pollution leads to soil degradation, decreases crop yield and affects human health through the food chain. Iron-modified woody peat (IMP) is an organic passivation material that significantly affects the migration of heavy metals in soil. Nitrification inhibitors are widely used to reduce greenhouse gas emissions. This study investigated the effects of the IMP and nitrification inhibitors dicyandiamide (DCD) and 3, 4-dimethylpyrazole phosphate on Cd content and form, crop yield, nitrous oxide (N2O) emission and bacterial communities in soil-lettuce systems. The simultaneous additions of IMP and DCD substantially reduced the soil available Cd content by 22.6 % and significantly promoted the lettuce yield by 42.9 %. Lettuce yield was significantly and negatively correlated with soil available Cd (correlation coefficient = -0.52). The simultaneous applications of IMP and nitrification inhibitors stimulated N2O emission risk by enhancing the soil NH4+-N contents and the relative abundances of Firmicutes, which could also decrease soil bacterial community stabilities. Therefore, tradeoffs among yield, Cd bioavailability, N2O emission and bacterial community stability should be comprehensively considered when evaluating the combined performances of IMP and nitrification inhibitors.
Collapse
Affiliation(s)
- Xueying Cao
- Rural Vitalization Research Institute, Changsha University, Changsha, 410022, China
| | - Xinyue Hu
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Efrizal Efrizal
- Department of Agroeco-Technology Faculty of Agriculture, Jambi University, 36657, Indonesia; Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - IsIah Hayati
- Department of Agroeco-Technology Faculty of Agriculture, Jambi University, 36657, Indonesia
| | - Jia Yang
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, China
| | - Changyin Tan
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Manyun Zhang
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China; Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
3
|
Sandaruwan C, Adikaram M, Madugalla N, Pitawala A, Ishiga H. Human and environmental risk assessment and plausible sources of toxic heavy metals at beach placers in southeast Sri Lanka. MARINE POLLUTION BULLETIN 2024; 208:117007. [PMID: 39357367 DOI: 10.1016/j.marpolbul.2024.117007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024]
Abstract
Beach placers are typically rich in heavy minerals, which are crucial for a wide range of industrial applications. This study investigates the human and environmental risks posed by toxic heavy metals (As, Pb, Zn, Cu, Cr, Fe, V and Mn) in beach placers of southeastern Sri Lanka using 42 X-ray fluorescence data. Risk indicators (EF, Igeo, CF and PLI) indicate the polluted nature of the placers. Correlation analysis (correlation matrix and HCA) identified pollution sources as heavy mineral-rich rocks, agricultural fertilizers, pesticides and municipal wastes. The environmental impact caused by toxic metals is less in placers. The highest non-carcinogenic risks (HI) resulted by Cr (1.69E+00), V (4.29E+00) and Fe (2.06E+00) to children. The total cancer risk of As and Cr in placers is unacceptable (children: 2.60E-04, 2.48E-03, and adults: 3.14E-05, 2.87E-04, respectively). Different strategies are introduced to mitigate the identified risks in source areas and the coastal environment.
Collapse
Affiliation(s)
- Chaturanga Sandaruwan
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Madurya Adikaram
- Department of Physical Sciences, Faculty of Applied Sciences, South Eastern University, Sammanthurai, 32200, Sri Lanka
| | - Nadeesha Madugalla
- Department of Physical Sciences, Faculty of Applied Sciences, South Eastern University, Sammanthurai, 32200, Sri Lanka.
| | - Amarasooriya Pitawala
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Hiroaki Ishiga
- Department of Geosciences, Graduate School of Science and Engineering, Shimane University, Japan
| |
Collapse
|
4
|
Zheng X, Lin H, Du D, Li G, Alam O, Cheng Z, Liu X, Jiang S, Li J. Remediation of heavy metals polluted soil environment: A critical review on biological approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116883. [PMID: 39173222 DOI: 10.1016/j.ecoenv.2024.116883] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Heavy metals (HMs) pollution is a globally emerging concern. It is difficult to cost-effectively combat such HMs polluted soil environments. The efficient remediation of HMs polluted soil is crucial to protect human health and ecological security that could be carried out by several methods. Amidst, biological remediation is the most affordable and ecological. This review focused on the principles, mechanisms, performances, and influential factors in bioremediation of HMs polluted soil. In microbial remediation, microbes can alter metallic compounds in soils. They transform these compounds into their metabolism through biosorption and bioprecipitation. The secreted microbial enzymes act as transformers and assist in HMs immobilization. The synergistic microbial effect can further improve HMs removal. In bioleaching, the microbial activity can simultaneously produce H2SO4 or organic acids and leach HMs. The production of acids and the metabolism of bacteria and fungi transform metallic compounds to soluble and extractable form. The key bioleaching mechanisms are acidolysis, complexolysis, redoxolysis and bioaccumulation. In phytoremediation, hyperaccumulator plants and their rhizospheric microbes absorb HMs by roots through absorption, cation exchange, filtration, and chemical changes. Then they exert different detoxification mechanisms. The detoxified HMs are then transferred and accumulated in their harvestable tissues. Plant growth-promoting bacteria can promote phytoremediation efficiency; however, use of chelants have adverse effects. There are some other biological methods for the remediation of HMs polluted soil environment that are not extensively practiced. Finally, the findings of this review will assist the practitioners and researchers to select the appropriate bioremediation approach for a specific soil environment.
Collapse
Affiliation(s)
- Xiaojun Zheng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjun Lin
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ohidul Alam
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng Cheng
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Xinlin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Jian Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
5
|
Cuaxinque-Flores G, Talavera-Mendoza O, Aguirre-Noyola JL, Hernández-Flores G, Martínez-Miranda V, Rosas-Guerrero V, Martínez-Romero E. Molecular and geochemical basis of microbially induced carbonate precipitation for treating acid mine drainage: The case of a novel Sporosarcina genomospecies from mine tailings. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135005. [PMID: 38996684 DOI: 10.1016/j.jhazmat.2024.135005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Microbially induced carbonate precipitation (MICP) immobilizes toxic metals and reduces their bioavailability in aqueous systems. However, its application in the treatment of acid mine drainage (AMD) is poorly understood. In this study, the genomes of Sporosarcina sp. UB5 and UB10 were sequenced. Urease, carbonic anhydrases, and metal resistance genes were identified and enzymatic assays were performed for their validation. The geochemical mechanism of precipitation in AMD was elucidated through geo-mineralogical analysis. Sporosarcina sp. UB5 was shown to be a new genomospecies, with an average nucleotide identity < 95 % (ANI) and DNA-DNA hybridization < 70 % (DDH) whereas UB10 is close to S. pasteurii. UB5 contained two urease operons, whereas only one was identified in UB10. The ureolytic activities of UB5 and UB10 were 122.67 ± 15.74 and 131.70 ± 14.35 mM NH4+ min-1, respectively. Both strains feature several carbonic anhydrases of the α, β, or γ families, which catalyzed the precipitation of CaCO3. Only Sporosarcina sp. UB5 was able to immobilize metals and neutralize AMD. Geo-mineralogical analyses revealed that UB5 directly immobilized Fe (1-23 %), Mn (0.65-1.33 %) and Zn (0.8-3 %) in AMD via MICP and indirectly through adsorption to calcite and binding to bacterial cell walls. The MICP-treated AMD exhibited high removal rates (>67 %) for Ag, Al, As, Ca, Cd, Co, Cu, Fe, Mn, Pb, and Zn, and a removal rate of 15 % for Mg. This study provides new insights into the MICP process and its applications to AMD treatment using autochthonous strains.
Collapse
Affiliation(s)
- Gustavo Cuaxinque-Flores
- Doctorado en Recursos Naturales y Ecologia, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran vía tropical 20, Fraccionamiento Las playas, Acapulco de Juárez, Guerrero, Mexico
| | - Oscar Talavera-Mendoza
- Doctorado en Recursos Naturales y Ecologia, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran vía tropical 20, Fraccionamiento Las playas, Acapulco de Juárez, Guerrero, Mexico; Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex-hacienda, San Juan Bautista s/n, CP 40323 Taxco el Viejo, Guerrero, Mexico.
| | - José Luis Aguirre-Noyola
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Giovanni Hernández-Flores
- CONAHCyT-Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex Hacienda San Juan Bautista s/n, Taxco de Alarcón 40323, Mexico
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Km. 14.5, Carretera, Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de México, Mexico
| | - Víctor Rosas-Guerrero
- Escuela Superior en Desarrollo Sustentable, Universidad Autónoma de Guerrero, Tecpan de Galeana 40900, Mexico
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, UNAM, Av. Universidad s/n, Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
6
|
Niu SQ, Song HR, Zhang X, Bao XW, Li T, He LY, Li Y, Li Y, Zhang DX, Bai J, Liu SJ, Guo JL. The Cd resistant mechanism of Proteus mirabilis Ch8 through immobilizing and detoxifying. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116432. [PMID: 38728947 DOI: 10.1016/j.ecoenv.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Cadmium (Cd) pollution is a serious global environmental problem, which requires a global concern and practical solutions. Microbial remediation has received widespread attention owing to advantages, such as environmental friendliness and soil amelioration. However, Cd toxicity also severely deteriorates the remediation performance of functional microorganisms. Analyzing the mechanism of bacterial resistance to Cd stress will be beneficial for the application of Cd remediation. In this study, the bacteria strain, up to 1400 mg/L Cd resistance, was employed and identified as Proteus mirabilis Ch8 (Ch8) through whole genome sequence analyses. The results indicated that the multiple pathways of immobilizing and detoxifying Cd maintained the growth of Ch8 under Cd stress, which also possessed high Cd extracellular adsorption. Firstly, the changes in surface morphology and functional groups of Ch8 cells were observed under different Cd conditions through SEM-EDS and FTIR analyses. Under 100 mg/L Cd, Ch8 cells exhibited aggregation and less flagella; the Cd biosorption of Ch8 was predominately by secreting exopolysaccharides (EPS) and no significant change of functional groups. Under 500 mg/L Cd, Ch8 were present irregular polymers on the cell surface, some cells with wrapping around; the Cd biosorption capacity exhibited outstanding effects (38.80 mg/g), which was mainly immobilizing Cd by secreting and interacting with EPS. Then, Ch8 also significantly enhanced the antioxidant enzyme activity and the antioxidant substance content under different Cd conditions. The activities of SOD and CAT, GSH content of Ch8 under 500 mg/L Cd were significantly increased by 245.47%, 179.52%, and 241.81%, compared to normal condition. Additionally, Ch8 significantly induced the expression of Acr A and Tol C (the resistance-nodulation-division (RND) efflux pump), and some antioxidant genes (SodB, SodC, and Tpx) to reduce Cd damage. In particular, the markedly higher expression levels of SodB under Cd stress. The mechanism of Ch8 lays a foundation for its application in solving soil remediation.
Collapse
Affiliation(s)
- Shu-Qi Niu
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Hao-Ran Song
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Xiu-Wen Bao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Ting Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Li-Ying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Yong Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Yang Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Dai-Xi Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Jing Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Si-Jing Liu
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China.
| |
Collapse
|
7
|
Naveed M, Tahir F, Aziz T, Waseem M, Makhdoom SI, Ali N, Alharbi M, Albekairi TH, Alasmari AF. Molecular identification of Proteus mirabilis, Vibrio species leading to CRISPR-Cas9 modification of tcpA and UreC genes causing cholera and UTI. Sci Rep 2024; 14:8563. [PMID: 38609487 PMCID: PMC11014924 DOI: 10.1038/s41598-024-59340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Heavy metal accumulation increases rapidly in the environment due to anthropogenic activities and industrialization. The leather and surgical industry produces many contaminants containing heavy metals. Cadmium, a prominent contaminant, is linked to severe health risks, notably kidney and liver damage, especially among individuals exposed to contaminated wastewater. This study aims to leverage the natural cadmium resistance mechanisms in bacteria for bioaccumulation purposes. The industrial wastewater samples, characterized by an alarming cadmium concentration of 29.6 ppm, 52 ppm, and 76.4 ppm-far exceeding the recommended limit of 0.003 ppm-were subjected to screening for cadmium-resistant bacteria using cadmium-supplemented media with CdCl2. 16S rRNA characterization identified Vibrio cholerae and Proteus mirabilis as cadmium-resistant bacteria in the collected samples. Subsequently, the cadmium resistance-associated cadA gene was successfully amplified in Vibrio species and Proteus mirabilis, revealing a product size of 623 bp. Further analysis of the identified bacteria included the examination of virulent genes, specifically the tcpA gene (472 bp) associated with cholera and the UreC gene (317 bp) linked to urinary tract infections. To enhance the bioaccumulation of cadmium, the study proposes the potential suppression of virulent gene expression through in-silico gene-editing tools such as CRISPR-Cas9. A total of 27 gRNAs were generated for UreC, with five selected for expression. Similarly, 42 gRNA sequences were generated for tcpA, with eight chosen for expression analysis. The selected gRNAs were integrated into the lentiCRISPR v2 expression vector. This strategic approach aims to facilitate precise gene editing of disease-causing genes (tcpA and UreC) within the bacterial genome. In conclusion, this study underscores the potential utility of Vibrio species and Proteus mirabilis as effective candidates for the removal of cadmium from industrial wastewater, offering insights for future environmental remediation strategies.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan.
| | - Fatima Tahir
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100, Arta, Greece
| | - Muhammad Waseem
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Syeda Izma Makhdoom
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Nouman Ali
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Lee H, Sam K, Coulon F, De Gisi S, Notarnicola M, Labianca C. Recent developments and prospects of sustainable remediation treatments for major contaminants in soil: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168769. [PMID: 38008308 DOI: 10.1016/j.scitotenv.2023.168769] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Rapid industrialisation and urbanisation are contributing to the entry of emerging contaminants into the environment, posing a significant threat to soil health and quality. Therefore, several remediation technologies have been investigated and tested at a field scale to address the issue. However, these remediation technologies face challenges related to cost-effectiveness, environmental concerns, secondary pollution due to the generation of by-products, long-term pollution leaching risks, and social acceptance. Overcoming these constraints necessitates the implementation of sustainable remediation methodologies that prioritise approaches with minimal environmental ramifications and the most substantial net social and economic advantages. Hence, this review delves into diverse contaminants that threaten soil health and quality. Moreover, it outlines the research imperatives for advancing innovative remediation techniques and effective management strategies to tackle this concern. The review discusses a remediation treatment train approach that encourages resource recovery, strengthens the circular economy, and employs a Life Cycle Assessment (LCA) framework to assess the environmental impacts of different remediation strategies. Additionally, the study explores mechanisms to integrate sustainability principles into soil remediation practices. It underscores the necessity for a comprehensive and systematic approach that takes into account the economic, social, and environmental consequences of remediation methodologies in the development of sustainable solutions.
Collapse
Affiliation(s)
- H Lee
- College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - K Sam
- School of the Environment, Geography and Geoscience, University of Portsmouth, University House, Winston Churchill Ave, Portsmouth PO1 2UP, UK
| | - F Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - S De Gisi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy
| | - M Notarnicola
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy
| | - C Labianca
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Arup, Level 5, Festival Walk, 80 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
9
|
Pednekar RR, Rajan AP. Unraveling the contemporary use of microbial fuel cell in pesticide degradation and simultaneous electricity generation: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:144-166. [PMID: 38048001 DOI: 10.1007/s11356-023-30782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023]
Abstract
Pesticide is an inevitable substance used worldwide to kill pests, but their indiscriminate use has posed serious complications to health and the environment. Various physical, chemical, and biological methods are employed for pesticide treatment, but this paper deals with microbial fuel cell (MFC) as a futuristic technology for pesticide degradation with electricity production. In MFC, organic compounds are utilized as the carbon source for electricity production and the generation of electrons which can be replaced with pollutants such as dyes, antibiotics, and pesticides as carbon sources. However, MFC is been widely studied for a decade for electricity production, but its implementation in pesticide degradation is less known. We fill this void by depicting a real picture of the global pesticide scenario with an eagle eye view of the bioremediation techniques implemented for pesticide treatment with phytoremediation and rhizoremediation as effective techniques for efficient pesticide removal. The enormous literature survey has revealed that not many researchers have ventured into this new arena of MFC employed for pesticide degradation. Based on the Scopus database, an increase in annual trend from 2014 to 2023 is observed for MFC-implemented pesticide remediation. However, a novel MFC to date for effective remediation of pesticides with simultaneous electricity generation is discussed for the first time. Furthermore, the limitation of MFC technology and the implementation of MFC and rhizoremediation as a clubbed system which is the least applied can be seen as promising and futuristic approaches to enhance pesticide degradation by bacteria and electricity as a by-product.
Collapse
Affiliation(s)
- Reshma Raviuday Pednekar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Anand Prem Rajan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
10
|
Dhaliwal SS, Sharma V, Shukla AK, Taneja PK, Kaur L, Verma V, Kaur M, Kaur J. Exploration of Cd transformations in Cd spiked and EDTA-chelated soil for phytoextraction by Brassica species. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8897-8909. [PMID: 35484423 DOI: 10.1007/s10653-022-01260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The study of soil cadmium (Cd) fractionation has become the need of the hour due to phytoextraction of Cd heavy metal by indigenous Brassica species of northwest India. The present study was conducted to explore the Cd speciation in soils treated with Cd (0, 5.0, 10.0, 20.0, 40.0, and 80.0 mg kg-1 soil) and synthetic chelate ethylene diamine tetraacetic acid (EDTA-0, 1.0 and 2.0 g kg-1 soil) planted under three Brassica species (Brassica juncea L., Brassica campestris L., and Brassica napus L). The studied Cd fractions viz. exchangeable and water-soluble (EX + WS), carbonate (CARB), organic matter (OM), Mn oxide (MnOX), amorphous Fe oxide (AFeOX), crystalline Fe oxide (CFeOX), and residual (RES) differed in their Cd content in soils under three investigated Brassica species. Among all plantations, B. juncea reduced the highest soil Cd content of EX + WS form which reflected its bioavailability. The Cd supplementation significantly enhanced the Cd concentration in all Cd forms with EX + WS Cd form exhibiting higher increase even at low Cd level (5.0 mg kg-1), whereas the EDTA addition did not influence Cd fractions. The application of EDTA @ 1.0 g kg-1 soil proved beneficial as it enhanced the metal mobility for plant extraction. All species positively significantly correlated (r = 0.648** to 0.747**) with all Cd fractions but except B. juncea all confronted reduction in their total biomass. In nutshell, it suggested that Brassica species having large plant biomass could be considered as a potential candidate for phytoremediation.
Collapse
Affiliation(s)
| | - Vivek Sharma
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India.
| | | | | | - Lovedeep Kaur
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| | - Vibha Verma
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| | - Manmeet Kaur
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| | - Janpriya Kaur
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
11
|
Riseh RS, Vazvani MG, Hajabdollahi N, Thakur VK. Bioremediation of Heavy Metals by Rhizobacteria. Appl Biochem Biotechnol 2023; 195:4689-4711. [PMID: 36287331 PMCID: PMC10354140 DOI: 10.1007/s12010-022-04177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/02/2022]
Abstract
Heavy elements accumulate rapidly in the soil due to industrial activities and the industrial revolution, which significantly impact the morphology, physiology, and yield of crops. Heavy metal contamination will eventually affect the plant tolerance threshold and cause changes in the plant genome and genetic structure. Changes in the plant genome lead to changes in encoded proteins and protein sequences. Consuming these mutated products can seriously affect human and animal health. Bioremediation is a process that can be applied to reduce the adverse effects of heavy metals in the soil. In this regard, bioremediation using plant growth-promoting rhizobacteria (PGPRs) as beneficial living agents can help to neutralize the negative interaction between the plant and the heavy metals. PGPRs suppress the adverse effects of heavy metals and the negative interaction of plant-heavy elements by different mechanisms such as biological adsorption and entrapment of heavy elements in extracellular capsules, reduction of metal ion concentration, and formation of complexes with metal ions inside the cell.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111 Iran
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111 Iran
| | - Najmeh Hajabdollahi
- Department of Plant Protection, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111 Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Edinburgh, EH9 3JG UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, 248007 India
- Centre for Research and Development, Chandigarh University, Mohali, 140413 Punjab India
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, 248002 Uttarakhand India
| |
Collapse
|
12
|
Sarker A, Al Masud MA, Deepo DM, Das K, Nandi R, Ansary MWR, Islam ARMT, Islam T. Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. CHEMOSPHERE 2023; 332:138861. [PMID: 37150456 DOI: 10.1016/j.chemosphere.2023.138861] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Contamination of the natural ecosystem by heavy metals, organic pollutants, and hazardous waste severely impacts on health and survival of humans, animals, plants, and microorganisms. Diverse chemical and physical treatments are employed in many countries, however, the acceptance of these treatments are usually poor because of taking longer time, high cost, and ineffectiveness in contaminated areas with a very high level of metal contents. Bioremediation is an eco-friendly and efficient method of reclaiming contaminated soils and waters with heavy metals through biological mechanisms using potential microorganisms and plant species. Considering the high efficacy, low cost, and abundant availability of biological materials, particularly bacteria, algae, yeasts, and fungi, either in natural or genetically engineered (GE) form, bioremediation is receiving high attention for heavy metal removal. This report comprehensively reviews and critically discusses the biological and green remediation tactics, contemporary technological advances, and their principal applications either in-situ or ex-situ for the remediation of heavy metal contamination in soil and water. A modified PRISMA review protocol is adapted to critically assess the existing research gaps in heavy metals remediation using green and biological drivers. This study pioneers a schematic illustration of the underlying mechanisms of heavy metal bioremediation. Precisely, it pinpoints the research bottleneck during its real-world application as a low-cost and sustainable technology.
Collapse
Affiliation(s)
- Aniruddha Sarker
- Residual Chemical Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, 55365, Republic of Korea
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Deen Mohammad Deepo
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Rakhi Nandi
- Bangladesh Academy for Rural Development (BARD), Kotbari, Cumilla, Bangladesh
| | - Most Waheda Rahman Ansary
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | | | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| |
Collapse
|
13
|
Curative Effects of Copper Iodide Embedded on Gallic Acid Incorporated in a Poly(vinyl alcohol) (PVA) Liquid Bandage. Gels 2023; 9:gels9010053. [PMID: 36661819 PMCID: PMC9857981 DOI: 10.3390/gels9010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/11/2023] Open
Abstract
In daily life, people are often receiving minor cuts due to carelessness, leaving wounds on the skin. If wound healing is interrupted and the healing process does not finish, pathogens can easily enter wounds and cause infection. Liquid bandages are a fast and convenient way to help stop the bleeding of superficial wounds. Moreover, antibacterial agents in liquid bandages can promote wound restoration and fight bacteria. Herein, a poly(vinyl alcohol) (PVA) liquid bandage incorporating copper iodide nanoparticles (CuI NPs) was developed. CuI NPs were synthesized through green synthesis using gallic acid (GA) as a reducing and capping agent. The sizes of the CuI NPs, which were dependent on the concentration of GA, were 41.45, 43.51 and 49.71 nm, with the concentrations of gallic acid being 0, 2.5 mM and 5.0 mM, respectively. CuI NPs were analyzed using FTIR, XRD and SEM and tested for peroxidase-like properties and antibacterial activity. Then, PVA liquid bandages were formulated with different concentrations of stock CuI suspension. The results revealed that PVA liquid bandages incorporating 0.190% CuI synthesized with 5.0 mM of GA can kill bacteria within 24 h and have no harmful effects on human fibroblast cells.
Collapse
|
14
|
Maharajan T, Chellasamy G, Tp AK, Ceasar SA, Yun K. The role of metal transporters in phytoremediation: A closer look at Arabidopsis. CHEMOSPHERE 2023; 310:136881. [PMID: 36257391 DOI: 10.1016/j.chemosphere.2022.136881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Pollution of the environment by heavy metals (HMs) has recently become a global issue, affecting the health of all living organisms. Continuous human activities (industrialization and urbanization) are the major causes of HM release into the environment. Over the years, two methods (physical and chemical) have been widely used to reduce HMs in polluted environment. However, these two methods are inefficient and very expensive to reduce the HMs released into the atmosphere. Alternatively, researchers are trying to remove the HMs by employing hyper-accumulator plants. This method, referred to phytoremediation, is highly efficient, cost-effective, and eco-friendly. Phytoremediation can be divided into five types: phytostabilization, phytodegradation, rhizofiltration, phytoextraction, and phytovolatilization, all of which contribute to HMs removal from the polluted environment. Brassicaceae family members (particularly Arabidopsis thaliana) can accumulate more HMs from the contaminated environment than those of other plants. This comprehensive review focuses on how HMs pollute the environment and discusses the phytoremediation measures required to reduce the impact of HMs on the environment. We discuss the role of metal transporters in phytoremediation with a focus on Arabidopsis. Then draw insights into the role of genome editing tools in enhancing phytoremediation efficiency. This review is expected to initiate further research to improve phytoremediation by biotechnological approaches to conserve the environment from pollution.
Collapse
Affiliation(s)
- Theivanayagam Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Cochin, 683 104, Kerala, India
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea
| | - Ajeesh Krishna Tp
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Cochin, 683 104, Kerala, India
| | - Stanislaus Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Cochin, 683 104, Kerala, India.
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
15
|
Saman RU, Shahbaz M, Maqsood MF, Lili N, Zulfiqar U, Haider FU, Naz N, Shahzad B. Foliar Application of Ethylenediamine Tetraacetic Acid (EDTA) Improves the Growth and Yield of Brown Mustard ( Brassica juncea) by Modulating Photosynthetic Pigments, Antioxidant Defense, and Osmolyte Production under Lead (Pb) Stress. PLANTS (BASEL, SWITZERLAND) 2022; 12:115. [PMID: 36616244 PMCID: PMC9824091 DOI: 10.3390/plants12010115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Lead (Pb) toxicity imposes several morphological and biochemical changes in plants grown in Pb-contaminated soils. Application of ethylenediamine tetraacetic acid (EDTA) in mitigating heavy metal stress has already been studied. However, the role of EDTA in mitigating heavy metal stress, especially in oilseed crops, is less known. Therefore, the study aimed to explore the potential effect of foliar application of 2.5 mM EDTA on two different varieties of Brassica juncea L., i.e., Faisal (V1) and Rohi (V2), with and without 0.5 mM Lead acetate [Pb(C2H3O2)2] treatment. Statistical analysis revealed that Pb stress was harmful to the plant. It caused a considerable decrease in the overall biomass (56.2%), shoot and root length (21%), yield attributes (20.16%), chlorophyll content (35.3%), total soluble proteins (12.9%), and calcium (61.7%) and potassium (40.9%) content of the plants as compared to the control plants. However, the foliar application of EDTA alleviated the adverse effects of Pb in both varieties. EDTA application improved the morphological attributes (67%), yield (29%), and photosynthetic pigments (80%). Positive variations in the antioxidant activity, ROS, and contents of total free amino acid, anthocyanin, flavonoids, and ascorbic acid, even under Pb stress, were prominent. EDTA application further improved their presence in the brown mustard verifying it as a more stress-resistant plant. It was deduced that the application of EDTA had significantly redeemed the adverse effects of Pb, leaving room for further experimentation to avoid Pb toxification in the mustard oil and the food chain.
Collapse
Affiliation(s)
- Rafia Urooj Saman
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Nian Lili
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
16
|
Karamchandani BM, Pawar AA, Pawar SS, Syed S, Mone NS, Dalvi SG, Rahman PKSM, Banat IM, Satpute SK. Biosurfactants' multifarious functional potential for sustainable agricultural practices. Front Bioeng Biotechnol 2022; 10:1047279. [PMID: 36578512 PMCID: PMC9792099 DOI: 10.3389/fbioe.2022.1047279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing food demand by the ever-growing population imposes an extra burden on the agricultural and food industries. Chemical-based pesticides, fungicides, fertilizers, and high-breeding crop varieties are typically employed to enhance crop productivity. Overexploitation of chemicals and their persistence in the environment, however, has detrimental effects on soil, water, and air which consequently disturb the food chain and the ecosystem. The lower aqueous solubility and higher hydrophobicity of agrochemicals, pesticides, metals, and hydrocarbons allow them to adhere to soil particles and, therefore, continue in the environment. Chemical pesticides, viz., organophosphate, organochlorine, and carbamate, are used regularly to protect agriculture produce. Hydrophobic pollutants strongly adhered to soil particles can be solubilized or desorbed through the usage of biosurfactant/s (BSs) or BS-producing and pesticide-degrading microorganisms. Among different types of BSs, rhamnolipids (RL), surfactin, mannosylerythritol lipids (MELs), and sophorolipids (SL) have been explored extensively due to their broad-spectrum antimicrobial activities against several phytopathogens. Different isoforms of lipopeptide, viz., iturin, fengycin, and surfactin, have also been reported against phytopathogens. The key role of BSs in designing and developing biopesticide formulations is to protect crops and our environment. Various functional properties such as wetting, spreading, penetration ability, and retention period are improved in surfactant-based formulations. This review emphasizes the use of diverse types of BSs and their source microorganisms to challenge phytopathogens. Extensive efforts seem to be focused on discovering the innovative antimicrobial potential of BSs to combat phytopathogens. We discussed the effectiveness of BSs in solubilizing pesticides to reduce their toxicity and contamination effects in the soil environment. Thus, we have shed some light on the use of BSs as an alternative to chemical pesticides and other agrochemicals as sparse literature discusses their interactions with pesticides. Life cycle assessment (LCA) and life cycle sustainability analysis (LCSA) quantifying their impact on human activities/interventions are also included. Nanoencapsulation of pesticide formulations is an innovative approach in minimizing pesticide doses and ultimately reducing their direct exposures to humans and animals. Some of the established big players and new entrants in the global BS market are providing promising solutions for agricultural practices. In conclusion, a better understanding of the role of BSs in pesticide solubilization and/or degradation by microorganisms represents a valuable approach to reducing their negative impact and maintaining sustainable agricultural practices.
Collapse
Affiliation(s)
| | - Ameya A. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sujit S. Pawar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sahil Syed
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Nishigandha S. Mone
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sunil G. Dalvi
- Tissue Culture Section, Vasantdada Sugar Institute, Pune, India
| | - Pattanathu K. S. M. Rahman
- Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ibrahim M. Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine, United Kingdom,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India,*Correspondence: Surekha K. Satpute, ; Ibrahim M. Banat,
| |
Collapse
|
17
|
Zhou G, Jia X, Zhang X, Li L. Multi-walled carbon nanotube-modified hydrothermal carbon: A potent carbon material for efficient remediation of cadmium-contaminated soil in coal gangue piling site. CHEMOSPHERE 2022; 307:135605. [PMID: 35810857 DOI: 10.1016/j.chemosphere.2022.135605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/21/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Coal gangue contains numerous metal ions. After rainwater leaching, the metal ions in coal gangue migrate into the surrounding soil, posing significant threats to human health and ecosystems. To remove Cd from contaminated soil surrounding a coal gangue pile area, loofah, oak chips, and corn stalks were used as raw materials to prepare loofah hydrothermal carbon (LH), oak chip hydrothermal carbon (OH), corn stalk hydrothermal carbon (CH). Next, LH, OH, and CH were modified using multiwalled carbon nanotubes (MWCNTs) to obtain loofah-, oak-chip-, and corn-stalk-MWCNTs hydrothermal carbon composites (LMH, OMH, and CMH). The loofah hydrothermal carbon with excellent pore structure, specific surface area and pore capacity was selected, and the loading of MWCNTs was varied to give it better adsorption performance. The N2 adsorption-desorption experiments showed that the specific surface area and pore volume of LMH, OMH and CMH were significantly higher than those of LH, OH and CH, respectively. The specific surface area and pore volume of LMH are 101.948 m2 g-1 and 6.226 cm3 g-1, respectively. By EDS analysis and infrared spectroscopy, it can be seen that LMH has more o-containing functional groups than OMH and CMH. Remediation experiments were carried out on the actual contaminated soil obtained from Chaili Coal Mine. It was found that the mass fractions of Cd in the acid-soluble state in the soil samples that were treated with LH and LMH decreased by 18.54% and 26.3%, respectively, after 20 d. Therefore, LMH significantly affected Cd fixation and promoted Cd pollution remediation in the coal gangue pile area.
Collapse
Affiliation(s)
- Gang Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xianchao Jia
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xinyuan Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lin Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
18
|
Rito B, Almeida D, Coimbra C, Vicente D, Francisco R, Branco R, Weigand H, Morais PV. Post-measurement compressed calibration for ICP-MS-based metal quantification in mine residues bioleaching. Sci Rep 2022; 12:16007. [PMID: 36163387 PMCID: PMC9512927 DOI: 10.1038/s41598-022-19620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Bioleaching is an actual economical alternative to treat residues, which allows, depending on the chosen strategy, two possible outcomes: (1) a leachate enriched with target metals, or (2) a residue enriched in target metals through the leaching of interfering components (IC). This work aimed to study the metals released by bioprocessing the Panasqueira mine tailings, as a strategy to increase critical metals' relative concentration in residues. Biostimulation of the local microbiota was compared to a bioaugmentation approach using the autochthonous Diaphorobacter polyhydroxybutyrativorans strain B2A2W2. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was selected to study the metals released in the leachate through multi-element external standards. A new data treatment method was developed to use a preliminary sweep of intensities to quantify the non-initial target metals concentration in the leachate, based on preliminary ICP-MS intensity measurements. The results demonstrated that biostimulation was an efficient bioleaching strategy for the IC silicon, aluminium, magnesium, selenium, manganese, zinc, iron, and copper, by decreasing concentration, resulting in a relative increase in the gallium and yttrium (10x) levels in the treated residue. The strategy followed to quantify a large number of elements with ICP-MS using a reduced number of data points for calibration proved valid and speeded up the analytical process.
Collapse
Affiliation(s)
- Beatriz Rito
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Diogo Almeida
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal.,School of Chemistry, University of St. Andrews, Fife, Scotland, UK
| | - Carina Coimbra
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Diogo Vicente
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Romeu Francisco
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Rita Branco
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Harald Weigand
- Competence Centre for Sustainable Engineering and Environmental Systems, THM University of Applied Sciences, Wiesenstr. 14, 35390, Giessen, Germany
| | - Paula Vasconcelos Morais
- Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal.
| |
Collapse
|
19
|
Dutta V, Devasia J, Chauhan A, M J, L VV, Jha A, Nizam A, Lin KYA, Ghotekar S. Photocatalytic nanomaterials: Applications for remediation of toxic polycyclic aromatic hydrocarbons and green management. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
20
|
Kumar S, Kaur P, Brar RS, Babu JN. Nanoscale zerovalent copper (nZVC) catalyzed environmental remediation of organic and inorganic contaminants: A review. Heliyon 2022; 8:e10140. [PMID: 36042719 PMCID: PMC9420493 DOI: 10.1016/j.heliyon.2022.e10140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/09/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Over the past decade, the nano zerovalent copper has emerged as an effective nano-catalyst for the environment remediation processes due to its ease of synthesis, low cost, controllable particle size and high reactivity despite its release during the remediation process and related concentration dependent toxicities. However, the improvised techniques involving the use of supports or immobilizer for the synthesis of Cu0 has significantly increased its stability and motivated the researchers to explore the applicability of Cu0 for the environment remediation processes, which is evident from access to numerous reports on nano zerovalent copper mediated remediation of contaminants. Initially, this review allows the understanding of the various resources used to synthesize zerovalent copper nanomaterial and the structure of Cu0 nanoparticles, followed by focus on the reaction mechanism and the species involved in the contaminant remediation process. The studies comprehensively presented the application of nano zerovalent copper for remediation of organic/inorganic contaminants in combination with various oxidizing and reducing agents under oxic and anoxic conditions. Further, it was evaluated that the immobilizers or support combined with various irradiation sources originates a synergistic effect and have a significant effect on the stability and the redox properties of nZVC in the remediation process. Therefore, the review proposed that the future scope of research should include rigorous focus on deriving an exact mechanism for synergistic effect for the removal of contaminants by supported nZVC.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, 151302, Punjab, India
| | - Parminder Kaur
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, 151302, Punjab, India
| | | | - J Nagendra Babu
- Department of Chemistry, School of Basic and Applied Science, Central University of Punjab, Bathinda, 151001, Punjab, India
| |
Collapse
|
21
|
Martis B S, Mohan AK, Chiplunkar S, Kamath S, Goveas LC, Rao CV. Bacterium isolated from coffee waste pulp biosorps lead: Investigation of EPS mediated mechanism. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100029. [PMID: 34841320 PMCID: PMC8610291 DOI: 10.1016/j.crmicr.2021.100029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 11/18/2022] Open
Abstract
Kleibsiella pneumoniae Kpn555 tolerates 900 mg/L lead. SEM and TEM studies revealed surface deposition and bioaccumulation of lead. Surface deposition mediated by EPS produced in response to lead stress, characterised as glycolipid with protein moieties. Maximum biosorption ability of EPS – 475 mg/g. Ability of lead bioaccumulation is plasmid mediated.
Kleibsiella pneumoniae Kpn555, isolated from coffee waste pulp showed high level of tolerance to lead with a minimum inhibitory concentration of 900 mg/L. On its growth in nutrient broth supplemented with lead, brown clumps were visualised at the bottom of the flask. On scanning and transmission electron microscopic studies the brown clumps were corroborated to be bacterial cells with lead biosorbed on the cell surface and accumulated inside the cytoplasm. Biochemical and FT-IR analysis of the extracellular polymeric substance produced on exposure to lead revealed its chemical nature as glycolipid with protein moieties. Purified EPS (100 mg/L) could remove 50% of lead from aqueous solution (200 mg/L). Isolation of plasmid from Klebsiella pneumoniae Kpn555 revealed the presence of a plasmid of size 30–40 kb. This capability of the bacteria was proven to be plasmid mediated as the Escherichia coli DH5α cells transformed with the plasmid of Klebsiella pneumoniae Kpn555 also could tolerate 900 mg/L of lead and form brown clumps. This study shows that these bacteria, aided by EPS could serve as an effective agent for the removal of lead from contaminated water environmental samples.
Collapse
|
22
|
Archana KM, Rajagopal R, Krishnaswamy VG, Aishwarya S. Application of green synthesised copper iodide particles on cotton fabric-protective face mask material against COVID-19 pandemic. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2021; 15:2102-2116. [PMID: 35864980 PMCID: PMC8440044 DOI: 10.1016/j.jmrt.2021.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/05/2021] [Indexed: 05/13/2023]
Abstract
Microorganisms cause variety of diseases that constitutes a severe threat to mankind. Due to the upsurge of many infectious diseases, there is a high requirement and demand for the development of safety products finished with antimicrobial properties. The study involves the antimicrobial activity of natural cotton coated with copper iodide capped with Hibiscus rosa-sinensis L. flower extract (CuI-FE) which is rich in anthocyanin, cyanidin-3-sophoroside by ultrasonication method. The coated and uncoated cotton fabric was characterised through XRD, SEM, AFM, tensile strength and UV-Visible spectroscopic techniques. XRD confirmed the formation of CuI particles, SEM showed that CuI-FE was prismatic in shape. The average size of CuI-FE particles was found to be 552.45 nm. Anti-bacterial studies showed copper iodide particles to be a potent antimicrobial agent. AFM images confirmed the rupture of bacterial cell walls in the presence of prismatic CuI-FE. In-vitro cytotoxicity investigation of CuI-FE was performed against cancer and spleen cell lines to evaluate the cell viability. Cytotoxicity analysis revealed the IC50 value of 233.93 μg/mL in the presence of CuI-FE. Molecular docking study was also carried out to understand the interaction of CuI-FE with COVID-19 main protease. This paper has given an insight on the usage of CuI-FE coated on the cotton fabric that has proved to have strong inhibition against the nano ranged bacterial, cancerous cell line and a strong interaction with the COVID-19 protease. Such eco-friendly material will provide a safe environment even after the disposable of medical waste from the infectious diseases like influenza and current pandemic like COVID-19.
Collapse
Key Words
- COVID-19, Corona Virus Disease – 2019
- Cotton fabric
- Covid-19 main protease
- CuI
- CuI-FE, Copper iodide synthesized using Hibiscus rosa-sinensis L. flower extract
- Cyanidin-3-sophoroside
- DLA, Dalton's Lymphoma Ascites
- E. coli, Escherichia coli
- EAC, Ehrlich Ascites Carcinoma
- FE, Hibiscus rosa-sinensis L. flower extract
- Green synthesis
- PBS, Phosphate buffered saline
- PPE, Personal Protective Equipment
- ROS, Reactive Oxygen Species
- RPMI Medium, Roswell Park Memorial Institute Medium
- S. faecalis, Streptococcus faecalis
Collapse
Affiliation(s)
- K M Archana
- Department of Chemistry, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - Revathy Rajagopal
- Department of Chemistry, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - Veena Gayathri Krishnaswamy
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - S Aishwarya
- Department of Bioinformatics, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| |
Collapse
|
23
|
Ahmed T, Noman M, Rizwan M, Ali S, Shahid MS, Li B. Recent progress on the heavy metals ameliorating potential of engineered nanomaterials in rice paddy: a comprehensive outlook on global food safety with nanotoxicitiy issues. Crit Rev Food Sci Nutr 2021; 63:2672-2686. [PMID: 34554039 DOI: 10.1080/10408398.2021.1979931] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Soil contamination with toxic heavy metals (HMs) poses a serious threat to global food safety, soil ecosystem and human health. The rapid industrialization, urbanization and extensive application of agrochemicals on arable land have led to paddy soil pollution worldwide. Rice plants easily accumulate toxic HMs from contaminated agricultural soils, which ultimately accumulated in grains and enters the food chain. Although, physical and chemical remediation techniques have been used for the treatment of HMs-contaminated soils, however, they also have many drawbacks, such as toxicity, capital investment and environmental-associated hazards. Recently, engineered nanomaterials (ENMs) have gained substantial attention owing to their promising environmental remediation applications. Numerous studies have revealed the use of ENMs for reclamation of toxic HMs from contaminated environment. This review mainly focuses on HMs toxicity in paddy soils along with potential health risks to humans. It also provides a critical outlook on the recent advances and future perspectives of nanoremediation strategies. Additionally, we will also propose the interacting mechanism of HMs-ENMs to counteract metal-associated phytotoxicities in rice plants to achieve global food security and environmental safety.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Bin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Aparicio JD, Espíndola D, Montesinos VN, Litter MI, Donati E, Benimeli CS, Polti MA. Evaluation of the sequential coupling of a bacterial treatment with a physicochemical process for the remediation of wastewater containing Cr and organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126307. [PMID: 34130164 DOI: 10.1016/j.jhazmat.2021.126307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
A restoration strategy was developed for the treatment of two artificial liquid systems (Minimal Medium, MM, and Water Carbon Nitrogen, WCN) contaminated with Cr(VI), lindane (γ-HCH), phenanthrene (Phe), and reactive black 5 (RB5), through the use of an actinobacteria consortium, coupled with a physicochemical treatment using a column filled with nano-scale zero valent iron particles immobilized on dried Macrocystis pyrifera algae biomass. The Sequential Treatment A (STA: physicochemical followed by biological method) removed the three organic compounds with different effectiveness; however, it was very ineffective for Cr(VI) removal. The Sequential Treatment B (STB: biological followed by the physicochemical method) removed the four compounds with variable efficiencies. The removal of γ-HCH, Phe, and RB5 in both effluents did not present significant differences, regardless of the sequential treatment used. The highest removal of Cr(VI) and total Cr was observed in MM and WCN, respectively. Ecotoxicity tests (L. sativa) of the effluents treated with both methodological couplings demonstrated that the toxicity of WCN only decreased at the end of STA, while that of MM decreased at all stages of both sequential treatments. Therefore, MM would be more appropriate to perform both treatments.
Collapse
Affiliation(s)
- Juan Daniel Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 Tucumán, Argentina
| | - Diego Espíndola
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 Tucumán, Argentina
| | - Víctor Nahuel Montesinos
- Gerencia Química, Centro Atómico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martín, Prov. de Buenos Aires, Argentina
| | - Marta Irene Litter
- IIIA (CONICET-UNSAM), Universidad Nacional de General San Martín, Campus Miguelete, Av. 25 de Mayo y Francia, 1650 San Martín, Prov. de Buenos Aires, Argentina
| | - Edgardo Donati
- CINDEFI (CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Claudia Susana Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, 4700 Catamarca, Argentina.
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000 Tucumán, Argentina.
| |
Collapse
|
25
|
Archana KM, Rajalakshmi S, Kumar PS, Krishnaswamy VG, Rajagopal R, Kumar DT, Priya Doss CG. Effect of shape and anthocyanin capping on antibacterial activity of CuI particles. ENVIRONMENTAL RESEARCH 2021; 200:111759. [PMID: 34310969 DOI: 10.1016/j.envres.2021.111759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 05/27/2023]
Abstract
The recent upsurge of antibiotic-resistant infections has posed to be a serious health concern worldwide. In the present paper, the effect of shape & capping agent on the antibacterial activity (on Skin and Urinary Tract Infection (UTI) causing bacteria) of copper iodide (CuI) particles was probed. CuI synthesized without a capping agent was leaf-like, and that with one was prismatic in shape. XRD of the synthesized CuI confirmed their high crystalline nature and purity. The average crystallite sizes of capped and uncapped CuI were calculated to be 91.10 nm and 89.01 nm respectively from X-Ray powder diffraction data. The average particle size of capped CuI was found to be 492.7 nm and that of uncapped CuI was found to be 2.96 μm using HR-SEM analysis. The crystals obtained were further characterized using EDAX, FTIR spectroscopy and UV-Visible spectroscopy. Antibacterial activity of prismatic CuI capped with the flower extract of Hibiscus rosa-sinensis showed better activity than that of uncapped CuI. AFM analysis was carried out to confirm the proposed mechanism for antibacterial activity through the morphological changes on the bacterial cell wall in the presence of capped CuI. Molecular docking studies were performed to reaffirm the enhanced antibacterial activity of prismatic CuI further. The present study demonstrates the superior antibacterial propensity of prismatic CuI, consequently making it a potent antibacterial agent.
Collapse
Affiliation(s)
- K M Archana
- Department of Chemistry, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - S Rajalakshmi
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India.
| | - Veena Gayathri Krishnaswamy
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - Revathy Rajagopal
- Department of Chemistry, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India.
| | - D Thirumal Kumar
- Meenakshi Academy of Higher Education and Research, Chennai, 78, India
| | - C George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
26
|
Barzaga R, Lestón-Sánchez L, Aguilar-Galindo F, Estévez-Hernández O, Díaz-Tendero S. Synergy Effects in Heavy Metal Ion Chelation with Aryl- and Aroyl-Substituted Thiourea Derivatives. Inorg Chem 2021; 60:11984-12000. [PMID: 34308640 DOI: 10.1021/acs.inorgchem.1c01068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detection and removal of metal ion contaminants have attracted great interest due to the health risks that they represent for humans and wildlife. Among the proposed compounds developed for these purposes, thiourea derivatives have been shown as quite efficient chelating agents of metal cations and have been proposed for heavy metal ion removal and for components of high-selectivity sensors. Understanding the nature of metal-ionophore activity for these compounds is thus of high relevance. We present a theoretical study on the interaction between substituted thioureas and metal cations, namely, Cd2+, Hg2+, and Pb2+. Two substituent groups have been chosen: 2-furoyl and m-trifluoromethylphenyl. Combining density functional theory simulations with wave function analysis techniques, we study the nature of the metal-thiourea interaction and characterize the bonding properties. Here, it is shown how the N,N'-disubstituted derivative has a strong affinity for Hg2+, through cation-hydrogen interactions, due to its greater oxidizing capacity.
Collapse
Affiliation(s)
- Ransel Barzaga
- Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, 10400 La Habana, Cuba.,Departmento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lucia Lestón-Sánchez
- Departmento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Aguilar-Galindo
- Departmento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, Donostia-San Sebastián, E-20018, Spain
| | | | - Sergio Díaz-Tendero
- Departmento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Science (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
27
|
El-Hasan T, Harfouche M, Aldrabee A, Abdelhadi N, Abu-Jaber N, Aquilanti G. Synchrotron XANES and EXAFS evidences for Cr +6 and V +5 reduction within the oil shale ashes through mixing with natural additives and hydration process. Heliyon 2021; 7:e06769. [PMID: 33937543 PMCID: PMC8079444 DOI: 10.1016/j.heliyon.2021.e06769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/07/2021] [Accepted: 04/07/2021] [Indexed: 12/04/2022] Open
Abstract
Solid friable residues (i.e. Ash) from combusted oil shale are a major environmental issue because they are highly enriched with toxic elements following combustion. The synchrotron based techniques X-ray Absorption Fine Structure (XAFS) were used for determining the changes in speciation of Chromium (Cr) and Vanadium (V) in the ash and its mixtures with Red soil and Phosphogypsum as additives, through one-year period of hydration process. The X-ray Absorption Near Edge Structure (XANES) qualitative results indicate that all mixtures exhibits similar patterns showing that Vanadium has remain as pentavalent state, on the contrary Chromium has dramatic decreased from hexavalent to trivalent. This change in Cr speciation became clearer with increasing hydration period. Therefore, the results confirmed the advantage of the hydration process in the Cr(VI) reduction which might be due the domination of carbonate phase within all mixtures, thus hydration caused carbonate dissolution that increase the pH toward more alkaline which caused the Cr(IV) reduction into less-harmful and less mobile Cr(III). This increase in pH was not in favor of changing the V(V) into V(IV) due to its large stability field V(V). The Extend X-ray Absorption Fine Structure (EXAFS) analysis showed that Cr exhibiting a coordination shell of C-atoms as first nearest neighbors backscattering atoms around Cr, and at C-atoms backscattering at medium range order. This confirmed the domination of carbonate media through the best fitting of Cr–C. Which might be attributed to the more alkaline conditions developed during saturation of water (hydration), that accelerates of the reduction of Cr(VI) into Cr(III). This means simply that hydration of the ash can reduce the presence of harmful Cr(VI) in these ash tailings.
Collapse
Affiliation(s)
- Tayel El-Hasan
- Department of Chemistry, Mutah University, 61710, Mutah, Jordan
| | | | | | - Nafeth Abdelhadi
- Faculty of Engineering and Technology, Al-Balqa Technical University, Amman, Jordan
| | - Nizar Abu-Jaber
- Dept. of Civil and Environmental Engineering, German Jordanian University, Naour, Jordan
| | - Giuliana Aquilanti
- Elettra - Sincrotrone Trieste, Area Science Park, 34149 Basovizza, Trieste, Italy
| |
Collapse
|