1
|
Mao L, Cai X, Li J, Li X, Li S, Li W, Lu H, Dong Y, Zhai J, Xu X, Li B. Discovery of a novel Betacoronavirus 1, cpCoV, in goats in China: The new risk of cross-species transmission. PLoS Pathog 2025; 21:e1012974. [PMID: 40100842 PMCID: PMC11918373 DOI: 10.1371/journal.ppat.1012974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Betacoronavirus is a causative agent of respiratory and enteric diseases in humans and animals. Several ruminants are recognized to be intermediate hosts in the transmission of emerging coronaviruses from reservoir hosts to humans. Here, we first report a novel Betacoronavirus isolated from goats suffering from diarrhea in China, putatively named caprine coronavirus (cpCoV). Full-genome characterization and nuclear acid comparisons demonstrated that this virus is an evolutionarily distinct Betacoronavirus belonging to the subgenus Embecovirus and is a Betacoronavirus 1 species. Notably, on phylogenetic trees based on complete genomes and RdRp, S, and N genes, the cpCoVs were grouped into a clade distinct from other Betacoronavirus strains and were closely related to the HKU23- and HKU23-associated coronaviruses. CpCoV possessed a unique genome organization with a truncated NS4a protein and an elongated NS4b protein that showed no significant matches in the GenBank database. The homology of the S and NS4a-4b genes between cpCoV and Embecovirus was less than 95%. Analysis revealed possible recombination events occurred during the evolution of cpCoV and HKU23, and there are striking similarities between the two viruses in evolutionary terms. In addition, cpCoV showed a narrow cell tropism, replicating in human- and bovine-origin cells in vitro, and caused diarrhea and enteric pathologic changes in goats and calves in vivo. We have provided epidemiological, virological, evolutionary, and experimental evidence that cpCoV is a novel etiological agent for enteric disease in goats. Evidently, a spilling-over event might have occurred between ruminants, including goats, camels, cattle, and wild animals. This study highlights the importance of identifying coronavirus diversity and inter-species transmission in ruminants worldwide, broadens our understanding of the ecology of coronaviruses, and aids in the prevention of animal-to-human transmission and outbreaks.
Collapse
Affiliation(s)
- Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xuhang Cai
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xia Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Siyuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Honghui Lu
- Animal Husbandry and Veterinary Station of Haimen District, Nantong, China
| | - Yichun Dong
- Animal Husbandry and Veterinary Station of Haian City, Nantong, China
| | - Junjun Zhai
- Shaanxi Province Engineering and Technology Research Center of Cashmere Goat, Yulin University, Yulin, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|
2
|
Magalhães TBS, Viana ADO, Semedo TBF, Saldanha JS, dos Reis NA, Pereira NDA, de Barros RVP, Miranda HR, Almeida GC, Ozaki DYSR, Caleiro GS, Fenner GO, Vizu FP, Kraiser T, Carvalho TP, Thomazelli LM, Dorlass EG, Arns CW, Ferreira HL, Hingst-Zaher E, Rossi RV, Garbino GST, Durigon EL, de Araujo J, de Aguiar DM. First Detection of Alphacoronavirus in Bats from the World's Largest Wetland, the Pantanal, Brazil. Pathogens 2025; 14:58. [PMID: 39861019 PMCID: PMC11768564 DOI: 10.3390/pathogens14010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Coronaviruses (CoV) infect a wide variety of hosts, causing epidemics in humans, birds, and mammals over the years. Bats (order Chiroptera) are one of the natural hosts of the Coronaviridae family. They represent 40% of the total number of mammal species in the Pantanal, a biodiversity hotspot in South America. Given the recent SARS-CoV-2 pandemic, we investigated the presence of CoV in bats captured in the Brazilian Pantanal. Oral and rectal swabs collected in 2021 from 419 bats were analyzed using Pancoronavirus-nested PCR targeting the RNA-dependent RNA-polymerase (RdRp) gene. Orthocoronavirinae was detected in 16.7% (70/419) of the bats; nine samples were sequenced, confirming that Carollia perspicillata (4), Phyllostomus hastatus (2), Desmodus rotundus (1), Molossus rufus (1), and Myotis cf. nigricans (1) collected in buildings formally used by humans were infected by Alphacoronavirus genera. This is the first description of Alphacoronavirus in bats from the Pantanal. As they are natural reservoirs of CoVs, constant monitoring of bats is important to comprehend the epidemiology of emerging viruses, especially in the Pantanal biome.
Collapse
Affiliation(s)
- Tayane B. S. Magalhães
- Laboratório de Virologia e Rickettsioses, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Fernando Correa da Costa, 2367, Cuiabá 78060-900, Brazil; (T.B.S.M.); (T.B.F.S.); (J.S.S.); (N.d.A.P.); (R.V.P.d.B.); (H.R.M.); (G.C.A.)
| | - Amanda de O. Viana
- Laboratório de Virologia Clínica e Molecular, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (A.d.O.V.); (L.M.T.); (E.G.D.); (E.L.D.)
| | - Thiago B. F. Semedo
- Laboratório de Virologia e Rickettsioses, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Fernando Correa da Costa, 2367, Cuiabá 78060-900, Brazil; (T.B.S.M.); (T.B.F.S.); (J.S.S.); (N.d.A.P.); (R.V.P.d.B.); (H.R.M.); (G.C.A.)
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBIO Laboratório Associado, Universidade do Porto, 4099-002 Porto, Portugal
- Program in Genomics, Biodiversity and Land Planning (BIOPOLIS), CIBIO, Universidade do Porto, 4099-002 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
| | - Juliane S. Saldanha
- Laboratório de Virologia e Rickettsioses, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Fernando Correa da Costa, 2367, Cuiabá 78060-900, Brazil; (T.B.S.M.); (T.B.F.S.); (J.S.S.); (N.d.A.P.); (R.V.P.d.B.); (H.R.M.); (G.C.A.)
| | - Nicole A. dos Reis
- Laboratório de Pesquisa em Vírus Emergentes, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (N.A.d.R.); (D.Y.S.R.O.); (G.S.C.); (F.P.V.); (T.K.); (T.P.C.)
- Museu Biológico, Instituto Butantan, São Paulo 05585-000, Brazil;
| | - Nathalia de A. Pereira
- Laboratório de Virologia e Rickettsioses, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Fernando Correa da Costa, 2367, Cuiabá 78060-900, Brazil; (T.B.S.M.); (T.B.F.S.); (J.S.S.); (N.d.A.P.); (R.V.P.d.B.); (H.R.M.); (G.C.A.)
| | - Rachel V. P. de Barros
- Laboratório de Virologia e Rickettsioses, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Fernando Correa da Costa, 2367, Cuiabá 78060-900, Brazil; (T.B.S.M.); (T.B.F.S.); (J.S.S.); (N.d.A.P.); (R.V.P.d.B.); (H.R.M.); (G.C.A.)
| | - Hannah R. Miranda
- Laboratório de Virologia e Rickettsioses, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Fernando Correa da Costa, 2367, Cuiabá 78060-900, Brazil; (T.B.S.M.); (T.B.F.S.); (J.S.S.); (N.d.A.P.); (R.V.P.d.B.); (H.R.M.); (G.C.A.)
| | - Gabriella C. Almeida
- Laboratório de Virologia e Rickettsioses, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Fernando Correa da Costa, 2367, Cuiabá 78060-900, Brazil; (T.B.S.M.); (T.B.F.S.); (J.S.S.); (N.d.A.P.); (R.V.P.d.B.); (H.R.M.); (G.C.A.)
| | - Desyrée Y. S. R. Ozaki
- Laboratório de Pesquisa em Vírus Emergentes, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (N.A.d.R.); (D.Y.S.R.O.); (G.S.C.); (F.P.V.); (T.K.); (T.P.C.)
| | - Giovana S. Caleiro
- Laboratório de Pesquisa em Vírus Emergentes, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (N.A.d.R.); (D.Y.S.R.O.); (G.S.C.); (F.P.V.); (T.K.); (T.P.C.)
| | - Gustavo O. Fenner
- Laboratório de Pesquisa em Vírus Emergentes, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (N.A.d.R.); (D.Y.S.R.O.); (G.S.C.); (F.P.V.); (T.K.); (T.P.C.)
| | - Fernanda P. Vizu
- Laboratório de Pesquisa em Vírus Emergentes, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (N.A.d.R.); (D.Y.S.R.O.); (G.S.C.); (F.P.V.); (T.K.); (T.P.C.)
| | - Theo Kraiser
- Laboratório de Pesquisa em Vírus Emergentes, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (N.A.d.R.); (D.Y.S.R.O.); (G.S.C.); (F.P.V.); (T.K.); (T.P.C.)
| | - Thais P. Carvalho
- Laboratório de Pesquisa em Vírus Emergentes, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (N.A.d.R.); (D.Y.S.R.O.); (G.S.C.); (F.P.V.); (T.K.); (T.P.C.)
| | - Luciano M. Thomazelli
- Laboratório de Virologia Clínica e Molecular, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (A.d.O.V.); (L.M.T.); (E.G.D.); (E.L.D.)
| | - Erick G. Dorlass
- Laboratório de Virologia Clínica e Molecular, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (A.d.O.V.); (L.M.T.); (E.G.D.); (E.L.D.)
- Laboratório de Pesquisa em Vírus Emergentes, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (N.A.d.R.); (D.Y.S.R.O.); (G.S.C.); (F.P.V.); (T.K.); (T.P.C.)
- Varsomics, Hospital Israelita Albert Eisntein, São Paulo 05652-900, Brazil
| | - Clarice W. Arns
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual de Campinas, Campinas 13083-862, Brazil;
| | - Helena L. Ferreira
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil;
| | | | - Rogério Vieira Rossi
- Laboratorio de Mastozoologia, Instituto de Biociencias, Universidade Federal de Mato Grosso, Cuiabá 78060-900, Brazil;
| | - Guilherme S. T. Garbino
- Museu de Zoologia João Moojen, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil;
| | - Edison L. Durigon
- Laboratório de Virologia Clínica e Molecular, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (A.d.O.V.); (L.M.T.); (E.G.D.); (E.L.D.)
| | - Jansen de Araujo
- Laboratório de Pesquisa em Vírus Emergentes, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (N.A.d.R.); (D.Y.S.R.O.); (G.S.C.); (F.P.V.); (T.K.); (T.P.C.)
| | - Daniel M. de Aguiar
- Laboratório de Virologia e Rickettsioses, Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, Fernando Correa da Costa, 2367, Cuiabá 78060-900, Brazil; (T.B.S.M.); (T.B.F.S.); (J.S.S.); (N.d.A.P.); (R.V.P.d.B.); (H.R.M.); (G.C.A.)
| |
Collapse
|
3
|
Guo J, He J, Liang Z, Huang S, Wen F. Birds as reservoirs: unraveling the global spread of Gamma- and Deltacoronaviruses. mBio 2024; 15:e0232424. [PMID: 39230281 PMCID: PMC11481860 DOI: 10.1128/mbio.02324-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Avian migration is a global phenomenon that transcends geographical boundaries. These migratory birds serve as unwitting carriers of diverse Gammacoronaviruses (γ-CoVs) and Deltacoronaviruses (δ-CoVs). While recombination events have been documented among γ-CoVs in avian species and β-CoVs in mammals, evidence for recombination between CoVs of distinct genera remains limited. This minireview examines the prevalence of CoVs in both domestic waterfowl (ducks and geese) and wild bird populations inhabiting various regions. We investigate the dissemination patterns of γ-CoVs and δ-CoVs among these populations, highlighting their shared characteristics. Furthermore, the review explores the intricate web of cross-species transmission of δ-CoVs from wild birds to mammals, with a particular focus on pigs. Understanding the distinct features of CoVs harbored by waterfowl and wild birds and their potential for cross-species transmission is crucial for preparedness and response to future CoV epidemics.
Collapse
Affiliation(s)
- Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jieheng He
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
4
|
Tian Y, Yu T, Wang J, Zhang H, Jian Y, Li X, Wang G, Wang G, Hu Y, Lu C, Zhou J, Ma L, Liao M. Genetic characterization of the first Deltacoronavirus from wild birds around Qinghai Lake. Front Microbiol 2024; 15:1423367. [PMID: 38933020 PMCID: PMC11199898 DOI: 10.3389/fmicb.2024.1423367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Deltacoronavirus, widely distributed among pigs and wild birds, pose a significant risk of cross-species transmission, including potential human epidemics. Metagenomic analysis of bird samples from Qinghai Lake, China in 2021 reported the presence of Deltacoronavirus. A specific gene fragment of Deltacoronavirus was detected in fecal samples from wild birds at a positive rate of 5.94% (6/101). Next-generation sequencing (NGS) identified a novel Deltacoronavirus strain, which was closely related to isolates from the United Arab Emirates (2018), China (2022), and Poland (2023). Subsequently the strain was named A/black-headed gull/Qinghai/2021(BHG-QH-2021) upon confirmation of the Cytochrome b gene of black-headed gull in the sample. All available genome sequences of avian Deltacoronavirus, including the newly identified BHG-QH-2021 and 5 representative strains of porcine Deltacoronavirus (PDCoV), were classified according to ICTV criteria. In contrast to Coronavirus HKU15, which infects both mammals and birds and shows the possibility of cross-species transmission from bird to mammal host, our analysis revealed that BHG-QH-2021 is classified as Putative species 4. Putative species 4 has been reported to infect 5 species of birds but not mammals, suggesting that cross-species transmission of Putative species 4 is more prevalent among birds. Recombination analysis traced BHG-QH-2021 origin to dut148cor1 and MW01_1o strains, with MW01_1o contributing the S gene. Surprisingly, SwissModle prediction showed that the optimal template for receptor-binding domain (RBD) of BHG-QH-2021 is derived from the human coronavirus 229E, a member of the Alphacoronavirus, rather than the anticipated RBD structure of PDCoV of Deltacoronavirus. Further molecular docking analysis revealed that substituting the loop 1-2 segments of HCoV-229E significantly enhanced the binding capability of BHG-QH-2021 with human Aminopeptidase N (hAPN), surpassing its native receptor-binding domain (RBD). Most importantly, this finding was further confirmed by co-immunoprecipitation experiment that loop 1-2 segments of HCoV-229E enable BHG-QH-2021 RBD binding to hAPN, indicating that the loop 1-2 segment of the RBD in Putative species 4 is a probable key determinant for the virus ability to spill over into humans. Our results summarize the phylogenetic relationships among known Deltacoronavirus, reveal an independent putative avian Deltacoronavirus species with inter-continental and inter-species transmission potential, and underscore the importance of continuous surveillance of wildlife Deltacoronavirus.
Collapse
Affiliation(s)
- Ye Tian
- Key Laboratory of Animal Virology, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Tianqi Yu
- Key Laboratory of Animal Virology, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Jun Wang
- Animal Husbandry and Veterinary Workstation of the Third Division, Xinjiang Production and Construction Corps, Tumushuke, China
| | - Haoxiang Zhang
- Key Laboratory of Animal Virology, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Yingna Jian
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Xiuping Li
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Geping Wang
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Guanghua Wang
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Yong Hu
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Chenhe Lu
- Key Laboratory of Animal Virology, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Liqing Ma
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Min Liao
- Key Laboratory of Animal Virology, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Sharshov K, Dubovitskiy N, Derko A, Loginova A, Kolotygin I, Zhirov D, Sobolev I, Kurskaya O, Alekseev A, Druzyaka A, Ktitorov P, Kulikova O, He G, Wang Z, Bi Y, Shestopalov A. Does Avian Coronavirus Co-Circulate with Avian Paramyxovirus and Avian Influenza Virus in Wild Ducks in Siberia? Viruses 2023; 15:v15051121. [PMID: 37243207 DOI: 10.3390/v15051121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Avian coronaviruses (ACoV) have been shown to be highly prevalent in wild bird populations. More work on avian coronavirus detection and diversity estimation is needed for the breeding territories of migrating birds, where the high diversity and high prevalence of Orthomyxoviridae and Paramyxoviridae have already been shown in wild birds. In order to detect ACoV RNA, we conducted PCR diagnostics of cloacal swab samples from birds, which we monitored during avian influenza A virus surveillance activities. Samples from two distant Asian regions of Russia (Sakhalin region and Novosibirsk region) were tested. Amplified fragments of the RNA-dependent RNA-polymerase (RdRp) of positive samples were partially sequenced to determine the species of Coronaviridae represented. The study revealed a high presence of ACoV among wild birds in Russia. Moreover, there was a high presence of birds co-infected with avian coronavirus, avian influenza virus, and avian paramyxovirus. We found one case of triple co-infection in a Northern Pintail (Anas acuta). Phylogenetic analysis revealed the circulation of a Gammacoronavirus species. A Deltacoronavirus species was not detected, which supports the data regarding the low prevalence of deltacoronaviruses among surveyed bird species.
Collapse
Affiliation(s)
- Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Nikita Dubovitskiy
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Anastasiya Derko
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Arina Loginova
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Ilya Kolotygin
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630073, Russia
| | - Dmitry Zhirov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630073, Russia
| | - Ivan Sobolev
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Olga Kurskaya
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Alexander Alekseev
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Alexey Druzyaka
- Institute of Animal Systematics and Ecology, Novosibirsk 630091, Russia
| | - Pavel Ktitorov
- Institute of Biological Problems of the North, Magadan 685000, Russia
| | - Olga Kulikova
- Institute of Biological Problems of the North, Magadan 685000, Russia
| | - Guimei He
- School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Zhenghuan Wang
- School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Yuhai Bi
- Center for Influenza Research and Early-warning (CASCIRE), CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Alexander Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| |
Collapse
|
6
|
Deviche P, Sweazea K, Angelier F. Past and future: Urbanization and the avian endocrine system. Gen Comp Endocrinol 2023; 332:114159. [PMID: 36368439 DOI: 10.1016/j.ygcen.2022.114159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022]
Abstract
Urban environments are evolutionarily novel and differ from natural environments in many respects including food and/or water availability, predation, noise, light, air quality, pathogens, biodiversity, and temperature. The success of organisms in urban environments requires physiological plasticity and adjustments that have been described extensively, including in birds residing in geographically and climatically diverse regions. These studies have revealed a few relatively consistent differences between urban and non-urban conspecifics. For example, seasonally breeding urban birds often develop their reproductive system earlier than non-urban birds, perhaps in response to more abundant trophic resources. In most instances, however, analyses of existing data indicate no general pattern distinguishing urban and non-urban birds. It is, for instance, often hypothesized that urban environments are stressful, yet the activity of the hypothalamus-pituitary-adrenal axis does not differ consistently between urban and non-urban birds. A similar conclusion is reached by comparing blood indices of metabolism. The origin of these disparities remains poorly understood, partly because many studies are correlative rather than aiming at establishing causality, which effectively limits our ability to formulate specific hypotheses regarding the impacts of urbanization on wildlife. We suggest that future research will benefit from prioritizing mechanistic approaches to identify environmental factors that shape the phenotypic responses of organisms to urbanization and the neuroendocrine and metabolic bases of these responses. Further, it will be critical to elucidate whether factors affect these responses (a) cumulatively or synergistically; and (b) differentially as a function of age, sex, reproductive status, season, and mobility within the urban environment. Research to date has used various taxa that differ greatly not only phylogenetically, but also with regard to ecological requirements, social systems, propensity to consume anthropogenic food, and behavioral responses to human presence. Researchers may instead benefit from standardizing approaches to examine a small number of representative models with wide geographic distribution and that occupy diverse urban ecosystems.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Karen Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Frederic Angelier
- Centre d'Etudes Biologiques de Chizé, UMR7372, CNRS - La Rochelle Universite, Villiers en Bois, France
| |
Collapse
|
7
|
Occurrence and Phylogenetic Analysis of Avian Coronaviruses in Domestic Pigeons (Columba livia domestica) in Poland between 2016 and 2020. Pathogens 2022; 11:pathogens11060646. [PMID: 35745500 PMCID: PMC9230530 DOI: 10.3390/pathogens11060646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
While disease control in racing pigeons and the potential role of pigeons as vectors transmitting viruses to poultry are of importance, there is still a paucity of data concerning the occurrence of coronaviruses in pigeons. In this study, 215 domestic pigeons were tested for the presence of coronaviral genetic material using the nested PCR method, which revealed 57 positive samples (26.51%). The difference in coronavirus prevalence between young and adult pigeons (34.34% and 19.83%, respectively) has been found statistically significant. In contrast, no statistically significant difference has been demonstrated between the prevalence in symptomatic and asymptomatic birds, leaving the influence of coronavirus presence on pigeon health uncertain. Phylogenetic analysis of the RdRp gene fragment allowed us to assign all the obtained strains to the Gammacoronavirus genus and Igacovirus subgenus. The phylogenetic tree plotted using the ML method revealed that those sequences formed a group most similar to pigeon coronavirus strains from China, Finland, and Poland, and to a single strain from a common starling from Poland, which suggests wide geographical distribution of the virus and its possible transmission between various species.
Collapse
|
8
|
Kong F, Wang Q, Kenney SP, Jung K, Vlasova AN, Saif LJ. Porcine Deltacoronaviruses: Origin, Evolution, Cross-Species Transmission and Zoonotic Potential. Pathogens 2022; 11:79. [PMID: 35056027 PMCID: PMC8778258 DOI: 10.3390/pathogens11010079] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus of swine that causes acute diarrhoea, vomiting, dehydration and mortality in seronegative neonatal piglets. PDCoV was first reported in Hong Kong in 2012 and its etiological features were first characterized in the United States in 2014. Currently, PDCoV is a concern due to its broad host range, including humans. Chickens, turkey poults, and gnotobiotic calves can be experimentally infected by PDCoV. Therefore, as discussed in this review, a comprehensive understanding of the origin, evolution, cross-species transmission and zoonotic potential of epidemic PDCoV strains is urgently needed.
Collapse
Affiliation(s)
- Fanzhi Kong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Scott P. Kenney
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Domańska-Blicharz K, Miłek-Krupa J, Pikuła A. Diversity of Coronaviruses in Wild Representatives of the Aves Class in Poland. Viruses 2021; 13:v13081497. [PMID: 34452362 PMCID: PMC8402903 DOI: 10.3390/v13081497] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
The revealed prevalence of coronaviruses in wild bird populations in Poland was 4.15% and the main reservoirs were birds from orders Anseriformes and Charadriiformes, with a prevalence of 3.51% and 5.59%, respectively. Gammacoronaviruses were detected more often than deltacoronaviruses, with detection rates of 3.5% and 0.7%, respectively. Gammacoronaviruses were detected in birds belonging to six orders, including Anseriformes, Charadriiformes, Columbiformes, Galliformes, Gruiformes, and Passeriformes, indicating a relatively wide host range. Interestingly, this was the only coronavirus detected in Anseriformes (3.51%), while in Charadriiformes, the prevalence was 3.1%. The identified gammacoronaviruses belonged to the Igacovirus and Brangacovirus subgeneras. Most of these were igacoviruses and formed a common phylogenetic group with a Duck Coronavirus 2714 and two with an Avian Coronavirus/Avian Coronavirus9203, while the viruses from the pigeons formed a distinct “pigeon-like” group, not yet officially represented. The presence of deltacoronaviruses was detected in birds belonging to three orders, Charadriiformes, Galliformes, and Suliformes indicating a narrower host range. Most identified deltacoronaviruses belonged to the Buldecovirus subgenus, while only one belonged to Herdecovirus. Interestingly, the majority of buldecoviruses were identified in gulls, and they formed a distinct phylogenetic lineage not represented by any officially ratified virus species. Another separate group of buldecoviruses, also not represented by the official species, was formed by a virus identified in a common snipe. Only one identified buldecovirus (from common pheasant) formed a group with the ratified species Coronavirus HKU15. The results obtained indicate the high diversity of detected coronaviruses, and thus also the need to update their taxonomy (establishing new representative virus species). The serological studies performed revealed antibodies against an infectious bronchitis virus in the sera of white storks and mallards.
Collapse
|
10
|
Halabowski D, Rzymski P. Taking a lesson from the COVID-19 pandemic: Preventing the future outbreaks of viral zoonoses through a multi-faceted approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143723. [PMID: 33213901 PMCID: PMC7666614 DOI: 10.1016/j.scitotenv.2020.143723] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 05/22/2023]
Abstract
The pandemic of the novel coronavirus disease 2019 (COVID-19) has caused a significant burden to healthcare systems, economic crisis, and public fears. It is also a lesson to be learned and a call-to-action to minimize the risk of future viral pandemics and their associated challenges. The present paper outlines selected measures (i.e., monitoring and identification of novel viral agents in animals, limitations to wildlife trade, decreasing hunting activities, changes to mink farming and meat production), the implementation of which would decrease such a risk. The role of viral surveillance systems and research exploring the virus strains associated with different animal hosts is emphasized along with the need for stricter wild trade regulations and changes to hunting activities. Finally, the paper suggests modifications to the meat production system, particularly through the introduction of cultured meat that would not only decrease the risk of exposure to novel human viral pathogens but also strengthen food security and decrease the environmental impacts of food production.
Collapse
Affiliation(s)
- Dariusz Halabowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland.
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland; Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806 Poznań, Poland.
| |
Collapse
|
11
|
Mohapatra RK, Das PK, Sharun K, Tiwari R, Mohapatara SR, Mohapatra PK, Behera A, Acharyya T, Kandi V, Zahan KE, Natesan S, Bilal M, Dhama K. Negative and positive environmental perspective of COVID-19: air, water, wastewater, forest, and noise quality. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 8:364-384. [DOI: 10.1080/2314808x.2021.1973182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/24/2021] [Indexed: 02/11/2025]
Affiliation(s)
- Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, India
| | - Pradeep K Das
- Department of Chemistry, N. C. (Autonomous) College, Jajpur, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Mathura, India
| | - Saumya Ranjan Mohapatara
- ACF, Paralakhemundi Forest Division, Forest Department, Government of Odisha, Paralakhemundi, India
| | | | - Ajit Behera
- Department of Metallurgical & Materials Engineering, National Institute of Technology, Rourkela, India
| | | | - Venkataramana Kandi
- Department of Microbiology, Prathima Institute of Medical Sciences, Karimnagar, India
| | - Kudrat-E Zahan
- Department of Chemistry, Rajshahi University, Rajshahi, Bangladesh
| | - Senthilkumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Ganghinagar, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
12
|
Rahman MM, Talukder A, Chowdhury MMH, Talukder R, Akter R. Coronaviruses in wild birds - A potential and suitable vector for global distribution. Vet Med Sci 2020; 7:264-272. [PMID: 32970935 PMCID: PMC7537155 DOI: 10.1002/vms3.360] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 01/08/2023] Open
Abstract
The recurrent appearance of novel coronaviruses (CoVs) and the mortality and morbidity caused by their outbreaks aroused a widespread response among the global science community. Wild birds' high biodiversity, perching and migratory activity, ability to travel long distances and possession of a special adaptive immune system may make them alarming sources of zoonotic CoV‐spreading vectors. This review gathers the available evidence on the global spread of CoVs in wild birds to date. The major wild birds associated with different types of CoVs are Anseriformes, Charadriiformes, Columbiformes, Pelecaniformes, Galliformes, Passeriformes, Psittaciformes, Accipitriformes, Ciconiiformes, Gruiformes and so on. However, the main type of CoVs found in wild birds is gammacoronavirus, followed by deltacoronavirus. Consequently, it is imperative to enable thorough research and continuous monitoring to fill the study gap in terms of understanding their role as zoonotic vectors and the frequent appearance of novel CoVs.
Collapse
Affiliation(s)
- Md Mijanur Rahman
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Asma Talukder
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Reshma Talukder
- Department of Architecture, State University of Bangladesh, Dhaka, Bangladesh
| | - Rekha Akter
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
13
|
Wille M, Holmes EC. Wild birds as reservoirs for diverse and abundant gamma- and deltacoronaviruses. FEMS Microbiol Rev 2020; 44:631-644. [PMID: 32672814 PMCID: PMC7454673 DOI: 10.1093/femsre/fuaa026] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Wild birds interconnect all parts of the globe through annual cycles of migration with little respect for country or continental borders. Although wild birds are reservoir hosts for a high diversity of gamma- and deltacoronaviruses, we have little understanding of the ecology or evolution of any of these viruses. In this review, we use genome sequence and ecological data to disentangle the evolution of coronaviruses in wild birds. Specifically, we explore host range at the levels of viral genus and species, and reveal the multi-host nature of many viral species, albeit with biases to certain types of avian host. We conclude that it is currently challenging to infer viral ecology due to major sampling and technical limitations, and suggest that improved assay performance across the breadth of gamma- and deltacoronaviruses, assay standardization, as well as better sequencing approaches, will improve both the repeatability and interpretation of results. Finally, we discuss cross-species virus transmission across both the wild bird - poultry interface as well as from birds to mammals. Clarifying the ecology and diversity in the wild bird reservoir has important ramifications for our ability to respond to the likely future emergence of coronaviruses in socioeconomically important animal species or human populations.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
On the Coronaviruses and Their Associations with the Aquatic Environment and Wastewater. WATER 2020. [DOI: 10.3390/w12061598] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The outbreak of Coronavirus Disease 2019 (COVID-19), a severe respiratory disease caused by betacoronavirus SARS-CoV-2, in 2019 that further developed into a pandemic has received an unprecedented response from the scientific community and sparked a general research interest into the biology and ecology of Coronaviridae, a family of positive-sense single-stranded RNA viruses. Aquatic environments, lakes, rivers and ponds, are important habitats for bats and birds, which are hosts for various coronavirus species and strains and which shed viral particles in their feces. It is therefore of high interest to fully explore the role that aquatic environments may play in coronavirus spread, including cross-species transmissions. Besides the respiratory tract, coronaviruses pathogenic to humans can also infect the digestive system and be subsequently defecated. Considering this, it is pivotal to understand whether wastewater can play a role in their dissemination, particularly in areas with poor sanitation. This review provides an overview of the taxonomy, molecular biology, natural reservoirs and pathogenicity of coronaviruses; outlines their potential to survive in aquatic environments and wastewater; and demonstrates their association with aquatic biota, mainly waterfowl. It also calls for further, interdisciplinary research in the field of aquatic virology to explore the potential hotspots of coronaviruses in the aquatic environment and the routes through which they may enter it.
Collapse
|